xref: /linux/drivers/net/ethernet/intel/igb/e1000_nvm.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
33 
34 /**
35  *  igb_raise_eec_clk - Raise EEPROM clock
36  *  @hw: pointer to the HW structure
37  *  @eecd: pointer to the EEPROM
38  *
39  *  Enable/Raise the EEPROM clock bit.
40  **/
41 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42 {
43 	*eecd = *eecd | E1000_EECD_SK;
44 	wr32(E1000_EECD, *eecd);
45 	wrfl();
46 	udelay(hw->nvm.delay_usec);
47 }
48 
49 /**
50  *  igb_lower_eec_clk - Lower EEPROM clock
51  *  @hw: pointer to the HW structure
52  *  @eecd: pointer to the EEPROM
53  *
54  *  Clear/Lower the EEPROM clock bit.
55  **/
56 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57 {
58 	*eecd = *eecd & ~E1000_EECD_SK;
59 	wr32(E1000_EECD, *eecd);
60 	wrfl();
61 	udelay(hw->nvm.delay_usec);
62 }
63 
64 /**
65  *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66  *  @hw: pointer to the HW structure
67  *  @data: data to send to the EEPROM
68  *  @count: number of bits to shift out
69  *
70  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
71  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
72  *  In order to do this, "data" must be broken down into bits.
73  **/
74 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75 {
76 	struct e1000_nvm_info *nvm = &hw->nvm;
77 	u32 eecd = rd32(E1000_EECD);
78 	u32 mask;
79 
80 	mask = 0x01 << (count - 1);
81 	if (nvm->type == e1000_nvm_eeprom_spi)
82 		eecd |= E1000_EECD_DO;
83 
84 	do {
85 		eecd &= ~E1000_EECD_DI;
86 
87 		if (data & mask)
88 			eecd |= E1000_EECD_DI;
89 
90 		wr32(E1000_EECD, eecd);
91 		wrfl();
92 
93 		udelay(nvm->delay_usec);
94 
95 		igb_raise_eec_clk(hw, &eecd);
96 		igb_lower_eec_clk(hw, &eecd);
97 
98 		mask >>= 1;
99 	} while (mask);
100 
101 	eecd &= ~E1000_EECD_DI;
102 	wr32(E1000_EECD, eecd);
103 }
104 
105 /**
106  *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107  *  @hw: pointer to the HW structure
108  *  @count: number of bits to shift in
109  *
110  *  In order to read a register from the EEPROM, we need to shift 'count' bits
111  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
112  *  the EEPROM (setting the SK bit), and then reading the value of the data out
113  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
114  *  always be clear.
115  **/
116 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117 {
118 	u32 eecd;
119 	u32 i;
120 	u16 data;
121 
122 	eecd = rd32(E1000_EECD);
123 
124 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125 	data = 0;
126 
127 	for (i = 0; i < count; i++) {
128 		data <<= 1;
129 		igb_raise_eec_clk(hw, &eecd);
130 
131 		eecd = rd32(E1000_EECD);
132 
133 		eecd &= ~E1000_EECD_DI;
134 		if (eecd & E1000_EECD_DO)
135 			data |= 1;
136 
137 		igb_lower_eec_clk(hw, &eecd);
138 	}
139 
140 	return data;
141 }
142 
143 /**
144  *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145  *  @hw: pointer to the HW structure
146  *  @ee_reg: EEPROM flag for polling
147  *
148  *  Polls the EEPROM status bit for either read or write completion based
149  *  upon the value of 'ee_reg'.
