1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include <linux/if_ether.h> 29 #include <linux/delay.h> 30 31 #include "e1000_mac.h" 32 #include "e1000_nvm.h" 33 34 /** 35 * igb_raise_eec_clk - Raise EEPROM clock 36 * @hw: pointer to the HW structure 37 * @eecd: pointer to the EEPROM 38 * 39 * Enable/Raise the EEPROM clock bit. 40 **/ 41 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 42 { 43 *eecd = *eecd | E1000_EECD_SK; 44 wr32(E1000_EECD, *eecd); 45 wrfl(); 46 udelay(hw->nvm.delay_usec); 47 } 48 49 /** 50 * igb_lower_eec_clk - Lower EEPROM clock 51 * @hw: pointer to the HW structure 52 * @eecd: pointer to the EEPROM 53 * 54 * Clear/Lower the EEPROM clock bit. 55 **/ 56 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 57 { 58 *eecd = *eecd & ~E1000_EECD_SK; 59 wr32(E1000_EECD, *eecd); 60 wrfl(); 61 udelay(hw->nvm.delay_usec); 62 } 63 64 /** 65 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM 66 * @hw: pointer to the HW structure 67 * @data: data to send to the EEPROM 68 * @count: number of bits to shift out 69 * 70 * We need to shift 'count' bits out to the EEPROM. So, the value in the 71 * "data" parameter will be shifted out to the EEPROM one bit at a time. 72 * In order to do this, "data" must be broken down into bits. 73 **/ 74 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 75 { 76 struct e1000_nvm_info *nvm = &hw->nvm; 77 u32 eecd = rd32(E1000_EECD); 78 u32 mask; 79 80 mask = 0x01 << (count - 1); 81 if (nvm->type == e1000_nvm_eeprom_spi) 82 eecd |= E1000_EECD_DO; 83 84 do { 85 eecd &= ~E1000_EECD_DI; 86 87 if (data & mask) 88 eecd |= E1000_EECD_DI; 89 90 wr32(E1000_EECD, eecd); 91 wrfl(); 92 93 udelay(nvm->delay_usec); 94 95 igb_raise_eec_clk(hw, &eecd); 96 igb_lower_eec_clk(hw, &eecd); 97 98 mask >>= 1; 99 } while (mask); 100 101 eecd &= ~E1000_EECD_DI; 102 wr32(E1000_EECD, eecd); 103 } 104 105 /** 106 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM 107 * @hw: pointer to the HW structure 108 * @count: number of bits to shift in 109 * 110 * In order to read a register from the EEPROM, we need to shift 'count' bits 111 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 112 * the EEPROM (setting the SK bit), and then reading the value of the data out 113 * "DO" bit. During this "shifting in" process the data in "DI" bit should 114 * always be clear. 115 **/ 116 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 117 { 118 u32 eecd; 119 u32 i; 120 u16 data; 121 122 eecd = rd32(E1000_EECD); 123 124 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 125 data = 0; 126 127 for (i = 0; i < count; i++) { 128 data <<= 1; 129 igb_raise_eec_clk(hw, &eecd); 130 131 eecd = rd32(E1000_EECD); 132 133 eecd &= ~E1000_EECD_DI; 134 if (eecd & E1000_EECD_DO) 135 data |= 1; 136 137 igb_lower_eec_clk(hw, &eecd); 138 } 139 140 return data; 141 } 142 143 /** 144 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion 145 * @hw: pointer to the HW structure 146 * @ee_reg: EEPROM flag for polling 147 * 148 * Polls the EEPROM status bit for either read or write completion based 149 * upon the value of 'ee_reg'. 150 **/ 151 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 152 { 153 u32 attempts = 100000; 154 u32 i, reg = 0; 155 s32 ret_val = -E1000_ERR_NVM; 156 157 for (i = 0; i < attempts; i++) { 158 if (ee_reg == E1000_NVM_POLL_READ) 159 reg = rd32(E1000_EERD); 160 else 161 reg = rd32(E1000_EEWR); 162 163 if (reg & E1000_NVM_RW_REG_DONE) { 164 ret_val = 0; 165 break; 166 } 167 168 udelay(5); 169 } 170 171 return ret_val; 172 } 173 174 /** 175 * igb_acquire_nvm - Generic request for access to EEPROM 176 * @hw: pointer to the HW structure 177 * 178 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 179 * Return successful if access grant bit set, else clear the request for 180 * EEPROM access and return -E1000_ERR_NVM (-1). 