xref: /linux/drivers/net/ethernet/intel/igb/e1000_i210.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* e1000_i210
5  * e1000_i211
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/if_ether.h>
10 #include <linux/types.h>
11 #include "e1000_hw.h"
12 #include "e1000_i210.h"
13 
14 static s32 igb_update_flash_i210(struct e1000_hw *hw);
15 
16 /**
17  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
18  *  @hw: pointer to the HW structure
19  *
20  *  Acquire the HW semaphore to access the PHY or NVM
21  */
22 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
23 {
24 	u32 swsm;
25 	s32 timeout = hw->nvm.word_size + 1;
26 	s32 i = 0;
27 
28 	/* Get the SW semaphore */
29 	while (i < timeout) {
30 		swsm = rd32(E1000_SWSM);
31 		if (!(swsm & E1000_SWSM_SMBI))
32 			break;
33 
34 		udelay(50);
35 		i++;
36 	}
37 
38 	if (i == timeout) {
39 		/* In rare circumstances, the SW semaphore may already be held
40 		 * unintentionally. Clear the semaphore once before giving up.
41 		 */
42 		if (hw->dev_spec._82575.clear_semaphore_once) {
43 			hw->dev_spec._82575.clear_semaphore_once = false;
44 			igb_put_hw_semaphore(hw);
45 			for (i = 0; i < timeout; i++) {
46 				swsm = rd32(E1000_SWSM);
47 				if (!(swsm & E1000_SWSM_SMBI))
48 					break;
49 
50 				udelay(50);
51 			}
52 		}
53 
54 		/* If we do not have the semaphore here, we have to give up. */
55 		if (i == timeout) {
56 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
57 			return -E1000_ERR_NVM;
58 		}
59 	}
60 
61 	/* Get the FW semaphore. */
62 	for (i = 0; i < timeout; i++) {
63 		swsm = rd32(E1000_SWSM);
64 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
65 
66 		/* Semaphore acquired if bit latched */
67 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
68 			break;
69 
70 		udelay(50);
71 	}
72 
73 	if (i == timeout) {
74 		/* Release semaphores */
75 		igb_put_hw_semaphore(hw);
76 		hw_dbg("Driver can't access the NVM\n");
77 		return -E1000_ERR_NVM;
78 	}
79 
80 	return 0;
81 }
82 
83 /**
84  *  igb_acquire_nvm_i210 - Request for access to EEPROM
85  *  @hw: pointer to the HW structure
86  *
87  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
88  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
89  *  Return successful if access grant bit set, else clear the request for
90  *  EEPROM access and return -E1000_ERR_NVM (-1).
91  **/
92 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93 {
94 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
95 }
96 
97 /**
98  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
99  *  @hw: pointer to the HW structure
100  *
101  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
102  *  then release the semaphores acquired.
103  **/
104 static void igb_release_nvm_i210(struct e1000_hw *hw)
105 {
106 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
107 }
108 
109 /**
110  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
111  *  @hw: pointer to the HW structure
112  *  @mask: specifies which semaphore to acquire
113  *
114  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
115  *  will also specify which port we're acquiring the lock for.
116  **/
117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
118 {
119 	u32 swfw_sync;
120 	u32 swmask = mask;
121 	u32 fwmask = mask << 16;
122 	s32 ret_val = 0;
123 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
124 
125 	while (i < timeout) {
126 		if (igb_get_hw_semaphore_i210(hw)) {
127 			ret_val = -E1000_ERR_SWFW_SYNC;
128 			goto out;
129 		}
130 
131 		swfw_sync = rd32(E1000_SW_FW_SYNC);
132 		if (!(swfw_sync & (fwmask | swmask)))
133 			break;
134 
135 		/* Firmware currently using resource (fwmask) */
136 		igb_put_hw_semaphore(hw);
137 		mdelay(5);
138 		i++;
139 	}
140 
141 	if (i == timeout) {
142 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143 		ret_val = -E1000_ERR_SWFW_SYNC;
144 		goto out;
145 	}
146 
147 	swfw_sync |= swmask;
148 	wr32(E1000_SW_FW_SYNC, swfw_sync);
149 
150 	igb_put_hw_semaphore(hw);
151 out:
152 	return ret_val;
153 }
154 
155 /**
156  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
157  *  @hw: pointer to the HW structure
158  *  @mask: specifies which semaphore to acquire
159  *
160  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
161  *  will also specify which port we're releasing the lock for.
