xref: /linux/drivers/net/ethernet/intel/igb/e1000_nvm.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #include <linux/if_ether.h>
5 #include <linux/delay.h>
6 
7 #include "e1000_mac.h"
8 #include "e1000_nvm.h"
9 
10 /**
11  *  igb_raise_eec_clk - Raise EEPROM clock
12  *  @hw: pointer to the HW structure
13  *  @eecd: pointer to the EEPROM
14  *
15  *  Enable/Raise the EEPROM clock bit.
16  **/
17 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
18 {
19 	*eecd = *eecd | E1000_EECD_SK;
20 	wr32(E1000_EECD, *eecd);
21 	wrfl();
22 	udelay(hw->nvm.delay_usec);
23 }
24 
25 /**
26  *  igb_lower_eec_clk - Lower EEPROM clock
27  *  @hw: pointer to the HW structure
28  *  @eecd: pointer to the EEPROM
29  *
30  *  Clear/Lower the EEPROM clock bit.
31  **/
32 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
33 {
34 	*eecd = *eecd & ~E1000_EECD_SK;
35 	wr32(E1000_EECD, *eecd);
36 	wrfl();
37 	udelay(hw->nvm.delay_usec);
38 }
39 
40 /**
41  *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
42  *  @hw: pointer to the HW structure
43  *  @data: data to send to the EEPROM
44  *  @count: number of bits to shift out
45  *
46  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
47  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
48  *  In order to do this, "data" must be broken down into bits.
49  **/
50 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
51 {
52 	struct e1000_nvm_info *nvm = &hw->nvm;
53 	u32 eecd = rd32(E1000_EECD);
54 	u32 mask;
55 
56 	mask = 1u << (count - 1);
57 	if (nvm->type == e1000_nvm_eeprom_spi)
58 		eecd |= E1000_EECD_DO;
59 
60 	do {
61 		eecd &= ~E1000_EECD_DI;
62 
63 		if (data & mask)
64 			eecd |= E1000_EECD_DI;
65 
66 		wr32(E1000_EECD, eecd);
67 		wrfl();
68 
69 		udelay(nvm->delay_usec);
70 
71 		igb_raise_eec_clk(hw, &eecd);
72 		igb_lower_eec_clk(hw, &eecd);
73 
74 		mask >>= 1;
75 	} while (mask);
76 
77 	eecd &= ~E1000_EECD_DI;
78 	wr32(E1000_EECD, eecd);
79 }
80 
81 /**
82  *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
83  *  @hw: pointer to the HW structure
84  *  @count: number of bits to shift in
85  *
86  *  In order to read a register from the EEPROM, we need to shift 'count' bits
87  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
88  *  the EEPROM (setting the SK bit), and then reading the value of the data out
89  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
90  *  always be clear.
91  **/
92 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
93 {
94 	u32 eecd;
95 	u32 i;
96 	u16 data;
97 
98 	eecd = rd32(E1000_EECD);
99 
100 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
101 	data = 0;
102 
103 	for (i = 0; i < count; i++) {
104 		data <<= 1;
105 		igb_raise_eec_clk(hw, &eecd);
106 
107 		eecd = rd32(E1000_EECD);
108 
109 		eecd &= ~E1000_EECD_DI;
110 		if (eecd & E1000_EECD_DO)
111 			data |= 1;
112 
113 		igb_lower_eec_clk(hw, &eecd);
114 	}
115 
116 	return data;
117 }
118 
119 /**
120  *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
121  *  @hw: pointer to the HW structure
122  *  @ee_reg: EEPROM flag for polling
123  *
124  *  Polls the EEPROM status bit for either read or write completion based
125  *  upon the value of 'ee_reg'.
