xref: /linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40 
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64 						 u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77 	{ 36, 72, 144, 1, 2, 4, 8, 16,
78 	  35, 70, 140 };
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81 
82 /**
83  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84  *  @hw: pointer to the HW structure
85  *
86  *  Called to determine if the I2C pins are being used for I2C or as an
87  *  external MDIO interface since the two options are mutually exclusive.
88  **/
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90 {
91 	u32 reg = 0;
92 	bool ext_mdio = false;
93 
94 	switch (hw->mac.type) {
95 	case e1000_82575:
96 	case e1000_82576:
97 		reg = rd32(E1000_MDIC);
98 		ext_mdio = !!(reg & E1000_MDIC_DEST);
99 		break;
100 	case e1000_82580:
101 	case e1000_i350:
102 	case e1000_i210:
103 	case e1000_i211:
104 		reg = rd32(E1000_MDICNFG);
105 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 		break;
107 	default:
108 		break;
109 	}
110 	return ext_mdio;
111 }
112 
113 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114 {
115 	struct e1000_phy_info *phy = &hw->phy;
116 	struct e1000_nvm_info *nvm = &hw->nvm;
117 	struct e1000_mac_info *mac = &hw->mac;
118 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119 	u32 eecd;
120 	s32 ret_val;
121 	u16 size;
122 	u32 ctrl_ext = 0;
123 
124 	switch (hw->device_id) {
125 	case E1000_DEV_ID_82575EB_COPPER:
126 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
127 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
128 		mac->type = e1000_82575;
129 		break;
130 	case E1000_DEV_ID_82576:
131 	case E1000_DEV_ID_82576_NS:
132 	case E1000_DEV_ID_82576_NS_SERDES:
133 	case E1000_DEV_ID_82576_FIBER:
134 	case E1000_DEV_ID_82576_SERDES:
135 	case E1000_DEV_ID_82576_QUAD_COPPER:
136 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137 	case E1000_DEV_ID_82576_SERDES_QUAD:
138 		mac->type = e1000_82576;
139 		break;
140 	case E1000_DEV_ID_82580_COPPER:
141 	case E1000_DEV_ID_82580_FIBER:
142 	case E1000_DEV_ID_82580_QUAD_FIBER:
143 	case E1000_DEV_ID_82580_SERDES:
144 	case E1000_DEV_ID_82580_SGMII:
145 	case E1000_DEV_ID_82580_COPPER_DUAL:
146 	case E1000_DEV_ID_DH89XXCC_SGMII:
147 	case E1000_DEV_ID_DH89XXCC_SERDES:
148 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149 	case E1000_DEV_ID_DH89XXCC_SFP:
150 		mac->type = e1000_82580;
151 		break;
152 	case E1000_DEV_ID_I350_COPPER:
153 	case E1000_DEV_ID_I350_FIBER:
154 	case E1000_DEV_ID_I350_SERDES:
155 	case E1000_DEV_ID_I350_SGMII:
156 		mac->type = e1000_i350;
157 		break;
158 	case E1000_DEV_ID_I210_COPPER:
159 	case E1000_DEV_ID_I210_COPPER_OEM1:
160 	case E1000_DEV_ID_I210_COPPER_IT:
161 	case E1000_DEV_ID_I210_FIBER:
162 	case E1000_DEV_ID_I210_SERDES:
163 	case E1000_DEV_ID_I210_SGMII:
164 		mac->type = e1000_i210;
165 		break;
166 	case E1000_DEV_ID_I211_COPPER:
167 		mac->type = e1000_i211;
168 		break;
169 	default:
170 		return -E1000_ERR_MAC_INIT;
171 		break;
172 	}
173 
174 	/* Set media type */
175 	/*
176 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177 	 * based on the EEPROM. We cannot rely upon device ID. There
178 	 * is no distinguishable difference between fiber and internal
179 	 * SerDes mode on the 82575. There can be an external PHY attached
180 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
181 	 */
182 	phy->media_type = e1000_media_type_copper;
183 	dev_spec->sgmii_active = false;
184 
185 	ctrl_ext = rd32(E1000_CTRL_EXT);
186 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188 		dev_spec->sgmii_active = true;
189 		break;
190 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192 		hw->phy.media_type = e1000_media_type_internal_serdes;
193 		break;
194 	default:
195 		break;
196 	}
197 
198 	/* Set mta register count */
199 	mac->mta_reg_count = 128;
200 	/* Set rar entry count */
201 	switch (mac->type) {
202 	case e1000_82576:
203 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204 		break;
205 	case e1000_82580:
206 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207 		break;
208 	case e1000_i350:
209 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210 		break;
211 	default:
212 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
213 		break;
214 	}
215 	/* reset */
216 	if (mac->type >= e1000_82580)
217 		mac->ops.reset_hw = igb_reset_hw_82580;
218 	else
219 		mac->ops.reset_hw = igb_reset_hw_82575;
220 
221 	if (mac->type >= e1000_i210) {
222 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
223 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
224 	} else {
225 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
226 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
227 	}
228 
229 	/* Set if part includes ASF firmware */
230 	mac->asf_firmware_present = true;
231 	/* Set if manageability features are enabled. */
232 	mac->arc_subsystem_valid =
233 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
234 			? true : false;
235 	/* enable EEE on i350 parts and later parts */
236 	if (mac->type >= e1000_i350)
237 		dev_spec->eee_disable = false;
238 	else
239 		dev_spec->eee_disable = true;
240 	/* physical interface link setup */
241 	mac->ops.setup_physical_interface =
242 		(hw->phy.media_type == e1000_media_type_copper)
243 			? igb_setup_copper_link_82575
244 			: igb_setup_serdes_link_82575;
245 
246 	/* NVM initialization */
247 	eecd = rd32(E1000_EECD);
248 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
249 		     E1000_EECD_SIZE_EX_SHIFT);
250 
251 	/*
252 	 * Added to a constant, "size" becomes the left-shift value
253 	 * for setting word_size.
254 	 */
255 	size += NVM_WORD_SIZE_BASE_SHIFT;
256 
257 	/*
258 	 * Check for invalid size
259 	 */
260 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
261 		pr_notice("The NVM size is not valid, defaulting to 32K\n");
262 		size = 15;
263 	}
264 
265 	nvm->word_size = 1 << size;
266 	if (hw->mac.type < e1000_i210) {
267 		nvm->opcode_bits        = 8;
268 		nvm->delay_usec         = 1;
269 		switch (nvm->override) {
270 		case e1000_nvm_override_spi_large:
271 			nvm->page_size    = 32;
272 			nvm->address_bits = 16;
273 			break;
274 		case e1000_nvm_override_spi_small:
275 			nvm->page_size    = 8;
276 			nvm->address_bits = 8;
277 			break;
278 		default:
279 			nvm->page_size    = eecd
280 				& E1000_EECD_ADDR_BITS ? 32 : 8;
281 			nvm->address_bits = eecd
282 				& E1000_EECD_ADDR_BITS ? 16 : 8;
283 			break;
284 		}
285 		if (nvm->word_size == (1 << 15))
286 			nvm->page_size = 128;
287 
288 		nvm->type = e1000_nvm_eeprom_spi;
289 	} else
290 		nvm->type = e1000_nvm_flash_hw;
291 
292 	/* NVM Function Pointers */
293 	switch (hw->mac.type) {
294 	case e1000_82580:
295 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
296 		nvm->ops.update = igb_update_nvm_checksum_82580;
297 		nvm->ops.acquire = igb_acquire_nvm_82575;
298 		nvm->ops.release = igb_release_nvm_82575;
299 		if (nvm->word_size < (1 << 15))
300 			nvm->ops.read = igb_read_nvm_eerd;
301 		else
302 			nvm->ops.read = igb_read_nvm_spi;
303 		nvm->ops.write = igb_write_nvm_spi;
304 		break;
305 	case e1000_i350:
306 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
307 		nvm->ops.update = igb_update_nvm_checksum_i350;
308 		nvm->ops.acquire = igb_acquire_nvm_82575;
309 		nvm->ops.release = igb_release_nvm_82575;
310 		if (nvm->word_size < (1 << 15))
311 			nvm->ops.read = igb_read_nvm_eerd;
312 		else
313 			nvm->ops.read = igb_read_nvm_spi;
314 		nvm->ops.write = igb_write_nvm_spi;
315 		break;
316 	case e1000_i210:
317 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
318 		nvm->ops.update   = igb_update_nvm_checksum_i210;
319 		nvm->ops.acquire = igb_acquire_nvm_i210;
320 		nvm->ops.release = igb_release_nvm_i210;
321 		nvm->ops.read    = igb_read_nvm_srrd_i210;
322 		nvm->ops.write   = igb_write_nvm_srwr_i210;
323 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
324 		break;
325 	case e1000_i211:
326 		nvm->ops.acquire  = igb_acquire_nvm_i210;
327 		nvm->ops.release  = igb_release_nvm_i210;
328 		nvm->ops.read     = igb_read_nvm_i211;
329 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
330 		nvm->ops.validate = NULL;
331 		nvm->ops.update   = NULL;
332 		nvm->ops.write    = NULL;
333 		break;
334 	default:
335 		nvm->ops.validate = igb_validate_nvm_checksum;
336 		nvm->ops.update = igb_update_nvm_checksum;
337 		nvm->ops.acquire = igb_acquire_nvm_82575;
338 		nvm->ops.release = igb_release_nvm_82575;
339 		if (nvm->word_size < (1 << 15))
340 			nvm->ops.read = igb_read_nvm_eerd;
341 		else
342 			nvm->ops.read = igb_read_nvm_spi;
343 		nvm->ops.write = igb_write_nvm_spi;
344 		break;
345 	}
346 
347 	/* if part supports SR-IOV then initialize mailbox parameters */
348 	switch (mac->type) {
349 	case e1000_82576:
350 	case e1000_i350:
351 		igb_init_mbx_params_pf(hw);
352 		break;
353 	default:
354 		break;
355 	}
356 
357 	/* setup PHY parameters */
358 	if (phy->media_type != e1000_media_type_copper) {
359 		phy->type = e1000_phy_none;
360 		return 0;
361 	}
362 
363 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
364 	phy->reset_delay_us      = 100;
365 
366 	ctrl_ext = rd32(E1000_CTRL_EXT);
367 
368 	/* PHY function pointers */
369 	if (igb_sgmii_active_82575(hw)) {
370 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
371 		ctrl_ext |= E1000_CTRL_I2C_ENA;
372 	} else {
373 		phy->ops.reset      = igb_phy_hw_reset;
374 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
375 	}
376 
377 	wr32(E1000_CTRL_EXT, ctrl_ext);
378 	igb_reset_mdicnfg_82580(hw);
379 
380 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
381 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
382 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
383 	} else if ((hw->mac.type == e1000_82580)
384 		|| (hw->mac.type == e1000_i350)) {
385 		phy->ops.read_reg   = igb_read_phy_reg_82580;
386 		phy->ops.write_reg  = igb_write_phy_reg_82580;
387 	} else if (hw->phy.type >= e1000_phy_i210) {
388 		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
389 		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
390 	} else {
391 		phy->ops.read_reg   = igb_read_phy_reg_igp;
392 		phy->ops.write_reg  = igb_write_phy_reg_igp;
393 	}
394 
395 	/* set lan id */
396 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
397 	               E1000_STATUS_FUNC_SHIFT;
398 
399 	/* Set phy->phy_addr and phy->id. */
400 	ret_val = igb_get_phy_id_82575(hw);
401 	if (ret_val)
402 		return ret_val;
403 
404 	/* Verify phy id and set remaining function pointers */
405 	switch (phy->id) {
406 	case I347AT4_E_PHY_ID:
407 	case M88E1112_E_PHY_ID:
408 	case M88E1111_I_PHY_ID:
409 		phy->type                   = e1000_phy_m88;
410 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
411 
412 		if (phy->id == I347AT4_E_PHY_ID ||
413 		    phy->id == M88E1112_E_PHY_ID)
414 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
415 		else
416 			phy->ops.get_cable_length = igb_get_cable_length_m88;
417 
418 		if (phy->id == I210_I_PHY_ID) {
419 			phy->ops.get_cable_length =
420 					 igb_get_cable_length_m88_gen2;
421 			phy->ops.set_d0_lplu_state =
422 					igb_set_d0_lplu_state_82580;
423 			phy->ops.set_d3_lplu_state =
424 					igb_set_d3_lplu_state_82580;
425 		}
426 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
427 		break;
