1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 /* e1000_82575 5 * e1000_82576 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/if_ether.h> 12 #include <linux/i2c.h> 13 14 #include "e1000_mac.h" 15 #include "e1000_82575.h" 16 #include "e1000_i210.h" 17 #include "igb.h" 18 19 static s32 igb_get_invariants_82575(struct e1000_hw *); 20 static s32 igb_acquire_phy_82575(struct e1000_hw *); 21 static void igb_release_phy_82575(struct e1000_hw *); 22 static s32 igb_acquire_nvm_82575(struct e1000_hw *); 23 static void igb_release_nvm_82575(struct e1000_hw *); 24 static s32 igb_check_for_link_82575(struct e1000_hw *); 25 static s32 igb_get_cfg_done_82575(struct e1000_hw *); 26 static s32 igb_init_hw_82575(struct e1000_hw *); 27 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); 28 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); 29 static s32 igb_reset_hw_82575(struct e1000_hw *); 30 static s32 igb_reset_hw_82580(struct e1000_hw *); 31 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); 32 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); 33 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); 34 static s32 igb_setup_copper_link_82575(struct e1000_hw *); 35 static s32 igb_setup_serdes_link_82575(struct e1000_hw *); 36 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); 37 static void igb_clear_hw_cntrs_82575(struct e1000_hw *); 38 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); 39 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, 40 u16 *); 41 static s32 igb_get_phy_id_82575(struct e1000_hw *); 42 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); 43 static bool igb_sgmii_active_82575(struct e1000_hw *); 44 static s32 igb_reset_init_script_82575(struct e1000_hw *); 45 static s32 igb_read_mac_addr_82575(struct e1000_hw *); 46 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); 47 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); 48 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); 49 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); 50 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); 51 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); 52 static const u16 e1000_82580_rxpbs_table[] = { 53 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; 54 55 /* Due to a hw errata, if the host tries to configure the VFTA register 56 * while performing queries from the BMC or DMA, then the VFTA in some 57 * cases won't be written. 58 */ 59 60 /** 61 * igb_write_vfta_i350 - Write value to VLAN filter table 62 * @hw: pointer to the HW structure 63 * @offset: register offset in VLAN filter table 64 * @value: register value written to VLAN filter table 65 * 66 * Writes value at the given offset in the register array which stores 67 * the VLAN filter table. 68 **/ 69 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) 70 { 71 struct igb_adapter *adapter = hw->back; 72 int i; 73 74 for (i = 10; i--;) 75 array_wr32(E1000_VFTA, offset, value); 76 77 wrfl(); 78 adapter->shadow_vfta[offset] = value; 79 } 80 81 /** 82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO 83 * @hw: pointer to the HW structure 84 * 85 * Called to determine if the I2C pins are being used for I2C or as an 86 * external MDIO interface since the two options are mutually exclusive. 87 **/ 88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) 89 { 90 u32 reg = 0; 91 bool ext_mdio = false; 92 93 switch (hw->mac.type) { 94 case e1000_82575: 95 case e1000_82576: 96 reg = rd32(E1000_MDIC); 97 ext_mdio = !!(reg & E1000_MDIC_DEST); 98 break; 99 case e1000_82580: 100 case e1000_i350: 101 case e1000_i354: 102 case e1000_i210: 103 case e1000_i211: 104 reg = rd32(E1000_MDICNFG); 105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); 106 break; 107 default: 108 break; 109 } 110 return ext_mdio; 111 } 112 113 /** 114 * igb_check_for_link_media_swap - Check which M88E1112 interface linked 115 * @hw: pointer to the HW structure 116 * 117 * Poll the M88E1112 interfaces to see which interface achieved link. 118 */ 119 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw) 120 { 121 struct e1000_phy_info *phy = &hw->phy; 122 s32 ret_val; 123 u16 data; 124 u8 port = 0; 125 126 /* Check the copper medium. */ 127 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 128 if (ret_val) 129 return ret_val; 130 131 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 132 if (ret_val) 133 return ret_val; 134 135 if (data & E1000_M88E1112_STATUS_LINK) 136 port = E1000_MEDIA_PORT_COPPER; 137 138 /* Check the other medium. */ 139 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); 140 if (ret_val) 141 return ret_val; 142 143 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 144 if (ret_val) 145 return ret_val; 146 147 148 if (data & E1000_M88E1112_STATUS_LINK) 149 port = E1000_MEDIA_PORT_OTHER; 150 151 /* Determine if a swap needs to happen. */ 152 if (port && (hw->dev_spec._82575.media_port != port)) { 153 hw->dev_spec._82575.media_port = port; 154 hw->dev_spec._82575.media_changed = true; 155 } 156 157 if (port == E1000_MEDIA_PORT_COPPER) { 158 /* reset page to 0 */ 159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 160 if (ret_val) 161 return ret_val; 162 igb_check_for_link_82575(hw); 163 } else { 164 igb_check_for_link_82575(hw); 165 /* reset page to 0 */ 166 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 167 if (ret_val) 168 return ret_val; 169 } 170 171 return 0; 172 } 173 174 /** 175 * igb_init_phy_params_82575 - Init PHY func ptrs. 176 * @hw: pointer to the HW structure 177 **/ 178 static s32 igb_init_phy_params_82575(struct e1000_hw *hw) 179 { 180 struct e1000_phy_info *phy = &hw->phy; 181 s32 ret_val = 0; 182 u32 ctrl_ext; 183 184 if (hw->phy.media_type != e1000_media_type_copper) { 185 phy->type = e1000_phy_none; 186 goto out; 187 } 188 189 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 190 phy->reset_delay_us = 100; 191 192 ctrl_ext = rd32(E1000_CTRL_EXT); 193 194 if (igb_sgmii_active_82575(hw)) { 195 phy->ops.reset = igb_phy_hw_reset_sgmii_82575; 196 ctrl_ext |= E1000_CTRL_I2C_ENA; 197 } else { 198 phy->ops.reset = igb_phy_hw_reset; 199 ctrl_ext &= ~E1000_CTRL_I2C_ENA; 200 } 201 202 wr32(E1000_CTRL_EXT, ctrl_ext); 203 igb_reset_mdicnfg_82580(hw); 204 205 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { 206 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; 207 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; 208 } else { 209 switch (hw->mac.type) { 210 case e1000_82580: 211 case e1000_i350: 212 case e1000_i354: 213 case e1000_i210: 214 case e1000_i211: 215 phy->ops.read_reg = igb_read_phy_reg_82580; 216 phy->ops.write_reg = igb_write_phy_reg_82580; 217 break; 218 default: 219 phy->ops.read_reg = igb_read_phy_reg_igp; 220 phy->ops.write_reg = igb_write_phy_reg_igp; 221 } 222 } 223 224 /* set lan id */ 225 hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS)); 226 227 /* Set phy->phy_addr and phy->id. */ 228 ret_val = igb_get_phy_id_82575(hw); 229 if (ret_val) 230 return ret_val; 231 232 /* Verify phy id and set remaining function pointers */ 233 switch (phy->id) { 234 case M88E1543_E_PHY_ID: 235 case M88E1512_E_PHY_ID: 236 case I347AT4_E_PHY_ID: 237 case M88E1112_E_PHY_ID: 238 case M88E1111_I_PHY_ID: 239 phy->type = e1000_phy_m88; 240 phy->ops.check_polarity = igb_check_polarity_m88; 241 phy->ops.get_phy_info = igb_get_phy_info_m88; 242 if (phy->id != M88E1111_I_PHY_ID) 243 phy->ops.get_cable_length = 244 igb_get_cable_length_m88_gen2; 245 else 246 phy->ops.get_cable_length = igb_get_cable_length_m88; 247 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 248 /* Check if this PHY is configured for media swap. */ 249 if (phy->id == M88E1112_E_PHY_ID) { 250 u16 data; 251 252 ret_val = phy->ops.write_reg(hw, 253 E1000_M88E1112_PAGE_ADDR, 254 2); 255 if (ret_val) 256 goto out; 257 258 ret_val = phy->ops.read_reg(hw, 259 E1000_M88E1112_MAC_CTRL_1, 260 &data); 261 if (ret_val) 262 goto out; 263 264 data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK, 265 data); 266 if (data == E1000_M88E1112_AUTO_COPPER_SGMII || 267 data == E1000_M88E1112_AUTO_COPPER_BASEX) 268 hw->mac.ops.check_for_link = 269 igb_check_for_link_media_swap; 270 } 271 if (phy->id == M88E1512_E_PHY_ID) { 272 ret_val = igb_initialize_M88E1512_phy(hw); 273 if (ret_val) 274 goto out; 275 } 276 if (phy->id == M88E1543_E_PHY_ID) { 277 ret_val = igb_initialize_M88E1543_phy(hw); 278 if (ret_val) 279 goto out; 280 } 281 break; 282 case IGP03E1000_E_PHY_ID: 283 phy->type = e1000_phy_igp_3; 284 phy->ops.get_phy_info = igb_get_phy_info_igp; 285 phy->ops.get_cable_length = igb_get_cable_length_igp_2; 286 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; 287 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; 288 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; 289 break; 290 case I82580_I_PHY_ID: 291 case I350_I_PHY_ID: 292 phy->type = e1000_phy_82580; 293 phy->ops.force_speed_duplex = 294 igb_phy_force_speed_duplex_82580; 295 phy->ops.get_cable_length = igb_get_cable_length_82580; 296 phy->ops.get_phy_info = igb_get_phy_info_82580; 297 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 298 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 299 break; 300 case I210_I_PHY_ID: 301 phy->type = e1000_phy_i210; 302 phy->ops.check_polarity = igb_check_polarity_m88; 303 phy->ops.get_cfg_done = igb_get_cfg_done_i210; 304 phy->ops.get_phy_info = igb_get_phy_info_m88; 305 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; 306 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 307 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 308 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 309 break; 310 case BCM54616_E_PHY_ID: 311 phy->type = e1000_phy_bcm54616; 312 break; 313 default: 314 ret_val = -E1000_ERR_PHY; 315 goto out; 316 } 317 318 out: 319 return ret_val; 320 } 321 322 /** 323 * igb_init_nvm_params_82575 - Init NVM func ptrs. 324 * @hw: pointer to the HW structure 325 **/ 326 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw) 327 { 328 struct e1000_nvm_info *nvm = &hw->nvm; 329 u32 eecd = rd32(E1000_EECD); 330 u16 size; 331 332 size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd); 333 334 /* Added to a constant, "size" becomes the left-shift value 335 * for setting word_size. 336 */ 337 size += NVM_WORD_SIZE_BASE_SHIFT; 338 339 /* Just in case size is out of range, cap it to the largest 340 * EEPROM size supported 341 */ 342 if (size > 15) 343 size = 15; 344 345 nvm->word_size = BIT(size); 346 nvm->opcode_bits = 8; 347 nvm->delay_usec = 1; 348 349 switch (nvm->override) { 350 case e1000_nvm_override_spi_large: 351 nvm->page_size = 32; 352 nvm->address_bits = 16; 353 break; 354 case e1000_nvm_override_spi_small: 355 nvm->page_size = 8; 356 nvm->address_bits = 8; 357 break; 358 default: 359 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 360 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 361 16 : 8; 362 break; 363 } 