xref: /linux/drivers/net/ethernet/intel/igb/e1000_mac.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 
30 #include "e1000_mac.h"
31 
32 #include "igb.h"
33 
34 static s32 igb_set_default_fc(struct e1000_hw *hw);
35 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
36 
37 /**
38  *  igb_get_bus_info_pcie - Get PCIe bus information
39  *  @hw: pointer to the HW structure
40  *
41  *  Determines and stores the system bus information for a particular
42  *  network interface.  The following bus information is determined and stored:
43  *  bus speed, bus width, type (PCIe), and PCIe function.
44  **/
45 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
46 {
47 	struct e1000_bus_info *bus = &hw->bus;
48 	s32 ret_val;
49 	u32 reg;
50 	u16 pcie_link_status;
51 
52 	bus->type = e1000_bus_type_pci_express;
53 
54 	ret_val = igb_read_pcie_cap_reg(hw,
55 					PCI_EXP_LNKSTA,
56 					&pcie_link_status);
57 	if (ret_val) {
58 		bus->width = e1000_bus_width_unknown;
59 		bus->speed = e1000_bus_speed_unknown;
60 	} else {
61 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
62 		case PCI_EXP_LNKSTA_CLS_2_5GB:
63 			bus->speed = e1000_bus_speed_2500;
64 			break;
65 		case PCI_EXP_LNKSTA_CLS_5_0GB:
66 			bus->speed = e1000_bus_speed_5000;
67 			break;
68 		default:
69 			bus->speed = e1000_bus_speed_unknown;
70 			break;
71 		}
72 
73 		bus->width = (enum e1000_bus_width)((pcie_link_status &
74 						     PCI_EXP_LNKSTA_NLW) >>
75 						     PCI_EXP_LNKSTA_NLW_SHIFT);
76 	}
77 
78 	reg = rd32(E1000_STATUS);
79 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
80 
81 	return 0;
82 }
83 
84 /**
85  *  igb_clear_vfta - Clear VLAN filter table
86  *  @hw: pointer to the HW structure
87  *
88  *  Clears the register array which contains the VLAN filter table by
89  *  setting all the values to 0.
90  **/
91 void igb_clear_vfta(struct e1000_hw *hw)
92 {
93 	u32 offset;
94 
95 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
96 		array_wr32(E1000_VFTA, offset, 0);
97 		wrfl();
98 	}
99 }
100 
101 /**
102  *  igb_write_vfta - Write value to VLAN filter table
103  *  @hw: pointer to the HW structure
104  *  @offset: register offset in VLAN filter table
105  *  @value: register value written to VLAN filter table
106  *
107  *  Writes value at the given offset in the register array which stores
108  *  the VLAN filter table.
109  **/
110 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
111 {
112 	array_wr32(E1000_VFTA, offset, value);
113 	wrfl();
114 }
115 
116 /* Due to a hw errata, if the host tries to  configure the VFTA register
117  * while performing queries from the BMC or DMA, then the VFTA in some
118  * cases won't be written.
119  */
120 
121 /**
122  *  igb_clear_vfta_i350 - Clear VLAN filter table
123  *  @hw: pointer to the HW structure
124  *
125  *  Clears the register array which contains the VLAN filter table by
126  *  setting all the values to 0.
127  **/
128 void igb_clear_vfta_i350(struct e1000_hw *hw)
129 {
130 	u32 offset;
131 	int i;
132 
133 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
134 		for (i = 0; i < 10; i++)
135 			array_wr32(E1000_VFTA, offset, 0);
136 
137 		wrfl();
138 	}
139 }
140 
141 /**
142  *  igb_write_vfta_i350 - Write value to VLAN filter table
143  *  @hw: pointer to the HW structure
144  *  @offset: register offset in VLAN filter table
145  *  @value: register value written to VLAN filter table
146  *
147  *  Writes value at the given offset in the register array which stores
148  *  the VLAN filter table.
149  **/
150 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
151 {
152 	int i;
153 
154 	for (i = 0; i < 10; i++)
155 		array_wr32(E1000_VFTA, offset, value);
156 
157 	wrfl();
158 }
159 
160 /**
161  *  igb_init_rx_addrs - Initialize receive address's
162  *  @hw: pointer to the HW structure
163  *  @rar_count: receive address registers
164  *
165  *  Setups the receive address registers by setting the base receive address
166  *  register to the devices MAC address and clearing all the other receive
167  *  address registers to 0.
168  **/
169 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
170 {
171 	u32 i;
172 	u8 mac_addr[ETH_ALEN] = {0};
173 
174 	/* Setup the receive address */
175 	hw_dbg("Programming MAC Address into RAR[0]\n");
176 
177 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
178 
179 	/* Zero out the other (rar_entry_count - 1) receive addresses */
180 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
181 	for (i = 1; i < rar_count; i++)
182 		hw->mac.ops.rar_set(hw, mac_addr, i);
183 }
184 
185 /**
186  *  igb_vfta_set - enable or disable vlan in VLAN filter table
187  *  @hw: pointer to the HW structure
188  *  @vid: VLAN id to add or remove
189  *  @add: if true add filter, if false remove
190  *
191  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
192  *  and if we are adding or removing the filter
193  **/
194 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
195 {
196 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
197 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
198 	u32 vfta;
199 	struct igb_adapter *adapter = hw->back;
200 	s32 ret_val = 0;
201 
202 	vfta = adapter->shadow_vfta[index];
203 
204 	/* bit was set/cleared before we started */
205 	if ((!!(vfta & mask)) == add) {
206 		ret_val = -E1000_ERR_CONFIG;
207 	} else {
208 		if (add)
209 			vfta |= mask;
210 		else
211 			vfta &= ~mask;
212 	}
213 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
214 		igb_write_vfta_i350(hw, index, vfta);
215 	else
216 		igb_write_vfta(hw, index, vfta);
217 	adapter->shadow_vfta[index] = vfta;
218 
219 	return ret_val;
220 }
221 
222 /**
223  *  igb_check_alt_mac_addr - Check for alternate MAC addr
224  *  @hw: pointer to the HW structure
225  *
226  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
227  *  can be setup by pre-boot software and must be treated like a permanent
228  *  address and must override the actual permanent MAC address.  If an
229  *  alternate MAC address is found it is saved in the hw struct and
230  *  programmed into RAR0 and the function returns success, otherwise the
231  *  function returns an error.