150  **/
151 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152 {
153 	u32 attempts = 100000;
154 	u32 i, reg = 0;
155 	s32 ret_val = -E1000_ERR_NVM;
156 
157 	for (i = 0; i < attempts; i++) {
158 		if (ee_reg == E1000_NVM_POLL_READ)
159 			reg = rd32(E1000_EERD);
160 		else
161 			reg = rd32(E1000_EEWR);
162 
163 		if (reg & E1000_NVM_RW_REG_DONE) {
164 			ret_val = 0;
165 			break;
166 		}
167 
168 		udelay(5);
169 	}
170 
171 	return ret_val;
172 }
173 
174 /**
175  *  igb_acquire_nvm - Generic request for access to EEPROM
176  *  @hw: pointer to the HW structure
177  *
178  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
179  *  Return successful if access grant bit set, else clear the request for
180  *  EEPROM access and return -E1000_ERR_NVM (-1).
181  **/
182 s32 igb_acquire_nvm(struct e1000_hw *hw)
183 {
184 	u32 eecd = rd32(E1000_EECD);
185 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
186 	s32 ret_val = 0;
187 
188 
189 	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190 	eecd = rd32(E1000_EECD);
191 
192 	while (timeout) {
193 		if (eecd & E1000_EECD_GNT)
194 			break;
195 		udelay(5);
196 		eecd = rd32(E1000_EECD);
197 		timeout--;
198 	}
199 
200 	if (!timeout) {
201 		eecd &= ~E1000_EECD_REQ;
202 		wr32(E1000_EECD, eecd);
203 		hw_dbg("Could not acquire NVM grant\n");
204 		ret_val = -E1000_ERR_NVM;
205 	}
206 
207 	return ret_val;
208 }
209 
210 /**
211  *  igb_standby_nvm - Return EEPROM to standby state
212  *  @hw: pointer to the HW structure
213  *
214  *  Return the EEPROM to a standby state.
215  **/
216 static void igb_standby_nvm(struct e1000_hw *hw)
217 {
218 	struct e1000_nvm_info *nvm = &hw->nvm;
219 	u32 eecd = rd32(E1000_EECD);
220 
221 	if (nvm->type == e1000_nvm_eeprom_spi) {
222 		/* Toggle CS to flush commands */
223 		eecd |= E1000_EECD_CS;
224 		wr32(E1000_EECD, eecd);
225 		wrfl();
226 		udelay(nvm->delay_usec);
227 		eecd &= ~E1000_EECD_CS;
228 		wr32(E1000_EECD, eecd);
229 		wrfl();
230 		udelay(nvm->delay_usec);
231 	}
232 }
233 
234 /**
235  *  e1000_stop_nvm - Terminate EEPROM command
236  *  @hw: pointer to the HW structure
237  *
238  *  Terminates the current command by inverting the EEPROM's chip select pin.
239  **/
240 static void e1000_stop_nvm(struct e1000_hw *hw)
241 {
242 	u32 eecd;
243 
244 	eecd = rd32(E1000_EECD);
245 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246 		/* Pull CS high */
247 		eecd |= E1000_EECD_CS;
248 		igb_lower_eec_clk(hw, &eecd);
249 	}
250 }
251 
252 /**
253  *  igb_release_nvm - Release exclusive access to EEPROM
254  *  @hw: pointer to the HW structure
255  *
256  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
257  **/
258 void igb_release_nvm(struct e1000_hw *hw)
259 {
260 	u32 eecd;
261 
262 	e1000_stop_nvm(hw);
263 
264 	eecd = rd32(E1000_EECD);
265 	eecd &= ~E1000_EECD_REQ;
266 	wr32(E1000_EECD, eecd);
267 }
268 
269 /**
270  *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271  *  @hw: pointer to the HW structure
272  *
273  *  Setups the EEPROM for reading and writing.
274  **/
275 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276 {
277 	struct e1000_nvm_info *nvm = &hw->nvm;
278 	u32 eecd = rd32(E1000_EECD);
279 	s32 ret_val = 0;
280 	u16 timeout = 0;
281 	u8 spi_stat_reg;
282 
283 
284 	if (nvm->type == e1000_nvm_eeprom_spi) {
285 		/* Clear SK and CS */
286 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287 		wr32(E1000_EECD, eecd);
288 		wrfl();
289 		udelay(1);
290 		timeout = NVM_MAX_RETRY_SPI;
291 
292 		/* Read "Status Register" repeatedly until the LSB is cleared.