364 if (nvm->word_size == BIT(15)) 365 nvm->page_size = 128; 366 367 nvm->type = e1000_nvm_eeprom_spi; 368 369 /* NVM Function Pointers */ 370 nvm->ops.acquire = igb_acquire_nvm_82575; 371 nvm->ops.release = igb_release_nvm_82575; 372 nvm->ops.write = igb_write_nvm_spi; 373 nvm->ops.validate = igb_validate_nvm_checksum; 374 nvm->ops.update = igb_update_nvm_checksum; 375 if (nvm->word_size < BIT(15)) 376 nvm->ops.read = igb_read_nvm_eerd; 377 else 378 nvm->ops.read = igb_read_nvm_spi; 379 380 /* override generic family function pointers for specific descendants */ 381 switch (hw->mac.type) { 382 case e1000_82580: 383 nvm->ops.validate = igb_validate_nvm_checksum_82580; 384 nvm->ops.update = igb_update_nvm_checksum_82580; 385 break; 386 case e1000_i354: 387 case e1000_i350: 388 nvm->ops.validate = igb_validate_nvm_checksum_i350; 389 nvm->ops.update = igb_update_nvm_checksum_i350; 390 break; 391 default: 392 break; 393 } 394 395 return 0; 396 } 397 398 /** 399 * igb_init_mac_params_82575 - Init MAC func ptrs. 400 * @hw: pointer to the HW structure 401 **/ 402 static s32 igb_init_mac_params_82575(struct e1000_hw *hw) 403 { 404 struct e1000_mac_info *mac = &hw->mac; 405 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 406 407 /* Set mta register count */ 408 mac->mta_reg_count = 128; 409 /* Set uta register count */ 410 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; 411 /* Set rar entry count */ 412 switch (mac->type) { 413 case e1000_82576: 414 mac->rar_entry_count = E1000_RAR_ENTRIES_82576; 415 break; 416 case e1000_82580: 417 mac->rar_entry_count = E1000_RAR_ENTRIES_82580; 418 break; 419 case e1000_i350: 420 case e1000_i354: 421 mac->rar_entry_count = E1000_RAR_ENTRIES_I350; 422 break; 423 default: 424 mac->rar_entry_count = E1000_RAR_ENTRIES_82575; 425 break; 426 } 427 /* reset */ 428 if (mac->type >= e1000_82580) 429 mac->ops.reset_hw = igb_reset_hw_82580; 430 else 431 mac->ops.reset_hw = igb_reset_hw_82575; 432 433 if (mac->type >= e1000_i210) { 434 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; 435 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; 436 437 } else { 438 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; 439 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; 440 } 441 442 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) 443 mac->ops.write_vfta = igb_write_vfta_i350; 444 else 445 mac->ops.write_vfta = igb_write_vfta; 446 447 /* Set if part includes ASF firmware */ 448 mac->asf_firmware_present = true; 449 /* Set if manageability features are enabled. */ 450 mac->arc_subsystem_valid = 451 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) 452 ? true : false; 453 /* enable EEE on i350 parts and later parts */ 454 if (mac->type >= e1000_i350) 455 dev_spec->eee_disable = false; 456 else 457 dev_spec->eee_disable = true; 458 /* Allow a single clear of the SW semaphore on I210 and newer */ 459 if (mac->type >= e1000_i210) 460 dev_spec->clear_semaphore_once = true; 461 /* physical interface link setup */ 462 mac->ops.setup_physical_interface = 463 (hw->phy.media_type == e1000_media_type_copper) 464 ? igb_setup_copper_link_82575 465 : igb_setup_serdes_link_82575; 466 467 if (mac->type == e1000_82580 || mac->type == e1000_i350) { 468 switch (hw->device_id) { 469 /* feature not supported on these id's */ 470 case E1000_DEV_ID_DH89XXCC_SGMII: 471 case E1000_DEV_ID_DH89XXCC_SERDES: 472 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 473 case E1000_DEV_ID_DH89XXCC_SFP: 474 break; 475 default: 476 hw->dev_spec._82575.mas_capable = true; 477 break; 478 } 479 } 480 return 0; 481 } 482 483 /** 484 * igb_set_sfp_media_type_82575 - derives SFP module media type. 485 * @hw: pointer to the HW structure 486 * 487 * The media type is chosen based on SFP module. 488 * compatibility flags retrieved from SFP ID EEPROM. 489 **/ 490 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw) 491 { 492 s32 ret_val = E1000_ERR_CONFIG; 493 u32 ctrl_ext = 0; 494 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 495 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 496 u8 tranceiver_type = 0; 497 s32 timeout = 3; 498 499 /* Turn I2C interface ON and power on sfp cage */ 500 ctrl_ext = rd32(E1000_CTRL_EXT); 501 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 502 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); 503 504 wrfl(); 505 506 /* Read SFP module data */ 507 while (timeout) { 508 ret_val = igb_read_sfp_data_byte(hw, 509 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), 510 &tranceiver_type); 511 if (ret_val == 0) 512 break; 513 msleep(100); 514 timeout--; 515 } 516 if (ret_val != 0) 517 goto out; 518 519 ret_val = igb_read_sfp_data_byte(hw, 520 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), 521 (u8 *)eth_flags); 522 if (ret_val != 0) 523 goto out; 524 525 /* Check if there is some SFP module plugged and powered */ 526 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || 527 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { 528 dev_spec->module_plugged = true; 529 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { 530 hw->phy.media_type = e1000_media_type_internal_serdes; 531 } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) { 532 dev_spec->sgmii_active = true; 533 hw->phy.media_type = e1000_media_type_internal_serdes; 534 } else if (eth_flags->e1000_base_t) { 535 dev_spec->sgmii_active = true; 536 hw->phy.media_type = e1000_media_type_copper; 537 } else { 538 hw->phy.media_type = e1000_media_type_unknown; 539 hw_dbg("PHY module has not been recognized\n"); 540 goto out; 541 } 542 } else { 543 hw->phy.media_type = e1000_media_type_unknown; 544 } 545 ret_val = 0; 546 out: 547 /* Restore I2C interface setting */ 548 wr32(E1000_CTRL_EXT, ctrl_ext); 549 return ret_val; 550 } 551 552 static s32 igb_get_invariants_82575(struct e1000_hw *hw) 553 { 554 struct e1000_mac_info *mac = &hw->mac; 555 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 556 s32 ret_val; 557 u32 ctrl_ext = 0; 558 u32 link_mode = 0; 559 560 switch (hw->device_id) { 561 case E1000_DEV_ID_82575EB_COPPER: 562 case E1000_DEV_ID_82575EB_FIBER_SERDES: 563 case E1000_DEV_ID_82575GB_QUAD_COPPER: 564 mac->type = e1000_82575; 565 break; 566 case E1000_DEV_ID_82576: 567 case E1000_DEV_ID_82576_NS: 568 case E1000_DEV_ID_82576_NS_SERDES: 569 case E1000_DEV_ID_82576_FIBER: 570 case E1000_DEV_ID_82576_SERDES: 571 case E1000_DEV_ID_82576_QUAD_COPPER: 572 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 573 case E1000_DEV_ID_82576_SERDES_QUAD: 574 mac->type = e1000_82576; 575 break; 576 case E1000_DEV_ID_82580_COPPER: 577 case E1000_DEV_ID_82580_FIBER: 578 case E1000_DEV_ID_82580_QUAD_FIBER: 579 case E1000_DEV_ID_82580_SERDES: 580 case E1000_DEV_ID_82580_SGMII: 581 case E1000_DEV_ID_82580_COPPER_DUAL: 582 case E1000_DEV_ID_DH89XXCC_SGMII: 583 case E1000_DEV_ID_DH89XXCC_SERDES: 584 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 585 case E1000_DEV_ID_DH89XXCC_SFP: 586 mac->type = e1000_82580; 587 break; 588 case E1000_DEV_ID_I350_COPPER: 589 case E1000_DEV_ID_I350_FIBER: 590 case E1000_DEV_ID_I350_SERDES: 591 case E1000_DEV_ID_I350_SGMII: 592 mac->type = e1000_i350; 593 break; 594 case E1000_DEV_ID_I210_COPPER: 595 case E1000_DEV_ID_I210_FIBER: 596 case E1000_DEV_ID_I210_SERDES: 597 case E1000_DEV_ID_I210_SGMII: 598 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 599 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 600 mac->type = e1000_i210; 601 break; 602 case E1000_DEV_ID_I211_COPPER: 603 mac->type = e1000_i211; 604 break; 605 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 606 case E1000_DEV_ID_I354_SGMII: 607 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 608 mac->type = e1000_i354; 609 break; 610 default: 611 return -E1000_ERR_MAC_INIT; 612 } 613 614 /* Set media type */ 615 /* The 82575 uses bits 22:23 for link mode. The mode can be changed 616 * based on the EEPROM. We cannot rely upon device ID. There 617 * is no distinguishable difference between fiber and internal 618 * SerDes mode on the 82575. There can be an external PHY attached 619 * on the SGMII interface. For this, we'll set sgmii_active to true. 620 */ 621 hw->phy.media_type = e1000_media_type_copper; 622 dev_spec->sgmii_active = false; 623 dev_spec->module_plugged = false; 624 625 ctrl_ext = rd32(E1000_CTRL_EXT); 626 627 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; 628 switch (link_mode) { 629 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 630 hw->phy.media_type = e1000_media_type_internal_serdes; 631 break; 632 case E1000_CTRL_EXT_LINK_MODE_SGMII: 633 /* Get phy control interface type set (MDIO vs. I2C)*/ 634 if (igb_sgmii_uses_mdio_82575(hw)) { 635 hw->phy.media_type = e1000_media_type_copper; 636 dev_spec->sgmii_active = true; 637 break; 638 } 639 fallthrough; /* for I2C based SGMII */ 640 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: 641 /* read media type from SFP EEPROM */ 642 ret_val = igb_set_sfp_media_type_82575(hw); 643 if ((ret_val != 0) || 644 (hw->phy.media_type == e1000_media_type_unknown)) { 645 /* If media type was not identified then return media 646 * type defined by the CTRL_EXT settings. 647 */ 648 hw->phy.media_type = e1000_media_type_internal_serdes; 649 650 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { 651 hw->phy.media_type = e1000_media_type_copper; 652 dev_spec->sgmii_active = true; 653 } 654 655 break; 656 } 657 658 /* change current link mode setting */ 659 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; 660 661 if (dev_spec->sgmii_active) 662 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; 663 else 664 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 665 666 wr32(E1000_CTRL_EXT, ctrl_ext); 667 668 break; 669 default: 670 break; 671 } 672 673 /* mac initialization and operations */ 674 ret_val = igb_init_mac_params_82575(hw); 675 if (ret_val) 676 goto out; 677 678 /* NVM initialization */ 679 ret_val = igb_init_nvm_params_82575(hw); 680 switch (hw->mac.type) { 681 case e1000_i210: 682 case e1000_i211: 683 ret_val = igb_init_nvm_params_i210(hw); 684 break; 685 default: 686 break; 687 } 688 689 if (ret_val) 690 goto out; 691 692 /* if part supports SR-IOV then initialize mailbox parameters */ 693 switch (mac->type) { 694 case e1000_82576: 695 case e1000_i350: 696 igb_init_mbx_params_pf(hw); 697 break; 698 default: 699 break; 700 } 701 702 /* setup PHY parameters */ 703 ret_val = igb_init_phy_params_82575(hw); 704 705 out: 706 return ret_val; 707 } 708 709 /** 710 * igb_acquire_phy_82575 - Acquire rights to access PHY 711 * @hw: pointer to the HW structure 712 * 713 * Acquire access rights to the correct PHY. This is a 714 * function pointer entry point called by the api module. 