126  **/
127 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
128 {
129 	u32 attempts = 100000;
130 	u32 i, reg = 0;
131 	s32 ret_val = -E1000_ERR_NVM;
132 
133 	for (i = 0; i < attempts; i++) {
134 		if (ee_reg == E1000_NVM_POLL_READ)
135 			reg = rd32(E1000_EERD);
136 		else
137 			reg = rd32(E1000_EEWR);
138 
139 		if (reg & E1000_NVM_RW_REG_DONE) {
140 			ret_val = 0;
141 			break;
142 		}
143 
144 		udelay(5);
145 	}
146 
147 	return ret_val;
148 }
149 
150 /**
151  *  igb_acquire_nvm - Generic request for access to EEPROM
152  *  @hw: pointer to the HW structure
153  *
154  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
155  *  Return successful if access grant bit set, else clear the request for
156  *  EEPROM access and return -E1000_ERR_NVM (-1).
157  **/
158 s32 igb_acquire_nvm(struct e1000_hw *hw)
159 {
160 	u32 eecd = rd32(E1000_EECD);
161 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
162 	s32 ret_val = 0;
163 
164 
165 	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
166 	eecd = rd32(E1000_EECD);
167 
168 	while (timeout) {
169 		if (eecd & E1000_EECD_GNT)
170 			break;
171 		udelay(5);
172 		eecd = rd32(E1000_EECD);
173 		timeout--;
174 	}
175 
176 	if (!timeout) {
177 		eecd &= ~E1000_EECD_REQ;
178 		wr32(E1000_EECD, eecd);
179 		hw_dbg("Could not acquire NVM grant\n");
180 		ret_val = -E1000_ERR_NVM;
181 	}
182 
183 	return ret_val;
184 }
185 
186 /**
187  *  igb_standby_nvm - Return EEPROM to standby state
188  *  @hw: pointer to the HW structure
189  *
190  *  Return the EEPROM to a standby state.
191  **/
192 static void igb_standby_nvm(struct e1000_hw *hw)
193 {
194 	struct e1000_nvm_info *nvm = &hw->nvm;
195 	u32 eecd = rd32(E1000_EECD);
196 
197 	if (nvm->type == e1000_nvm_eeprom_spi) {
198 		/* Toggle CS to flush commands */
199 		eecd |= E1000_EECD_CS;
200 		wr32(E1000_EECD, eecd);
201 		wrfl();
202 		udelay(nvm->delay_usec);
203 		eecd &= ~E1000_EECD_CS;
204 		wr32(E1000_EECD, eecd);
205 		wrfl();
206 		udelay(nvm->delay_usec);
207 	}
208 }
209 
210 /**
211  *  e1000_stop_nvm - Terminate EEPROM command
212  *  @hw: pointer to the HW structure
213  *
214  *  Terminates the current command by inverting the EEPROM's chip select pin.
215  **/
216 static void e1000_stop_nvm(struct e1000_hw *hw)
217 {
218 	u32 eecd;
219 
220 	eecd = rd32(E1000_EECD);
221 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
222 		/* Pull CS high */
223 		eecd |= E1000_EECD_CS;
224 		igb_lower_eec_clk(hw, &eecd);
225 	}
226 }
227 
228 /**
229  *  igb_release_nvm - Release exclusive access to EEPROM
230  *  @hw: pointer to the HW structure
231  *
232  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
233  **/
234 void igb_release_nvm(struct e1000_hw *hw)
235 {
236 	u32 eecd;
237 
238 	e1000_stop_nvm(hw);
239 
240 	eecd = rd32(E1000_EECD);
241 	eecd &= ~E1000_EECD_REQ;
242 	wr32(E1000_EECD, eecd);
243 }
244 
245 /**
246  *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
247  *  @hw: pointer to the HW structure
248  *
249  *  Setups the EEPROM for reading and writing.
250  **/
251 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
252 {
253 	struct e1000_nvm_info *nvm = &hw->nvm;
254 	u32 eecd = rd32(E1000_EECD);
255 	s32 ret_val = 0;
256 	u16 timeout = 0;
257 	u8 spi_stat_reg;
258 
259 
260 	if (nvm->type == e1000_nvm_eeprom_spi) {
261 		/* Clear SK and CS */
262 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263 		wr32(E1000_EECD, eecd);
264 		wrfl();
265 		udelay(1);
266 		timeout = NVM_MAX_RETRY_SPI;
267 
268 		/* Read "Status Register" repeatedly until the LSB is cleared.