428 	case IGP03E1000_E_PHY_ID:
429 		phy->type                   = e1000_phy_igp_3;
430 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
431 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
432 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
433 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
434 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
435 		break;
436 	case I82580_I_PHY_ID:
437 	case I350_I_PHY_ID:
438 		phy->type                   = e1000_phy_82580;
439 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
440 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
441 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
442 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
443 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
444 		break;
445 	case I210_I_PHY_ID:
446 		phy->type                   = e1000_phy_i210;
447 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
448 		phy->ops.check_polarity     = igb_check_polarity_m88;
449 		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
450 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
451 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
452 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
453 		break;
454 	default:
455 		return -E1000_ERR_PHY;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  *  igb_acquire_phy_82575 - Acquire rights to access PHY
463  *  @hw: pointer to the HW structure
464  *
465  *  Acquire access rights to the correct PHY.  This is a
466  *  function pointer entry point called by the api module.
467  **/
468 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
469 {
470 	u16 mask = E1000_SWFW_PHY0_SM;
471 
472 	if (hw->bus.func == E1000_FUNC_1)
473 		mask = E1000_SWFW_PHY1_SM;
474 	else if (hw->bus.func == E1000_FUNC_2)
475 		mask = E1000_SWFW_PHY2_SM;
476 	else if (hw->bus.func == E1000_FUNC_3)
477 		mask = E1000_SWFW_PHY3_SM;
478 
479 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
480 }
481 
482 /**
483  *  igb_release_phy_82575 - Release rights to access PHY
484  *  @hw: pointer to the HW structure
485  *
486  *  A wrapper to release access rights to the correct PHY.  This is a
487  *  function pointer entry point called by the api module.
488  **/
489 static void igb_release_phy_82575(struct e1000_hw *hw)
490 {
491 	u16 mask = E1000_SWFW_PHY0_SM;
492 
493 	if (hw->bus.func == E1000_FUNC_1)
494 		mask = E1000_SWFW_PHY1_SM;
495 	else if (hw->bus.func == E1000_FUNC_2)
496 		mask = E1000_SWFW_PHY2_SM;
497 	else if (hw->bus.func == E1000_FUNC_3)
498 		mask = E1000_SWFW_PHY3_SM;
499 
500 	hw->mac.ops.release_swfw_sync(hw, mask);
501 }
502 
503 /**
504  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
505  *  @hw: pointer to the HW structure
506  *  @offset: register offset to be read
507  *  @data: pointer to the read data
508  *
509  *  Reads the PHY register at offset using the serial gigabit media independent
510  *  interface and stores the retrieved information in data.
511  **/
512 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
513 					  u16 *data)
514 {
515 	s32 ret_val = -E1000_ERR_PARAM;
516 
517 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
518 		hw_dbg("PHY Address %u is out of range\n", offset);
519 		goto out;
520 	}
521 
522 	ret_val = hw->phy.ops.acquire(hw);
523 	if (ret_val)
524 		goto out;
525 
526 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
527 
528 	hw->phy.ops.release(hw);
529 
530 out:
531 	return ret_val;
532 }
533 
534 /**
535  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
536  *  @hw: pointer to the HW structure
537  *  @offset: register offset to write to
538  *  @data: data to write at register offset
539  *
540  *  Writes the data to PHY register at the offset using the serial gigabit
541  *  media independent interface.