715 **/ 716 static s32 igb_acquire_phy_82575(struct e1000_hw *hw) 717 { 718 u16 mask = E1000_SWFW_PHY0_SM; 719 720 if (hw->bus.func == E1000_FUNC_1) 721 mask = E1000_SWFW_PHY1_SM; 722 else if (hw->bus.func == E1000_FUNC_2) 723 mask = E1000_SWFW_PHY2_SM; 724 else if (hw->bus.func == E1000_FUNC_3) 725 mask = E1000_SWFW_PHY3_SM; 726 727 return hw->mac.ops.acquire_swfw_sync(hw, mask); 728 } 729 730 /** 731 * igb_release_phy_82575 - Release rights to access PHY 732 * @hw: pointer to the HW structure 733 * 734 * A wrapper to release access rights to the correct PHY. This is a 735 * function pointer entry point called by the api module. 736 **/ 737 static void igb_release_phy_82575(struct e1000_hw *hw) 738 { 739 u16 mask = E1000_SWFW_PHY0_SM; 740 741 if (hw->bus.func == E1000_FUNC_1) 742 mask = E1000_SWFW_PHY1_SM; 743 else if (hw->bus.func == E1000_FUNC_2) 744 mask = E1000_SWFW_PHY2_SM; 745 else if (hw->bus.func == E1000_FUNC_3) 746 mask = E1000_SWFW_PHY3_SM; 747 748 hw->mac.ops.release_swfw_sync(hw, mask); 749 } 750 751 /** 752 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii 753 * @hw: pointer to the HW structure 754 * @offset: register offset to be read 755 * @data: pointer to the read data 756 * 757 * Reads the PHY register at offset using the serial gigabit media independent 758 * interface and stores the retrieved information in data. 759 **/ 760 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 761 u16 *data) 762 { 763 s32 ret_val = -E1000_ERR_PARAM; 764 765 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 766 hw_dbg("PHY Address %u is out of range\n", offset); 767 goto out; 768 } 769 770 ret_val = hw->phy.ops.acquire(hw); 771 if (ret_val) 772 goto out; 773 774 ret_val = igb_read_phy_reg_i2c(hw, offset, data); 775 776 hw->phy.ops.release(hw); 777 778 out: 779 return ret_val; 780 } 781 782 /** 783 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii 784 * @hw: pointer to the HW structure 785 * @offset: register offset to write to 786 * @data: data to write at register offset 787 * 788 * Writes the data to PHY register at the offset using the serial gigabit 789 * media independent interface. 790 **/ 791 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 792 u16 data) 793 { 794 s32 ret_val = -E1000_ERR_PARAM; 795 796 797 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 798 hw_dbg("PHY Address %d is out of range\n", offset); 799 goto out; 800 } 801 802 ret_val = hw->phy.ops.acquire(hw); 803 if (ret_val) 804 goto out; 805 806 ret_val = igb_write_phy_reg_i2c(hw, offset, data); 807 808 hw->phy.ops.release(hw); 809 810 out: 811 return ret_val; 812 } 813 814 /** 815 * igb_get_phy_id_82575 - Retrieve PHY addr and id 816 * @hw: pointer to the HW structure 817 * 818 * Retrieves the PHY address and ID for both PHY's which do and do not use 819 * sgmi interface. 820 **/ 821 static s32 igb_get_phy_id_82575(struct e1000_hw *hw) 822 { 823 struct e1000_phy_info *phy = &hw->phy; 824 s32 ret_val = 0; 825 u16 phy_id; 826 u32 ctrl_ext; 827 u32 mdic; 828 829 /* Extra read required for some PHY's on i354 */ 830 if (hw->mac.type == e1000_i354) 831 igb_get_phy_id(hw); 832 833 /* For SGMII PHYs, we try the list of possible addresses until 834 * we find one that works. For non-SGMII PHYs 835 * (e.g. integrated copper PHYs), an address of 1 should 836 * work. The result of this function should mean phy->phy_addr 837 * and phy->id are set correctly. 838 */ 839 if (!(igb_sgmii_active_82575(hw))) { 840 phy->addr = 1; 841 ret_val = igb_get_phy_id(hw); 842 goto out; 843 } 844 845 if (igb_sgmii_uses_mdio_82575(hw)) { 846 switch (hw->mac.type) { 847 case e1000_82575: 848 case e1000_82576: 849 mdic = rd32(E1000_MDIC); 850 mdic &= E1000_MDIC_PHY_MASK; 851 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; 852 break; 853 case e1000_82580: 854 case e1000_i350: 855 case e1000_i354: 856 case e1000_i210: 857 case e1000_i211: 858 mdic = rd32(E1000_MDICNFG); 859 mdic &= E1000_MDICNFG_PHY_MASK; 860 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; 861 break; 862 default: 863 ret_val = -E1000_ERR_PHY; 864 goto out; 865 } 866 ret_val = igb_get_phy_id(hw); 867 goto out; 868 } 869 870 /* Power on sgmii phy if it is disabled */ 871 ctrl_ext = rd32(E1000_CTRL_EXT); 872 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); 873 wrfl(); 874 msleep(300); 875 876 /* The address field in the I2CCMD register is 3 bits and 0 is invalid. 877 * Therefore, we need to test 1-7 878 */ 879 for (phy->addr = 1; phy->addr < 8; phy->addr++) { 880 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); 881 if (ret_val == 0) { 882 hw_dbg("Vendor ID 0x%08X read at address %u\n", 883 phy_id, phy->addr); 884 /* At the time of this writing, The M88 part is 885 * the only supported SGMII PHY product. 886 */ 887 if (phy_id == M88_VENDOR) 888 break; 889 } else { 890 hw_dbg("PHY address %u was unreadable\n", phy->addr); 891 } 892 } 893 894 /* A valid PHY type couldn't be found. */ 895 if (phy->addr == 8) { 896 phy->addr = 0; 897 ret_val = -E1000_ERR_PHY; 898 goto out; 899 } else { 900 ret_val = igb_get_phy_id(hw); 901 } 902 903 /* restore previous sfp cage power state */ 904 wr32(E1000_CTRL_EXT, ctrl_ext); 905 906 out: 907 return ret_val; 908 } 909 910 /** 911 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset 912 * @hw: pointer to the HW structure 913 * 914 * Resets the PHY using the serial gigabit media independent interface. 915 **/ 916 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) 917 { 918 struct e1000_phy_info *phy = &hw->phy; 919 s32 ret_val; 920 921 /* This isn't a true "hard" reset, but is the only reset 922 * available to us at this time. 923 */ 924 925 hw_dbg("Soft resetting SGMII attached PHY...\n"); 926 927 /* SFP documentation requires the following to configure the SPF module 928 * to work on SGMII. No further documentation is given. 929 */ 930 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); 931 if (ret_val) 932 goto out; 933 934 ret_val = igb_phy_sw_reset(hw); 935 if (ret_val) 936 goto out; 937 938 if (phy->id == M88E1512_E_PHY_ID) 939 ret_val = igb_initialize_M88E1512_phy(hw); 940 if (phy->id == M88E1543_E_PHY_ID) 941 ret_val = igb_initialize_M88E1543_phy(hw); 942 out: 943 return ret_val; 944 } 945 946 /** 947 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state 948 * @hw: pointer to the HW structure 949 * @active: true to enable LPLU, false to disable 950 * 951 * Sets the LPLU D0 state according to the active flag. When 952 * activating LPLU this function also disables smart speed 953 * and vice versa. LPLU will not be activated unless the 954 * device autonegotiation advertisement meets standards of 955 * either 10 or 10/100 or 10/100/1000 at all duplexes. 956 * This is a function pointer entry point only called by 957 * PHY setup routines. 958 **/ 959 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) 960 { 961 struct e1000_phy_info *phy = &hw->phy; 962 s32 ret_val; 963 u16 data; 964 965 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 966 if (ret_val) 967 goto out; 968 969 if (active) { 970 data |= IGP02E1000_PM_D0_LPLU; 971 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 972 data); 973 if (ret_val) 974 goto out; 975 976 /* When LPLU is enabled, we should disable SmartSpeed */ 977 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 978 &data); 979 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 980 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 981 data); 982 if (ret_val) 983 goto out; 984 } else { 985 data &= ~IGP02E1000_PM_D0_LPLU; 986 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 987 data); 988 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 989 * during Dx states where the power conservation is most 990 * important. During driver activity we should enable 991 * SmartSpeed, so performance is maintained. 992 */ 993 if (phy->smart_speed == e1000_smart_speed_on) { 994 ret_val = phy->ops.read_reg(hw, 995 IGP01E1000_PHY_PORT_CONFIG, &data); 996 if (ret_val) 997 goto out; 998 999 data |= IGP01E1000_PSCFR_SMART_SPEED; 1000 ret_val = phy->ops.write_reg(hw, 1001 IGP01E1000_PHY_PORT_CONFIG, data); 1002 if (ret_val) 1003 goto out; 1004 } else if (phy->smart_speed == e1000_smart_speed_off) { 1005 ret_val = phy->ops.read_reg(hw, 1006 IGP01E1000_PHY_PORT_CONFIG, &data); 1007 if (ret_val) 1008 goto out; 1009 1010 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1011 ret_val = phy->ops.write_reg(hw, 1012 IGP01E1000_PHY_PORT_CONFIG, data); 1013 if (ret_val) 1014 goto out; 1015 } 1016 } 1017 1018 out: 1019 return ret_val; 1020 } 1021 1022 /** 1023 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state 1024 * @hw: pointer to the HW structure 1025 * @active: true to enable LPLU, false to disable 1026 * 1027 * Sets the LPLU D0 state according to the active flag. When 1028 * activating LPLU this function also disables smart speed 1029 * and vice versa. LPLU will not be activated unless the 1030 * device autonegotiation advertisement meets standards of 1031 * either 10 or 10/100 or 10/100/1000 at all duplexes. 1032 * This is a function pointer entry point only called by 1033 * PHY setup routines. 1034 **/ 1035 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) 1036 { 1037 struct e1000_phy_info *phy = &hw->phy; 1038 u16 data; 1039 1040 data = rd32(E1000_82580_PHY_POWER_MGMT); 1041 1042 if (active) { 1043 data |= E1000_82580_PM_D0_LPLU; 1044 1045 /* When LPLU is enabled, we should disable SmartSpeed */ 1046 data &= ~E1000_82580_PM_SPD; 1047 } else { 1048 data &= ~E1000_82580_PM_D0_LPLU; 1049 1050 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1051 * during Dx states where the power conservation is most 1052 * important. During driver activity we should enable 1053 * SmartSpeed, so performance is maintained. 1054 */ 1055 if (phy->smart_speed == e1000_smart_speed_on) 1056 data |= E1000_82580_PM_SPD; 1057 else if (phy->smart_speed == e1000_smart_speed_off) 1058 data &= ~E1000_82580_PM_SPD; } 1059 1060 wr32(E1000_82580_PHY_POWER_MGMT, data); 1061 return 0; 1062 } 1063 1064 /** 1065 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 1066 * @hw: pointer to the HW structure 1067 * @active: boolean used to enable/disable lplu 1068 * 1069 * Success returns 0, Failure returns 1 1070 * 1071 * The low power link up (lplu) state is set to the power management level D3 1072 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1073 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1074 * is used during Dx states where the power conservation is most important. 1075 * During driver activity, SmartSpeed should be enabled so performance is 1076 * maintained. 1077 **/ 1078 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) 1079 { 1080 struct e1000_phy_info *phy = &hw->phy; 1081 u16 data; 1082 1083 data = rd32(E1000_82580_PHY_POWER_MGMT); 1084 1085 if (!active) { 1086 data &= ~E1000_82580_PM_D3_LPLU; 1087 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1088 * during Dx states where the power conservation is most 1089 * important. During driver activity we should enable 1090 * SmartSpeed, so performance is maintained. 