xref: /linux/drivers/net/ethernet/intel/igb/e1000_mac.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 
30 #include "e1000_mac.h"
31 
32 #include "igb.h"
33 
34 static s32 igb_set_default_fc(struct e1000_hw *hw);
35 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
36 
37 /**
38  *  igb_get_bus_info_pcie - Get PCIe bus information
39  *  @hw: pointer to the HW structure
40  *
41  *  Determines and stores the system bus information for a particular
42  *  network interface.  The following bus information is determined and stored:
43  *  bus speed, bus width, type (PCIe), and PCIe function.
44  **/
45 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
46 {
47 	struct e1000_bus_info *bus = &hw->bus;
48 	s32 ret_val;
49 	u32 reg;
50 	u16 pcie_link_status;
51 
52 	bus->type = e1000_bus_type_pci_express;
53 
54 	ret_val = igb_read_pcie_cap_reg(hw,
55 					PCI_EXP_LNKSTA,
56 					&pcie_link_status);
57 	if (ret_val) {
58 		bus->width = e1000_bus_width_unknown;
59 		bus->speed = e1000_bus_speed_unknown;
60 	} else {
61 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
62 		case PCI_EXP_LNKSTA_CLS_2_5GB:
63 			bus->speed = e1000_bus_speed_2500;
64 			break;
65 		case PCI_EXP_LNKSTA_CLS_5_0GB:
66 			bus->speed = e1000_bus_speed_5000;
67 			break;
68 		default:
69 			bus->speed = e1000_bus_speed_unknown;
70 			break;
71 		}
72 
73 		bus->width = (enum e1000_bus_width)((pcie_link_status &
74 						     PCI_EXP_LNKSTA_NLW) >>
75 						     PCI_EXP_LNKSTA_NLW_SHIFT);
76 	}
77 
78 	reg = rd32(E1000_STATUS);
79 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
80 
81 	return 0;
82 }
83 
84 /**
85  *  igb_clear_vfta - Clear VLAN filter table
86  *  @hw: pointer to the HW structure
87  *
88  *  Clears the register array which contains the VLAN filter table by
89  *  setting all the values to 0.
90  **/
91 void igb_clear_vfta(struct e1000_hw *hw)
92 {
93 	u32 offset;
94 
95 	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
96 		hw->mac.ops.write_vfta(hw, offset, 0);
97 }
98 
99 /**
100  *  igb_write_vfta - Write value to VLAN filter table
101  *  @hw: pointer to the HW structure
102  *  @offset: register offset in VLAN filter table
103  *  @value: register value written to VLAN filter table
104  *
105  *  Writes value at the given offset in the register array which stores
106  *  the VLAN filter table.
107  **/
108 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
109 {
110 	struct igb_adapter *adapter = hw->back;
111 
112 	array_wr32(E1000_VFTA, offset, value);
113 	wrfl();
114 
115 	adapter->shadow_vfta[offset] = value;
116 }
117 
118 /**
119  *  igb_init_rx_addrs - Initialize receive address's
120  *  @hw: pointer to the HW structure
121  *  @rar_count: receive address registers
122  *
123  *  Setups the receive address registers by setting the base receive address
124  *  register to the devices MAC address and clearing all the other receive
125  *  address registers to 0.
126  **/
127 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
128 {
129 	u32 i;
130 	u8 mac_addr[ETH_ALEN] = {0};
131 
132 	/* Setup the receive address */
133 	hw_dbg("Programming MAC Address into RAR[0]\n");
134 
135 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
136 
137 	/* Zero out the other (rar_entry_count - 1) receive addresses */
138 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
139 	for (i = 1; i < rar_count; i++)
140 		hw->mac.ops.rar_set(hw, mac_addr, i);
141 }
142 
143 /**
144  *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
145  *  @hw: pointer to hardware structure
146  *  @vlan: VLAN id to write to VLAN filter
147  *  @vlvf_bypass: skip VLVF if no match is found
148  *
149  *  return the VLVF index where this VLAN id should be placed
150  *
151  **/
152 static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
153 {
154 	s32 regindex, first_empty_slot;
155 	u32 bits;
156 
157 	/* short cut the special case */
158 	if (vlan == 0)
159 		return 0;
160 
161 	/* if vlvf_bypass is set we don't want to use an empty slot, we
162 	 * will simply bypass the VLVF if there are no entries present in the
163 	 * VLVF that contain our VLAN
164 	 */
165 	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
166 
167 	/* Search for the VLAN id in the VLVF entries. Save off the first empty
168 	 * slot found along the way.
169 	 *
170 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
171 	 */
172 	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
173 		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
174 		if (bits == vlan)
175 			return regindex;
176 		if (!first_empty_slot && !bits)
177 			first_empty_slot = regindex;
178 	}
179 
180 	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
181 }
182 
183 /**
184  *  igb_vfta_set - enable or disable vlan in VLAN filter table
185  *  @hw: pointer to the HW structure
186  *  @vlan: VLAN id to add or remove
187  *  @vind: VMDq output index that maps queue to VLAN id
188  *  @vlan_on: if true add filter, if false remove
189  *
190  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
191  *  and if we are adding or removing the filter
192  **/
193 s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
194 		 bool vlan_on, bool vlvf_bypass)
195 {
196 	struct igb_adapter *adapter = hw->back;
197 	u32 regidx, vfta_delta, vfta, bits;
198 	s32 vlvf_index;
199 
200 	if ((vlan > 4095) || (vind > 7))
201 		return -E1000_ERR_PARAM;
202 
203 	/* this is a 2 part operation - first the VFTA, then the
204 	 * VLVF and VLVFB if VT Mode is set
205 	 * We don't write the VFTA until we know the VLVF part succeeded.
206 	 */
207 
208 	/* Part 1
209 	 * The VFTA is a bitstring made up of 128 32-bit registers
210 	 * that enable the particular VLAN id, much like the MTA:
211 	 *    bits[11-5]: which register
212 	 *    bits[4-0]:  which bit in the register
213 	 */
214 	regidx = vlan / 32;
215 	vfta_delta = BIT(vlan % 32);
216 	vfta = adapter->shadow_vfta[regidx];
217 
218 	/* vfta_delta represents the difference between the current value
219 	 * of vfta and the value we want in the register.  Since the diff
220 	 * is an XOR mask we can just update vfta using an XOR.