162  **/
163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
164 {
165 	u32 swfw_sync;
166 
167 	while (igb_get_hw_semaphore_i210(hw))
168 		; /* Empty */
169 
170 	swfw_sync = rd32(E1000_SW_FW_SYNC);
171 	swfw_sync &= ~mask;
172 	wr32(E1000_SW_FW_SYNC, swfw_sync);
173 
174 	igb_put_hw_semaphore(hw);
175 }
176 
177 /**
178  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
179  *  @hw: pointer to the HW structure
180  *  @offset: offset of word in the Shadow Ram to read
181  *  @words: number of words to read
182  *  @data: word read from the Shadow Ram
183  *
184  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
185  *  Uses necessary synchronization semaphores.
186  **/
187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
188 				  u16 *data)
189 {
190 	s32 status = 0;
191 	u16 i, count;
192 
193 	/* We cannot hold synchronization semaphores for too long,
194 	 * because of forceful takeover procedure. However it is more efficient
195 	 * to read in bursts than synchronizing access for each word.
196 	 */
197 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
198 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
199 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
200 		if (!(hw->nvm.ops.acquire(hw))) {
201 			status = igb_read_nvm_eerd(hw, offset, count,
202 						     data + i);
203 			hw->nvm.ops.release(hw);
204 		} else {
205 			status = E1000_ERR_SWFW_SYNC;
206 		}
207 
208 		if (status)
209 			break;
210 	}
211 
212 	return status;
213 }
214 
215 /**
216  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
217  *  @hw: pointer to the HW structure
218  *  @offset: offset within the Shadow Ram to be written to
219  *  @words: number of words to write
220  *  @data: 16 bit word(s) to be written to the Shadow Ram
221  *
222  *  Writes data to Shadow Ram at offset using EEWR register.
223  *
224  *  If igb_update_nvm_checksum is not called after this function , the
225  *  Shadow Ram will most likely contain an invalid checksum.
226  **/
227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
228 				u16 *data)
229 {
230 	struct e1000_nvm_info *nvm = &hw->nvm;
231 	u32 i, k, eewr = 0;
232 	u32 attempts = 100000;
233 	s32 ret_val = 0;
234 
235 	/* A check for invalid values:  offset too large, too many words,
236 	 * too many words for the offset, and not enough words.
237 	 */
238 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
239 	    (words == 0)) {
240 		hw_dbg("nvm parameter(s) out of bounds\n");
241 		ret_val = -E1000_ERR_NVM;
242 		goto out;
243 	}
244 
245 	for (i = 0; i < words; i++) {
246 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
247 			(data[i] << E1000_NVM_RW_REG_DATA) |
248 			E1000_NVM_RW_REG_START;
249 
250 		wr32(E1000_SRWR, eewr);
251 
252 		for (k = 0; k < attempts; k++) {
253 			if (E1000_NVM_RW_REG_DONE &
254 			    rd32(E1000_SRWR)) {
255 				ret_val = 0;
256 				break;
257 			}
258 			udelay(5);
259 	}
260 
261 		if (ret_val) {
262 			hw_dbg("Shadow RAM write EEWR timed out\n");
263 			break;
264 		}
265 	}
266 
267 out:
268 	return ret_val;
269 }
270 
271 /**
272  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
273  *  @hw: pointer to the HW structure
274  *  @offset: offset within the Shadow RAM to be written to
275  *  @words: number of words to write
276  *  @data: 16 bit word(s) to be written to the Shadow RAM
277  *
278  *  Writes data to Shadow RAM at offset using EEWR register.
279  *
280  *  If e1000_update_nvm_checksum is not called after this function , the
281  *  data will not be committed to FLASH and also Shadow RAM will most likely
282  *  contain an invalid checksum.
283  *
284  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
285  *  partially written.
286  **/
287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
288 				   u16 *data)
289 {
290 	s32 status = 0;
291 	u16 i, count;
292 
293 	/* We cannot hold synchronization semaphores for too long,
294 	 * because of forceful takeover procedure. However it is more efficient
295 	 * to write in bursts than synchronizing access for each word.