1091 */ 1092 if (phy->smart_speed == e1000_smart_speed_on) 1093 data |= E1000_82580_PM_SPD; 1094 else if (phy->smart_speed == e1000_smart_speed_off) 1095 data &= ~E1000_82580_PM_SPD; 1096 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1097 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1098 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1099 data |= E1000_82580_PM_D3_LPLU; 1100 /* When LPLU is enabled, we should disable SmartSpeed */ 1101 data &= ~E1000_82580_PM_SPD; 1102 } 1103 1104 wr32(E1000_82580_PHY_POWER_MGMT, data); 1105 return 0; 1106 } 1107 1108 /** 1109 * igb_acquire_nvm_82575 - Request for access to EEPROM 1110 * @hw: pointer to the HW structure 1111 * 1112 * Acquire the necessary semaphores for exclusive access to the EEPROM. 1113 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 1114 * Return successful if access grant bit set, else clear the request for 1115 * EEPROM access and return -E1000_ERR_NVM (-1). 1116 **/ 1117 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) 1118 { 1119 s32 ret_val; 1120 1121 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); 1122 if (ret_val) 1123 goto out; 1124 1125 ret_val = igb_acquire_nvm(hw); 1126 1127 if (ret_val) 1128 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 1129 1130 out: 1131 return ret_val; 1132 } 1133 1134 /** 1135 * igb_release_nvm_82575 - Release exclusive access to EEPROM 1136 * @hw: pointer to the HW structure 1137 * 1138 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 1139 * then release the semaphores acquired. 1140 **/ 1141 static void igb_release_nvm_82575(struct e1000_hw *hw) 1142 { 1143 igb_release_nvm(hw); 1144 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 1145 } 1146 1147 /** 1148 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore 1149 * @hw: pointer to the HW structure 1150 * @mask: specifies which semaphore to acquire 1151 * 1152 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 1153 * will also specify which port we're acquiring the lock for. 1154 **/ 1155 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1156 { 1157 u32 swfw_sync; 1158 u32 swmask = mask; 1159 u32 fwmask = mask << 16; 1160 s32 ret_val = 0; 1161 s32 i = 0, timeout = 200; 1162 1163 while (i < timeout) { 1164 if (igb_get_hw_semaphore(hw)) { 1165 ret_val = -E1000_ERR_SWFW_SYNC; 1166 goto out; 1167 } 1168 1169 swfw_sync = rd32(E1000_SW_FW_SYNC); 1170 if (!(swfw_sync & (fwmask | swmask))) 1171 break; 1172 1173 /* Firmware currently using resource (fwmask) 1174 * or other software thread using resource (swmask) 1175 */ 1176 igb_put_hw_semaphore(hw); 1177 mdelay(5); 1178 i++; 1179 } 1180 1181 if (i == timeout) { 1182 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); 1183 ret_val = -E1000_ERR_SWFW_SYNC; 1184 goto out; 1185 } 1186 1187 swfw_sync |= swmask; 1188 wr32(E1000_SW_FW_SYNC, swfw_sync); 1189 1190 igb_put_hw_semaphore(hw); 1191 1192 out: 1193 return ret_val; 1194 } 1195 1196 /** 1197 * igb_release_swfw_sync_82575 - Release SW/FW semaphore 1198 * @hw: pointer to the HW structure 1199 * @mask: specifies which semaphore to acquire 1200 * 1201 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 1202 * will also specify which port we're releasing the lock for. 1203 **/ 1204 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1205 { 1206 u32 swfw_sync; 1207 1208 while (igb_get_hw_semaphore(hw) != 0) 1209 ; /* Empty */ 1210 1211 swfw_sync = rd32(E1000_SW_FW_SYNC); 1212 swfw_sync &= ~mask; 1213 wr32(E1000_SW_FW_SYNC, swfw_sync); 1214 1215 igb_put_hw_semaphore(hw); 1216 } 1217 1218 /** 1219 * igb_get_cfg_done_82575 - Read config done bit 1220 * @hw: pointer to the HW structure 1221 * 1222 * Read the management control register for the config done bit for 1223 * completion status. NOTE: silicon which is EEPROM-less will fail trying 1224 * to read the config done bit, so an error is *ONLY* logged and returns 1225 * 0. If we were to return with error, EEPROM-less silicon 1226 * would not be able to be reset or change link. 1227 **/ 1228 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) 1229 { 1230 s32 timeout = PHY_CFG_TIMEOUT; 1231 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 1232 1233 if (hw->bus.func == 1) 1234 mask = E1000_NVM_CFG_DONE_PORT_1; 1235 else if (hw->bus.func == E1000_FUNC_2) 1236 mask = E1000_NVM_CFG_DONE_PORT_2; 1237 else if (hw->bus.func == E1000_FUNC_3) 1238 mask = E1000_NVM_CFG_DONE_PORT_3; 1239 1240 while (timeout) { 1241 if (rd32(E1000_EEMNGCTL) & mask) 1242 break; 1243 usleep_range(1000, 2000); 1244 timeout--; 1245 } 1246 if (!timeout) 1247 hw_dbg("MNG configuration cycle has not completed.\n"); 1248 1249 /* If EEPROM is not marked present, init the PHY manually */ 1250 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && 1251 (hw->phy.type == e1000_phy_igp_3)) 1252 igb_phy_init_script_igp3(hw); 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * igb_get_link_up_info_82575 - Get link speed/duplex info 1259 * @hw: pointer to the HW structure 1260 * @speed: stores the current speed 1261 * @duplex: stores the current duplex 1262 * 1263 * This is a wrapper function, if using the serial gigabit media independent 1264 * interface, use PCS to retrieve the link speed and duplex information. 1265 * Otherwise, use the generic function to get the link speed and duplex info. 1266 **/ 1267 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, 1268 u16 *duplex) 1269 { 1270 s32 ret_val; 1271 1272 if (hw->phy.media_type != e1000_media_type_copper) 1273 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed, 1274 duplex); 1275 else 1276 ret_val = igb_get_speed_and_duplex_copper(hw, speed, 1277 duplex); 1278 1279 return ret_val; 1280 } 1281 1282 /** 1283 * igb_check_for_link_82575 - Check for link 1284 * @hw: pointer to the HW structure 1285 * 1286 * If sgmii is enabled, then use the pcs register to determine link, otherwise 1287 * use the generic interface for determining link. 1288 **/ 1289 static s32 igb_check_for_link_82575(struct e1000_hw *hw) 1290 { 1291 s32 ret_val; 1292 u16 speed, duplex; 1293 1294 if (hw->phy.media_type != e1000_media_type_copper) { 1295 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, 1296 &duplex); 1297 /* Use this flag to determine if link needs to be checked or 1298 * not. If we have link clear the flag so that we do not 1299 * continue to check for link. 1300 */ 1301 hw->mac.get_link_status = !hw->mac.serdes_has_link; 1302 1303 /* Configure Flow Control now that Auto-Neg has completed. 1304 * First, we need to restore the desired flow control 1305 * settings because we may have had to re-autoneg with a 1306 * different link partner. 1307 */ 1308 ret_val = igb_config_fc_after_link_up(hw); 1309 if (ret_val) 1310 hw_dbg("Error configuring flow control\n"); 1311 } else { 1312 ret_val = igb_check_for_copper_link(hw); 1313 } 1314 1315 return ret_val; 1316 } 1317 1318 /** 1319 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown 1320 * @hw: pointer to the HW structure 1321 **/ 1322 void igb_power_up_serdes_link_82575(struct e1000_hw *hw) 1323 { 1324 u32 reg; 1325 1326 1327 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1328 !igb_sgmii_active_82575(hw)) 1329 return; 1330 1331 /* Enable PCS to turn on link */ 1332 reg = rd32(E1000_PCS_CFG0); 1333 reg |= E1000_PCS_CFG_PCS_EN; 1334 wr32(E1000_PCS_CFG0, reg); 1335 1336 /* Power up the laser */ 1337 reg = rd32(E1000_CTRL_EXT); 1338 reg &= ~E1000_CTRL_EXT_SDP3_DATA; 1339 wr32(E1000_CTRL_EXT, reg); 1340 1341 /* flush the write to verify completion */ 1342 wrfl(); 1343 usleep_range(1000, 2000); 1344 } 1345 1346 /** 1347 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex 1348 * @hw: pointer to the HW structure 1349 * @speed: stores the current speed 1350 * @duplex: stores the current duplex 1351 * 1352 * Using the physical coding sub-layer (PCS), retrieve the current speed and 1353 * duplex, then store the values in the pointers provided. 1354 **/ 1355 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, 1356 u16 *duplex) 1357 { 1358 struct e1000_mac_info *mac = &hw->mac; 1359 u32 pcs, status; 1360 1361 /* Set up defaults for the return values of this function */ 1362 mac->serdes_has_link = false; 1363 *speed = 0; 1364 *duplex = 0; 1365 1366 /* Read the PCS Status register for link state. For non-copper mode, 1367 * the status register is not accurate. The PCS status register is 1368 * used instead. 1369 */ 1370 pcs = rd32(E1000_PCS_LSTAT); 1371 1372 /* The link up bit determines when link is up on autoneg. The sync ok 1373 * gets set once both sides sync up and agree upon link. Stable link 1374 * can be determined by checking for both link up and link sync ok 1375 */ 1376 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { 1377 mac->serdes_has_link = true; 1378 1379 /* Detect and store PCS speed */ 1380 if (pcs & E1000_PCS_LSTS_SPEED_1000) 1381 *speed = SPEED_1000; 1382 else if (pcs & E1000_PCS_LSTS_SPEED_100) 1383 *speed = SPEED_100; 1384 else 1385 *speed = SPEED_10; 1386 1387 /* Detect and store PCS duplex */ 1388 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) 1389 *duplex = FULL_DUPLEX; 1390 else 1391 *duplex = HALF_DUPLEX; 1392 1393 /* Check if it is an I354 2.5Gb backplane connection. */ 1394 if (mac->type == e1000_i354) { 1395 status = rd32(E1000_STATUS); 1396 if ((status & E1000_STATUS_2P5_SKU) && 1397 !(status & E1000_STATUS_2P5_SKU_OVER)) { 1398 *speed = SPEED_2500; 1399 *duplex = FULL_DUPLEX; 1400 hw_dbg("2500 Mbs, "); 1401 hw_dbg("Full Duplex\n"); 1402 } 1403 } 1404 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * igb_shutdown_serdes_link_82575 - Remove link during power down 1412 * @hw: pointer to the HW structure 1413 * 1414 * In the case of fiber serdes, shut down optics and PCS on driver unload 1415 * when management pass thru is not enabled. 1416 **/ 1417 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) 1418 { 1419 u32 reg; 1420 1421 if (hw->phy.media_type != e1000_media_type_internal_serdes && 1422 igb_sgmii_active_82575(hw)) 1423 return; 1424 1425 if (!igb_enable_mng_pass_thru(hw)) { 1426 /* Disable PCS to turn off link */ 1427 reg = rd32(E1000_PCS_CFG0); 1428 reg &= ~E1000_PCS_CFG_PCS_EN; 1429 wr32(E1000_PCS_CFG0, reg); 1430 1431 /* shutdown the laser */ 1432 reg = rd32(E1000_CTRL_EXT); 1433 reg |= E1000_CTRL_EXT_SDP3_DATA; 1434 wr32(E1000_CTRL_EXT, reg); 1435 1436 /* flush the write to verify completion */ 1437 wrfl(); 1438 usleep_range(1000, 2000); 1439 } 1440 } 1441 1442 /** 1443 * igb_reset_hw_82575 - Reset hardware 1444 * @hw: pointer to the HW structure 1445 * 1446 * This resets the hardware into a known state. This is a 1447 * function pointer entry point called by the api module. 1448 **/ 1449 static s32 igb_reset_hw_82575(struct e1000_hw *hw) 1450 { 1451 u32 ctrl; 1452 s32 ret_val; 1453 1454 /* Prevent the PCI-E bus from sticking if there is no TLP connection 1455 * on the last TLP read/write transaction when MAC is reset. 1456 */ 1457 ret_val = igb_disable_pcie_master(hw); 1458 if (ret_val) 1459 hw_dbg("PCI-E Master disable polling has failed.