221 	 */
222 	vfta_delta &= vlan_on ? ~vfta : vfta;
223 	vfta ^= vfta_delta;
224 
225 	/* Part 2
226 	 * If VT Mode is set
227 	 *   Either vlan_on
228 	 *     make sure the VLAN is in VLVF
229 	 *     set the vind bit in the matching VLVFB
230 	 *   Or !vlan_on
231 	 *     clear the pool bit and possibly the vind
232 	 */
233 	if (!adapter->vfs_allocated_count)
234 		goto vfta_update;
235 
236 	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
237 	if (vlvf_index < 0) {
238 		if (vlvf_bypass)
239 			goto vfta_update;
240 		return vlvf_index;
241 	}
242 
243 	bits = rd32(E1000_VLVF(vlvf_index));
244 
245 	/* set the pool bit */
246 	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
247 	if (vlan_on)
248 		goto vlvf_update;
249 
250 	/* clear the pool bit */
251 	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
252 
253 	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
254 		/* Clear VFTA first, then disable VLVF.  Otherwise
255 		 * we run the risk of stray packets leaking into
256 		 * the PF via the default pool
257 		 */
258 		if (vfta_delta)
259 			hw->mac.ops.write_vfta(hw, regidx, vfta);
260 
261 		/* disable VLVF and clear remaining bit from pool */
262 		wr32(E1000_VLVF(vlvf_index), 0);
263 
264 		return 0;
265 	}
266 
267 	/* If there are still bits set in the VLVFB registers
268 	 * for the VLAN ID indicated we need to see if the
269 	 * caller is requesting that we clear the VFTA entry bit.
270 	 * If the caller has requested that we clear the VFTA
271 	 * entry bit but there are still pools/VFs using this VLAN
272 	 * ID entry then ignore the request.  We're not worried
273 	 * about the case where we're turning the VFTA VLAN ID
274 	 * entry bit on, only when requested to turn it off as
275 	 * there may be multiple pools and/or VFs using the
276 	 * VLAN ID entry.  In that case we cannot clear the
277 	 * VFTA bit until all pools/VFs using that VLAN ID have also
278 	 * been cleared.  This will be indicated by "bits" being
279 	 * zero.
280 	 */
281 	vfta_delta = 0;
282 
283 vlvf_update:
284 	/* record pool change and enable VLAN ID if not already enabled */
285 	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
286 
287 vfta_update:
288 	/* bit was set/cleared before we started */
289 	if (vfta_delta)
290 		hw->mac.ops.write_vfta(hw, regidx, vfta);
291 
292 	return 0;
293 }
294 
295 /**
296  *  igb_check_alt_mac_addr - Check for alternate MAC addr
297  *  @hw: pointer to the HW structure
298  *
299  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
300  *  can be setup by pre-boot software and must be treated like a permanent
301  *  address and must override the actual permanent MAC address.  If an
302  *  alternate MAC address is found it is saved in the hw struct and
303  *  programmed into RAR0 and the function returns success, otherwise the
304  *  function returns an error.
305  **/
306 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
307 {
308 	u32 i;
309 	s32 ret_val = 0;
310 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
311 	u8 alt_mac_addr[ETH_ALEN];
312 
313 	/* Alternate MAC address is handled by the option ROM for 82580
314 	 * and newer. SW support not required.
315 	 */
316 	if (hw->mac.type >= e1000_82580)
317 		goto out;
318 
319 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
320 				 &nvm_alt_mac_addr_offset);
321 	if (ret_val) {
322 		hw_dbg("NVM Read Error\n");
323 		goto out;
324 	}
325 
326 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
327 	    (nvm_alt_mac_addr_offset == 0x0000))
328 		/* There is no Alternate MAC Address */
329 		goto out;
330 
331 	if (hw->bus.func == E1000_FUNC_1)
332 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
333 	if (hw->bus.func == E1000_FUNC_2)
334 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
335 
336 	if (hw->bus.func == E1000_FUNC_3)
337 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
338 	for (i = 0; i < ETH_ALEN; i += 2) {
339 		offset = nvm_alt_mac_addr_offset + (i >> 1);
340 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
341 		if (ret_val) {
342 			hw_dbg("NVM Read Error\n");
343 			goto out;
344 		}
345 
346 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
347 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
348 	}
349 
350 	/* if multicast bit is set, the alternate address will not be used */
351 	if (is_multicast_ether_addr(alt_mac_addr)) {
352 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
353 		goto out;
354 	}
355 
356 	/* We have a valid alternate MAC address, and we want to treat it the
357 	 * same as the normal permanent MAC address stored by the HW into the
358 	 * RAR. Do this by mapping this address into RAR0.
359 	 */
360 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
361 
362 out:
363 	return ret_val;
364 }
365 
366 /**
367  *  igb_rar_set - Set receive address register
368  *  @hw: pointer to the HW structure
369  *  @addr: pointer to the receive address
370  *  @index: receive address array register
371  *
372  *  Sets the receive address array register at index to the address passed
373  *  in by addr.
374  **/
375 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
376 {
377 	u32 rar_low, rar_high;
378 
379 	/* HW expects these in little endian so we reverse the byte order
380 	 * from network order (big endian) to little endian
381 	 */
382 	rar_low = ((u32) addr[0] |
383 		   ((u32) addr[1] << 8) |
384 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
385 
386 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
387 
388 	/* If MAC address zero, no need to set the AV bit */
389 	if (rar_low || rar_high)
390 		rar_high |= E1000_RAH_AV;
391 
392 	/* Some bridges will combine consecutive 32-bit writes into
393 	 * a single burst write, which will malfunction on some parts.
394 	 * The flushes avoid this.
395 	 */
396 	wr32(E1000_RAL(index), rar_low);
397 	wrfl();
398 	wr32(E1000_RAH(index), rar_high);
399 	wrfl();
400 }
401 
402 /**
403  *  igb_mta_set - Set multicast filter table address
404  *  @hw: pointer to the HW structure
405  *  @hash_value: determines the MTA register and bit to set
406  *
407  *  The multicast table address is a register array of 32-bit registers.
408  *  The hash_value is used to determine what register the bit is in, the
409  *  current value is read, the new bit is OR'd in and the new value is
410  *  written back into the register.
411  **/
412 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
413 {
414 	u32 hash_bit, hash_reg, mta;
415 
416 	/* The MTA is a register array of 32-bit registers. It is
417 	 * treated like an array of (32*mta_reg_count) bits.  We want to
418 	 * set bit BitArray[hash_value]. So we figure out what register
419 	 * the bit is in, read it, OR in the new bit, then write
420 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
421 	 * mask to bits 31:5 of the hash value which gives us the
422 	 * register we're modifying.  The hash bit within that register
423 	 * is determined by the lower 5 bits of the hash value.