296 	 */
297 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
298 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
299 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
300 		if (!(hw->nvm.ops.acquire(hw))) {
301 			status = igb_write_nvm_srwr(hw, offset, count,
302 						      data + i);
303 			hw->nvm.ops.release(hw);
304 		} else {
305 			status = E1000_ERR_SWFW_SYNC;
306 		}
307 
308 		if (status)
309 			break;
310 	}
311 
312 	return status;
313 }
314 
315 /**
316  *  igb_read_invm_word_i210 - Reads OTP
317  *  @hw: pointer to the HW structure
318  *  @address: the word address (aka eeprom offset) to read
319  *  @data: pointer to the data read
320  *
321  *  Reads 16-bit words from the OTP. Return error when the word is not
322  *  stored in OTP.
323  **/
324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
325 {
326 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
327 	u32 invm_dword;
328 	u16 i;
329 	u8 record_type, word_address;
330 
331 	for (i = 0; i < E1000_INVM_SIZE; i++) {
332 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
333 		/* Get record type */
334 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
335 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
336 			break;
337 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
338 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
339 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
340 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
341 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
342 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
343 			if (word_address == address) {
344 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345 				hw_dbg("Read INVM Word 0x%02x = %x\n",
346 					  address, *data);
347 				status = 0;
348 				break;
349 			}
350 		}
351 	}
352 	if (status)
353 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
354 	return status;
355 }
356 
357 /**
358  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359  *  @hw: pointer to the HW structure
360  *  @offset: offset to read from
361  *  @words: number of words to read (unused)
362  *  @data: pointer to the data read
363  *
364  *  Wrapper function to return data formerly found in the NVM.
365  **/
366 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
367 				u16 __always_unused words, u16 *data)
368 {
369 	s32 ret_val = 0;
370 
371 	/* Only the MAC addr is required to be present in the iNVM */
372 	switch (offset) {
373 	case NVM_MAC_ADDR:
374 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
375 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
376 						     &data[1]);
377 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
378 						     &data[2]);
379 		if (ret_val)
380 			hw_dbg("MAC Addr not found in iNVM\n");
381 		break;
382 	case NVM_INIT_CTRL_2:
383 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
384 		if (ret_val) {
385 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
386 			ret_val = 0;
387 		}
388 		break;
389 	case NVM_INIT_CTRL_4:
390 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
391 		if (ret_val) {
392 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
393 			ret_val = 0;
394 		}
395 		break;
396 	case NVM_LED_1_CFG:
397 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
398 		if (ret_val) {
399 			*data = NVM_LED_1_CFG_DEFAULT_I211;
400 			ret_val = 0;
401 		}
402 		break;
403 	case NVM_LED_0_2_CFG:
404 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
405 		if (ret_val) {
406 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
407 			ret_val = 0;
408 		}
409 		break;
410 	case NVM_ID_LED_SETTINGS:
411 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
412 		if (ret_val) {
413 			*data = ID_LED_RESERVED_FFFF;
414 			ret_val = 0;
415 		}
416 		break;
417 	case NVM_SUB_DEV_ID:
418 		*data = hw->subsystem_device_id;
419 		break;
420 	case NVM_SUB_VEN_ID:
421 		*data = hw->subsystem_vendor_id;
422 		break;
423 	case NVM_DEV_ID:
424 		*data = hw->device_id;
425 		break;
426 	case NVM_VEN_ID:
427 		*data = hw->vendor_id;
428 		break;
429 	default:
430 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
431 		*data = NVM_RESERVED_WORD;
432 		break;
433 	}
434 	return ret_val;
435 }
436 
437 /**
438  *  igb_read_invm_version - Reads iNVM version and image type
439  *  @hw: pointer to the HW structure
440  *  @invm_ver: version structure for the version read
441  *
442  *  Reads iNVM version and image type.