\n"); 1460 1461 /* set the completion timeout for interface */ 1462 ret_val = igb_set_pcie_completion_timeout(hw); 1463 if (ret_val) 1464 hw_dbg("PCI-E Set completion timeout has failed.\n"); 1465 1466 hw_dbg("Masking off all interrupts\n"); 1467 wr32(E1000_IMC, 0xffffffff); 1468 1469 wr32(E1000_RCTL, 0); 1470 wr32(E1000_TCTL, E1000_TCTL_PSP); 1471 wrfl(); 1472 1473 usleep_range(10000, 20000); 1474 1475 ctrl = rd32(E1000_CTRL); 1476 1477 hw_dbg("Issuing a global reset to MAC\n"); 1478 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); 1479 1480 ret_val = igb_get_auto_rd_done(hw); 1481 if (ret_val) { 1482 /* When auto config read does not complete, do not 1483 * return with an error. This can happen in situations 1484 * where there is no eeprom and prevents getting link. 1485 */ 1486 hw_dbg("Auto Read Done did not complete\n"); 1487 } 1488 1489 /* If EEPROM is not present, run manual init scripts */ 1490 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 1491 igb_reset_init_script_82575(hw); 1492 1493 /* Clear any pending interrupt events. */ 1494 wr32(E1000_IMC, 0xffffffff); 1495 rd32(E1000_ICR); 1496 1497 /* Install any alternate MAC address into RAR0 */ 1498 ret_val = igb_check_alt_mac_addr(hw); 1499 1500 return ret_val; 1501 } 1502 1503 /** 1504 * igb_init_hw_82575 - Initialize hardware 1505 * @hw: pointer to the HW structure 1506 * 1507 * This inits the hardware readying it for operation. 1508 **/ 1509 static s32 igb_init_hw_82575(struct e1000_hw *hw) 1510 { 1511 struct e1000_mac_info *mac = &hw->mac; 1512 s32 ret_val; 1513 u16 i, rar_count = mac->rar_entry_count; 1514 1515 if ((hw->mac.type >= e1000_i210) && 1516 !(igb_get_flash_presence_i210(hw))) { 1517 ret_val = igb_pll_workaround_i210(hw); 1518 if (ret_val) 1519 return ret_val; 1520 } 1521 1522 /* Initialize identification LED */ 1523 ret_val = igb_id_led_init(hw); 1524 if (ret_val) { 1525 hw_dbg("Error initializing identification LED\n"); 1526 /* This is not fatal and we should not stop init due to this */ 1527 } 1528 1529 /* Disabling VLAN filtering */ 1530 hw_dbg("Initializing the IEEE VLAN\n"); 1531 igb_clear_vfta(hw); 1532 1533 /* Setup the receive address */ 1534 igb_init_rx_addrs(hw, rar_count); 1535 1536 /* Zero out the Multicast HASH table */ 1537 hw_dbg("Zeroing the MTA\n"); 1538 for (i = 0; i < mac->mta_reg_count; i++) 1539 array_wr32(E1000_MTA, i, 0); 1540 1541 /* Zero out the Unicast HASH table */ 1542 hw_dbg("Zeroing the UTA\n"); 1543 for (i = 0; i < mac->uta_reg_count; i++) 1544 array_wr32(E1000_UTA, i, 0); 1545 1546 /* Setup link and flow control */ 1547 ret_val = igb_setup_link(hw); 1548 1549 /* Clear all of the statistics registers (clear on read). It is 1550 * important that we do this after we have tried to establish link 1551 * because the symbol error count will increment wildly if there 1552 * is no link. 1553 */ 1554 igb_clear_hw_cntrs_82575(hw); 1555 return ret_val; 1556 } 1557 1558 /** 1559 * igb_setup_copper_link_82575 - Configure copper link settings 1560 * @hw: pointer to the HW structure 1561 * 1562 * Configures the link for auto-neg or forced speed and duplex. Then we check 1563 * for link, once link is established calls to configure collision distance 1564 * and flow control are called. 1565 **/ 1566 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) 1567 { 1568 u32 ctrl; 1569 s32 ret_val; 1570 u32 phpm_reg; 1571 1572 ctrl = rd32(E1000_CTRL); 1573 ctrl |= E1000_CTRL_SLU; 1574 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1575 wr32(E1000_CTRL, ctrl); 1576 1577 /* Clear Go Link Disconnect bit on supported devices */ 1578 switch (hw->mac.type) { 1579 case e1000_82580: 1580 case e1000_i350: 1581 case e1000_i210: 1582 case e1000_i211: 1583 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT); 1584 phpm_reg &= ~E1000_82580_PM_GO_LINKD; 1585 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg); 1586 break; 1587 default: 1588 break; 1589 } 1590 1591 ret_val = igb_setup_serdes_link_82575(hw); 1592 if (ret_val) 1593 goto out; 1594 1595 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { 1596 /* allow time for SFP cage time to power up phy */ 1597 msleep(300); 1598 1599 ret_val = hw->phy.ops.reset(hw); 1600 if (ret_val) { 1601 hw_dbg("Error resetting the PHY.\n"); 1602 goto out; 1603 } 1604 } 1605 switch (hw->phy.type) { 1606 case e1000_phy_i210: 1607 case e1000_phy_m88: 1608 switch (hw->phy.id) { 1609 case I347AT4_E_PHY_ID: 1610 case M88E1112_E_PHY_ID: 1611 case M88E1543_E_PHY_ID: 1612 case M88E1512_E_PHY_ID: 1613 case I210_I_PHY_ID: 1614 ret_val = igb_copper_link_setup_m88_gen2(hw); 1615 break; 1616 default: 1617 ret_val = igb_copper_link_setup_m88(hw); 1618 break; 1619 } 1620 break; 1621 case e1000_phy_igp_3: 1622 ret_val = igb_copper_link_setup_igp(hw); 1623 break; 1624 case e1000_phy_82580: 1625 ret_val = igb_copper_link_setup_82580(hw); 1626 break; 1627 case e1000_phy_bcm54616: 1628 ret_val = 0; 1629 break; 1630 default: 1631 ret_val = -E1000_ERR_PHY; 1632 break; 1633 } 1634 1635 if (ret_val) 1636 goto out; 1637 1638 ret_val = igb_setup_copper_link(hw); 1639 out: 1640 return ret_val; 1641 } 1642 1643 /** 1644 * igb_setup_serdes_link_82575 - Setup link for serdes 1645 * @hw: pointer to the HW structure 1646 * 1647 * Configure the physical coding sub-layer (PCS) link. The PCS link is 1648 * used on copper connections where the serialized gigabit media independent 1649 * interface (sgmii), or serdes fiber is being used. Configures the link 1650 * for auto-negotiation or forces speed/duplex. 1651 **/ 1652 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) 1653 { 1654 u32 ctrl_ext, ctrl_reg, reg, anadv_reg; 1655 bool pcs_autoneg; 1656 s32 ret_val = 0; 1657 u16 data; 1658 1659 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1660 !igb_sgmii_active_82575(hw)) 1661 return ret_val; 1662 1663 1664 /* On the 82575, SerDes loopback mode persists until it is 1665 * explicitly turned off or a power cycle is performed. A read to 1666 * the register does not indicate its status. Therefore, we ensure 1667 * loopback mode is disabled during initialization. 1668 */ 1669 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1670 1671 /* power on the sfp cage if present and turn on I2C */ 1672 ctrl_ext = rd32(E1000_CTRL_EXT); 1673 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1674 ctrl_ext |= E1000_CTRL_I2C_ENA; 1675 wr32(E1000_CTRL_EXT, ctrl_ext); 1676 1677 ctrl_reg = rd32(E1000_CTRL); 1678 ctrl_reg |= E1000_CTRL_SLU; 1679 1680 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { 1681 /* set both sw defined pins */ 1682 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; 1683 1684 /* Set switch control to serdes energy detect */ 1685 reg = rd32(E1000_CONNSW); 1686 reg |= E1000_CONNSW_ENRGSRC; 1687 wr32(E1000_CONNSW, reg); 1688 } 1689 1690 reg = rd32(E1000_PCS_LCTL); 1691 1692 /* default pcs_autoneg to the same setting as mac autoneg */ 1693 pcs_autoneg = hw->mac.autoneg; 1694 1695 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 1696 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1697 /* sgmii mode lets the phy handle forcing speed/duplex */ 1698 pcs_autoneg = true; 1699 /* autoneg time out should be disabled for SGMII mode */ 1700 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); 1701 break; 1702 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1703 /* disable PCS autoneg and support parallel detect only */ 1704 pcs_autoneg = false; 1705 fallthrough; 1706 default: 1707 if (hw->mac.type == e1000_82575 || 1708 hw->mac.type == e1000_82576) { 1709 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); 1710 if (ret_val) { 1711 hw_dbg(KERN_DEBUG "NVM Read Error\n\n"); 1712 return ret_val; 1713 } 1714 1715 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) 1716 pcs_autoneg = false; 1717 } 1718 1719 /* non-SGMII modes only supports a speed of 1000/Full for the 1720 * link so it is best to just force the MAC and let the pcs 1721 * link either autoneg or be forced to 1000/Full 1722 */ 1723 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | 1724 E1000_CTRL_FD | E1000_CTRL_FRCDPX; 1725 1726 /* set speed of 1000/Full if speed/duplex is forced */ 1727 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; 1728 break; 1729 } 1730 1731 wr32(E1000_CTRL, ctrl_reg); 1732 1733 /* New SerDes mode allows for forcing speed or autonegotiating speed 1734 * at 1gb. Autoneg should be default set by most drivers. This is the 1735 * mode that will be compatible with older link partners and switches. 1736 * However, both are supported by the hardware and some drivers/tools. 1737 */ 1738 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | 1739 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); 1740 1741 if (pcs_autoneg) { 1742 /* Set PCS register for autoneg */ 1743 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ 1744 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ 1745 1746 /* Disable force flow control for autoneg */ 1747 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; 1748 1749 /* Configure flow control advertisement for autoneg */ 1750 anadv_reg = rd32(E1000_PCS_ANADV); 1751 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); 1752 switch (hw->fc.requested_mode) { 1753 case e1000_fc_full: 1754 case e1000_fc_rx_pause: 1755 anadv_reg |= E1000_TXCW_ASM_DIR; 1756 anadv_reg |= E1000_TXCW_PAUSE; 1757 break; 1758 case e1000_fc_tx_pause: 1759 anadv_reg |= E1000_TXCW_ASM_DIR; 1760 break; 1761 default: 1762 break; 1763 } 1764 wr32(E1000_PCS_ANADV, anadv_reg); 1765 1766 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); 1767 } else { 1768 /* Set PCS register for forced link */ 1769 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ 1770 1771 /* Force flow control for forced link */ 1772 reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1773 1774 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); 1775 } 1776 1777 wr32(E1000_PCS_LCTL, reg); 1778 1779 if (!pcs_autoneg && !igb_sgmii_active_82575(hw)) 1780 igb_force_mac_fc(hw); 1781 1782 return ret_val; 1783 } 1784 1785 /** 1786 * igb_sgmii_active_82575 - Return sgmii state 1787 * @hw: pointer to the HW structure 1788 * 1789 * 82575 silicon has a serialized gigabit media independent interface (sgmii) 1790 * which can be enabled for use in the embedded applications. Simply 1791 * return the current state of the sgmii interface. 1792 **/ 1793 static bool igb_sgmii_active_82575(struct e1000_hw *hw) 1794 { 1795 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1796 return dev_spec->sgmii_active; 1797 } 1798 1799 /** 1800 * igb_reset_init_script_82575 - Inits HW defaults after reset 1801 * @hw: pointer to the HW structure 1802 * 1803 * Inits recommended HW defaults after a reset when there is no EEPROM 1804 * detected. This is only for the 82575. 