424 	 */
425 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
426 	hash_bit = hash_value & 0x1F;
427 
428 	mta = array_rd32(E1000_MTA, hash_reg);
429 
430 	mta |= BIT(hash_bit);
431 
432 	array_wr32(E1000_MTA, hash_reg, mta);
433 	wrfl();
434 }
435 
436 /**
437  *  igb_hash_mc_addr - Generate a multicast hash value
438  *  @hw: pointer to the HW structure
439  *  @mc_addr: pointer to a multicast address
440  *
441  *  Generates a multicast address hash value which is used to determine
442  *  the multicast filter table array address and new table value.  See
443  *  igb_mta_set()
444  **/
445 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
446 {
447 	u32 hash_value, hash_mask;
448 	u8 bit_shift = 0;
449 
450 	/* Register count multiplied by bits per register */
451 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
452 
453 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
454 	 * where 0xFF would still fall within the hash mask.
455 	 */
456 	while (hash_mask >> bit_shift != 0xFF)
457 		bit_shift++;
458 
459 	/* The portion of the address that is used for the hash table
460 	 * is determined by the mc_filter_type setting.
461 	 * The algorithm is such that there is a total of 8 bits of shifting.
462 	 * The bit_shift for a mc_filter_type of 0 represents the number of
463 	 * left-shifts where the MSB of mc_addr[5] would still fall within
464 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
465 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
466 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
467 	 * cases are a variation of this algorithm...essentially raising the
468 	 * number of bits to shift mc_addr[5] left, while still keeping the
469 	 * 8-bit shifting total.
470 	 *
471 	 * For example, given the following Destination MAC Address and an
472 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
473 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
474 	 * values resulting from each mc_filter_type...
475 	 * [0] [1] [2] [3] [4] [5]
476 	 * 01  AA  00  12  34  56
477 	 * LSB                 MSB
478 	 *
479 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
480 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
481 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
482 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
483 	 */
484 	switch (hw->mac.mc_filter_type) {
485 	default:
486 	case 0:
487 		break;
488 	case 1:
489 		bit_shift += 1;
490 		break;
491 	case 2:
492 		bit_shift += 2;
493 		break;
494 	case 3:
495 		bit_shift += 4;
496 		break;
497 	}
498 
499 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
500 				  (((u16) mc_addr[5]) << bit_shift)));
501 
502 	return hash_value;
503 }
504 
505 /**
506  *  igb_update_mc_addr_list - Update Multicast addresses
507  *  @hw: pointer to the HW structure
508  *  @mc_addr_list: array of multicast addresses to program
509  *  @mc_addr_count: number of multicast addresses to program
510  *
511  *  Updates entire Multicast Table Array.
512  *  The caller must have a packed mc_addr_list of multicast addresses.
513  **/
514 void igb_update_mc_addr_list(struct e1000_hw *hw,
515 			     u8 *mc_addr_list, u32 mc_addr_count)
516 {
517 	u32 hash_value, hash_bit, hash_reg;
518 	int i;
519 
520 	/* clear mta_shadow */
521 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
522 
523 	/* update mta_shadow from mc_addr_list */
524 	for (i = 0; (u32) i < mc_addr_count; i++) {
525 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
526 
527 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
528 		hash_bit = hash_value & 0x1F;
529 
530 		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
531 		mc_addr_list += (ETH_ALEN);
532 	}
533 
534 	/* replace the entire MTA table */
535 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
536 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
537 	wrfl();
538 }
539 
540 /**
541  *  igb_clear_hw_cntrs_base - Clear base hardware counters
542  *  @hw: pointer to the HW structure
543  *
544  *  Clears the base hardware counters by reading the counter registers.
545  **/
546 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
547 {
548 	rd32(E1000_CRCERRS);
549 	rd32(E1000_SYMERRS);
550 	rd32(E1000_MPC);
551 	rd32(E1000_SCC);
552 	rd32(E1000_ECOL);
553 	rd32(E1000_MCC);
554 	rd32(E1000_LATECOL);
555 	rd32(E1000_COLC);
556 	rd32(E1000_DC);
557 	rd32(E1000_SEC);
558 	rd32(E1000_RLEC);
559 	rd32(E1000_XONRXC);
560 	rd32(E1000_XONTXC);
561 	rd32(E1000_XOFFRXC);
562 	rd32(E1000_XOFFTXC);
563 	rd32(E1000_FCRUC);
564 	rd32(E1000_GPRC);
565 	rd32(E1000_BPRC);
566 	rd32(E1000_MPRC);
567 	rd32(E1000_GPTC);
568 	rd32(E1000_GORCL);
569 	rd32(E1000_GORCH);
570 	rd32(E1000_GOTCL);
571 	rd32(E1000_GOTCH);
572 	rd32(E1000_RNBC);
573 	rd32(E1000_RUC);
574 	rd32(E1000_RFC);
575 	rd32(E1000_ROC);
576 	rd32(E1000_RJC);
577 	rd32(E1000_TORL);
578 	rd32(E1000_TORH);
579 	rd32(E1000_TOTL);
580 	rd32(E1000_TOTH);
581 	rd32(E1000_TPR);
582 	rd32(E1000_TPT);
583 	rd32(E1000_MPTC);
584 	rd32(E1000_BPTC);
585 }
586 
587 /**
588  *  igb_check_for_copper_link - Check for link (Copper)
589  *  @hw: pointer to the HW structure
590  *
591  *  Checks to see of the link status of the hardware has changed.  If a
592  *  change in link status has been detected, then we read the PHY registers
593  *  to get the current speed/duplex if link exists.
594  **/
595 s32 igb_check_for_copper_link(struct e1000_hw *hw)
596 {
597 	struct e1000_mac_info *mac = &hw->mac;
598 	s32 ret_val;
599 	bool link;
600 
601 	/* We only want to go out to the PHY registers to see if Auto-Neg
602 	 * has completed and/or if our link status has changed.  The
603 	 * get_link_status flag is set upon receiving a Link Status
604 	 * Change or Rx Sequence Error interrupt.
605 	 */
606 	if (!mac->get_link_status) {
607 		ret_val = 0;
608 		goto out;
609 	}
610 
611 	/* First we want to see if the MII Status Register reports
612 	 * link.  If so, then we want to get the current speed/duplex
613 	 * of the PHY.
614 	 */
615 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
616 	if (ret_val)
617 		goto out;
618 
619 	if (!link)
620 		goto out; /* No link detected */
621 
622 	mac->get_link_status = false;
623 
624 	/* Check if there was DownShift, must be checked
625 	 * immediately after link-up
626 	 */
627 	igb_check_downshift(hw);
628 
629 	/* If we are forcing speed/duplex, then we simply return since
630 	 * we have already determined whether we have link or not.
631 	 */
632 	if (!mac->autoneg) {
633 		ret_val = -E1000_ERR_CONFIG;
634 		goto out;
635 	}
636 
637 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
638 	 * of MAC speed/duplex configuration.  So we only need to
639 	 * configure Collision Distance in the MAC.