293 		 * The EEPROM will signal that the command has been completed
294 		 * by clearing bit 0 of the internal status register.  If it's
295 		 * not cleared within 'timeout', then error out.
296 		 */
297 		while (timeout) {
298 			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
299 					       hw->nvm.opcode_bits);
300 			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
301 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
302 				break;
303 
304 			udelay(5);
305 			igb_standby_nvm(hw);
306 			timeout--;
307 		}
308 
309 		if (!timeout) {
310 			hw_dbg("SPI NVM Status error\n");
311 			ret_val = -E1000_ERR_NVM;
312 			goto out;
313 		}
314 	}
315 
316 out:
317 	return ret_val;
318 }
319 
320 /**
321  *  igb_read_nvm_spi - Read EEPROM's using SPI
322  *  @hw: pointer to the HW structure
323  *  @offset: offset of word in the EEPROM to read
324  *  @words: number of words to read
325  *  @data: word read from the EEPROM
326  *
327  *  Reads a 16 bit word from the EEPROM.
328  **/
329 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
330 {
331 	struct e1000_nvm_info *nvm = &hw->nvm;
332 	u32 i = 0;
333 	s32 ret_val;
334 	u16 word_in;
335 	u8 read_opcode = NVM_READ_OPCODE_SPI;
336 
337 	/* A check for invalid values:  offset too large, too many words,
338 	 * and not enough words.
339 	 */
340 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
341 	    (words == 0)) {
342 		hw_dbg("nvm parameter(s) out of bounds\n");
343 		ret_val = -E1000_ERR_NVM;
344 		goto out;
345 	}
346 
347 	ret_val = nvm->ops.acquire(hw);
348 	if (ret_val)
349 		goto out;
350 
351 	ret_val = igb_ready_nvm_eeprom(hw);
352 	if (ret_val)
353 		goto release;
354 
355 	igb_standby_nvm(hw);
356 
357 	if ((nvm->address_bits == 8) && (offset >= 128))
358 		read_opcode |= NVM_A8_OPCODE_SPI;
359 
360 	/* Send the READ command (opcode + addr) */
361 	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
362 	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
363 
364 	/* Read the data.  SPI NVMs increment the address with each byte
365 	 * read and will roll over if reading beyond the end.  This allows
366 	 * us to read the whole NVM from any offset
367 	 */
368 	for (i = 0; i < words; i++) {
369 		word_in = igb_shift_in_eec_bits(hw, 16);
370 		data[i] = (word_in >> 8) | (word_in << 8);
371 	}
372 
373 release:
374 	nvm->ops.release(hw);
375 
376 out:
377 	return ret_val;
378 }
379 
380 /**
381  *  igb_read_nvm_eerd - Reads EEPROM using EERD register
382  *  @hw: pointer to the HW structure
383  *  @offset: offset of word in the EEPROM to read
384  *  @words: number of words to read
385  *  @data: word read from the EEPROM
386  *
387  *  Reads a 16 bit word from the EEPROM using the EERD register.
388  **/
389 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
390 {
391 	struct e1000_nvm_info *nvm = &hw->nvm;
392 	u32 i, eerd = 0;
393 	s32 ret_val = 0;
394 
395 	/* A check for invalid values:  offset too large, too many words,
396 	 * and not enough words.
397 	 */
398 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
399 	    (words == 0)) {
400 		hw_dbg("nvm parameter(s) out of bounds\n");
401 		ret_val = -E1000_ERR_NVM;
402 		goto out;
403 	}
404 
405 	for (i = 0; i < words; i++) {
406 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
407 			E1000_NVM_RW_REG_START;
408 
409 		wr32(E1000_EERD, eerd);
410 		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
411 		if (ret_val)
412 			break;
413 
414 		data[i] = (rd32(E1000_EERD) >>
415 			E1000_NVM_RW_REG_DATA);
416 	}
417 
418 out:
419 	return ret_val;
420 }
421 
422 /**
423  *  igb_write_nvm_spi - Write to EEPROM using SPI
424  *  @hw: pointer to the HW structure
425  *  @offset: offset within the EEPROM to be written to
426  *  @words: number of words to write
427  *  @data: 16 bit word(s) to be written to the EEPROM
428  *
429  *  Writes data to EEPROM at offset using SPI interface.