181 **/ 182 s32 igb_acquire_nvm(struct e1000_hw *hw) 183 { 184 u32 eecd = rd32(E1000_EECD); 185 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 186 s32 ret_val = 0; 187 188 189 wr32(E1000_EECD, eecd | E1000_EECD_REQ); 190 eecd = rd32(E1000_EECD); 191 192 while (timeout) { 193 if (eecd & E1000_EECD_GNT) 194 break; 195 udelay(5); 196 eecd = rd32(E1000_EECD); 197 timeout--; 198 } 199 200 if (!timeout) { 201 eecd &= ~E1000_EECD_REQ; 202 wr32(E1000_EECD, eecd); 203 hw_dbg("Could not acquire NVM grant\n"); 204 ret_val = -E1000_ERR_NVM; 205 } 206 207 return ret_val; 208 } 209 210 /** 211 * igb_standby_nvm - Return EEPROM to standby state 212 * @hw: pointer to the HW structure 213 * 214 * Return the EEPROM to a standby state. 215 **/ 216 static void igb_standby_nvm(struct e1000_hw *hw) 217 { 218 struct e1000_nvm_info *nvm = &hw->nvm; 219 u32 eecd = rd32(E1000_EECD); 220 221 if (nvm->type == e1000_nvm_eeprom_spi) { 222 /* Toggle CS to flush commands */ 223 eecd |= E1000_EECD_CS; 224 wr32(E1000_EECD, eecd); 225 wrfl(); 226 udelay(nvm->delay_usec); 227 eecd &= ~E1000_EECD_CS; 228 wr32(E1000_EECD, eecd); 229 wrfl(); 230 udelay(nvm->delay_usec); 231 } 232 } 233 234 /** 235 * e1000_stop_nvm - Terminate EEPROM command 236 * @hw: pointer to the HW structure 237 * 238 * Terminates the current command by inverting the EEPROM's chip select pin. 239 **/ 240 static void e1000_stop_nvm(struct e1000_hw *hw) 241 { 242 u32 eecd; 243 244 eecd = rd32(E1000_EECD); 245 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 246 /* Pull CS high */ 247 eecd |= E1000_EECD_CS; 248 igb_lower_eec_clk(hw, &eecd); 249 } 250 } 251 252 /** 253 * igb_release_nvm - Release exclusive access to EEPROM 254 * @hw: pointer to the HW structure 255 * 256 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 257 **/ 258 void igb_release_nvm(struct e1000_hw *hw) 259 { 260 u32 eecd; 261 262 e1000_stop_nvm(hw); 263 264 eecd = rd32(E1000_EECD); 265 eecd &= ~E1000_EECD_REQ; 266 wr32(E1000_EECD, eecd); 267 } 268 269 /** 270 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write 271 * @hw: pointer to the HW structure 272 * 273 * Setups the EEPROM for reading and writing. 274 **/ 275 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) 276 { 277 struct e1000_nvm_info *nvm = &hw->nvm; 278 u32 eecd = rd32(E1000_EECD); 279 s32 ret_val = 0; 280 u16 timeout = 0; 281 u8 spi_stat_reg; 282 283 284 if (nvm->type == e1000_nvm_eeprom_spi) { 285 /* Clear SK and CS */ 286 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 287 wr32(E1000_EECD, eecd); 288 wrfl(); 289 udelay(1); 290 timeout = NVM_MAX_RETRY_SPI; 291 292 /* Read "Status Register" repeatedly until the LSB is cleared. 293 * The EEPROM will signal that the command has been completed 294 * by clearing bit 0 of the internal status register. If it's 295 * not cleared within 'timeout', then error out. 296 */ 297 while (timeout) { 298 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 299 hw->nvm.opcode_bits); 300 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); 301 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 302 break; 303 304 udelay(5); 305 igb_standby_nvm(hw); 306 timeout--; 307 } 308 309 if (!timeout) { 310 hw_dbg("SPI NVM Status error\n"); 311 ret_val = -E1000_ERR_NVM; 312 goto out; 313 } 314 } 315 316 out: 317 return ret_val; 318 } 319 320 /** 321 * igb_read_nvm_spi - Read EEPROM's using SPI 322 * @hw: pointer to the HW structure 323 * @offset: offset of word in the EEPROM to read 324 * @words: number of words to read 325 * @data: word read from the EEPROM 326 * 327 * Reads a 16 bit word from the EEPROM. 328 **/ 329 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 330 { 331 struct e1000_nvm_info *nvm = &hw->nvm; 332 u32 i = 0; 333 s32 ret_val; 334 u16 word_in; 335 u8 read_opcode = NVM_READ_OPCODE_SPI; 336 337 /* A check for invalid values: offset too large, too many words, 338 * and not enough words. 339 */ 340 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 341 (words == 0)) { 342 hw_dbg("nvm parameter(s) out of bounds\n"); 343 ret_val = -E1000_ERR_NVM; 344 goto out; 345 } 346 347 ret_val = nvm->ops.acquire(hw); 348 if (ret_val) 349 goto out; 350 351 ret_val = igb_ready_nvm_eeprom(hw); 352 if (ret_val) 353 goto release; 354 355 igb_standby_nvm(hw); 356 357 if ((nvm->address_bits == 8) && (offset >= 128)) 358 read_opcode |= NVM_A8_OPCODE_SPI; 359 360 /* Send the READ command (opcode + addr) */ 361 igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); 362 igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); 363 364 /* Read