640 	 */
641 	igb_config_collision_dist(hw);
642 
643 	/* Configure Flow Control now that Auto-Neg has completed.
644 	 * First, we need to restore the desired flow control
645 	 * settings because we may have had to re-autoneg with a
646 	 * different link partner.
647 	 */
648 	ret_val = igb_config_fc_after_link_up(hw);
649 	if (ret_val)
650 		hw_dbg("Error configuring flow control\n");
651 
652 out:
653 	return ret_val;
654 }
655 
656 /**
657  *  igb_setup_link - Setup flow control and link settings
658  *  @hw: pointer to the HW structure
659  *
660  *  Determines which flow control settings to use, then configures flow
661  *  control.  Calls the appropriate media-specific link configuration
662  *  function.  Assuming the adapter has a valid link partner, a valid link
663  *  should be established.  Assumes the hardware has previously been reset
664  *  and the transmitter and receiver are not enabled.
665  **/
666 s32 igb_setup_link(struct e1000_hw *hw)
667 {
668 	s32 ret_val = 0;
669 
670 	/* In the case of the phy reset being blocked, we already have a link.
671 	 * We do not need to set it up again.
672 	 */
673 	if (igb_check_reset_block(hw))
674 		goto out;
675 
676 	/* If requested flow control is set to default, set flow control
677 	 * based on the EEPROM flow control settings.
678 	 */
679 	if (hw->fc.requested_mode == e1000_fc_default) {
680 		ret_val = igb_set_default_fc(hw);
681 		if (ret_val)
682 			goto out;
683 	}
684 
685 	/* We want to save off the original Flow Control configuration just
686 	 * in case we get disconnected and then reconnected into a different
687 	 * hub or switch with different Flow Control capabilities.
688 	 */
689 	hw->fc.current_mode = hw->fc.requested_mode;
690 
691 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
692 
693 	/* Call the necessary media_type subroutine to configure the link. */
694 	ret_val = hw->mac.ops.setup_physical_interface(hw);
695 	if (ret_val)
696 		goto out;
697 
698 	/* Initialize the flow control address, type, and PAUSE timer
699 	 * registers to their default values.  This is done even if flow
700 	 * control is disabled, because it does not hurt anything to
701 	 * initialize these registers.
702 	 */
703 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
704 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
705 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
706 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
707 
708 	wr32(E1000_FCTTV, hw->fc.pause_time);
709 
710 	ret_val = igb_set_fc_watermarks(hw);
711 
712 out:
713 
714 	return ret_val;
715 }
716 
717 /**
718  *  igb_config_collision_dist - Configure collision distance
719  *  @hw: pointer to the HW structure
720  *
721  *  Configures the collision distance to the default value and is used
722  *  during link setup. Currently no func pointer exists and all
723  *  implementations are handled in the generic version of this function.
724  **/
725 void igb_config_collision_dist(struct e1000_hw *hw)
726 {
727 	u32 tctl;
728 
729 	tctl = rd32(E1000_TCTL);
730 
731 	tctl &= ~E1000_TCTL_COLD;
732 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
733 
734 	wr32(E1000_TCTL, tctl);
735 	wrfl();
736 }
737 
738 /**
739  *  igb_set_fc_watermarks - Set flow control high/low watermarks
740  *  @hw: pointer to the HW structure
741  *
742  *  Sets the flow control high/low threshold (watermark) registers.  If
743  *  flow control XON frame transmission is enabled, then set XON frame
744  *  tansmission as well.
745  **/
746 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
747 {
748 	s32 ret_val = 0;
749 	u32 fcrtl = 0, fcrth = 0;
750 
751 	/* Set the flow control receive threshold registers.  Normally,
752 	 * these registers will be set to a default threshold that may be
753 	 * adjusted later by the driver's runtime code.  However, if the
754 	 * ability to transmit pause frames is not enabled, then these
755 	 * registers will be set to 0.
756 	 */
757 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
758 		/* We need to set up the Receive Threshold high and low water
759 		 * marks as well as (optionally) enabling the transmission of
760 		 * XON frames.
761 		 */
762 		fcrtl = hw->fc.low_water;
763 		if (hw->fc.send_xon)
764 			fcrtl |= E1000_FCRTL_XONE;
765 
766 		fcrth = hw->fc.high_water;
767 	}
768 	wr32(E1000_FCRTL, fcrtl);
769 	wr32(E1000_FCRTH, fcrth);
770 
771 	return ret_val;
772 }
773 
774 /**
775  *  igb_set_default_fc - Set flow control default values
776  *  @hw: pointer to the HW structure
777  *
778  *  Read the EEPROM for the default values for flow control and store the
779  *  values.
780  **/
781 static s32 igb_set_default_fc(struct e1000_hw *hw)
782 {
783 	s32 ret_val = 0;
784 	u16 lan_offset;
785 	u16 nvm_data;
786 
787 	/* Read and store word 0x0F of the EEPROM. This word contains bits
788 	 * that determine the hardware's default PAUSE (flow control) mode,
789 	 * a bit that determines whether the HW defaults to enabling or
790 	 * disabling auto-negotiation, and the direction of the
791 	 * SW defined pins. If there is no SW over-ride of the flow
792 	 * control setting, then the variable hw->fc will
793 	 * be initialized based on a value in the EEPROM.
794 	 */
795 	if (hw->mac.type == e1000_i350) {
796 		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
797 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
798 					   + lan_offset, 1, &nvm_data);
799 	 } else {
800 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
801 					   1, &nvm_data);
802 	 }
803 
804 	if (ret_val) {
805 		hw_dbg("NVM Read Error\n");
806 		goto out;
807 	}
808 
809 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
810 		hw->fc.requested_mode = e1000_fc_none;
811 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
812 		 NVM_WORD0F_ASM_DIR)
813 		hw->fc.requested_mode = e1000_fc_tx_pause;
814 	else
815 		hw->fc.requested_mode = e1000_fc_full;
816 
817 out:
818 	return ret_val;
819 }
820 
821 /**
822  *  igb_force_mac_fc - Force the MAC's flow control settings
823  *  @hw: pointer to the HW structure
824  *
825  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
826  *  device control register to reflect the adapter settings.  TFCE and RFCE
827  *  need to be explicitly set by software when a copper PHY is used because
828  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
829  *  also configure these bits when link is forced on a fiber connection.
830  **/
831 s32 igb_force_mac_fc(struct e1000_hw *hw)
832 {
833 	u32 ctrl;
834 	s32 ret_val = 0;
835 
836 	ctrl = rd32(E1000_CTRL);
837 
838 	/* Because we didn't get link via the internal auto-negotiation
839 	 * mechanism (we either forced link or we got link via PHY
840 	 * auto-neg), we have to manually enable/disable transmit an
841 	 * receive flow control.