232  **/
233 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
234 {
235 	u32 i;
236 	s32 ret_val = 0;
237 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
238 	u8 alt_mac_addr[ETH_ALEN];
239 
240 	/* Alternate MAC address is handled by the option ROM for 82580
241 	 * and newer. SW support not required.
242 	 */
243 	if (hw->mac.type >= e1000_82580)
244 		goto out;
245 
246 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
247 				 &nvm_alt_mac_addr_offset);
248 	if (ret_val) {
249 		hw_dbg("NVM Read Error\n");
250 		goto out;
251 	}
252 
253 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
254 	    (nvm_alt_mac_addr_offset == 0x0000))
255 		/* There is no Alternate MAC Address */
256 		goto out;
257 
258 	if (hw->bus.func == E1000_FUNC_1)
259 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
260 	if (hw->bus.func == E1000_FUNC_2)
261 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
262 
263 	if (hw->bus.func == E1000_FUNC_3)
264 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
265 	for (i = 0; i < ETH_ALEN; i += 2) {
266 		offset = nvm_alt_mac_addr_offset + (i >> 1);
267 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
268 		if (ret_val) {
269 			hw_dbg("NVM Read Error\n");
270 			goto out;
271 		}
272 
273 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
274 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
275 	}
276 
277 	/* if multicast bit is set, the alternate address will not be used */
278 	if (is_multicast_ether_addr(alt_mac_addr)) {
279 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
280 		goto out;
281 	}
282 
283 	/* We have a valid alternate MAC address, and we want to treat it the
284 	 * same as the normal permanent MAC address stored by the HW into the
285 	 * RAR. Do this by mapping this address into RAR0.
286 	 */
287 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
288 
289 out:
290 	return ret_val;
291 }
292 
293 /**
294  *  igb_rar_set - Set receive address register
295  *  @hw: pointer to the HW structure
296  *  @addr: pointer to the receive address
297  *  @index: receive address array register
298  *
299  *  Sets the receive address array register at index to the address passed
300  *  in by addr.
301  **/
302 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
303 {
304 	u32 rar_low, rar_high;
305 
306 	/* HW expects these in little endian so we reverse the byte order
307 	 * from network order (big endian) to little endian
308 	 */
309 	rar_low = ((u32) addr[0] |
310 		   ((u32) addr[1] << 8) |
311 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
312 
313 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
314 
315 	/* If MAC address zero, no need to set the AV bit */
316 	if (rar_low || rar_high)
317 		rar_high |= E1000_RAH_AV;
318 
319 	/* Some bridges will combine consecutive 32-bit writes into
320 	 * a single burst write, which will malfunction on some parts.
321 	 * The flushes avoid this.
322 	 */
323 	wr32(E1000_RAL(index), rar_low);
324 	wrfl();
325 	wr32(E1000_RAH(index), rar_high);
326 	wrfl();
327 }
328 
329 /**
330  *  igb_mta_set - Set multicast filter table address
331  *  @hw: pointer to the HW structure
332  *  @hash_value: determines the MTA register and bit to set
333  *
334  *  The multicast table address is a register array of 32-bit registers.
335  *  The hash_value is used to determine what register the bit is in, the
336  *  current value is read, the new bit is OR'd in and the new value is
337  *  written back into the register.
338  **/
339 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
340 {
341 	u32 hash_bit, hash_reg, mta;
342 
343 	/* The MTA is a register array of 32-bit registers. It is
344 	 * treated like an array of (32*mta_reg_count) bits.  We want to
345 	 * set bit BitArray[hash_value]. So we figure out what register
346 	 * the bit is in, read it, OR in the new bit, then write
347 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
348 	 * mask to bits 31:5 of the hash value which gives us the
349 	 * register we're modifying.  The hash bit within that register
350 	 * is determined by the lower 5 bits of the hash value.
351 	 */
352 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
353 	hash_bit = hash_value & 0x1F;
354 
355 	mta = array_rd32(E1000_MTA, hash_reg);
356 
357 	mta |= (1 << hash_bit);
358 
359 	array_wr32(E1000_MTA, hash_reg, mta);
360 	wrfl();
361 }
362 
363 /**
364  *  igb_hash_mc_addr - Generate a multicast hash value
365  *  @hw: pointer to the HW structure
366  *  @mc_addr: pointer to a multicast address
367  *
368  *  Generates a multicast address hash value which is used to determine
369  *  the multicast filter table array address and new table value.  See
370  *  igb_mta_set()
371  **/
372 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
373 {
374 	u32 hash_value, hash_mask;
375 	u8 bit_shift = 0;
376 
377 	/* Register count multiplied by bits per register */
378 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
379 
380 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
381 	 * where 0xFF would still fall within the hash mask.
382 	 */
383 	while (hash_mask >> bit_shift != 0xFF)
384 		bit_shift++;
385 
386 	/* The portion of the address that is used for the hash table
387 	 * is determined by the mc_filter_type setting.
388 	 * The algorithm is such that there is a total of 8 bits of shifting.
389 	 * The bit_shift for a mc_filter_type of 0 represents the number of
390 	 * left-shifts where the MSB of mc_addr[5] would still fall within
391 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
392 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
393 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
394 	 * cases are a variation of this algorithm...essentially raising the
395 	 * number of bits to shift mc_addr[5] left, while still keeping the
396 	 * 8-bit shifting total.
397 	 *
398 	 * For example, given the following Destination MAC Address and an
399 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
400 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
401 	 * values resulting from each mc_filter_type...
402 	 * [0] [1] [2] [3] [4] [5]
403 	 * 01  AA  00  12  34  56
404 	 * LSB                 MSB
405 	 *
406 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
407 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
408 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
409 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
410 	 */
411 	switch (hw->mac.mc_filter_type) {
412 	default:
413 	case 0:
414 		break;
415 	case 1:
416 		bit_shift += 1;
417 		break;
418 	case 2:
419 		bit_shift += 2;
420 		break;
421 	case 3:
422 		bit_shift += 4;
423 		break;
424 	}
425 
426 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
427 				  (((u16) mc_addr[5]) << bit_shift)));
428 
429 	return hash_value;
430 }
431 
432 /**
433  *  igb_update_mc_addr_list - Update Multicast addresses
434  *  @hw: pointer to the HW structure
435  *  @mc_addr_list: array of multicast addresses to program
436  *  @mc_addr_count: number of multicast addresses to program
437  *
438  *  Updates entire Multicast Table Array.