430  *
431  *  If e1000_update_nvm_checksum is not called after this function , the
432  *  EEPROM will most likley contain an invalid checksum.
433  **/
434 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
435 {
436 	struct e1000_nvm_info *nvm = &hw->nvm;
437 	s32 ret_val = -E1000_ERR_NVM;
438 	u16 widx = 0;
439 
440 	/* A check for invalid values:  offset too large, too many words,
441 	 * and not enough words.
442 	 */
443 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
444 	    (words == 0)) {
445 		hw_dbg("nvm parameter(s) out of bounds\n");
446 		return ret_val;
447 	}
448 
449 	while (widx < words) {
450 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
451 
452 		ret_val = nvm->ops.acquire(hw);
453 		if (ret_val)
454 			return ret_val;
455 
456 		ret_val = igb_ready_nvm_eeprom(hw);
457 		if (ret_val) {
458 			nvm->ops.release(hw);
459 			return ret_val;
460 		}
461 
462 		igb_standby_nvm(hw);
463 
464 		/* Send the WRITE ENABLE command (8 bit opcode) */
465 		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
466 					 nvm->opcode_bits);
467 
468 		igb_standby_nvm(hw);
469 
470 		/* Some SPI eeproms use the 8th address bit embedded in the
471 		 * opcode
472 		 */
473 		if ((nvm->address_bits == 8) && (offset >= 128))
474 			write_opcode |= NVM_A8_OPCODE_SPI;
475 
476 		/* Send the Write command (8-bit opcode + addr) */
477 		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
478 		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
479 					 nvm->address_bits);
480 
481 		/* Loop to allow for up to whole page write of eeprom */
482 		while (widx < words) {
483 			u16 word_out = data[widx];
484 			word_out = (word_out >> 8) | (word_out << 8);
485 			igb_shift_out_eec_bits(hw, word_out, 16);
486 			widx++;
487 
488 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
489 				igb_standby_nvm(hw);
490 				break;
491 			}
492 		}
493 		usleep_range(1000, 2000);
494 		nvm->ops.release(hw);
495 	}
496 
497 	return ret_val;
498 }
499 
500 /**
501  *  igb_read_part_string - Read device part number
502  *  @hw: pointer to the HW structure
503  *  @part_num: pointer to device part number
504  *  @part_num_size: size of part number buffer
505  *
506  *  Reads the product board assembly (PBA) number from the EEPROM and stores
507  *  the value in part_num.