1805 **/ 1806 static s32 igb_reset_init_script_82575(struct e1000_hw *hw) 1807 { 1808 if (hw->mac.type == e1000_82575) { 1809 hw_dbg("Running reset init script for 82575\n"); 1810 /* SerDes configuration via SERDESCTRL */ 1811 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); 1812 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); 1813 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); 1814 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); 1815 1816 /* CCM configuration via CCMCTL register */ 1817 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); 1818 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); 1819 1820 /* PCIe lanes configuration */ 1821 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); 1822 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); 1823 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); 1824 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); 1825 1826 /* PCIe PLL Configuration */ 1827 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); 1828 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); 1829 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); 1830 } 1831 1832 return 0; 1833 } 1834 1835 /** 1836 * igb_read_mac_addr_82575 - Read device MAC address 1837 * @hw: pointer to the HW structure 1838 **/ 1839 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) 1840 { 1841 s32 ret_val = 0; 1842 1843 /* If there's an alternate MAC address place it in RAR0 1844 * so that it will override the Si installed default perm 1845 * address. 1846 */ 1847 ret_val = igb_check_alt_mac_addr(hw); 1848 if (ret_val) 1849 goto out; 1850 1851 ret_val = igb_read_mac_addr(hw); 1852 1853 out: 1854 return ret_val; 1855 } 1856 1857 /** 1858 * igb_power_down_phy_copper_82575 - Remove link during PHY power down 1859 * @hw: pointer to the HW structure 1860 * 1861 * In the case of a PHY power down to save power, or to turn off link during a 1862 * driver unload, or wake on lan is not enabled, remove the link. 1863 **/ 1864 void igb_power_down_phy_copper_82575(struct e1000_hw *hw) 1865 { 1866 /* If the management interface is not enabled, then power down */ 1867 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) 1868 igb_power_down_phy_copper(hw); 1869 } 1870 1871 /** 1872 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters 1873 * @hw: pointer to the HW structure 1874 * 1875 * Clears the hardware counters by reading the counter registers. 1876 **/ 1877 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) 1878 { 1879 igb_clear_hw_cntrs_base(hw); 1880 1881 rd32(E1000_PRC64); 1882 rd32(E1000_PRC127); 1883 rd32(E1000_PRC255); 1884 rd32(E1000_PRC511); 1885 rd32(E1000_PRC1023); 1886 rd32(E1000_PRC1522); 1887 rd32(E1000_PTC64); 1888 rd32(E1000_PTC127); 1889 rd32(E1000_PTC255); 1890 rd32(E1000_PTC511); 1891 rd32(E1000_PTC1023); 1892 rd32(E1000_PTC1522); 1893 1894 rd32(E1000_ALGNERRC); 1895 rd32(E1000_RXERRC); 1896 rd32(E1000_TNCRS); 1897 rd32(E1000_CEXTERR); 1898 rd32(E1000_TSCTC); 1899 rd32(E1000_TSCTFC); 1900 1901 rd32(E1000_MGTPRC); 1902 rd32(E1000_MGTPDC); 1903 rd32(E1000_MGTPTC); 1904 1905 rd32(E1000_IAC); 1906 rd32(E1000_ICRXOC); 1907 1908 rd32(E1000_ICRXPTC); 1909 rd32(E1000_ICRXATC); 1910 rd32(E1000_ICTXPTC); 1911 rd32(E1000_ICTXATC); 1912 rd32(E1000_ICTXQEC); 1913 rd32(E1000_ICTXQMTC); 1914 rd32(E1000_ICRXDMTC); 1915 1916 rd32(E1000_CBTMPC); 1917 rd32(E1000_HTDPMC); 1918 rd32(E1000_CBRMPC); 1919 rd32(E1000_RPTHC); 1920 rd32(E1000_HGPTC); 1921 rd32(E1000_HTCBDPC); 1922 rd32(E1000_HGORCL); 1923 rd32(E1000_HGORCH); 1924 rd32(E1000_HGOTCL); 1925 rd32(E1000_HGOTCH); 1926 rd32(E1000_LENERRS); 1927 1928 /* This register should not be read in copper configurations */ 1929 if (hw->phy.media_type == e1000_media_type_internal_serdes || 1930 igb_sgmii_active_82575(hw)) 1931 rd32(E1000_SCVPC); 1932 } 1933 1934 /** 1935 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable 1936 * @hw: pointer to the HW structure 1937 * 1938 * After rx enable if manageability is enabled then there is likely some 1939 * bad data at the start of the fifo and possibly in the DMA fifo. This 1940 * function clears the fifos and flushes any packets that came in as rx was 1941 * being enabled. 1942 **/ 1943 void igb_rx_fifo_flush_82575(struct e1000_hw *hw) 1944 { 1945 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; 1946 int i, ms_wait; 1947 1948 /* disable IPv6 options as per hardware errata */ 1949 rfctl = rd32(E1000_RFCTL); 1950 rfctl |= E1000_RFCTL_IPV6_EX_DIS; 1951 wr32(E1000_RFCTL, rfctl); 1952 1953 if (hw->mac.type != e1000_82575 || 1954 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) 1955 return; 1956 1957 /* Disable all RX queues */ 1958 for (i = 0; i < 4; i++) { 1959 rxdctl[i] = rd32(E1000_RXDCTL(i)); 1960 wr32(E1000_RXDCTL(i), 1961 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); 1962 } 1963 /* Poll all queues to verify they have shut down */ 1964 for (ms_wait = 0; ms_wait < 10; ms_wait++) { 1965 usleep_range(1000, 2000); 1966 rx_enabled = 0; 1967 for (i = 0; i < 4; i++) 1968 rx_enabled |= rd32(E1000_RXDCTL(i)); 1969 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) 1970 break; 1971 } 1972 1973 if (ms_wait == 10) 1974 hw_dbg("Queue disable timed out after 10ms\n"); 1975 1976 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all 1977 * incoming packets are rejected. Set enable and wait 2ms so that 1978 * any packet that was coming in as RCTL.EN was set is flushed 1979 */ 1980 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); 1981 1982 rlpml = rd32(E1000_RLPML); 1983 wr32(E1000_RLPML, 0); 1984 1985 rctl = rd32(E1000_RCTL); 1986 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); 1987 temp_rctl |= E1000_RCTL_LPE; 1988 1989 wr32(E1000_RCTL, temp_rctl); 1990 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); 1991 wrfl(); 1992 usleep_range(2000, 3000); 1993 1994 /* Enable RX queues that were previously enabled and restore our 1995 * previous state 1996 */ 1997 for (i = 0; i < 4; i++) 1998 wr32(E1000_RXDCTL(i), rxdctl[i]); 1999 wr32(E1000_RCTL, rctl); 2000 wrfl(); 2001 2002 wr32(E1000_RLPML, rlpml); 2003 wr32(E1000_RFCTL, rfctl); 2004 2005 /* Flush receive errors generated by workaround */ 2006 rd32(E1000_ROC); 2007 rd32(E1000_RNBC); 2008 rd32(E1000_MPC); 2009 } 2010 2011 /** 2012 * igb_set_pcie_completion_timeout - set pci-e completion timeout 2013 * @hw: pointer to the HW structure 2014 * 2015 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, 2016 * however the hardware default for these parts is 500us to 1ms which is less 2017 * than the 10ms recommended by the pci-e spec. To address this we need to 2018 * increase the value to either 10ms to 200ms for capability version 1 config, 2019 * or 16ms to 55ms for version 2. 2020 **/ 2021 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) 2022 { 2023 u32 gcr = rd32(E1000_GCR); 2024 s32 ret_val = 0; 2025 u16 pcie_devctl2; 2026 2027 /* only take action if timeout value is defaulted to 0 */ 2028 if (gcr & E1000_GCR_CMPL_TMOUT_MASK) 2029 goto out; 2030 2031 /* if capabilities version is type 1 we can write the 2032 * timeout of 10ms to 200ms through the GCR register 2033 */ 2034 if (!(gcr & E1000_GCR_CAP_VER2)) { 2035 gcr |= E1000_GCR_CMPL_TMOUT_10ms; 2036 goto out; 2037 } 2038 2039 /* for version 2 capabilities we need to write the config space 2040 * directly in order to set the completion timeout value for 2041 * 16ms to 55ms 2042 */ 2043 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2044 &pcie_devctl2); 2045 if (ret_val) 2046 goto out; 2047 2048 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; 2049 2050 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2051 &pcie_devctl2); 2052 out: 2053 /* disable completion timeout resend */ 2054 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; 2055 2056 wr32(E1000_GCR, gcr); 2057 return ret_val; 2058 } 2059 2060 /** 2061 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing 2062 * @hw: pointer to the hardware struct 2063 * @enable: state to enter, either enabled or disabled 2064 * @pf: Physical Function pool - do not set anti-spoofing for the PF 2065 * 2066 * enables/disables L2 switch anti-spoofing functionality. 2067 **/ 2068 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) 2069 { 2070 u32 reg_val, reg_offset; 2071 2072 switch (hw->mac.type) { 2073 case e1000_82576: 2074 reg_offset = E1000_DTXSWC; 2075 break; 2076 case e1000_i350: 2077 case e1000_i354: 2078 reg_offset = E1000_TXSWC; 2079 break; 2080 default: 2081 return; 2082 } 2083 2084 reg_val = rd32(reg_offset); 2085 if (enable) { 2086 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | 2087 E1000_DTXSWC_VLAN_SPOOF_MASK); 2088 /* The PF can spoof - it has to in order to 2089 * support emulation mode NICs 2090 */ 2091 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS)); 2092 } else { 2093 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | 2094 E1000_DTXSWC_VLAN_SPOOF_MASK); 2095 } 2096 wr32(reg_offset, reg_val); 2097 } 2098 2099 /** 2100 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback 2101 * @hw: pointer to the hardware struct 2102 * @enable: state to enter, either enabled or disabled 2103 * 2104 * enables/disables L2 switch loopback functionality. 2105 **/ 2106 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) 2107 { 2108 u32 dtxswc; 2109 2110 switch (hw->mac.type) { 2111 case e1000_82576: 2112 dtxswc = rd32(E1000_DTXSWC); 2113 if (enable) 2114 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2115 else 2116 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2117 wr32(E1000_DTXSWC, dtxswc); 2118 break; 2119 case e1000_i354: 2120 case e1000_i350: 2121 dtxswc = rd32(E1000_TXSWC); 2122 if (enable) 2123 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2124 else 2125 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2126 wr32(E1000_TXSWC, dtxswc); 2127 break; 2128 default: 2129 /* Currently no other hardware supports loopback */ 2130 break; 2131 } 2132 2133 } 2134 2135 /** 2136 * igb_vmdq_set_replication_pf - enable or disable vmdq replication 2137 * @hw: pointer to the hardware struct 2138 * @enable: state to enter, either enabled or disabled 2139 * 2140 * enables/disables replication of packets across multiple pools. 2141 **/ 2142 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) 2143 { 2144 u32 vt_ctl = rd32(E1000_VT_CTL); 2145 2146 if (enable) 2147 vt_ctl |= E1000_VT_CTL_VM_REPL_EN; 2148 else 2149 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; 2150 2151 wr32(E1000_VT_CTL, vt_ctl); 2152 } 2153 2154 /** 2155 * igb_read_phy_reg_82580 - Read 82580 MDI control register 2156 * @hw: pointer to the HW structure 2157 * @offset: register offset to be read 2158 * @data: pointer to the read data 2159 * 2160 * Reads the MDI control register in the PHY at offset and stores the 2161 * information read to data. 2162 **/ 2163 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) 2164 { 2165 s32 ret_val; 2166 2167 ret_val = hw->phy.ops.acquire(hw); 2168 if (ret_val) 2169 goto out; 2170 2171 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 2172 2173 hw->phy.ops.release(hw); 2174 2175 out: 2176 return ret_val; 2177 } 2178 2179 /** 2180 * igb_write_phy_reg_82580 - Write 82580 MDI control register 2181 * @hw: pointer to the HW structure 2182 * @offset: register offset to write to 2183 * @data: data to write to register at offset 2184 * 2185 * Writes data to MDI control register in the PHY at offset. 