439  *  The caller must have a packed mc_addr_list of multicast addresses.
440  **/
441 void igb_update_mc_addr_list(struct e1000_hw *hw,
442 			     u8 *mc_addr_list, u32 mc_addr_count)
443 {
444 	u32 hash_value, hash_bit, hash_reg;
445 	int i;
446 
447 	/* clear mta_shadow */
448 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
449 
450 	/* update mta_shadow from mc_addr_list */
451 	for (i = 0; (u32) i < mc_addr_count; i++) {
452 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
453 
454 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
455 		hash_bit = hash_value & 0x1F;
456 
457 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
458 		mc_addr_list += (ETH_ALEN);
459 	}
460 
461 	/* replace the entire MTA table */
462 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
463 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
464 	wrfl();
465 }
466 
467 /**
468  *  igb_clear_hw_cntrs_base - Clear base hardware counters
469  *  @hw: pointer to the HW structure
470  *
471  *  Clears the base hardware counters by reading the counter registers.
472  **/
473 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
474 {
475 	rd32(E1000_CRCERRS);
476 	rd32(E1000_SYMERRS);
477 	rd32(E1000_MPC);
478 	rd32(E1000_SCC);
479 	rd32(E1000_ECOL);
480 	rd32(E1000_MCC);
481 	rd32(E1000_LATECOL);
482 	rd32(E1000_COLC);
483 	rd32(E1000_DC);
484 	rd32(E1000_SEC);
485 	rd32(E1000_RLEC);
486 	rd32(E1000_XONRXC);
487 	rd32(E1000_XONTXC);
488 	rd32(E1000_XOFFRXC);
489 	rd32(E1000_XOFFTXC);
490 	rd32(E1000_FCRUC);
491 	rd32(E1000_GPRC);
492 	rd32(E1000_BPRC);
493 	rd32(E1000_MPRC);
494 	rd32(E1000_GPTC);
495 	rd32(E1000_GORCL);
496 	rd32(E1000_GORCH);
497 	rd32(E1000_GOTCL);
498 	rd32(E1000_GOTCH);
499 	rd32(E1000_RNBC);
500 	rd32(E1000_RUC);
501 	rd32(E1000_RFC);
502 	rd32(E1000_ROC);
503 	rd32(E1000_RJC);
504 	rd32(E1000_TORL);
505 	rd32(E1000_TORH);
506 	rd32(E1000_TOTL);
507 	rd32(E1000_TOTH);
508 	rd32(E1000_TPR);
509 	rd32(E1000_TPT);
510 	rd32(E1000_MPTC);
511 	rd32(E1000_BPTC);
512 }
513 
514 /**
515  *  igb_check_for_copper_link - Check for link (Copper)
516  *  @hw: pointer to the HW structure
517  *
518  *  Checks to see of the link status of the hardware has changed.  If a
519  *  change in link status has been detected, then we read the PHY registers
520  *  to get the current speed/duplex if link exists.
521  **/
522 s32 igb_check_for_copper_link(struct e1000_hw *hw)
523 {
524 	struct e1000_mac_info *mac = &hw->mac;
525 	s32 ret_val;
526 	bool link;
527 
528 	/* We only want to go out to the PHY registers to see if Auto-Neg
529 	 * has completed and/or if our link status has changed.  The
530 	 * get_link_status flag is set upon receiving a Link Status
531 	 * Change or Rx Sequence Error interrupt.
532 	 */
533 	if (!mac->get_link_status) {
534 		ret_val = 0;
535 		goto out;
536 	}
537 
538 	/* First we want to see if the MII Status Register reports
539 	 * link.  If so, then we want to get the current speed/duplex
540 	 * of the PHY.
541 	 */
542 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
543 	if (ret_val)
544 		goto out;
545 
546 	if (!link)
547 		goto out; /* No link detected */
548 
549 	mac->get_link_status = false;
550 
551 	/* Check if there was DownShift, must be checked
552 	 * immediately after link-up
553 	 */
554 	igb_check_downshift(hw);
555 
556 	/* If we are forcing speed/duplex, then we simply return since
557 	 * we have already determined whether we have link or not.
558 	 */
559 	if (!mac->autoneg) {
560 		ret_val = -E1000_ERR_CONFIG;
561 		goto out;
562 	}
563 
564 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
565 	 * of MAC speed/duplex configuration.  So we only need to
566 	 * configure Collision Distance in the MAC.
567 	 */
568 	igb_config_collision_dist(hw);
569 
570 	/* Configure Flow Control now that Auto-Neg has completed.
571 	 * First, we need to restore the desired flow control
572 	 * settings because we may have had to re-autoneg with a
573 	 * different link partner.
574 	 */
575 	ret_val = igb_config_fc_after_link_up(hw);
576 	if (ret_val)
577 		hw_dbg("Error configuring flow control\n");
578 
579 out:
580 	return ret_val;
581 }
582 
583 /**
584  *  igb_setup_link - Setup flow control and link settings
585  *  @hw: pointer to the HW structure
586  *
587  *  Determines which flow control settings to use, then configures flow
588  *  control.  Calls the appropriate media-specific link configuration
589  *  function.  Assuming the adapter has a valid link partner, a valid link
590  *  should be established.  Assumes the hardware has previously been reset
591  *  and the transmitter and receiver are not enabled.
592  **/
593 s32 igb_setup_link(struct e1000_hw *hw)
594 {
595 	s32 ret_val = 0;
596 
597 	/* In the case of the phy reset being blocked, we already have a link.
598 	 * We do not need to set it up again.
599 	 */
600 	if (igb_check_reset_block(hw))
601 		goto out;
602 
603 	/* If requested flow control is set to default, set flow control
604 	 * based on the EEPROM flow control settings.
605 	 */
606 	if (hw->fc.requested_mode == e1000_fc_default) {
607 		ret_val = igb_set_default_fc(hw);
608 		if (ret_val)
609 			goto out;
610 	}
611 
612 	/* We want to save off the original Flow Control configuration just
613 	 * in case we get disconnected and then reconnected into a different
614 	 * hub or switch with different Flow Control capabilities.