269 		 * The EEPROM will signal that the command has been completed
270 		 * by clearing bit 0 of the internal status register.  If it's
271 		 * not cleared within 'timeout', then error out.
272 		 */
273 		while (timeout) {
274 			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
275 					       hw->nvm.opcode_bits);
276 			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
277 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
278 				break;
279 
280 			udelay(5);
281 			igb_standby_nvm(hw);
282 			timeout--;
283 		}
284 
285 		if (!timeout) {
286 			hw_dbg("SPI NVM Status error\n");
287 			ret_val = -E1000_ERR_NVM;
288 			goto out;
289 		}
290 	}
291 
292 out:
293 	return ret_val;
294 }
295 
296 /**
297  *  igb_read_nvm_spi - Read EEPROM's using SPI
298  *  @hw: pointer to the HW structure
299  *  @offset: offset of word in the EEPROM to read
300  *  @words: number of words to read
301  *  @data: word read from the EEPROM
302  *
303  *  Reads a 16 bit word from the EEPROM.
304  **/
305 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
306 {
307 	struct e1000_nvm_info *nvm = &hw->nvm;
308 	u32 i = 0;
309 	s32 ret_val;
310 	u16 word_in;
311 	u8 read_opcode = NVM_READ_OPCODE_SPI;
312 
313 	/* A check for invalid values:  offset too large, too many words,
314 	 * and not enough words.
315 	 */
316 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
317 	    (words == 0)) {
318 		hw_dbg("nvm parameter(s) out of bounds\n");
319 		ret_val = -E1000_ERR_NVM;
320 		goto out;
321 	}
322 
323 	ret_val = nvm->ops.acquire(hw);
324 	if (ret_val)
325 		goto out;
326 
327 	ret_val = igb_ready_nvm_eeprom(hw);
328 	if (ret_val)
329 		goto release;
330 
331 	igb_standby_nvm(hw);
332 
333 	if ((nvm->address_bits == 8) && (offset >= 128))
334 		read_opcode |= NVM_A8_OPCODE_SPI;
335 
336 	/* Send the READ command (opcode + addr) */
337 	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
338 	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
339 
340 	/* Read the data.  SPI NVMs increment the address with each byte
341 	 * read and will roll over if reading beyond the end.  This allows
342 	 * us to read the whole NVM from any offset
343 	 */
344 	for (i = 0; i < words; i++) {
345 		word_in = igb_shift_in_eec_bits(hw, 16);
346 		data[i] = (word_in >> 8) | (word_in << 8);
347 	}
348 
349 release:
350 	nvm->ops.release(hw);
351 
352 out:
353 	return ret_val;
354 }
355 
356 /**
357  *  igb_read_nvm_eerd - Reads EEPROM using EERD register
358  *  @hw: pointer to the HW structure
359  *  @offset: offset of word in the EEPROM to read
360  *  @words: number of words to read
361  *  @data: word read from the EEPROM
362  *
363  *  Reads a 16 bit word from the EEPROM using the EERD register.
364  **/
365 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
366 {
367 	struct e1000_nvm_info *nvm = &hw->nvm;
368 	u32 i, eerd = 0;
369 	s32 ret_val = 0;
370 
371 	/* A check for invalid values:  offset too large, too many words,
372 	 * and not enough words.
373 	 */
374 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
375 	    (words == 0)) {
376 		hw_dbg("nvm parameter(s) out of bounds\n");
377 		ret_val = -E1000_ERR_NVM;
378 		goto out;
379 	}
380 
381 	for (i = 0; i < words; i++) {
382 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
383 			E1000_NVM_RW_REG_START;
384 
385 		wr32(E1000_EERD, eerd);
386 		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
387 		if (ret_val)
388 			break;
389 
390 		data[i] = (rd32(E1000_EERD) >>
391 			E1000_NVM_RW_REG_DATA);
392 	}
393 
394 out:
395 	return ret_val;
396 }
397 
398 /**
399  *  igb_write_nvm_spi - Write to EEPROM using SPI
400  *  @hw: pointer to the HW structure
401  *  @offset: offset within the EEPROM to be written to
402  *  @words: number of words to write
403  *  @data: 16 bit word(s) to be written to the EEPROM
404  *
405  *  Writes data to EEPROM at offset using SPI interface.