443  **/
444 s32 igb_read_invm_version(struct e1000_hw *hw,
445 			  struct e1000_fw_version *invm_ver) {
446 	u32 *record = NULL;
447 	u32 *next_record = NULL;
448 	u32 i = 0;
449 	u32 invm_dword = 0;
450 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
451 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
452 	u32 buffer[E1000_INVM_SIZE];
453 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
454 	u16 version = 0;
455 
456 	/* Read iNVM memory */
457 	for (i = 0; i < E1000_INVM_SIZE; i++) {
458 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
459 		buffer[i] = invm_dword;
460 	}
461 
462 	/* Read version number */
463 	for (i = 1; i < invm_blocks; i++) {
464 		record = &buffer[invm_blocks - i];
465 		next_record = &buffer[invm_blocks - i + 1];
466 
467 		/* Check if we have first version location used */
468 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
469 			version = 0;
470 			status = 0;
471 			break;
472 		}
473 		/* Check if we have second version location used */
474 		else if ((i == 1) &&
475 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
476 			version = FIELD_GET(E1000_INVM_VER_FIELD_ONE, *record);
477 			status = 0;
478 			break;
479 		}
480 		/* Check if we have odd version location
481 		 * used and it is the last one used
482 		 */
483 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
484 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
485 			 (i != 1))) {
486 			version = FIELD_GET(E1000_INVM_VER_FIELD_TWO,
487 					    *next_record);
488 			status = 0;
489 			break;
490 		}
491 		/* Check if we have even version location
492 		 * used and it is the last one used
493 		 */
494 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
495 			 ((*record & 0x3) == 0)) {
496 			version = FIELD_GET(E1000_INVM_VER_FIELD_ONE, *record);
497 			status = 0;
498 			break;
499 		}
500 	}
501 
502 	if (!status) {
503 		invm_ver->invm_major = FIELD_GET(E1000_INVM_MAJOR_MASK,
504 						 version);
505 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
506 	}
507 	/* Read Image Type */
508 	for (i = 1; i < invm_blocks; i++) {
509 		record = &buffer[invm_blocks - i];
510 		next_record = &buffer[invm_blocks - i + 1];
511 
512 		/* Check if we have image type in first location used */
513 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
514 			invm_ver->invm_img_type = 0;
515 			status = 0;
516 			break;
517 		}
518 		/* Check if we have image type in first location used */
519 		else if ((((*record & 0x3) == 0) &&
520 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
521 			 ((((*record & 0x3) != 0) && (i != 1)))) {
522 			invm_ver->invm_img_type =
523 				FIELD_GET(E1000_INVM_IMGTYPE_FIELD,
524 					  *next_record);
525 			status = 0;
526 			break;
527 		}
528 	}
529 	return status;
530 }
531 
532 /**
533  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
534  *  @hw: pointer to the HW structure
535  *
536  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
537  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
538  **/
539 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
540 {
541 	s32 status = 0;
542 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
543 
544 	if (!(hw->nvm.ops.acquire(hw))) {
545 
546 		/* Replace the read function with semaphore grabbing with
547 		 * the one that skips this for a while.
548 		 * We have semaphore taken already here.
549 		 */
550 		read_op_ptr = hw->nvm.ops.read;
551 		hw->nvm.ops.read = igb_read_nvm_eerd;
552 
553 		status = igb_validate_nvm_checksum(hw);
554 
555 		/* Revert original read operation. */
556 		hw->nvm.ops.read = read_op_ptr;
557 
558 		hw->nvm.ops.release(hw);
559 	} else {
560 		status = E1000_ERR_SWFW_SYNC;
561 	}
562 
563 	return status;
564 }
565 
566 /**
567  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
568  *  @hw: pointer to the HW structure
569  *
570  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
571  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
572  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
573  **/
574 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
575 {
576 	s32 ret_val = 0;
577 	u16 checksum = 0;
578 	u16 i, nvm_data;
579 
580 	/* Read the first word from the EEPROM. If this times out or fails, do
581 	 * not continue or we could be in for a very long wait while every
582 	 * EEPROM read fails
583 	 */
584 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
585 	if (ret_val) {
586 		hw_dbg("EEPROM read failed\n");
587 		goto out;
588 	}
589 
590 	if (!(hw->nvm.ops.acquire(hw))) {
591 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
592 		 * because we do not want to take the synchronization
593 		 * semaphores twice here.