615 	 */
616 	hw->fc.current_mode = hw->fc.requested_mode;
617 
618 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
619 
620 	/* Call the necessary media_type subroutine to configure the link. */
621 	ret_val = hw->mac.ops.setup_physical_interface(hw);
622 	if (ret_val)
623 		goto out;
624 
625 	/* Initialize the flow control address, type, and PAUSE timer
626 	 * registers to their default values.  This is done even if flow
627 	 * control is disabled, because it does not hurt anything to
628 	 * initialize these registers.
629 	 */
630 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
631 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
632 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
633 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
634 
635 	wr32(E1000_FCTTV, hw->fc.pause_time);
636 
637 	ret_val = igb_set_fc_watermarks(hw);
638 
639 out:
640 
641 	return ret_val;
642 }
643 
644 /**
645  *  igb_config_collision_dist - Configure collision distance
646  *  @hw: pointer to the HW structure
647  *
648  *  Configures the collision distance to the default value and is used
649  *  during link setup. Currently no func pointer exists and all
650  *  implementations are handled in the generic version of this function.
651  **/
652 void igb_config_collision_dist(struct e1000_hw *hw)
653 {
654 	u32 tctl;
655 
656 	tctl = rd32(E1000_TCTL);
657 
658 	tctl &= ~E1000_TCTL_COLD;
659 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
660 
661 	wr32(E1000_TCTL, tctl);
662 	wrfl();
663 }
664 
665 /**
666  *  igb_set_fc_watermarks - Set flow control high/low watermarks
667  *  @hw: pointer to the HW structure
668  *
669  *  Sets the flow control high/low threshold (watermark) registers.  If
670  *  flow control XON frame transmission is enabled, then set XON frame
671  *  tansmission as well.
672  **/
673 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
674 {
675 	s32 ret_val = 0;
676 	u32 fcrtl = 0, fcrth = 0;
677 
678 	/* Set the flow control receive threshold registers.  Normally,
679 	 * these registers will be set to a default threshold that may be
680 	 * adjusted later by the driver's runtime code.  However, if the
681 	 * ability to transmit pause frames is not enabled, then these
682 	 * registers will be set to 0.
683 	 */
684 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
685 		/* We need to set up the Receive Threshold high and low water
686 		 * marks as well as (optionally) enabling the transmission of
687 		 * XON frames.
688 		 */
689 		fcrtl = hw->fc.low_water;
690 		if (hw->fc.send_xon)
691 			fcrtl |= E1000_FCRTL_XONE;
692 
693 		fcrth = hw->fc.high_water;
694 	}
695 	wr32(E1000_FCRTL, fcrtl);
696 	wr32(E1000_FCRTH, fcrth);
697 
698 	return ret_val;
699 }
700 
701 /**
702  *  igb_set_default_fc - Set flow control default values
703  *  @hw: pointer to the HW structure
704  *
705  *  Read the EEPROM for the default values for flow control and store the
706  *  values.
707  **/
708 static s32 igb_set_default_fc(struct e1000_hw *hw)
709 {
710 	s32 ret_val = 0;
711 	u16 lan_offset;
712 	u16 nvm_data;
713 
714 	/* Read and store word 0x0F of the EEPROM. This word contains bits
715 	 * that determine the hardware's default PAUSE (flow control) mode,
716 	 * a bit that determines whether the HW defaults to enabling or
717 	 * disabling auto-negotiation, and the direction of the
718 	 * SW defined pins. If there is no SW over-ride of the flow
719 	 * control setting, then the variable hw->fc will
720 	 * be initialized based on a value in the EEPROM.
721 	 */
722 	if (hw->mac.type == e1000_i350) {
723 		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
724 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
725 					   + lan_offset, 1, &nvm_data);
726 	 } else {
727 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
728 					   1, &nvm_data);
729 	 }
730 
731 	if (ret_val) {
732 		hw_dbg("NVM Read Error\n");
733 		goto out;
734 	}
735 
736 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
737 		hw->fc.requested_mode = e1000_fc_none;
738 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
739 		 NVM_WORD0F_ASM_DIR)
740 		hw->fc.requested_mode = e1000_fc_tx_pause;
741 	else
742 		hw->fc.requested_mode = e1000_fc_full;
743 
744 out:
745 	return ret_val;
746 }
747 
748 /**
749  *  igb_force_mac_fc - Force the MAC's flow control settings
750  *  @hw: pointer to the HW structure
751  *
752  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
753  *  device control register to reflect the adapter settings.  TFCE and RFCE
754  *  need to be explicitly set by software when a copper PHY is used because
755  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
756  *  also configure these bits when link is forced on a fiber connection.
757  **/
758 s32 igb_force_mac_fc(struct e1000_hw *hw)
759 {
760 	u32 ctrl;
761 	s32 ret_val = 0;
762 
763 	ctrl = rd32(E1000_CTRL);
764 
765 	/* Because we didn't get link via the internal auto-negotiation
766 	 * mechanism (we either forced link or we got link via PHY
767 	 * auto-neg), we have to manually enable/disable transmit an
768 	 * receive flow control.
769 	 *
770 	 * The "Case" statement below enables/disable flow control
771 	 * according to the "hw->fc.current_mode" parameter.
772 	 *
773 	 * The possible values of the "fc" parameter are:
774 	 *      0:  Flow control is completely disabled
775 	 *      1:  Rx flow control is enabled (we can receive pause
776 	 *          frames but not send pause frames).
777 	 *      2:  Tx flow control is enabled (we can send pause frames
778 	 *          frames but we do not receive pause frames).
779 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
780 	 *  other:  No other values should be possible at this point.
781 	 */
782 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
783 
784 	switch (hw->fc.current_mode) {
785 	case e1000_fc_none:
786 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
787 		break;
788 	case e1000_fc_rx_pause:
789 		ctrl &= (~E1000_CTRL_TFCE);
790 		ctrl |= E1000_CTRL_RFCE;
791 		break;
792 	case e1000_fc_tx_pause:
793 		ctrl &= (~E1000_CTRL_RFCE);
794 		ctrl |= E1000_CTRL_TFCE;
795 		break;
796 	case e1000_fc_full:
797 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
798 		break;
799 	default:
800 		hw_dbg("Flow control param set incorrectly\n");
801 		ret_val = -E1000_ERR_CONFIG;
802 		goto out;
803 	}
804 
805 	wr32(E1000_CTRL, ctrl);
806 
807 out:
808 	return ret_val;
809 }
810 
811 /**
812  *  igb_config_fc_after_link_up - Configures flow control after link
813  *  @hw: pointer to the HW structure
814  *
815  *  Checks the status of auto-negotiation after link up to ensure that the
816  *  speed and duplex were not forced.  If the link needed to be forced, then
817  *  flow control needs to be forced also.  If auto-negotiation is enabled
818  *  and did not fail, then we configure flow control based on our link
819  *  partner.