842 	 *
843 	 * The "Case" statement below enables/disable flow control
844 	 * according to the "hw->fc.current_mode" parameter.
845 	 *
846 	 * The possible values of the "fc" parameter are:
847 	 *      0:  Flow control is completely disabled
848 	 *      1:  Rx flow control is enabled (we can receive pause
849 	 *          frames but not send pause frames).
850 	 *      2:  Tx flow control is enabled (we can send pause frames
851 	 *          frames but we do not receive pause frames).
852 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
853 	 *  other:  No other values should be possible at this point.
854 	 */
855 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
856 
857 	switch (hw->fc.current_mode) {
858 	case e1000_fc_none:
859 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
860 		break;
861 	case e1000_fc_rx_pause:
862 		ctrl &= (~E1000_CTRL_TFCE);
863 		ctrl |= E1000_CTRL_RFCE;
864 		break;
865 	case e1000_fc_tx_pause:
866 		ctrl &= (~E1000_CTRL_RFCE);
867 		ctrl |= E1000_CTRL_TFCE;
868 		break;
869 	case e1000_fc_full:
870 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
871 		break;
872 	default:
873 		hw_dbg("Flow control param set incorrectly\n");
874 		ret_val = -E1000_ERR_CONFIG;
875 		goto out;
876 	}
877 
878 	wr32(E1000_CTRL, ctrl);
879 
880 out:
881 	return ret_val;
882 }
883 
884 /**
885  *  igb_config_fc_after_link_up - Configures flow control after link
886  *  @hw: pointer to the HW structure
887  *
888  *  Checks the status of auto-negotiation after link up to ensure that the
889  *  speed and duplex were not forced.  If the link needed to be forced, then
890  *  flow control needs to be forced also.  If auto-negotiation is enabled
891  *  and did not fail, then we configure flow control based on our link
892  *  partner.
893  **/
894 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
895 {
896 	struct e1000_mac_info *mac = &hw->mac;
897 	s32 ret_val = 0;
898 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
899 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
900 	u16 speed, duplex;
901 
902 	/* Check for the case where we have fiber media and auto-neg failed
903 	 * so we had to force link.  In this case, we need to force the
904 	 * configuration of the MAC to match the "fc" parameter.
905 	 */
906 	if (mac->autoneg_failed) {
907 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
908 			ret_val = igb_force_mac_fc(hw);
909 	} else {
910 		if (hw->phy.media_type == e1000_media_type_copper)
911 			ret_val = igb_force_mac_fc(hw);
912 	}
913 
914 	if (ret_val) {
915 		hw_dbg("Error forcing flow control settings\n");
916 		goto out;
917 	}
918 
919 	/* Check for the case where we have copper media and auto-neg is
920 	 * enabled.  In this case, we need to check and see if Auto-Neg
921 	 * has completed, and if so, how the PHY and link partner has
922 	 * flow control configured.
923 	 */
924 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
925 		/* Read the MII Status Register and check to see if AutoNeg
926 		 * has completed.  We read this twice because this reg has
927 		 * some "sticky" (latched) bits.
928 		 */
929 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
930 						   &mii_status_reg);
931 		if (ret_val)
932 			goto out;
933 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
934 						   &mii_status_reg);
935 		if (ret_val)
936 			goto out;
937 
938 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
939 			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
940 			goto out;
941 		}
942 
943 		/* The AutoNeg process has completed, so we now need to
944 		 * read both the Auto Negotiation Advertisement
945 		 * Register (Address 4) and the Auto_Negotiation Base
946 		 * Page Ability Register (Address 5) to determine how
947 		 * flow control was negotiated.
948 		 */
949 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
950 					    &mii_nway_adv_reg);
951 		if (ret_val)
952 			goto out;
953 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
954 					    &mii_nway_lp_ability_reg);
955 		if (ret_val)
956 			goto out;
957 
958 		/* Two bits in the Auto Negotiation Advertisement Register
959 		 * (Address 4) and two bits in the Auto Negotiation Base
960 		 * Page Ability Register (Address 5) determine flow control
961 		 * for both the PHY and the link partner.  The following
962 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
963 		 * 1999, describes these PAUSE resolution bits and how flow
964 		 * control is determined based upon these settings.
965 		 * NOTE:  DC = Don't Care
966 		 *
967 		 *   LOCAL DEVICE  |   LINK PARTNER
968 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
969 		 *-------|---------|-------|---------|--------------------
970 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
971 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
972 		 *   0   |    1    |   1   |    0    | e1000_fc_none
973 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
974 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
975 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
976 		 *   1   |    1    |   0   |    0    | e1000_fc_none
977 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
978 		 *
979 		 * Are both PAUSE bits set to 1?  If so, this implies
980 		 * Symmetric Flow Control is enabled at both ends.  The
981 		 * ASM_DIR bits are irrelevant per the spec.
982 		 *
983 		 * For Symmetric Flow Control:
984 		 *
985 		 *   LOCAL DEVICE  |   LINK PARTNER
986 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
987 		 *-------|---------|-------|---------|--------------------
988 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
989 		 *
990 		 */
991 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
992 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
993 			/* Now we need to check if the user selected RX ONLY
994 			 * of pause frames.  In this case, we had to advertise
995 			 * FULL flow control because we could not advertise RX
996 			 * ONLY. Hence, we must now check to see if we need to
997 			 * turn OFF  the TRANSMISSION of PAUSE frames.
998 			 */
999 			if (hw->fc.requested_mode == e1000_fc_full) {
1000 				hw->fc.current_mode = e1000_fc_full;
1001 				hw_dbg("Flow Control = FULL.\n");
1002 			} else {
1003 				hw->fc.current_mode = e1000_fc_rx_pause;
1004 				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1005 			}
1006 		}
1007 		/* For receiving PAUSE frames ONLY.
1008 		 *
1009 		 *   LOCAL DEVICE  |   LINK PARTNER
1010 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1011 		 *-------|---------|-------|---------|--------------------
1012 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1013 		 */
1014 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1015 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1016 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1017 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1018 			hw->fc.current_mode = e1000_fc_tx_pause;
1019 			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1020 		}
1021 		/* For transmitting PAUSE frames ONLY.