406  *
407  *  If e1000_update_nvm_checksum is not called after this function , the
408  *  EEPROM will most likley contain an invalid checksum.
409  **/
410 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
411 {
412 	struct e1000_nvm_info *nvm = &hw->nvm;
413 	s32 ret_val = -E1000_ERR_NVM;
414 	u16 widx = 0;
415 
416 	/* A check for invalid values:  offset too large, too many words,
417 	 * and not enough words.
418 	 */
419 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
420 	    (words == 0)) {
421 		hw_dbg("nvm parameter(s) out of bounds\n");
422 		return ret_val;
423 	}
424 
425 	while (widx < words) {
426 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
427 
428 		ret_val = nvm->ops.acquire(hw);
429 		if (ret_val)
430 			return ret_val;
431 
432 		ret_val = igb_ready_nvm_eeprom(hw);
433 		if (ret_val) {
434 			nvm->ops.release(hw);
435 			return ret_val;
436 		}
437 
438 		igb_standby_nvm(hw);
439 
440 		/* Send the WRITE ENABLE command (8 bit opcode) */
441 		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
442 					 nvm->opcode_bits);
443 
444 		igb_standby_nvm(hw);
445 
446 		/* Some SPI eeproms use the 8th address bit embedded in the
447 		 * opcode
448 		 */
449 		if ((nvm->address_bits == 8) && (offset >= 128))
450 			write_opcode |= NVM_A8_OPCODE_SPI;
451 
452 		/* Send the Write command (8-bit opcode + addr) */
453 		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
454 		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
455 					 nvm->address_bits);
456 
457 		/* Loop to allow for up to whole page write of eeprom */
458 		while (widx < words) {
459 			u16 word_out = data[widx];
460 
461 			word_out = (word_out >> 8) | (word_out << 8);
462 			igb_shift_out_eec_bits(hw, word_out, 16);
463 			widx++;
464 
465 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
466 				igb_standby_nvm(hw);
467 				break;
468 			}
469 		}
470 		usleep_range(1000, 2000);
471 		nvm->ops.release(hw);
472 	}
473 
474 	return ret_val;
475 }
476 
477 /**
478  *  igb_read_part_string - Read device part number
479  *  @hw: pointer to the HW structure
480  *  @part_num: pointer to device part number
481  *  @part_num_size: size of part number buffer
482  *
483  *  Reads the product board assembly (PBA) number from the EEPROM and stores
484  *  the value in part_num.