820  **/
821 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
822 {
823 	struct e1000_mac_info *mac = &hw->mac;
824 	s32 ret_val = 0;
825 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
826 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
827 	u16 speed, duplex;
828 
829 	/* Check for the case where we have fiber media and auto-neg failed
830 	 * so we had to force link.  In this case, we need to force the
831 	 * configuration of the MAC to match the "fc" parameter.
832 	 */
833 	if (mac->autoneg_failed) {
834 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
835 			ret_val = igb_force_mac_fc(hw);
836 	} else {
837 		if (hw->phy.media_type == e1000_media_type_copper)
838 			ret_val = igb_force_mac_fc(hw);
839 	}
840 
841 	if (ret_val) {
842 		hw_dbg("Error forcing flow control settings\n");
843 		goto out;
844 	}
845 
846 	/* Check for the case where we have copper media and auto-neg is
847 	 * enabled.  In this case, we need to check and see if Auto-Neg
848 	 * has completed, and if so, how the PHY and link partner has
849 	 * flow control configured.
850 	 */
851 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
852 		/* Read the MII Status Register and check to see if AutoNeg
853 		 * has completed.  We read this twice because this reg has
854 		 * some "sticky" (latched) bits.
855 		 */
856 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
857 						   &mii_status_reg);
858 		if (ret_val)
859 			goto out;
860 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
861 						   &mii_status_reg);
862 		if (ret_val)
863 			goto out;
864 
865 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
866 			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
867 			goto out;
868 		}
869 
870 		/* The AutoNeg process has completed, so we now need to
871 		 * read both the Auto Negotiation Advertisement
872 		 * Register (Address 4) and the Auto_Negotiation Base
873 		 * Page Ability Register (Address 5) to determine how
874 		 * flow control was negotiated.
875 		 */
876 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
877 					    &mii_nway_adv_reg);
878 		if (ret_val)
879 			goto out;
880 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
881 					    &mii_nway_lp_ability_reg);
882 		if (ret_val)
883 			goto out;
884 
885 		/* Two bits in the Auto Negotiation Advertisement Register
886 		 * (Address 4) and two bits in the Auto Negotiation Base
887 		 * Page Ability Register (Address 5) determine flow control
888 		 * for both the PHY and the link partner.  The following
889 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
890 		 * 1999, describes these PAUSE resolution bits and how flow
891 		 * control is determined based upon these settings.
892 		 * NOTE:  DC = Don't Care
893 		 *
894 		 *   LOCAL DEVICE  |   LINK PARTNER
895 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
896 		 *-------|---------|-------|---------|--------------------
897 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
898 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
899 		 *   0   |    1    |   1   |    0    | e1000_fc_none
900 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
901 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
902 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
903 		 *   1   |    1    |   0   |    0    | e1000_fc_none
904 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
905 		 *
906 		 * Are both PAUSE bits set to 1?  If so, this implies
907 		 * Symmetric Flow Control is enabled at both ends.  The
908 		 * ASM_DIR bits are irrelevant per the spec.
909 		 *
910 		 * For Symmetric Flow Control:
911 		 *
912 		 *   LOCAL DEVICE  |   LINK PARTNER
913 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
914 		 *-------|---------|-------|---------|--------------------
915 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
916 		 *
917 		 */
918 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
919 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
920 			/* Now we need to check if the user selected RX ONLY
921 			 * of pause frames.  In this case, we had to advertise
922 			 * FULL flow control because we could not advertise RX
923 			 * ONLY. Hence, we must now check to see if we need to
924 			 * turn OFF  the TRANSMISSION of PAUSE frames.
925 			 */
926 			if (hw->fc.requested_mode == e1000_fc_full) {
927 				hw->fc.current_mode = e1000_fc_full;
928 				hw_dbg("Flow Control = FULL.\n");
929 			} else {
930 				hw->fc.current_mode = e1000_fc_rx_pause;
931 				hw_dbg("Flow Control = RX PAUSE frames only.\n");
932 			}
933 		}
934 		/* For receiving PAUSE frames ONLY.
935 		 *
936 		 *   LOCAL DEVICE  |   LINK PARTNER
937 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
938 		 *-------|---------|-------|---------|--------------------
939 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
940 		 */
941 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
942 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
943 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
944 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
945 			hw->fc.current_mode = e1000_fc_tx_pause;
946 			hw_dbg("Flow Control = TX PAUSE frames only.\n");
947 		}
948 		/* For transmitting PAUSE frames ONLY.
949 		 *
950 		 *   LOCAL DEVICE  |   LINK PARTNER
951 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
952 		 *-------|---------|-------|---------|--------------------
953 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
954 		 */
955 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
956 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
957 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
958 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
959 			hw->fc.current_mode = e1000_fc_rx_pause;
960 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
961 		}
962 		/* Per the IEEE spec, at this point flow control should be
963 		 * disabled.  However, we want to consider that we could
964 		 * be connected to a legacy switch that doesn't advertise
965 		 * desired flow control, but can be forced on the link
966 		 * partner.  So if we advertised no flow control, that is
967 		 * what we will resolve to.  If we advertised some kind of
968 		 * receive capability (Rx Pause Only or Full Flow Control)
969 		 * and the link partner advertised none, we will configure
970 		 * ourselves to enable Rx Flow Control only.  We can do
971 		 * this safely for two reasons:  If the link partner really
972 		 * didn't want flow control enabled, and we enable Rx, no
973 		 * harm done since we won't be receiving any PAUSE frames
974 		 * anyway.  If the intent on the link partner was to have
975 		 * flow control enabled, then by us enabling RX only, we
976 		 * can at least receive pause frames and process them.
977 		 * This is a good idea because in most cases, since we are
978 		 * predominantly a server NIC, more times than not we will
979 		 * be asked to delay transmission of packets than asking
980 		 * our link partner to pause transmission of frames.