the data. SPI NVMs increment the address with each byte 365 * read and will roll over if reading beyond the end. This allows 366 * us to read the whole NVM from any offset 367 */ 368 for (i = 0; i < words; i++) { 369 word_in = igb_shift_in_eec_bits(hw, 16); 370 data[i] = (word_in >> 8) | (word_in << 8); 371 } 372 373 release: 374 nvm->ops.release(hw); 375 376 out: 377 return ret_val; 378 } 379 380 /** 381 * igb_read_nvm_eerd - Reads EEPROM using EERD register 382 * @hw: pointer to the HW structure 383 * @offset: offset of word in the EEPROM to read 384 * @words: number of words to read 385 * @data: word read from the EEPROM 386 * 387 * Reads a 16 bit word from the EEPROM using the EERD register. 388 **/ 389 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 390 { 391 struct e1000_nvm_info *nvm = &hw->nvm; 392 u32 i, eerd = 0; 393 s32 ret_val = 0; 394 395 /* A check for invalid values: offset too large, too many words, 396 * and not enough words. 397 */ 398 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 399 (words == 0)) { 400 hw_dbg("nvm parameter(s) out of bounds\n"); 401 ret_val = -E1000_ERR_NVM; 402 goto out; 403 } 404 405 for (i = 0; i < words; i++) { 406 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 407 E1000_NVM_RW_REG_START; 408 409 wr32(E1000_EERD, eerd); 410 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 411 if (ret_val) 412 break; 413 414 data[i] = (rd32(E1000_EERD) >> 415 E1000_NVM_RW_REG_DATA); 416 } 417 418 out: 419 return ret_val; 420 } 421 422 /** 423 * igb_write_nvm_spi - Write to EEPROM using SPI 424 * @hw: pointer to the HW structure 425 * @offset: offset within the EEPROM to be written to 426 * @words: number of words to write 427 * @data: 16 bit word(s) to be written to the EEPROM 428 * 429 * Writes data to EEPROM at offset using SPI interface. 430 * 431 * If e1000_update_nvm_checksum is not called after this function , the 432 * EEPROM will most likley contain an invalid checksum. 433 **/ 434 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 435 { 436 struct e1000_nvm_info *nvm = &hw->nvm; 437 s32 ret_val = -E1000_ERR_NVM; 438 u16 widx = 0; 439 440 /* A check for invalid values: offset too large, too many words, 441 * and not enough words. 442 */ 443 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 444 (words == 0)) { 445 hw_dbg("nvm parameter(s) out of bounds\n"); 446 return ret_val; 447 } 448 449 while (widx < words) { 450 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 451 452 ret_val = nvm->ops.acquire(hw); 453 if (ret_val) 454 return ret_val; 455 456 ret_val = igb_ready_nvm_eeprom(hw); 457 if (ret_val) { 458 nvm->ops.release(hw); 459 return ret_val; 460 } 461 462 igb_standby_nvm(hw); 463 464 /* Send the WRITE ENABLE command (8 bit opcode) */ 465 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 466 nvm->opcode_bits); 467 468 igb_standby_nvm(hw); 469 470 /* Some SPI eeproms use the 8th address bit embedded in the 471 * opcode 472 */ 473 if ((nvm->address_bits == 8) && (offset >= 128)) 474 write_opcode |= NVM_A8_OPCODE_SPI; 475 476 /* Send the Write command (8-bit opcode + addr) */ 477 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 478 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 479 nvm->address_bits); 480 481 /* Loop to allow for up to whole page write of eeprom */ 482 while (widx < words) { 483 u16 word_out = data[widx]; 484 word_out = (word_out >> 8) | (word_out << 8); 485 igb_shift_out_eec_bits(hw, word_out, 16); 486 widx++; 487 488 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 489 igb_standby_nvm(hw); 490 break; 491 } 492 } 493 usleep_range(1000, 2000); 494 nvm->ops.release(hw); 495 } 496 497 return ret_val; 498 } 499 500 /** 501 * igb_read_part_string - Read device part number 502 * @hw: pointer to the HW structure 503 * @part_num: pointer to device part number 504 * @part_num_size: size of part number buffer 505 * 506 * Reads the product board assembly (PBA) number from the EEPROM and stores 507 * the value in part_num. 508 **/ 509 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) 510 { 511 s32 ret_val; 512 u16 nvm_data; 513 u16 pointer; 514 u16 offset; 515 u16 length; 516 517 if (part_num == NULL) { 