594 		 */
595 
596 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
597 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
598 			if (ret_val) {
599 				hw->nvm.ops.release(hw);
600 				hw_dbg("NVM Read Error while updating checksum.\n");
601 				goto out;
602 			}
603 			checksum += nvm_data;
604 		}
605 		checksum = (u16) NVM_SUM - checksum;
606 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
607 						&checksum);
608 		if (ret_val) {
609 			hw->nvm.ops.release(hw);
610 			hw_dbg("NVM Write Error while updating checksum.\n");
611 			goto out;
612 		}
613 
614 		hw->nvm.ops.release(hw);
615 
616 		ret_val = igb_update_flash_i210(hw);
617 	} else {
618 		ret_val = -E1000_ERR_SWFW_SYNC;
619 	}
620 out:
621 	return ret_val;
622 }
623 
624 /**
625  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
626  *  @hw: pointer to the HW structure
627  *
628  **/
629 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
630 {
631 	s32 ret_val = -E1000_ERR_NVM;
632 	u32 i, reg;
633 
634 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
635 		reg = rd32(E1000_EECD);
636 		if (reg & E1000_EECD_FLUDONE_I210) {
637 			ret_val = 0;
638 			break;
639 		}
640 		udelay(5);
641 	}
642 
643 	return ret_val;
644 }
645 
646 /**
647  *  igb_get_flash_presence_i210 - Check if flash device is detected.
648  *  @hw: pointer to the HW structure
649  *
650  **/
651 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
652 {
653 	u32 eec = 0;
654 	bool ret_val = false;
655 
656 	eec = rd32(E1000_EECD);
657 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
658 		ret_val = true;
659 
660 	return ret_val;
661 }
662 
663 /**
664  *  igb_update_flash_i210 - Commit EEPROM to the flash
665  *  @hw: pointer to the HW structure
666  *
667  **/
668 static s32 igb_update_flash_i210(struct e1000_hw *hw)
669 {
670 	s32 ret_val = 0;
671 	u32 flup;
672 
673 	ret_val = igb_pool_flash_update_done_i210(hw);
674 	if (ret_val == -E1000_ERR_NVM) {
675 		hw_dbg("Flash update time out\n");
676 		goto out;
677 	}
678 
679 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
680 	wr32(E1000_EECD, flup);
681 
682 	ret_val = igb_pool_flash_update_done_i210(hw);
683 	if (ret_val)
684 		hw_dbg("Flash update time out\n");
685 	else
686 		hw_dbg("Flash update complete\n");
687 
688 out:
689 	return ret_val;
690 }
691 
692 /**
693  *  igb_valid_led_default_i210 - Verify a valid default LED config
694  *  @hw: pointer to the HW structure
695  *  @data: pointer to the NVM (EEPROM)
696  *
697  *  Read the EEPROM for the current default LED configuration.  If the
698  *  LED configuration is not valid, set to a valid LED configuration.
699  **/
700 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
701 {
702 	s32 ret_val;
703 
704 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
705 	if (ret_val) {
706 		hw_dbg("NVM Read Error\n");
707 		goto out;
708 	}
709 
710 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
711 		switch (hw->phy.media_type) {
712 		case e1000_media_type_internal_serdes:
713 			*data = ID_LED_DEFAULT_I210_SERDES;
714 			break;
715 		case e1000_media_type_copper:
716 		default:
717 			*data = ID_LED_DEFAULT_I210;
718 			break;
719 		}
720 	}
721 out:
722 	return ret_val;
723 }
724 
725 /**
726  *  __igb_access_xmdio_reg - Read/write XMDIO register
727  *  @hw: pointer to the HW structure
728  *  @address: XMDIO address to program
729  *  @dev_addr: device address to program
730  *  @data: pointer to value to read/write from/to the XMDIO address
731  *  @read: boolean flag to indicate read or write
732  **/
733 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
734 				  u8 dev_addr, u16 *data, bool read)
735 {
736 	s32 ret_val = 0;
737 
738 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
739 	if (ret_val)
740 		return ret_val;
741 
742 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
743 	if (ret_val)
744 		return ret_val;
745 
746 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
747 							 dev_addr);
748 	if (ret_val)
749 		return ret_val;
750 
751 	if (read)
752 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
753 	else
754 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
755 	if (ret_val)
756 		return ret_val;
757 
758 	/* Recalibrate the device back to 0 */
759 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
760 	if (ret_val)
761 		return ret_val;
762 
763 	return ret_val;
764 }
765 
766 /**
767  *  igb_read_xmdio_reg - Read XMDIO register
768  *  @hw: pointer to the HW structure
769  *  @addr: XMDIO address to program
770  *  @dev_addr: device address to program
771  *  @data: value to be read from the EMI address
772  **/