485  **/
486 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
487 {
488 	s32 ret_val;
489 	u16 nvm_data;
490 	u16 pointer;
491 	u16 offset;
492 	u16 length;
493 
494 	if (part_num == NULL) {
495 		hw_dbg("PBA string buffer was null\n");
496 		ret_val = E1000_ERR_INVALID_ARGUMENT;
497 		goto out;
498 	}
499 
500 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
501 	if (ret_val) {
502 		hw_dbg("NVM Read Error\n");
503 		goto out;
504 	}
505 
506 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
507 	if (ret_val) {
508 		hw_dbg("NVM Read Error\n");
509 		goto out;
510 	}
511 
512 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
513 	 * means pointer is actually our second data word for the PBA number
514 	 * and we can decode it into an ascii string
515 	 */
516 	if (nvm_data != NVM_PBA_PTR_GUARD) {
517 		hw_dbg("NVM PBA number is not stored as string\n");
518 
519 		/* we will need 11 characters to store the PBA */
520 		if (part_num_size < 11) {
521 			hw_dbg("PBA string buffer too small\n");
522 			return E1000_ERR_NO_SPACE;
523 		}
524 
525 		/* extract hex string from data and pointer */
526 		part_num[0] = (nvm_data >> 12) & 0xF;
527 		part_num[1] = (nvm_data >> 8) & 0xF;
528 		part_num[2] = (nvm_data >> 4) & 0xF;
529 		part_num[3] = nvm_data & 0xF;
530 		part_num[4] = (pointer >> 12) & 0xF;
531 		part_num[5] = (pointer >> 8) & 0xF;
532 		part_num[6] = '-';
533 		part_num[7] = 0;
534 		part_num[8] = (pointer >> 4) & 0xF;
535 		part_num[9] = pointer & 0xF;
536 
537 		/* put a null character on the end of our string */
538 		part_num[10] = '\0';
539 
540 		/* switch all the data but the '-' to hex char */
541 		for (offset = 0; offset < 10; offset++) {
542 			if (part_num[offset] < 0xA)
543 				part_num[offset] += '0';
544 			else if (part_num[offset] < 0x10)
545 				part_num[offset] += 'A' - 0xA;
546 		}
547 
548 		goto out;
549 	}
550 
551 	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
552 	if (ret_val) {
553 		hw_dbg("NVM Read Error\n");
554 		goto out;
555 	}
556 
557 	if (length == 0xFFFF || length == 0) {
558 		hw_dbg("NVM PBA number section invalid length\n");
559 		ret_val = E1000_ERR_NVM_PBA_SECTION;
560 		goto out;
561 	}
562 	/* check if part_num buffer is big enough */
563 	if (part_num_size < (((u32)length * 2) - 1)) {
564 		hw_dbg("PBA string buffer too small\n");
565 		ret_val = E1000_ERR_NO_SPACE;
566 		goto out;
567 	}
568 
569 	/* trim pba length from start of string */
570 	pointer++;
571 	length--;
572 
573 	for (offset = 0; offset < length; offset++) {
574 		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
575 		if (ret_val) {
576 			hw_dbg("NVM Read Error\n");
577 			goto out;
578 		}
579 		part_num[offset * 2] = (u8)(nvm_data >> 8);
580 		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
581 	}
582 	part_num[offset * 2] = '\0';
583 
584 out:
585 	return ret_val;
586 }
587 
588 /**
589  *  igb_read_mac_addr - Read device MAC address
590  *  @hw: pointer to the HW structure
591  *
592  *  Reads the device MAC address from the EEPROM and stores the value.
593  *  Since devices with two ports use the same EEPROM, we increment the
594  *  last bit in the MAC address for the second port.
595  **/
596 s32 igb_read_mac_addr(struct e1000_hw *hw)
597 {
598 	u32 rar_high;
599 	u32 rar_low;
600 	u16 i;
601 
602 	rar_high = rd32(E1000_RAH(0));
603 	rar_low = rd32(E1000_RAL(0));
604 
605 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
606 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
607 
608 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
609 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
610 
611 	for (i = 0; i < ETH_ALEN; i++)
612 		hw->mac.addr[i] = hw->mac.perm_addr[i];
613 
614 	return 0;
615 }
616 
617 /**
618  *  igb_validate_nvm_checksum - Validate EEPROM checksum
619  *  @hw: pointer to the HW structure
620  *
621  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
622  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
623  **/
624 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
625 {
626 	s32 ret_val = 0;
627 	u16 checksum = 0;
628 	u16 i, nvm_data;
629 
630 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
631 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
632 		if (ret_val) {
633 			hw_dbg("NVM Read Error\n");
634 			goto out;
635 		}
636 		checksum += nvm_data;
637 	}
638 
639 	if (checksum != (u16) NVM_SUM) {
640 		hw_dbg("NVM Checksum Invalid\n");
641 		ret_val = -E1000_ERR_NVM;
642 		goto out;
643 	}
644 
645 out:
646 	return ret_val;
647 }
648 
649 /**
650  *  igb_update_nvm_checksum - Update EEPROM checksum
651  *  @hw: pointer to the HW structure
652  *
653  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
654  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
655  *  value to the EEPROM.