508  **/
509 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
510 {
511 	s32 ret_val;
512 	u16 nvm_data;
513 	u16 pointer;
514 	u16 offset;
515 	u16 length;
516 
517 	if (part_num == NULL) {
518 		hw_dbg("PBA string buffer was null\n");
519 		ret_val = E1000_ERR_INVALID_ARGUMENT;
520 		goto out;
521 	}
522 
523 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
524 	if (ret_val) {
525 		hw_dbg("NVM Read Error\n");
526 		goto out;
527 	}
528 
529 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
530 	if (ret_val) {
531 		hw_dbg("NVM Read Error\n");
532 		goto out;
533 	}
534 
535 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
536 	 * means pointer is actually our second data word for the PBA number
537 	 * and we can decode it into an ascii string
538 	 */
539 	if (nvm_data != NVM_PBA_PTR_GUARD) {
540 		hw_dbg("NVM PBA number is not stored as string\n");
541 
542 		/* we will need 11 characters to store the PBA */
543 		if (part_num_size < 11) {
544 			hw_dbg("PBA string buffer too small\n");
545 			return E1000_ERR_NO_SPACE;
546 		}
547 
548 		/* extract hex string from data and pointer */
549 		part_num[0] = (nvm_data >> 12) & 0xF;
550 		part_num[1] = (nvm_data >> 8) & 0xF;
551 		part_num[2] = (nvm_data >> 4) & 0xF;
552 		part_num[3] = nvm_data & 0xF;
553 		part_num[4] = (pointer >> 12) & 0xF;
554 		part_num[5] = (pointer >> 8) & 0xF;
555 		part_num[6] = '-';
556 		part_num[7] = 0;
557 		part_num[8] = (pointer >> 4) & 0xF;
558 		part_num[9] = pointer & 0xF;
559 
560 		/* put a null character on the end of our string */
561 		part_num[10] = '\0';
562 
563 		/* switch all the data but the '-' to hex char */
564 		for (offset = 0; offset < 10; offset++) {
565 			if (part_num[offset] < 0xA)
566 				part_num[offset] += '0';
567 			else if (part_num[offset] < 0x10)
568 				part_num[offset] += 'A' - 0xA;
569 		}
570 
571 		goto out;
572 	}
573 
574 	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
575 	if (ret_val) {
576 		hw_dbg("NVM Read Error\n");
577 		goto out;
578 	}
579 
580 	if (length == 0xFFFF || length == 0) {
581 		hw_dbg("NVM PBA number section invalid length\n");
582 		ret_val = E1000_ERR_NVM_PBA_SECTION;
583 		goto out;
584 	}
585 	/* check if part_num buffer is big enough */
586 	if (part_num_size < (((u32)length * 2) - 1)) {
587 		hw_dbg("PBA string buffer too small\n");
588 		ret_val = E1000_ERR_NO_SPACE;
589 		goto out;
590 	}
591 
592 	/* trim pba length from start of string */
593 	pointer++;
594 	length--;
595 
596 	for (offset = 0; offset < length; offset++) {
597 		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
598 		if (ret_val) {
599 			hw_dbg("NVM Read Error\n");
600 			goto out;
601 		}
602 		part_num[offset * 2] = (u8)(nvm_data >> 8);
603 		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
604 	}
605 	part_num[offset * 2] = '\0';
606 
607 out:
608 	return ret_val;
609 }
610 
611 /**
612  *  igb_read_mac_addr - Read device MAC address
613  *  @hw: pointer to the HW structure
614  *
615  *  Reads the device MAC address from the EEPROM and stores the value.
616  *  Since devices with two ports use the same EEPROM, we increment the
617  *  last bit in the MAC address for the second port.
618  **/
619 s32 igb_read_mac_addr(struct e1000_hw *hw)
620 {
621 	u32 rar_high;
622 	u32 rar_low;
623 	u16 i;
624 
625 	rar_high = rd32(E1000_RAH(0));
626 	rar_low = rd32(E1000_RAL(0));
627 
628 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
629 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
630 
631 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
632 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
633 
634 	for (i = 0; i < ETH_ALEN; i++)
635 		hw->mac.addr[i] = hw->mac.perm_addr[i];
636 
637 	return 0;
638 }
639 
640 /**
641  *  igb_validate_nvm_checksum - Validate EEPROM checksum
642  *  @hw: pointer to the HW structure
643  *
644  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
645  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
646  **/
647 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
648 {
649 	s32 ret_val = 0;
650 	u16 checksum = 0;
651 	u16 i, nvm_data;
652 
653 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
654 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
655 		if (ret_val) {
656 			hw_dbg("NVM Read Error\n");
657 			goto out;
658 		}
659 		checksum += nvm_data;
660 	}
661 
662 	if (checksum != (u16) NVM_SUM) {
663 		hw_dbg("NVM Checksum Invalid\n");
664 		ret_val = -E1000_ERR_NVM;
665 		goto out;
666 	}
667 
668 out:
669 	return ret_val;
670 }
671 
672 /**
673  *  igb_update_nvm_checksum - Update EEPROM checksum
674  *  @hw: pointer to the HW structure
675  *
676  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
677  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
678  *  value to the EEPROM.