542  **/
543 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
544 					   u16 data)
545 {
546 	s32 ret_val = -E1000_ERR_PARAM;
547 
548 
549 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
550 		hw_dbg("PHY Address %d is out of range\n", offset);
551 		goto out;
552 	}
553 
554 	ret_val = hw->phy.ops.acquire(hw);
555 	if (ret_val)
556 		goto out;
557 
558 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
559 
560 	hw->phy.ops.release(hw);
561 
562 out:
563 	return ret_val;
564 }
565 
566 /**
567  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
568  *  @hw: pointer to the HW structure
569  *
570  *  Retrieves the PHY address and ID for both PHY's which do and do not use
571  *  sgmi interface.
572  **/
573 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
574 {
575 	struct e1000_phy_info *phy = &hw->phy;
576 	s32  ret_val = 0;
577 	u16 phy_id;
578 	u32 ctrl_ext;
579 	u32 mdic;
580 
581 	/*
582 	 * For SGMII PHYs, we try the list of possible addresses until
583 	 * we find one that works.  For non-SGMII PHYs
584 	 * (e.g. integrated copper PHYs), an address of 1 should
585 	 * work.  The result of this function should mean phy->phy_addr
586 	 * and phy->id are set correctly.
587 	 */
588 	if (!(igb_sgmii_active_82575(hw))) {
589 		phy->addr = 1;
590 		ret_val = igb_get_phy_id(hw);
591 		goto out;
592 	}
593 
594 	if (igb_sgmii_uses_mdio_82575(hw)) {
595 		switch (hw->mac.type) {
596 		case e1000_82575:
597 		case e1000_82576:
598 			mdic = rd32(E1000_MDIC);
599 			mdic &= E1000_MDIC_PHY_MASK;
600 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
601 			break;
602 		case e1000_82580:
603 		case e1000_i350:
604 		case e1000_i210:
605 		case e1000_i211:
606 			mdic = rd32(E1000_MDICNFG);
607 			mdic &= E1000_MDICNFG_PHY_MASK;
608 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
609 			break;
610 		default:
611 			ret_val = -E1000_ERR_PHY;
612 			goto out;
613 			break;
614 		}
615 		ret_val = igb_get_phy_id(hw);
616 		goto out;
617 	}
618 
619 	/* Power on sgmii phy if it is disabled */
620 	ctrl_ext = rd32(E1000_CTRL_EXT);
621 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
622 	wrfl();
623 	msleep(300);
624 
625 	/*
626 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
627 	 * Therefore, we need to test 1-7
628 	 */
629 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
630 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
631 		if (ret_val == 0) {
632 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
633 			       phy_id, phy->addr);
634 			/*
635 			 * At the time of this writing, The M88 part is
636 			 * the only supported SGMII PHY product.
637 			 */
638 			if (phy_id == M88_VENDOR)
639 				break;
640 		} else {
641 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
642 		}
643 	}
644 
645 	/* A valid PHY type couldn't be found. */
646 	if (phy->addr == 8) {
647 		phy->addr = 0;
648 		ret_val = -E1000_ERR_PHY;
649 		goto out;
650 	} else {
651 		ret_val = igb_get_phy_id(hw);
652 	}
653 
654 	/* restore previous sfp cage power state */
655 	wr32(E1000_CTRL_EXT, ctrl_ext);
656 
657 out:
658 	return ret_val;
659 }
660 
661 /**
662  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
663  *  @hw: pointer to the HW structure
664  *
665  *  Resets the PHY using the serial gigabit media independent interface.
666  **/
667 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
668 {
669 	s32 ret_val;
670 
671 	/*
672 	 * This isn't a true "hard" reset, but is the only reset
673 	 * available to us at this time.