518 hw_dbg("PBA string buffer was null\n"); 519 ret_val = E1000_ERR_INVALID_ARGUMENT; 520 goto out; 521 } 522 523 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 524 if (ret_val) { 525 hw_dbg("NVM Read Error\n"); 526 goto out; 527 } 528 529 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); 530 if (ret_val) { 531 hw_dbg("NVM Read Error\n"); 532 goto out; 533 } 534 535 /* if nvm_data is not ptr guard the PBA must be in legacy format which 536 * means pointer is actually our second data word for the PBA number 537 * and we can decode it into an ascii string 538 */ 539 if (nvm_data != NVM_PBA_PTR_GUARD) { 540 hw_dbg("NVM PBA number is not stored as string\n"); 541 542 /* we will need 11 characters to store the PBA */ 543 if (part_num_size < 11) { 544 hw_dbg("PBA string buffer too small\n"); 545 return E1000_ERR_NO_SPACE; 546 } 547 548 /* extract hex string from data and pointer */ 549 part_num[0] = (nvm_data >> 12) & 0xF; 550 part_num[1] = (nvm_data >> 8) & 0xF; 551 part_num[2] = (nvm_data >> 4) & 0xF; 552 part_num[3] = nvm_data & 0xF; 553 part_num[4] = (pointer >> 12) & 0xF; 554 part_num[5] = (pointer >> 8) & 0xF; 555 part_num[6] = '-'; 556 part_num[7] = 0; 557 part_num[8] = (pointer >> 4) & 0xF; 558 part_num[9] = pointer & 0xF; 559 560 /* put a null character on the end of our string */ 561 part_num[10] = '\0'; 562 563 /* switch all the data but the '-' to hex char */ 564 for (offset = 0; offset < 10; offset++) { 565 if (part_num[offset] < 0xA) 566 part_num[offset] += '0'; 567 else if (part_num[offset] < 0x10) 568 part_num[offset] += 'A' - 0xA; 569 } 570 571 goto out; 572 } 573 574 ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); 575 if (ret_val) { 576 hw_dbg("NVM Read Error\n"); 577 goto out; 578 } 579 580 if (length == 0xFFFF || length == 0) { 581 hw_dbg("NVM PBA number section invalid length\n"); 582 ret_val = E1000_ERR_NVM_PBA_SECTION; 583 goto out; 584 } 585 /* check if part_num buffer is big enough */ 586 if (part_num_size < (((u32)length * 2) - 1)) { 587 hw_dbg("PBA string buffer too small\n"); 588 ret_val = E1000_ERR_NO_SPACE; 589 goto out; 590 } 591 592 /* trim pba length from start of string */ 593 pointer++; 594 length--; 595 596 for (offset = 0; offset < length; offset++) { 597 ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); 598 if (ret_val) { 599 hw_dbg("NVM Read Error\n"); 600 goto out; 601 } 602 part_num[offset * 2] = (u8)(nvm_data >> 8); 603 part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 604 } 605 part_num[offset * 2] = '\0'; 606 607 out: 608 return ret_val; 609 } 610 611 /** 612 * igb_read_mac_addr - Read device MAC address 613 * @hw: pointer to the HW structure 614 * 615 * Reads the device MAC address from the EEPROM and stores the value. 616 * Since devices with two ports use the same EEPROM, we increment the 617 * last bit in the MAC address for the second port. 618 **/ 619 s32 igb_read_mac_addr(struct e1000_hw *hw) 620 { 621 u32 rar_high; 622 u32 rar_low; 623 u16 i; 624 625 rar_high = rd32(E1000_RAH(0)); 626 rar_low = rd32(E1000_RAL(0)); 627 628 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 629 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 630 631 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 632 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 633 634 for (i = 0; i < ETH_ALEN; i++) 635 hw->mac.addr[i] = hw->mac.perm_addr[i]; 636 637 return 0; 638 } 639 640 /** 641 * igb_validate_nvm_checksum - Validate EEPROM checksum 642 * @hw: pointer to the HW structure 643 * 644 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 645 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 646 **/ 647 s32 igb_validate_nvm_checksum(struct e1000_hw *hw) 648 { 649 s32 ret_val = 0; 650 u16 checksum = 0; 651 u16 i, nvm_data; 652 653 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 654 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 655 if (ret_val) { 656 hw_dbg("NVM Read Error\n"); 657 goto out; 658 } 659 checksum += nvm_data; 660 } 661 662 if (checksum != (u16) NVM_SUM) { 663 hw_dbg("NVM Checksum Invalid\n"); 664 ret_val = -E1000_ERR_NVM; 665 goto out; 666 } 667 668 out: 669 return ret_val; 670 } 671 672 /** 673 * igb_update_nvm_checksum - Update EEPROM checksum 674 * @hw: pointer to the HW structure 675 * 676 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 677 * up to the checksum. Then calculates the EEPROM checksum and writes the 678 * value to the EEPROM. 