773 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
774 {
775 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
776 }
777 
778 /**
779  *  igb_write_xmdio_reg - Write XMDIO register
780  *  @hw: pointer to the HW structure
781  *  @addr: XMDIO address to program
782  *  @dev_addr: device address to program
783  *  @data: value to be written to the XMDIO address
784  **/
785 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
786 {
787 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
788 }
789 
790 /**
791  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
792  *  @hw: pointer to the HW structure
793  **/
794 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
795 {
796 	struct e1000_nvm_info *nvm = &hw->nvm;
797 
798 	nvm->ops.acquire = igb_acquire_nvm_i210;
799 	nvm->ops.release = igb_release_nvm_i210;
800 	nvm->ops.valid_led_default = igb_valid_led_default_i210;
801 
802 	/* NVM Function Pointers */
803 	if (igb_get_flash_presence_i210(hw)) {
804 		hw->nvm.type = e1000_nvm_flash_hw;
805 		nvm->ops.read    = igb_read_nvm_srrd_i210;
806 		nvm->ops.write   = igb_write_nvm_srwr_i210;
807 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
808 		nvm->ops.update   = igb_update_nvm_checksum_i210;
809 	} else {
810 		hw->nvm.type = e1000_nvm_invm;
811 		nvm->ops.read     = igb_read_invm_i210;
812 		nvm->ops.write    = NULL;
813 		nvm->ops.validate = NULL;
814 		nvm->ops.update   = NULL;
815 	}
816 	return 0;
817 }
818 
819 /**
820  * igb_pll_workaround_i210
821  * @hw: pointer to the HW structure
822  *
823  * Works around an errata in the PLL circuit where it occasionally
824  * provides the wrong clock frequency after power up.
825  **/
826 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
827 {
828 	s32 ret_val;
829 	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
830 	u16 nvm_word, phy_word, pci_word, tmp_nvm;
831 	int i;
832 
833 	/* Get and set needed register values */
834 	wuc = rd32(E1000_WUC);
835 	mdicnfg = rd32(E1000_MDICNFG);
836 	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
837 	wr32(E1000_MDICNFG, reg_val);
838 
839 	/* Get data from NVM, or set default */
840 	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
841 					  &nvm_word);
842 	if (ret_val)
843 		nvm_word = E1000_INVM_DEFAULT_AL;
844 	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
845 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
846 	phy_word = E1000_PHY_PLL_UNCONF;
847 	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
848 		/* check current state directly from internal PHY */
849 		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
850 		if ((phy_word & E1000_PHY_PLL_UNCONF)
851 		    != E1000_PHY_PLL_UNCONF) {
852 			ret_val = 0;
853 			break;
854 		} else {
855 			ret_val = -E1000_ERR_PHY;
856 		}
857 		/* directly reset the internal PHY */
858 		ctrl = rd32(E1000_CTRL);
859 		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
860 
861 		ctrl_ext = rd32(E1000_CTRL_EXT);
862 		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
863 		wr32(E1000_CTRL_EXT, ctrl_ext);
864 
865 		wr32(E1000_WUC, 0);
866 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
867 		wr32(E1000_EEARBC_I210, reg_val);
868 
869 		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
870 		pci_word |= E1000_PCI_PMCSR_D3;
871 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
872 		usleep_range(1000, 2000);
873 		pci_word &= ~E1000_PCI_PMCSR_D3;
874 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
875 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
876 		wr32(E1000_EEARBC_I210, reg_val);
877 
878 		/* restore WUC register */
879 		wr32(E1000_WUC, wuc);
880 	}
881 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
882 	/* restore MDICNFG setting */
883 	wr32(E1000_MDICNFG, mdicnfg);
884 	return ret_val;
885 }
886 
887 /**
888  *  igb_get_cfg_done_i210 - Read config done bit
889  *  @hw: pointer to the HW structure
890  *
891  *  Read the management control register for the config done bit for
892  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
893  *  to read the config done bit, so an error is *ONLY* logged and returns
894  *  0.  If we were to return with error, EEPROM-less silicon
895  *  would not be able to be reset or change link.
896  **/
897 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
898 {
899 	s32 timeout = PHY_CFG_TIMEOUT;
900 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
901 
902 	while (timeout) {
903 		if (rd32(E1000_EEMNGCTL_I210) & mask)
904 			break;
905 		usleep_range(1000, 2000);
906 		timeout--;
907 	}
908 	if (!timeout)
909 		hw_dbg("MNG configuration cycle has not completed.\n");
910 
911 	return 0;
912 }
913