981 		 */
982 		else if ((hw->fc.requested_mode == e1000_fc_none) ||
983 			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
984 			 (hw->fc.strict_ieee)) {
985 			hw->fc.current_mode = e1000_fc_none;
986 			hw_dbg("Flow Control = NONE.\n");
987 		} else {
988 			hw->fc.current_mode = e1000_fc_rx_pause;
989 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
990 		}
991 
992 		/* Now we need to do one last check...  If we auto-
993 		 * negotiated to HALF DUPLEX, flow control should not be
994 		 * enabled per IEEE 802.3 spec.
995 		 */
996 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
997 		if (ret_val) {
998 			hw_dbg("Error getting link speed and duplex\n");
999 			goto out;
1000 		}
1001 
1002 		if (duplex == HALF_DUPLEX)
1003 			hw->fc.current_mode = e1000_fc_none;
1004 
1005 		/* Now we call a subroutine to actually force the MAC
1006 		 * controller to use the correct flow control settings.
1007 		 */
1008 		ret_val = igb_force_mac_fc(hw);
1009 		if (ret_val) {
1010 			hw_dbg("Error forcing flow control settings\n");
1011 			goto out;
1012 		}
1013 	}
1014 	/* Check for the case where we have SerDes media and auto-neg is
1015 	 * enabled.  In this case, we need to check and see if Auto-Neg
1016 	 * has completed, and if so, how the PHY and link partner has
1017 	 * flow control configured.
1018 	 */
1019 	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1020 		&& mac->autoneg) {
1021 		/* Read the PCS_LSTS and check to see if AutoNeg
1022 		 * has completed.
1023 		 */
1024 		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1025 
1026 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1027 			hw_dbg("PCS Auto Neg has not completed.\n");
1028 			return ret_val;
1029 		}
1030 
1031 		/* The AutoNeg process has completed, so we now need to
1032 		 * read both the Auto Negotiation Advertisement
1033 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1034 		 * Page Ability Register (PCS_LPAB) to determine how
1035 		 * flow control was negotiated.
1036 		 */
1037 		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1038 		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1039 
1040 		/* Two bits in the Auto Negotiation Advertisement Register
1041 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1042 		 * Page Ability Register (PCS_LPAB) determine flow control
1043 		 * for both the PHY and the link partner.  The following
1044 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1045 		 * 1999, describes these PAUSE resolution bits and how flow
1046 		 * control is determined based upon these settings.
1047 		 * NOTE:  DC = Don't Care
1048 		 *
1049 		 *   LOCAL DEVICE  |   LINK PARTNER
1050 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1051 		 *-------|---------|-------|---------|--------------------
1052 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1053 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1054 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1055 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1056 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1057 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1058 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1059 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1060 		 *
1061 		 * Are both PAUSE bits set to 1?  If so, this implies
1062 		 * Symmetric Flow Control is enabled at both ends.  The
1063 		 * ASM_DIR bits are irrelevant per the spec.
1064 		 *
1065 		 * For Symmetric Flow Control:
1066 		 *
1067 		 *   LOCAL DEVICE  |   LINK PARTNER
1068 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1069 		 *-------|---------|-------|---------|--------------------
1070 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1071 		 *
1072 		 */
1073 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1074 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1075 			/* Now we need to check if the user selected Rx ONLY
1076 			 * of pause frames.  In this case, we had to advertise
1077 			 * FULL flow control because we could not advertise Rx
1078 			 * ONLY. Hence, we must now check to see if we need to
1079 			 * turn OFF the TRANSMISSION of PAUSE frames.
1080 			 */
1081 			if (hw->fc.requested_mode == e1000_fc_full) {
1082 				hw->fc.current_mode = e1000_fc_full;
1083 				hw_dbg("Flow Control = FULL.\n");
1084 			} else {
1085 				hw->fc.current_mode = e1000_fc_rx_pause;
1086 				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1087 			}
1088 		}
1089 		/* For receiving PAUSE frames ONLY.
1090 		 *
1091 		 *   LOCAL DEVICE  |   LINK PARTNER
1092 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1093 		 *-------|---------|-------|---------|--------------------
1094 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1095 		 */
1096 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1097 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1098 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1099 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1100 			hw->fc.current_mode = e1000_fc_tx_pause;
1101 			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1102 		}
1103 		/* For transmitting PAUSE frames ONLY.
1104 		 *
1105 		 *   LOCAL DEVICE  |   LINK PARTNER
1106 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1107 		 *-------|---------|-------|---------|--------------------
1108 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1109 		 */
1110 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1111 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1112 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1113 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1114 			hw->fc.current_mode = e1000_fc_rx_pause;
1115 			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1116 		} else {
1117 			/* Per the IEEE spec, at this point flow control
1118 			 * should be disabled.
1119 			 */
1120 			hw->fc.current_mode = e1000_fc_none;
1121 			hw_dbg("Flow Control = NONE.\n");
1122 		}
1123 
1124 		/* Now we call a subroutine to actually force the MAC
1125 		 * controller to use the correct flow control settings.
1126 		 */
1127 		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1128 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1129 		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1130 
1131 		ret_val = igb_force_mac_fc(hw);
1132 		if (ret_val) {
1133 			hw_dbg("Error forcing flow control settings\n");
1134 			return ret_val;
1135 		}
1136 	}
1137 
1138 out:
1139 	return ret_val;
1140 }
1141 
1142 /**
1143  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1144  *  @hw: pointer to the HW structure
1145  *  @speed: stores the current speed
1146  *  @duplex: stores the current duplex
1147  *
1148  *  Read the status register for the current speed/duplex and store the current
1149  *  speed and duplex for copper connections.