656  **/
657 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
658 {
659 	s32  ret_val;
660 	u16 checksum = 0;
661 	u16 i, nvm_data;
662 
663 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
664 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
665 		if (ret_val) {
666 			hw_dbg("NVM Read Error while updating checksum.\n");
667 			goto out;
668 		}
669 		checksum += nvm_data;
670 	}
671 	checksum = (u16) NVM_SUM - checksum;
672 	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
673 	if (ret_val)
674 		hw_dbg("NVM Write Error while updating checksum.\n");
675 
676 out:
677 	return ret_val;
678 }
679 
680 /**
681  *  igb_get_fw_version - Get firmware version information
682  *  @hw: pointer to the HW structure
683  *  @fw_vers: pointer to output structure
684  *
685  *  unsupported MAC types will return all 0 version structure
686  **/
687 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
688 {
689 	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
690 	u8 q, hval, rem, result;
691 	u16 comb_verh, comb_verl, comb_offset;
692 
693 	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
694 
695 	/* basic eeprom version numbers and bits used vary by part and by tool
696 	 * used to create the nvm images. Check which data format we have.
697 	 */
698 	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
699 	switch (hw->mac.type) {
700 	case e1000_i211:
701 		igb_read_invm_version(hw, fw_vers);
702 		return;
703 	case e1000_82575:
704 	case e1000_82576:
705 	case e1000_82580:
706 		/* Use this format, unless EETRACK ID exists,
707 		 * then use alternate format
708 		 */
709 		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
710 			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
711 			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
712 					      >> NVM_MAJOR_SHIFT;
713 			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
714 					      >> NVM_MINOR_SHIFT;
715 			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
716 			goto etrack_id;
717 		}
718 		break;
719 	case e1000_i210:
720 		if (!(igb_get_flash_presence_i210(hw))) {
721 			igb_read_invm_version(hw, fw_vers);
722 			return;
723 		}
724 		/* fall through */
725 	case e1000_i350:
726 		/* find combo image version */
727 		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
728 		if ((comb_offset != 0x0) &&
729 		    (comb_offset != NVM_VER_INVALID)) {
730 
731 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
732 					 + 1), 1, &comb_verh);
733 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
734 					 1, &comb_verl);
735 
736 			/* get Option Rom version if it exists and is valid */
737 			if ((comb_verh && comb_verl) &&
738 			    ((comb_verh != NVM_VER_INVALID) &&
739 			     (comb_verl != NVM_VER_INVALID))) {
740 
741 				fw_vers->or_valid = true;
742 				fw_vers->or_major =
743 					comb_verl >> NVM_COMB_VER_SHFT;
744 				fw_vers->or_build =
745 					(comb_verl << NVM_COMB_VER_SHFT)
746 					| (comb_verh >> NVM_COMB_VER_SHFT);
747 				fw_vers->or_patch =
748 					comb_verh & NVM_COMB_VER_MASK;
749 			}
750 		}
751 		break;
752 	default:
753 		return;
754 	}
755 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
756 	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
757 			      >> NVM_MAJOR_SHIFT;
758 
759 	/* check for old style version format in newer images*/
760 	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
761 		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
762 	} else {
763 		eeprom_verl = (fw_version & NVM_MINOR_MASK)
764 				>> NVM_MINOR_SHIFT;
765 	}
766 	/* Convert minor value to hex before assigning to output struct
767 	 * Val to be converted will not be higher than 99, per tool output
768 	 */
769 	q = eeprom_verl / NVM_HEX_CONV;
770 	hval = q * NVM_HEX_TENS;
771 	rem = eeprom_verl % NVM_HEX_CONV;
772 	result = hval + rem;
773 	fw_vers->eep_minor = result;
774 
775 etrack_id:
776 	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
777 		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
778 		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
779 		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
780 			| eeprom_verl;
781 	}
782 }
783