679  **/
680 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
681 {
682 	s32  ret_val;
683 	u16 checksum = 0;
684 	u16 i, nvm_data;
685 
686 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
687 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
688 		if (ret_val) {
689 			hw_dbg("NVM Read Error while updating checksum.\n");
690 			goto out;
691 		}
692 		checksum += nvm_data;
693 	}
694 	checksum = (u16) NVM_SUM - checksum;
695 	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
696 	if (ret_val)
697 		hw_dbg("NVM Write Error while updating checksum.\n");
698 
699 out:
700 	return ret_val;
701 }
702 
703 /**
704  *  igb_get_fw_version - Get firmware version information
705  *  @hw: pointer to the HW structure
706  *  @fw_vers: pointer to output structure
707  *
708  *  unsupported MAC types will return all 0 version structure
709  **/
710 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
711 {
712 	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
713 	u8 q, hval, rem, result;
714 	u16 comb_verh, comb_verl, comb_offset;
715 
716 	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
717 
718 	/* basic eeprom version numbers and bits used vary by part and by tool
719 	 * used to create the nvm images. Check which data format we have.
720 	 */
721 	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
722 	switch (hw->mac.type) {
723 	case e1000_i211:
724 		igb_read_invm_version(hw, fw_vers);
725 		return;
726 	case e1000_82575:
727 	case e1000_82576:
728 	case e1000_82580:
729 		/* Use this format, unless EETRACK ID exists,
730 		 * then use alternate format
731 		 */
732 		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
733 			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
734 			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
735 					      >> NVM_MAJOR_SHIFT;
736 			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
737 					      >> NVM_MINOR_SHIFT;
738 			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
739 			goto etrack_id;
740 		}
741 		break;
742 	case e1000_i210:
743 		if (!(igb_get_flash_presence_i210(hw))) {
744 			igb_read_invm_version(hw, fw_vers);
745 			return;
746 		}
747 		/* fall through */
748 	case e1000_i350:
749 		/* find combo image version */
750 		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
751 		if ((comb_offset != 0x0) &&
752 		    (comb_offset != NVM_VER_INVALID)) {
753 
754 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
755 					 + 1), 1, &comb_verh);
756 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
757 					 1, &comb_verl);
758 
759 			/* get Option Rom version if it exists and is valid */
760 			if ((comb_verh && comb_verl) &&
761 			    ((comb_verh != NVM_VER_INVALID) &&
762 			     (comb_verl != NVM_VER_INVALID))) {
763 
764 				fw_vers->or_valid = true;
765 				fw_vers->or_major =
766 					comb_verl >> NVM_COMB_VER_SHFT;
767 				fw_vers->or_build =
768 					(comb_verl << NVM_COMB_VER_SHFT)
769 					| (comb_verh >> NVM_COMB_VER_SHFT);
770 				fw_vers->or_patch =
771 					comb_verh & NVM_COMB_VER_MASK;
772 			}
773 		}
774 		break;
775 	default:
776 		return;
777 	}
778 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
779 	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
780 			      >> NVM_MAJOR_SHIFT;
781 
782 	/* check for old style version format in newer images*/
783 	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
784 		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
785 	} else {
786 		eeprom_verl = (fw_version & NVM_MINOR_MASK)
787 				>> NVM_MINOR_SHIFT;
788 	}
789 	/* Convert minor value to hex before assigning to output struct
790 	 * Val to be converted will not be higher than 99, per tool output
791 	 */
792 	q = eeprom_verl / NVM_HEX_CONV;
793 	hval = q * NVM_HEX_TENS;
794 	rem = eeprom_verl % NVM_HEX_CONV;
795 	result = hval + rem;
796 	fw_vers->eep_minor = result;
797 
798 etrack_id:
799 	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
800 		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
801 		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
802 		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
803 			| eeprom_verl;
804 	}
805 	return;
806 }
807