1150  **/
1151 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1152 				      u16 *duplex)
1153 {
1154 	u32 status;
1155 
1156 	status = rd32(E1000_STATUS);
1157 	if (status & E1000_STATUS_SPEED_1000) {
1158 		*speed = SPEED_1000;
1159 		hw_dbg("1000 Mbs, ");
1160 	} else if (status & E1000_STATUS_SPEED_100) {
1161 		*speed = SPEED_100;
1162 		hw_dbg("100 Mbs, ");
1163 	} else {
1164 		*speed = SPEED_10;
1165 		hw_dbg("10 Mbs, ");
1166 	}
1167 
1168 	if (status & E1000_STATUS_FD) {
1169 		*duplex = FULL_DUPLEX;
1170 		hw_dbg("Full Duplex\n");
1171 	} else {
1172 		*duplex = HALF_DUPLEX;
1173 		hw_dbg("Half Duplex\n");
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 /**
1180  *  igb_get_hw_semaphore - Acquire hardware semaphore
1181  *  @hw: pointer to the HW structure
1182  *
1183  *  Acquire the HW semaphore to access the PHY or NVM
1184  **/
1185 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1186 {
1187 	u32 swsm;
1188 	s32 ret_val = 0;
1189 	s32 timeout = hw->nvm.word_size + 1;
1190 	s32 i = 0;
1191 
1192 	/* Get the SW semaphore */
1193 	while (i < timeout) {
1194 		swsm = rd32(E1000_SWSM);
1195 		if (!(swsm & E1000_SWSM_SMBI))
1196 			break;
1197 
1198 		udelay(50);
1199 		i++;
1200 	}
1201 
1202 	if (i == timeout) {
1203 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1204 		ret_val = -E1000_ERR_NVM;
1205 		goto out;
1206 	}
1207 
1208 	/* Get the FW semaphore. */
1209 	for (i = 0; i < timeout; i++) {
1210 		swsm = rd32(E1000_SWSM);
1211 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1212 
1213 		/* Semaphore acquired if bit latched */
1214 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1215 			break;
1216 
1217 		udelay(50);
1218 	}
1219 
1220 	if (i == timeout) {
1221 		/* Release semaphores */
1222 		igb_put_hw_semaphore(hw);
1223 		hw_dbg("Driver can't access the NVM\n");
1224 		ret_val = -E1000_ERR_NVM;
1225 		goto out;
1226 	}
1227 
1228 out:
1229 	return ret_val;
1230 }
1231 
1232 /**
1233  *  igb_put_hw_semaphore - Release hardware semaphore
1234  *  @hw: pointer to the HW structure
1235  *
1236  *  Release hardware semaphore used to access the PHY or NVM
1237  **/
1238 void igb_put_hw_semaphore(struct e1000_hw *hw)
1239 {
1240 	u32 swsm;
1241 
1242 	swsm = rd32(E1000_SWSM);
1243 
1244 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1245 
1246 	wr32(E1000_SWSM, swsm);
1247 }
1248 
1249 /**
1250  *  igb_get_auto_rd_done - Check for auto read completion
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  Check EEPROM for Auto Read done bit.
1254  **/
1255 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1256 {
1257 	s32 i = 0;
1258 	s32 ret_val = 0;
1259 
1260 
1261 	while (i < AUTO_READ_DONE_TIMEOUT) {
1262 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1263 			break;
1264 		usleep_range(1000, 2000);
1265 		i++;
1266 	}
1267 
1268 	if (i == AUTO_READ_DONE_TIMEOUT) {
1269 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1270 		ret_val = -E1000_ERR_RESET;
1271 		goto out;
1272 	}
1273 
1274 out:
1275 	return ret_val;
1276 }
1277 
1278 /**
1279  *  igb_valid_led_default - Verify a valid default LED config
1280  *  @hw: pointer to the HW structure
1281  *  @data: pointer to the NVM (EEPROM)
1282  *
1283  *  Read the EEPROM for the current default LED configuration.  If the
1284  *  LED configuration is not valid, set to a valid LED configuration.
1285  **/
1286 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1287 {
1288 	s32 ret_val;
1289 
1290 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1291 	if (ret_val) {
1292 		hw_dbg("NVM Read Error\n");
1293 		goto out;
1294 	}
1295 
1296 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1297 		switch (hw->phy.media_type) {
1298 		case e1000_media_type_internal_serdes:
1299 			*data = ID_LED_DEFAULT_82575_SERDES;
1300 			break;
1301 		case e1000_media_type_copper:
1302 		default:
1303 			*data = ID_LED_DEFAULT;
1304 			break;
1305 		}
1306 	}
1307 out:
1308 	return ret_val;
1309 }
1310 
1311 /**
1312  *  igb_id_led_init -
1313  *  @hw: pointer to the HW structure
1314  *
1315  **/
1316 s32 igb_id_led_init(struct e1000_hw *hw)
1317 {
1318 	struct e1000_mac_info *mac = &hw->mac;
1319 	s32 ret_val;
1320 	const u32 ledctl_mask = 0x000000FF;
1321 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1322 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1323 	u16 data, i, temp;
1324 	const u16 led_mask = 0x0F;
1325 
1326 	/* i210 and i211 devices have different LED mechanism */
1327 	if ((hw->mac.type == e1000_i210) ||
1328 	    (hw->mac.type == e1000_i211))
1329 		ret_val = igb_valid_led_default_i210(hw, &data);
1330 	else
1331 		ret_val = igb_valid_led_default(hw, &data);
1332 
1333 	if (ret_val)
1334 		goto out;
1335 
1336 	mac->ledctl_default = rd32(E1000_LEDCTL);
1337 	mac->ledctl_mode1 = mac->ledctl_default;
1338 	mac->ledctl_mode2 = mac->ledctl_default;
1339 
1340 	for (i = 0; i < 4; i++) {
1341 		temp = (data >> (i << 2)) & led_mask;
1342 		switch (temp) {
1343 		case ID_LED_ON1_DEF2:
1344 		case ID_LED_ON1_ON2:
1345 		case ID_LED_ON1_OFF2:
1346 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1347 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1348 			break;
1349 		case ID_LED_OFF1_DEF2:
1350 		case ID_LED_OFF1_ON2:
1351 		case ID_LED_OFF1_OFF2:
1352 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1354 			break;
1355 		default:
1356 			/* Do nothing */
1357 			break;
1358 		}
1359 		switch (temp) {
1360 		case ID_LED_DEF1_ON2:
1361 		case ID_LED_ON1_ON2:
1362 		case ID_LED_OFF1_ON2:
1363 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1364 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1365 			break;
1366 		case ID_LED_DEF1_OFF2:
1367 		case ID_LED_ON1_OFF2:
1368 		case ID_LED_OFF1_OFF2:
1369 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1371 			break;
1372 		default:
1373 			/* Do nothing */
1374 			break;
1375 		}
1376 	}
1377 
1378 out:
1379 	return ret_val;
1380 }
1381 
1382 /**
1383  *  igb_cleanup_led - Set LED config to default operation
1384  *  @hw: pointer to the HW structure
1385  *
1386  *  Remove the current LED configuration and set the LED configuration
1387  *  to the default value, saved from the EEPROM.