679 **/ 680 s32 igb_update_nvm_checksum(struct e1000_hw *hw) 681 { 682 s32 ret_val; 683 u16 checksum = 0; 684 u16 i, nvm_data; 685 686 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 687 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 688 if (ret_val) { 689 hw_dbg("NVM Read Error while updating checksum.\n"); 690 goto out; 691 } 692 checksum += nvm_data; 693 } 694 checksum = (u16) NVM_SUM - checksum; 695 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); 696 if (ret_val) 697 hw_dbg("NVM Write Error while updating checksum.\n"); 698 699 out: 700 return ret_val; 701 } 702 703 /** 704 * igb_get_fw_version - Get firmware version information 705 * @hw: pointer to the HW structure 706 * @fw_vers: pointer to output structure 707 * 708 * unsupported MAC types will return all 0 version structure 709 **/ 710 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) 711 { 712 u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; 713 u8 q, hval, rem, result; 714 u16 comb_verh, comb_verl, comb_offset; 715 716 memset(fw_vers, 0, sizeof(struct e1000_fw_version)); 717 718 /* basic eeprom version numbers and bits used vary by part and by tool 719 * used to create the nvm images. Check which data format we have. 720 */ 721 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); 722 switch (hw->mac.type) { 723 case e1000_i211: 724 igb_read_invm_version(hw, fw_vers); 725 return; 726 case e1000_82575: 727 case e1000_82576: 728 case e1000_82580: 729 /* Use this format, unless EETRACK ID exists, 730 * then use alternate format 731 */ 732 if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { 733 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 734 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 735 >> NVM_MAJOR_SHIFT; 736 fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) 737 >> NVM_MINOR_SHIFT; 738 fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); 739 goto etrack_id; 740 } 741 break; 742 case e1000_i210: 743 if (!(igb_get_flash_presence_i210(hw))) { 744 igb_read_invm_version(hw, fw_vers); 745 return; 746 } 747 /* fall through */ 748 case e1000_i350: 749 /* find combo image version */ 750 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); 751 if ((comb_offset != 0x0) && 752 (comb_offset != NVM_VER_INVALID)) { 753 754 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset 755 + 1), 1, &comb_verh); 756 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), 757 1, &comb_verl); 758 759 /* get Option Rom version if it exists and is valid */ 760 if ((comb_verh && comb_verl) && 761 ((comb_verh != NVM_VER_INVALID) && 762 (comb_verl != NVM_VER_INVALID))) { 763 764 fw_vers->or_valid = true; 765 fw_vers->or_major = 766 comb_verl >> NVM_COMB_VER_SHFT; 767 fw_vers->or_build = 768 (comb_verl << NVM_COMB_VER_SHFT) 769 | (comb_verh >> NVM_COMB_VER_SHFT); 770 fw_vers->or_patch = 771 comb_verh & NVM_COMB_VER_MASK; 772 } 773 } 774 break; 775 default: 776 return; 777 } 778 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 779 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 780 >> NVM_MAJOR_SHIFT; 781 782 /* check for old style version format in newer images*/ 783 if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { 784 eeprom_verl = (fw_version & NVM_COMB_VER_MASK); 785 } else { 786 eeprom_verl = (fw_version & NVM_MINOR_MASK) 787 >> NVM_MINOR_SHIFT; 788 } 789 /* Convert minor value to hex before assigning to output struct 790 * Val to be converted will not be higher than 99, per tool output 791 */ 792 q = eeprom_verl / NVM_HEX_CONV; 793 hval = q * NVM_HEX_TENS; 794 rem = eeprom_verl % NVM_HEX_CONV; 795 result = hval + rem; 796 fw_vers->eep_minor = result; 797 798 etrack_id: 799 if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { 800 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); 801 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); 802 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) 803 | eeprom_verl; 804 } 805 return; 806 } 807