1022 		 *
1023 		 *   LOCAL DEVICE  |   LINK PARTNER
1024 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1025 		 *-------|---------|-------|---------|--------------------
1026 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1027 		 */
1028 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1029 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1030 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1031 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1032 			hw->fc.current_mode = e1000_fc_rx_pause;
1033 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1034 		}
1035 		/* Per the IEEE spec, at this point flow control should be
1036 		 * disabled.  However, we want to consider that we could
1037 		 * be connected to a legacy switch that doesn't advertise
1038 		 * desired flow control, but can be forced on the link
1039 		 * partner.  So if we advertised no flow control, that is
1040 		 * what we will resolve to.  If we advertised some kind of
1041 		 * receive capability (Rx Pause Only or Full Flow Control)
1042 		 * and the link partner advertised none, we will configure
1043 		 * ourselves to enable Rx Flow Control only.  We can do
1044 		 * this safely for two reasons:  If the link partner really
1045 		 * didn't want flow control enabled, and we enable Rx, no
1046 		 * harm done since we won't be receiving any PAUSE frames
1047 		 * anyway.  If the intent on the link partner was to have
1048 		 * flow control enabled, then by us enabling RX only, we
1049 		 * can at least receive pause frames and process them.
1050 		 * This is a good idea because in most cases, since we are
1051 		 * predominantly a server NIC, more times than not we will
1052 		 * be asked to delay transmission of packets than asking
1053 		 * our link partner to pause transmission of frames.
1054 		 */
1055 		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1056 			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1057 			 (hw->fc.strict_ieee)) {
1058 			hw->fc.current_mode = e1000_fc_none;
1059 			hw_dbg("Flow Control = NONE.\n");
1060 		} else {
1061 			hw->fc.current_mode = e1000_fc_rx_pause;
1062 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1063 		}
1064 
1065 		/* Now we need to do one last check...  If we auto-
1066 		 * negotiated to HALF DUPLEX, flow control should not be
1067 		 * enabled per IEEE 802.3 spec.
1068 		 */
1069 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1070 		if (ret_val) {
1071 			hw_dbg("Error getting link speed and duplex\n");
1072 			goto out;
1073 		}
1074 
1075 		if (duplex == HALF_DUPLEX)
1076 			hw->fc.current_mode = e1000_fc_none;
1077 
1078 		/* Now we call a subroutine to actually force the MAC
1079 		 * controller to use the correct flow control settings.
1080 		 */
1081 		ret_val = igb_force_mac_fc(hw);
1082 		if (ret_val) {
1083 			hw_dbg("Error forcing flow control settings\n");
1084 			goto out;
1085 		}
1086 	}
1087 	/* Check for the case where we have SerDes media and auto-neg is
1088 	 * enabled.  In this case, we need to check and see if Auto-Neg
1089 	 * has completed, and if so, how the PHY and link partner has
1090 	 * flow control configured.
1091 	 */
1092 	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1093 		&& mac->autoneg) {
1094 		/* Read the PCS_LSTS and check to see if AutoNeg
1095 		 * has completed.
1096 		 */
1097 		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1098 
1099 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1100 			hw_dbg("PCS Auto Neg has not completed.\n");
1101 			return ret_val;
1102 		}
1103 
1104 		/* The AutoNeg process has completed, so we now need to
1105 		 * read both the Auto Negotiation Advertisement
1106 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1107 		 * Page Ability Register (PCS_LPAB) to determine how
1108 		 * flow control was negotiated.
1109 		 */
1110 		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1111 		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1112 
1113 		/* Two bits in the Auto Negotiation Advertisement Register
1114 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1115 		 * Page Ability Register (PCS_LPAB) determine flow control
1116 		 * for both the PHY and the link partner.  The following
1117 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1118 		 * 1999, describes these PAUSE resolution bits and how flow
1119 		 * control is determined based upon these settings.
1120 		 * NOTE:  DC = Don't Care
1121 		 *
1122 		 *   LOCAL DEVICE  |   LINK PARTNER
1123 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1124 		 *-------|---------|-------|---------|--------------------
1125 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1126 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1127 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1128 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1129 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1130 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1131 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1132 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1133 		 *
1134 		 * Are both PAUSE bits set to 1?  If so, this implies
1135 		 * Symmetric Flow Control is enabled at both ends.  The
1136 		 * ASM_DIR bits are irrelevant per the spec.
1137 		 *
1138 		 * For Symmetric Flow Control:
1139 		 *
1140 		 *   LOCAL DEVICE  |   LINK PARTNER
1141 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1142 		 *-------|---------|-------|---------|--------------------
1143 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1144 		 *
1145 		 */
1146 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1147 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1148 			/* Now we need to check if the user selected Rx ONLY
1149 			 * of pause frames.  In this case, we had to advertise
1150 			 * FULL flow control because we could not advertise Rx
1151 			 * ONLY. Hence, we must now check to see if we need to
1152 			 * turn OFF the TRANSMISSION of PAUSE frames.
1153 			 */
1154 			if (hw->fc.requested_mode == e1000_fc_full) {
1155 				hw->fc.current_mode = e1000_fc_full;
1156 				hw_dbg("Flow Control = FULL.\n");
1157 			} else {
1158 				hw->fc.current_mode = e1000_fc_rx_pause;
1159 				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1160 			}
1161 		}
1162 		/* For receiving PAUSE frames ONLY.
1163 		 *
1164 		 *   LOCAL DEVICE  |   LINK PARTNER
1165 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1166 		 *-------|---------|-------|---------|--------------------
1167 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1168 		 */
1169 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1170 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1171 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1172 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1173 			hw->fc.current_mode = e1000_fc_tx_pause;
1174 			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1175 		}
1176 		/* For transmitting PAUSE frames ONLY.
1177 		 *
1178 		 *   LOCAL DEVICE  |   LINK PARTNER
1179 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1180 		 *-------|---------|-------|---------|--------------------
1181 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1182 		 */
1183 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1184 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1185 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1186 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1187 			hw->fc.current_mode = e1000_fc_rx_pause;
1188 			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1189 		} else {
1190 			/* Per the IEEE spec, at this point flow control
1191 			 * should be disabled.
1192 			 */
1193 			hw->fc.current_mode = e1000_fc_none;
1194 			hw_dbg("Flow Control = NONE.\n");
1195 		}
1196 
1197 		/* Now we call a subroutine to actually force the MAC
1198 		 * controller to use the correct flow control settings.
1199 		 */
1200 		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1201 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1202 		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1203 
1204 		ret_val = igb_force_mac_fc(hw);
1205 		if (ret_val) {
1206 			hw_dbg("Error forcing flow control settings\n");
1207 			return ret_val;
1208 		}
1209 	}
1210 
1211 out:
1212 	return ret_val;
1213 }
1214 
1215 /**
1216  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1217  *  @hw: pointer to the HW structure
1218  *  @speed: stores the current speed
1219  *  @duplex: stores the current duplex
1220  *
1221  *  Read the status register for the current speed/duplex and store the current
1222  *  speed and duplex for copper connections.