1388  **/
1389 s32 igb_cleanup_led(struct e1000_hw *hw)
1390 {
1391 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1392 	return 0;
1393 }
1394 
1395 /**
1396  *  igb_blink_led - Blink LED
1397  *  @hw: pointer to the HW structure
1398  *
1399  *  Blink the led's which are set to be on.
1400  **/
1401 s32 igb_blink_led(struct e1000_hw *hw)
1402 {
1403 	u32 ledctl_blink = 0;
1404 	u32 i;
1405 
1406 	if (hw->phy.media_type == e1000_media_type_fiber) {
1407 		/* always blink LED0 for PCI-E fiber */
1408 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1409 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1410 	} else {
1411 		/* Set the blink bit for each LED that's "on" (0x0E)
1412 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1413 		 * logic in hardware only works when mode is set to "on"
1414 		 * so it must be changed accordingly when the mode is
1415 		 * "off" and inverted.
1416 		 */
1417 		ledctl_blink = hw->mac.ledctl_mode2;
1418 		for (i = 0; i < 32; i += 8) {
1419 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1420 			    E1000_LEDCTL_LED0_MODE_MASK;
1421 			u32 led_default = hw->mac.ledctl_default >> i;
1422 
1423 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1424 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1425 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1426 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1427 				ledctl_blink &=
1428 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1429 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1430 						 E1000_LEDCTL_MODE_LED_ON) << i;
1431 			}
1432 		}
1433 	}
1434 
1435 	wr32(E1000_LEDCTL, ledctl_blink);
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  *  igb_led_off - Turn LED off
1442  *  @hw: pointer to the HW structure
1443  *
1444  *  Turn LED off.
1445  **/
1446 s32 igb_led_off(struct e1000_hw *hw)
1447 {
1448 	switch (hw->phy.media_type) {
1449 	case e1000_media_type_copper:
1450 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1451 		break;
1452 	default:
1453 		break;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 /**
1460  *  igb_disable_pcie_master - Disables PCI-express master access
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Returns 0 (0) if successful, else returns -10
1464  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1465  *  the master requests to be disabled.
1466  *
1467  *  Disables PCI-Express master access and verifies there are no pending
1468  *  requests.
1469  **/
1470 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1471 {
1472 	u32 ctrl;
1473 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1474 	s32 ret_val = 0;
1475 
1476 	if (hw->bus.type != e1000_bus_type_pci_express)
1477 		goto out;
1478 
1479 	ctrl = rd32(E1000_CTRL);
1480 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1481 	wr32(E1000_CTRL, ctrl);
1482 
1483 	while (timeout) {
1484 		if (!(rd32(E1000_STATUS) &
1485 		      E1000_STATUS_GIO_MASTER_ENABLE))
1486 			break;
1487 		udelay(100);
1488 		timeout--;
1489 	}
1490 
1491 	if (!timeout) {
1492 		hw_dbg("Master requests are pending.\n");
1493 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1494 		goto out;
1495 	}
1496 
1497 out:
1498 	return ret_val;
1499 }
1500 
1501 /**
1502  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1503  *  @hw: pointer to the HW structure
1504  *
1505  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1506  *  set, which is forced to MDI mode only.
1507  **/
1508 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1509 {
1510 	s32 ret_val = 0;
1511 
1512 	/* All MDI settings are supported on 82580 and newer. */
1513 	if (hw->mac.type >= e1000_82580)
1514 		goto out;
1515 
1516 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1517 		hw_dbg("Invalid MDI setting detected\n");
1518 		hw->phy.mdix = 1;
1519 		ret_val = -E1000_ERR_CONFIG;
1520 		goto out;
1521 	}
1522 
1523 out:
1524 	return ret_val;
1525 }
1526 
1527 /**
1528  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1529  *  @hw: pointer to the HW structure
1530  *  @reg: 32bit register offset such as E1000_SCTL
1531  *  @offset: register offset to write to
1532  *  @data: data to write at register offset
1533  *
1534  *  Writes an address/data control type register.  There are several of these
1535  *  and they all have the format address << 8 | data and bit 31 is polled for
1536  *  completion.
1537  **/
1538 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1539 			      u32 offset, u8 data)
1540 {
1541 	u32 i, regvalue = 0;
1542 	s32 ret_val = 0;
1543 
1544 	/* Set up the address and data */
1545 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1546 	wr32(reg, regvalue);
1547 
1548 	/* Poll the ready bit to see if the MDI read completed */
1549 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1550 		udelay(5);
1551 		regvalue = rd32(reg);
1552 		if (regvalue & E1000_GEN_CTL_READY)
1553 			break;
1554 	}
1555 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1556 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1557 		ret_val = -E1000_ERR_PHY;
1558 		goto out;
1559 	}
1560 
1561 out:
1562 	return ret_val;
1563 }
1564 
1565 /**
1566  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1567  *  @hw: pointer to the HW structure
1568  *
1569  *  Verifies the hardware needs to leave interface enabled so that frames can
1570  *  be directed to and from the management interface.
1571  **/
1572 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1573 {
1574 	u32 manc;
1575 	u32 fwsm, factps;
1576 	bool ret_val = false;
1577 
1578 	if (!hw->mac.asf_firmware_present)
1579 		goto out;
1580 
1581 	manc = rd32(E1000_MANC);
1582 
1583 	if (!(manc & E1000_MANC_RCV_TCO_EN))
1584 		goto out;
1585 
1586 	if (hw->mac.arc_subsystem_valid) {
1587 		fwsm = rd32(E1000_FWSM);
1588 		factps = rd32(E1000_FACTPS);
1589 
1590 		if (!(factps & E1000_FACTPS_MNGCG) &&
1591 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1592 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1593 			ret_val = true;
1594 			goto out;
1595 		}
1596 	} else {
1597 		if ((manc & E1000_MANC_SMBUS_EN) &&
1598 		    !(manc & E1000_MANC_ASF_EN)) {
1599 			ret_val = true;
1600 			goto out;
1601 		}
1602 	}
1603 
1604 out:
1605 	return ret_val;
1606 }
1607