2186 **/ 2187 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) 2188 { 2189 s32 ret_val; 2190 2191 2192 ret_val = hw->phy.ops.acquire(hw); 2193 if (ret_val) 2194 goto out; 2195 2196 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 2197 2198 hw->phy.ops.release(hw); 2199 2200 out: 2201 return ret_val; 2202 } 2203 2204 /** 2205 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits 2206 * @hw: pointer to the HW structure 2207 * 2208 * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on 2209 * the values found in the EEPROM. This addresses an issue in which these 2210 * bits are not restored from EEPROM after reset. 2211 **/ 2212 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) 2213 { 2214 s32 ret_val = 0; 2215 u32 mdicnfg; 2216 u16 nvm_data = 0; 2217 2218 if (hw->mac.type != e1000_82580) 2219 goto out; 2220 if (!igb_sgmii_active_82575(hw)) 2221 goto out; 2222 2223 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2224 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2225 &nvm_data); 2226 if (ret_val) { 2227 hw_dbg("NVM Read Error\n"); 2228 goto out; 2229 } 2230 2231 mdicnfg = rd32(E1000_MDICNFG); 2232 if (nvm_data & NVM_WORD24_EXT_MDIO) 2233 mdicnfg |= E1000_MDICNFG_EXT_MDIO; 2234 if (nvm_data & NVM_WORD24_COM_MDIO) 2235 mdicnfg |= E1000_MDICNFG_COM_MDIO; 2236 wr32(E1000_MDICNFG, mdicnfg); 2237 out: 2238 return ret_val; 2239 } 2240 2241 /** 2242 * igb_reset_hw_82580 - Reset hardware 2243 * @hw: pointer to the HW structure 2244 * 2245 * This resets function or entire device (all ports, etc.) 2246 * to a known state. 2247 **/ 2248 static s32 igb_reset_hw_82580(struct e1000_hw *hw) 2249 { 2250 s32 ret_val = 0; 2251 /* BH SW mailbox bit in SW_FW_SYNC */ 2252 u16 swmbsw_mask = E1000_SW_SYNCH_MB; 2253 u32 ctrl; 2254 bool global_device_reset = hw->dev_spec._82575.global_device_reset; 2255 2256 hw->dev_spec._82575.global_device_reset = false; 2257 2258 /* due to hw errata, global device reset doesn't always 2259 * work on 82580 2260 */ 2261 if (hw->mac.type == e1000_82580) 2262 global_device_reset = false; 2263 2264 /* Get current control state. */ 2265 ctrl = rd32(E1000_CTRL); 2266 2267 /* Prevent the PCI-E bus from sticking if there is no TLP connection 2268 * on the last TLP read/write transaction when MAC is reset. 2269 */ 2270 ret_val = igb_disable_pcie_master(hw); 2271 if (ret_val) 2272 hw_dbg("PCI-E Master disable polling has failed.\n"); 2273 2274 hw_dbg("Masking off all interrupts\n"); 2275 wr32(E1000_IMC, 0xffffffff); 2276 wr32(E1000_RCTL, 0); 2277 wr32(E1000_TCTL, E1000_TCTL_PSP); 2278 wrfl(); 2279 2280 usleep_range(10000, 11000); 2281 2282 /* Determine whether or not a global dev reset is requested */ 2283 if (global_device_reset && 2284 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) 2285 global_device_reset = false; 2286 2287 if (global_device_reset && 2288 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) 2289 ctrl |= E1000_CTRL_DEV_RST; 2290 else 2291 ctrl |= E1000_CTRL_RST; 2292 2293 wr32(E1000_CTRL, ctrl); 2294 wrfl(); 2295 2296 /* Add delay to insure DEV_RST has time to complete */ 2297 if (global_device_reset) 2298 usleep_range(5000, 6000); 2299 2300 ret_val = igb_get_auto_rd_done(hw); 2301 if (ret_val) { 2302 /* When auto config read does not complete, do not 2303 * return with an error. This can happen in situations 2304 * where there is no eeprom and prevents getting link. 2305 */ 2306 hw_dbg("Auto Read Done did not complete\n"); 2307 } 2308 2309 /* clear global device reset status bit */ 2310 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); 2311 2312 /* Clear any pending interrupt events. */ 2313 wr32(E1000_IMC, 0xffffffff); 2314 rd32(E1000_ICR); 2315 2316 ret_val = igb_reset_mdicnfg_82580(hw); 2317 if (ret_val) 2318 hw_dbg("Could not reset MDICNFG based on EEPROM\n"); 2319 2320 /* Install any alternate MAC address into RAR0 */ 2321 ret_val = igb_check_alt_mac_addr(hw); 2322 2323 /* Release semaphore */ 2324 if (global_device_reset) 2325 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); 2326 2327 return ret_val; 2328 } 2329 2330 /** 2331 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size 2332 * @data: data received by reading RXPBS register 2333 * 2334 * The 82580 uses a table based approach for packet buffer allocation sizes. 2335 * This function converts the retrieved value into the correct table value 2336 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 2337 * 0x0 36 72 144 1 2 4 8 16 2338 * 0x8 35 70 140 rsv rsv rsv rsv rsv 2339 */ 2340 u16 igb_rxpbs_adjust_82580(u32 data) 2341 { 2342 u16 ret_val = 0; 2343 2344 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table)) 2345 ret_val = e1000_82580_rxpbs_table[data]; 2346 2347 return ret_val; 2348 } 2349 2350 /** 2351 * igb_validate_nvm_checksum_with_offset - Validate EEPROM 2352 * checksum 2353 * @hw: pointer to the HW structure 2354 * @offset: offset in words of the checksum protected region 2355 * 2356 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2357 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2358 **/ 2359 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, 2360 u16 offset) 2361 { 2362 s32 ret_val = 0; 2363 u16 checksum = 0; 2364 u16 i, nvm_data; 2365 2366 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { 2367 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2368 if (ret_val) { 2369 hw_dbg("NVM Read Error\n"); 2370 goto out; 2371 } 2372 checksum += nvm_data; 2373 } 2374 2375 if (checksum != (u16) NVM_SUM) { 2376 hw_dbg("NVM Checksum Invalid\n"); 2377 ret_val = -E1000_ERR_NVM; 2378 goto out; 2379 } 2380 2381 out: 2382 return ret_val; 2383 } 2384 2385 /** 2386 * igb_update_nvm_checksum_with_offset - Update EEPROM 2387 * checksum 2388 * @hw: pointer to the HW structure 2389 * @offset: offset in words of the checksum protected region 2390 * 2391 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2392 * up to the checksum. Then calculates the EEPROM checksum and writes the 2393 * value to the EEPROM. 2394 **/ 2395 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2396 { 2397 s32 ret_val; 2398 u16 checksum = 0; 2399 u16 i, nvm_data; 2400 2401 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { 2402 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2403 if (ret_val) { 2404 hw_dbg("NVM Read Error while updating checksum.\n"); 2405 goto out; 2406 } 2407 checksum += nvm_data; 2408 } 2409 checksum = (u16) NVM_SUM - checksum; 2410 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, 2411 &checksum); 2412 if (ret_val) 2413 hw_dbg("NVM Write Error while updating checksum.\n"); 2414 2415 out: 2416 return ret_val; 2417 } 2418 2419 /** 2420 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum 2421 * @hw: pointer to the HW structure 2422 * 2423 * Calculates the EEPROM section checksum by reading/adding each word of 2424 * the EEPROM and then verifies that the sum of the EEPROM is 2425 * equal to 0xBABA. 2426 **/ 2427 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) 2428 { 2429 s32 ret_val = 0; 2430 u16 eeprom_regions_count = 1; 2431 u16 j, nvm_data; 2432 u16 nvm_offset; 2433 2434 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2435 if (ret_val) { 2436 hw_dbg("NVM Read Error\n"); 2437 goto out; 2438 } 2439 2440 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { 2441 /* if checksums compatibility bit is set validate checksums 2442 * for all 4 ports. 2443 */ 2444 eeprom_regions_count = 4; 2445 } 2446 2447 for (j = 0; j < eeprom_regions_count; j++) { 2448 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2449 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2450 nvm_offset); 2451 if (ret_val != 0) 2452 goto out; 2453 } 2454 2455 out: 2456 return ret_val; 2457 } 2458 2459 /** 2460 * igb_update_nvm_checksum_82580 - Update EEPROM checksum 2461 * @hw: pointer to the HW structure 2462 * 2463 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2464 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2465 * checksum and writes the value to the EEPROM. 2466 **/ 2467 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) 2468 { 2469 s32 ret_val; 2470 u16 j, nvm_data; 2471 u16 nvm_offset; 2472 2473 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2474 if (ret_val) { 2475 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n"); 2476 goto out; 2477 } 2478 2479 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { 2480 /* set compatibility bit to validate checksums appropriately */ 2481 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; 2482 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, 2483 &nvm_data); 2484 if (ret_val) { 2485 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n"); 2486 goto out; 2487 } 2488 } 2489 2490 for (j = 0; j < 4; j++) { 2491 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2492 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2493 if (ret_val) 2494 goto out; 2495 } 2496 2497 out: 2498 return ret_val; 2499 } 2500 2501 /** 2502 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum 2503 * @hw: pointer to the HW structure 2504 * 2505 * Calculates the EEPROM section checksum by reading/adding each word of 2506 * the EEPROM and then verifies that the sum of the EEPROM is 2507 * equal to 0xBABA. 2508 **/ 2509 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) 2510 { 2511 s32 ret_val = 0; 2512 u16 j; 2513 u16 nvm_offset; 2514 2515 for (j = 0; j < 4; j++) { 2516 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2517 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2518 nvm_offset); 2519 if (ret_val != 0) 2520 goto out; 2521 } 2522 2523 out: 2524 return ret_val; 2525 } 2526 2527 /** 2528 * igb_update_nvm_checksum_i350 - Update EEPROM checksum 2529 * @hw: pointer to the HW structure 2530 * 2531 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2532 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2533 * checksum and writes the value to the EEPROM. 