1223  **/
1224 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1225 				      u16 *duplex)
1226 {
1227 	u32 status;
1228 
1229 	status = rd32(E1000_STATUS);
1230 	if (status & E1000_STATUS_SPEED_1000) {
1231 		*speed = SPEED_1000;
1232 		hw_dbg("1000 Mbs, ");
1233 	} else if (status & E1000_STATUS_SPEED_100) {
1234 		*speed = SPEED_100;
1235 		hw_dbg("100 Mbs, ");
1236 	} else {
1237 		*speed = SPEED_10;
1238 		hw_dbg("10 Mbs, ");
1239 	}
1240 
1241 	if (status & E1000_STATUS_FD) {
1242 		*duplex = FULL_DUPLEX;
1243 		hw_dbg("Full Duplex\n");
1244 	} else {
1245 		*duplex = HALF_DUPLEX;
1246 		hw_dbg("Half Duplex\n");
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 /**
1253  *  igb_get_hw_semaphore - Acquire hardware semaphore
1254  *  @hw: pointer to the HW structure
1255  *
1256  *  Acquire the HW semaphore to access the PHY or NVM
1257  **/
1258 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1259 {
1260 	u32 swsm;
1261 	s32 ret_val = 0;
1262 	s32 timeout = hw->nvm.word_size + 1;
1263 	s32 i = 0;
1264 
1265 	/* Get the SW semaphore */
1266 	while (i < timeout) {
1267 		swsm = rd32(E1000_SWSM);
1268 		if (!(swsm & E1000_SWSM_SMBI))
1269 			break;
1270 
1271 		udelay(50);
1272 		i++;
1273 	}
1274 
1275 	if (i == timeout) {
1276 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1277 		ret_val = -E1000_ERR_NVM;
1278 		goto out;
1279 	}
1280 
1281 	/* Get the FW semaphore. */
1282 	for (i = 0; i < timeout; i++) {
1283 		swsm = rd32(E1000_SWSM);
1284 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1285 
1286 		/* Semaphore acquired if bit latched */
1287 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1288 			break;
1289 
1290 		udelay(50);
1291 	}
1292 
1293 	if (i == timeout) {
1294 		/* Release semaphores */
1295 		igb_put_hw_semaphore(hw);
1296 		hw_dbg("Driver can't access the NVM\n");
1297 		ret_val = -E1000_ERR_NVM;
1298 		goto out;
1299 	}
1300 
1301 out:
1302 	return ret_val;
1303 }
1304 
1305 /**
1306  *  igb_put_hw_semaphore - Release hardware semaphore
1307  *  @hw: pointer to the HW structure
1308  *
1309  *  Release hardware semaphore used to access the PHY or NVM
1310  **/
1311 void igb_put_hw_semaphore(struct e1000_hw *hw)
1312 {
1313 	u32 swsm;
1314 
1315 	swsm = rd32(E1000_SWSM);
1316 
1317 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1318 
1319 	wr32(E1000_SWSM, swsm);
1320 }
1321 
1322 /**
1323  *  igb_get_auto_rd_done - Check for auto read completion
1324  *  @hw: pointer to the HW structure
1325  *
1326  *  Check EEPROM for Auto Read done bit.
1327  **/
1328 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1329 {
1330 	s32 i = 0;
1331 	s32 ret_val = 0;
1332 
1333 
1334 	while (i < AUTO_READ_DONE_TIMEOUT) {
1335 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1336 			break;
1337 		usleep_range(1000, 2000);
1338 		i++;
1339 	}
1340 
1341 	if (i == AUTO_READ_DONE_TIMEOUT) {
1342 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1343 		ret_val = -E1000_ERR_RESET;
1344 		goto out;
1345 	}
1346 
1347 out:
1348 	return ret_val;
1349 }
1350 
1351 /**
1352  *  igb_valid_led_default - Verify a valid default LED config
1353  *  @hw: pointer to the HW structure
1354  *  @data: pointer to the NVM (EEPROM)
1355  *
1356  *  Read the EEPROM for the current default LED configuration.  If the
1357  *  LED configuration is not valid, set to a valid LED configuration.
1358  **/
1359 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1360 {
1361 	s32 ret_val;
1362 
1363 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1364 	if (ret_val) {
1365 		hw_dbg("NVM Read Error\n");
1366 		goto out;
1367 	}
1368 
1369 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1370 		switch (hw->phy.media_type) {
1371 		case e1000_media_type_internal_serdes:
1372 			*data = ID_LED_DEFAULT_82575_SERDES;
1373 			break;
1374 		case e1000_media_type_copper:
1375 		default:
1376 			*data = ID_LED_DEFAULT;
1377 			break;
1378 		}
1379 	}
1380 out:
1381 	return ret_val;
1382 }
1383 
1384 /**
1385  *  igb_id_led_init -
1386  *  @hw: pointer to the HW structure
1387  *
1388  **/
1389 s32 igb_id_led_init(struct e1000_hw *hw)
1390 {
1391 	struct e1000_mac_info *mac = &hw->mac;
1392 	s32 ret_val;
1393 	const u32 ledctl_mask = 0x000000FF;
1394 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1395 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1396 	u16 data, i, temp;
1397 	const u16 led_mask = 0x0F;
1398 
1399 	/* i210 and i211 devices have different LED mechanism */
1400 	if ((hw->mac.type == e1000_i210) ||
1401 	    (hw->mac.type == e1000_i211))
1402 		ret_val = igb_valid_led_default_i210(hw, &data);
1403 	else
1404 		ret_val = igb_valid_led_default(hw, &data);
1405 
1406 	if (ret_val)
1407 		goto out;
1408 
1409 	mac->ledctl_default = rd32(E1000_LEDCTL);
1410 	mac->ledctl_mode1 = mac->ledctl_default;
1411 	mac->ledctl_mode2 = mac->ledctl_default;
1412 
1413 	for (i = 0; i < 4; i++) {
1414 		temp = (data >> (i << 2)) & led_mask;
1415 		switch (temp) {
1416 		case ID_LED_ON1_DEF2:
1417 		case ID_LED_ON1_ON2:
1418 		case ID_LED_ON1_OFF2:
1419 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1420 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1421 			break;
1422 		case ID_LED_OFF1_DEF2:
1423 		case ID_LED_OFF1_ON2:
1424 		case ID_LED_OFF1_OFF2:
1425 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1427 			break;
1428 		default:
1429 			/* Do nothing */
1430 			break;
1431 		}
1432 		switch (temp) {
1433 		case ID_LED_DEF1_ON2:
1434 		case ID_LED_ON1_ON2:
1435 		case ID_LED_OFF1_ON2:
1436 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1437 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1438 			break;
1439 		case ID_LED_DEF1_OFF2:
1440 		case ID_LED_ON1_OFF2:
1441 		case ID_LED_OFF1_OFF2:
1442 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1444 			break;
1445 		default:
1446 			/* Do nothing */
1447 			break;
1448 		}
1449 	}
1450 
1451 out:
1452 	return ret_val;
1453 }
1454 
1455 /**
1456  *  igb_cleanup_led - Set LED config to default operation
1457  *  @hw: pointer to the HW structure
1458  *
1459  *  Remove the current LED configuration and set the LED configuration
1460  *  to the default value, saved from the EEPROM.
1461  **/
1462 s32 igb_cleanup_led(struct e1000_hw *hw)
1463 {
1464 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1465 	return 0;
1466 }
1467 
1468 /**
1469  *  igb_blink_led - Blink LED
1470  *  @hw: pointer to the HW structure
1471  *
1472  *  Blink the led's which are set to be on.
1473  **/
1474 s32 igb_blink_led(struct e1000_hw *hw)
1475 {
1476 	u32 ledctl_blink = 0;
1477 	u32 i;
1478 
1479 	if (hw->phy.media_type == e1000_media_type_fiber) {
1480 		/* always blink LED0 for PCI-E fiber */
1481 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1482 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1483 	} else {
1484 		/* Set the blink bit for each LED that's "on" (0x0E)
1485 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1486 		 * logic in hardware only works when mode is set to "on"
1487 		 * so it must be changed accordingly when the mode is
1488 		 * "off" and inverted.
1489 		 */
1490 		ledctl_blink = hw->mac.ledctl_mode2;
1491 		for (i = 0; i < 32; i += 8) {
1492 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1493 			    E1000_LEDCTL_LED0_MODE_MASK;
1494 			u32 led_default = hw->mac.ledctl_default >> i;
1495 
1496 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1497 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1498 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1499 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1500 				ledctl_blink &=
1501 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1502 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1503 						 E1000_LEDCTL_MODE_LED_ON) << i;
1504 			}
1505 		}
1506 	}
1507 
1508 	wr32(E1000_LEDCTL, ledctl_blink);
1509 
1510 	return 0;
1511 }
1512 
1513 /**
1514  *  igb_led_off - Turn LED off
1515  *  @hw: pointer to the HW structure
1516  *
1517  *  Turn LED off.
1518  **/
1519 s32 igb_led_off(struct e1000_hw *hw)
1520 {
1521 	switch (hw->phy.media_type) {
1522 	case e1000_media_type_copper:
1523 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1524 		break;
1525 	default:
1526 		break;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 /**
1533  *  igb_disable_pcie_master - Disables PCI-express master access
1534  *  @hw: pointer to the HW structure
1535  *
1536  *  Returns 0 (0) if successful, else returns -10
1537  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1538  *  the master requests to be disabled.
1539  *
1540  *  Disables PCI-Express master access and verifies there are no pending
1541  *  requests.
1542  **/
1543 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1544 {
1545 	u32 ctrl;
1546 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1547 	s32 ret_val = 0;
1548 
1549 	if (hw->bus.type != e1000_bus_type_pci_express)
1550 		goto out;
1551 
1552 	ctrl = rd32(E1000_CTRL);
1553 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1554 	wr32(E1000_CTRL, ctrl);
1555 
1556 	while (timeout) {
1557 		if (!(rd32(E1000_STATUS) &
1558 		      E1000_STATUS_GIO_MASTER_ENABLE))
1559 			break;
1560 		udelay(100);
1561 		timeout--;
1562 	}
1563 
1564 	if (!timeout) {
1565 		hw_dbg("Master requests are pending.\n");
1566 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1567 		goto out;
1568 	}
1569 
1570 out:
1571 	return ret_val;
1572 }
1573 
1574 /**
1575  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1576  *  @hw: pointer to the HW structure
1577  *
1578  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1579  *  set, which is forced to MDI mode only.
1580  **/
1581 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1582 {
1583 	s32 ret_val = 0;
1584 
1585 	/* All MDI settings are supported on 82580 and newer. */
1586 	if (hw->mac.type >= e1000_82580)
1587 		goto out;
1588 
1589 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1590 		hw_dbg("Invalid MDI setting detected\n");
1591 		hw->phy.mdix = 1;
1592 		ret_val = -E1000_ERR_CONFIG;
1593 		goto out;
1594 	}
1595 
1596 out:
1597 	return ret_val;
1598 }
1599 
1600 /**
1601  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1602  *  @hw: pointer to the HW structure
1603  *  @reg: 32bit register offset such as E1000_SCTL
1604  *  @offset: register offset to write to
1605  *  @data: data to write at register offset
1606  *
1607  *  Writes an address/data control type register.  There are several of these
1608  *  and they all have the format address << 8 | data and bit 31 is polled for
1609  *  completion.
1610  **/
1611 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1612 			      u32 offset, u8 data)
1613 {
1614 	u32 i, regvalue = 0;
1615 	s32 ret_val = 0;
1616 
1617 	/* Set up the address and data */
1618 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1619 	wr32(reg, regvalue);
1620 
1621 	/* Poll the ready bit to see if the MDI read completed */
1622 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1623 		udelay(5);
1624 		regvalue = rd32(reg);
1625 		if (regvalue & E1000_GEN_CTL_READY)
1626 			break;
1627 	}
1628 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1629 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1630 		ret_val = -E1000_ERR_PHY;
1631 		goto out;
1632 	}
1633 
1634 out:
1635 	return ret_val;
1636 }
1637 
1638 /**
1639  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1640  *  @hw: pointer to the HW structure
1641  *
1642  *  Verifies the hardware needs to leave interface enabled so that frames can
1643  *  be directed to and from the management interface.
1644  **/
1645 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1646 {
1647 	u32 manc;
1648 	u32 fwsm, factps;
1649 	bool ret_val = false;
1650 
1651 	if (!hw->mac.asf_firmware_present)
1652 		goto out;
1653 
1654 	manc = rd32(E1000_MANC);
1655 
1656 	if (!(manc & E1000_MANC_RCV_TCO_EN))
1657 		goto out;
1658 
1659 	if (hw->mac.arc_subsystem_valid) {
1660 		fwsm = rd32(E1000_FWSM);
1661 		factps = rd32(E1000_FACTPS);
1662 
1663 		if (!(factps & E1000_FACTPS_MNGCG) &&
1664 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1665 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1666 			ret_val = true;
1667 			goto out;
1668 		}
1669 	} else {
1670 		if ((manc & E1000_MANC_SMBUS_EN) &&
1671 		    !(manc & E1000_MANC_ASF_EN)) {
1672 			ret_val = true;
1673 			goto out;
1674 		}
1675 	}
1676 
1677 out:
1678 	return ret_val;
1679 }
1680