2534 **/ 2535 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) 2536 { 2537 s32 ret_val = 0; 2538 u16 j; 2539 u16 nvm_offset; 2540 2541 for (j = 0; j < 4; j++) { 2542 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2543 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2544 if (ret_val != 0) 2545 goto out; 2546 } 2547 2548 out: 2549 return ret_val; 2550 } 2551 2552 /** 2553 * __igb_access_emi_reg - Read/write EMI register 2554 * @hw: pointer to the HW structure 2555 * @address: EMI address to program 2556 * @data: pointer to value to read/write from/to the EMI address 2557 * @read: boolean flag to indicate read or write 2558 **/ 2559 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address, 2560 u16 *data, bool read) 2561 { 2562 s32 ret_val = 0; 2563 2564 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); 2565 if (ret_val) 2566 return ret_val; 2567 2568 if (read) 2569 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); 2570 else 2571 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); 2572 2573 return ret_val; 2574 } 2575 2576 /** 2577 * igb_read_emi_reg - Read Extended Management Interface register 2578 * @hw: pointer to the HW structure 2579 * @addr: EMI address to program 2580 * @data: value to be read from the EMI address 2581 **/ 2582 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) 2583 { 2584 return __igb_access_emi_reg(hw, addr, data, true); 2585 } 2586 2587 /** 2588 * igb_set_eee_i350 - Enable/disable EEE support 2589 * @hw: pointer to the HW structure 2590 * @adv1G: boolean flag enabling 1G EEE advertisement 2591 * @adv100M: boolean flag enabling 100M EEE advertisement 2592 * 2593 * Enable/disable EEE based on setting in dev_spec structure. 2594 * 2595 **/ 2596 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) 2597 { 2598 u32 ipcnfg, eeer; 2599 2600 if ((hw->mac.type < e1000_i350) || 2601 (hw->phy.media_type != e1000_media_type_copper)) 2602 goto out; 2603 ipcnfg = rd32(E1000_IPCNFG); 2604 eeer = rd32(E1000_EEER); 2605 2606 /* enable or disable per user setting */ 2607 if (!(hw->dev_spec._82575.eee_disable)) { 2608 u32 eee_su = rd32(E1000_EEE_SU); 2609 2610 if (adv100M) 2611 ipcnfg |= E1000_IPCNFG_EEE_100M_AN; 2612 else 2613 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; 2614 2615 if (adv1G) 2616 ipcnfg |= E1000_IPCNFG_EEE_1G_AN; 2617 else 2618 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; 2619 2620 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | 2621 E1000_EEER_LPI_FC); 2622 2623 /* This bit should not be set in normal operation. */ 2624 if (eee_su & E1000_EEE_SU_LPI_CLK_STP) 2625 hw_dbg("LPI Clock Stop Bit should not be set!\n"); 2626 2627 } else { 2628 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | 2629 E1000_IPCNFG_EEE_100M_AN); 2630 eeer &= ~(E1000_EEER_TX_LPI_EN | 2631 E1000_EEER_RX_LPI_EN | 2632 E1000_EEER_LPI_FC); 2633 } 2634 wr32(E1000_IPCNFG, ipcnfg); 2635 wr32(E1000_EEER, eeer); 2636 rd32(E1000_IPCNFG); 2637 rd32(E1000_EEER); 2638 out: 2639 2640 return 0; 2641 } 2642 2643 /** 2644 * igb_set_eee_i354 - Enable/disable EEE support 2645 * @hw: pointer to the HW structure 2646 * @adv1G: boolean flag enabling 1G EEE advertisement 2647 * @adv100M: boolean flag enabling 100M EEE advertisement 2648 * 2649 * Enable/disable EEE legacy mode based on setting in dev_spec structure. 2650 * 2651 **/ 2652 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) 2653 { 2654 struct e1000_phy_info *phy = &hw->phy; 2655 s32 ret_val = 0; 2656 u16 phy_data; 2657 2658 if ((hw->phy.media_type != e1000_media_type_copper) || 2659 ((phy->id != M88E1543_E_PHY_ID) && 2660 (phy->id != M88E1512_E_PHY_ID))) 2661 goto out; 2662 2663 if (!hw->dev_spec._82575.eee_disable) { 2664 /* Switch to PHY page 18. */ 2665 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); 2666 if (ret_val) 2667 goto out; 2668 2669 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, 2670 &phy_data); 2671 if (ret_val) 2672 goto out; 2673 2674 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; 2675 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, 2676 phy_data); 2677 if (ret_val) 2678 goto out; 2679 2680 /* Return the PHY to page 0. */ 2681 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2682 if (ret_val) 2683 goto out; 2684 2685 /* Turn on EEE advertisement. */ 2686 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2687 E1000_EEE_ADV_DEV_I354, 2688 &phy_data); 2689 if (ret_val) 2690 goto out; 2691 2692 if (adv100M) 2693 phy_data |= E1000_EEE_ADV_100_SUPPORTED; 2694 else 2695 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; 2696 2697 if (adv1G) 2698 phy_data |= E1000_EEE_ADV_1000_SUPPORTED; 2699 else 2700 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; 2701 2702 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2703 E1000_EEE_ADV_DEV_I354, 2704 phy_data); 2705 } else { 2706 /* Turn off EEE advertisement. */ 2707 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2708 E1000_EEE_ADV_DEV_I354, 2709 &phy_data); 2710 if (ret_val) 2711 goto out; 2712 2713 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | 2714 E1000_EEE_ADV_1000_SUPPORTED); 2715 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2716 E1000_EEE_ADV_DEV_I354, 2717 phy_data); 2718 } 2719 2720 out: 2721 return ret_val; 2722 } 2723 2724 /** 2725 * igb_get_eee_status_i354 - Get EEE status 2726 * @hw: pointer to the HW structure 2727 * @status: EEE status 2728 * 2729 * Get EEE status by guessing based on whether Tx or Rx LPI indications have 2730 * been received. 2731 **/ 2732 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status) 2733 { 2734 struct e1000_phy_info *phy = &hw->phy; 2735 s32 ret_val = 0; 2736 u16 phy_data; 2737 2738 /* Check if EEE is supported on this device. */ 2739 if ((hw->phy.media_type != e1000_media_type_copper) || 2740 ((phy->id != M88E1543_E_PHY_ID) && 2741 (phy->id != M88E1512_E_PHY_ID))) 2742 goto out; 2743 2744 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, 2745 E1000_PCS_STATUS_DEV_I354, 2746 &phy_data); 2747 if (ret_val) 2748 goto out; 2749 2750 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | 2751 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; 2752 2753 out: 2754 return ret_val; 2755 } 2756 2757 #ifdef CONFIG_IGB_HWMON 2758 static const u8 e1000_emc_temp_data[4] = { 2759 E1000_EMC_INTERNAL_DATA, 2760 E1000_EMC_DIODE1_DATA, 2761 E1000_EMC_DIODE2_DATA, 2762 E1000_EMC_DIODE3_DATA 2763 }; 2764 static const u8 e1000_emc_therm_limit[4] = { 2765 E1000_EMC_INTERNAL_THERM_LIMIT, 2766 E1000_EMC_DIODE1_THERM_LIMIT, 2767 E1000_EMC_DIODE2_THERM_LIMIT, 2768 E1000_EMC_DIODE3_THERM_LIMIT 2769 }; 2770 2771 /** 2772 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data 2773 * @hw: pointer to hardware structure 2774 * 2775 * Updates the temperatures in mac.thermal_sensor_data 2776 **/ 2777 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw) 2778 { 2779 u16 ets_offset; 2780 u16 ets_cfg; 2781 u16 ets_sensor; 2782 u8 num_sensors; 2783 u8 sensor_index; 2784 u8 sensor_location; 2785 u8 i; 2786 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2787 2788 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2789 return E1000_NOT_IMPLEMENTED; 2790 2791 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF); 2792 2793 /* Return the internal sensor only if ETS is unsupported */ 2794 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2795 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2796 return 0; 2797 2798 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2799 if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg) 2800 != NVM_ETS_TYPE_EMC) 2801 return E1000_NOT_IMPLEMENTED; 2802 2803 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2804 if (num_sensors > E1000_MAX_SENSORS) 2805 num_sensors = E1000_MAX_SENSORS; 2806 2807 for (i = 1; i < num_sensors; i++) { 2808 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2809 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor); 2810 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor); 2811 2812 if (sensor_location != 0) 2813 hw->phy.ops.read_i2c_byte(hw, 2814 e1000_emc_temp_data[sensor_index], 2815 E1000_I2C_THERMAL_SENSOR_ADDR, 2816 &data->sensor[i].temp); 2817 } 2818 return 0; 2819 } 2820 2821 /** 2822 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds 2823 * @hw: pointer to hardware structure 2824 * 2825 * Sets the thermal sensor thresholds according to the NVM map 2826 * and save off the threshold and location values into mac.thermal_sensor_data 2827 **/ 2828 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) 2829 { 2830 u16 ets_offset; 2831 u16 ets_cfg; 2832 u16 ets_sensor; 2833 u8 low_thresh_delta; 2834 u8 num_sensors; 2835 u8 sensor_index; 2836 u8 sensor_location; 2837 u8 therm_limit; 2838 u8 i; 2839 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2840 2841 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2842 return E1000_NOT_IMPLEMENTED; 2843 2844 memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); 2845 2846 data->sensor[0].location = 0x1; 2847 data->sensor[0].caution_thresh = 2848 (rd32(E1000_THHIGHTC) & 0xFF); 2849 data->sensor[0].max_op_thresh = 2850 (rd32(E1000_THLOWTC) & 0xFF); 2851 2852 /* Return the internal sensor only if ETS is unsupported */ 2853 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2854 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2855 return 0; 2856 2857 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2858 if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg) 2859 != NVM_ETS_TYPE_EMC) 2860 return E1000_NOT_IMPLEMENTED; 2861 2862 low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg); 2863 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2864 2865 for (i = 1; i <= num_sensors; i++) { 2866 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2867 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor); 2868 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor); 2869 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; 2870 2871 hw->phy.ops.write_i2c_byte(hw, 2872 e1000_emc_therm_limit[sensor_index], 2873 E1000_I2C_THERMAL_SENSOR_ADDR, 2874 therm_limit); 2875 2876 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { 2877 data->sensor[i].location = sensor_location; 2878 data->sensor[i].caution_thresh = therm_limit; 2879 data->sensor[i].max_op_thresh = therm_limit - 2880 low_thresh_delta; 2881 } 2882 } 2883 return 0; 2884 } 2885 2886 #endif 2887 static struct e1000_mac_operations e1000_mac_ops_82575 = { 2888 .init_hw = igb_init_hw_82575, 2889 .check_for_link = igb_check_for_link_82575, 2890 .rar_set = igb_rar_set, 2891 .read_mac_addr = igb_read_mac_addr_82575, 2892 .get_speed_and_duplex = igb_get_link_up_info_82575, 2893 #ifdef CONFIG_IGB_HWMON 2894 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic, 2895 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic, 2896 #endif 2897 }; 2898 2899 static const struct e1000_phy_operations e1000_phy_ops_82575 = { 2900 .acquire = igb_acquire_phy_82575, 2901 .get_cfg_done = igb_get_cfg_done_82575, 2902 .release = igb_release_phy_82575, 2903 .write_i2c_byte = igb_write_i2c_byte, 2904 .read_i2c_byte = igb_read_i2c_byte, 2905 }; 2906 2907 static struct e1000_nvm_operations e1000_nvm_ops_82575 = { 2908 .acquire = igb_acquire_nvm_82575, 2909 .read = igb_read_nvm_eerd, 2910 .release = igb_release_nvm_82575, 2911 .write = igb_write_nvm_spi, 2912 }; 2913 2914 const struct e1000_info e1000_82575_info = { 2915 .get_invariants = igb_get_invariants_82575, 2916 .mac_ops = &e1000_mac_ops_82575, 2917 .phy_ops = &e1000_phy_ops_82575, 2918 .nvm_ops = &e1000_nvm_ops_82575, 2919 }; 2920 2921