674 	 */
675 
676 	hw_dbg("Soft resetting SGMII attached PHY...\n");
677 
678 	/*
679 	 * SFP documentation requires the following to configure the SPF module
680 	 * to work on SGMII.  No further documentation is given.
681 	 */
682 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
683 	if (ret_val)
684 		goto out;
685 
686 	ret_val = igb_phy_sw_reset(hw);
687 
688 out:
689 	return ret_val;
690 }
691 
692 /**
693  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
694  *  @hw: pointer to the HW structure
695  *  @active: true to enable LPLU, false to disable
696  *
697  *  Sets the LPLU D0 state according to the active flag.  When
698  *  activating LPLU this function also disables smart speed
699  *  and vice versa.  LPLU will not be activated unless the
700  *  device autonegotiation advertisement meets standards of
701  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
702  *  This is a function pointer entry point only called by
703  *  PHY setup routines.
704  **/
705 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
706 {
707 	struct e1000_phy_info *phy = &hw->phy;
708 	s32 ret_val;
709 	u16 data;
710 
711 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
712 	if (ret_val)
713 		goto out;
714 
715 	if (active) {
716 		data |= IGP02E1000_PM_D0_LPLU;
717 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
718 						 data);
719 		if (ret_val)
720 			goto out;
721 
722 		/* When LPLU is enabled, we should disable SmartSpeed */
723 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
724 						&data);
725 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
726 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
727 						 data);
728 		if (ret_val)
729 			goto out;
730 	} else {
731 		data &= ~IGP02E1000_PM_D0_LPLU;
732 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
733 						 data);
734 		/*
735 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
736 		 * during Dx states where the power conservation is most
737 		 * important.  During driver activity we should enable
738 		 * SmartSpeed, so performance is maintained.
739 		 */
740 		if (phy->smart_speed == e1000_smart_speed_on) {
741 			ret_val = phy->ops.read_reg(hw,
742 					IGP01E1000_PHY_PORT_CONFIG, &data);
743 			if (ret_val)
744 				goto out;
745 
746 			data |= IGP01E1000_PSCFR_SMART_SPEED;
747 			ret_val = phy->ops.write_reg(hw,
748 					IGP01E1000_PHY_PORT_CONFIG, data);
749 			if (ret_val)
750 				goto out;
751 		} else if (phy->smart_speed == e1000_smart_speed_off) {
752 			ret_val = phy->ops.read_reg(hw,
753 					IGP01E1000_PHY_PORT_CONFIG, &data);
754 			if (ret_val)
755 				goto out;
756 
757 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
758 			ret_val = phy->ops.write_reg(hw,
759 					IGP01E1000_PHY_PORT_CONFIG, data);
760 			if (ret_val)
761 				goto out;
762 		}
763 	}
764 
765 out:
766 	return ret_val;
767 }
768 
769 /**
770  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
771  *  @hw: pointer to the HW structure
772  *  @active: true to enable LPLU, false to disable
773  *
774  *  Sets the LPLU D0 state according to the active flag.  When
775  *  activating LPLU this function also disables smart speed
776  *  and vice versa.  LPLU will not be activated unless the
777  *  device autonegotiation advertisement meets standards of
778  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
779  *  This is a function pointer entry point only called by
780  *  PHY setup routines.
781  **/
782 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
783 {
784 	struct e1000_phy_info *phy = &hw->phy;
785 	s32 ret_val = 0;
786 	u16 data;
787 
788 	data = rd32(E1000_82580_PHY_POWER_MGMT);
789 
790 	if (active) {
791 		data |= E1000_82580_PM_D0_LPLU;
792 
793 		/* When LPLU is enabled, we should disable SmartSpeed */
794 		data &= ~E1000_82580_PM_SPD;
795 	} else {
796 		data &= ~E1000_82580_PM_D0_LPLU;
797 
798 		/*
799 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
800 		 * during Dx states where the power conservation is most
801 		 * important.  During driver activity we should enable
802 		 * SmartSpeed, so performance is maintained.
803 		 */
804 		if (phy->smart_speed == e1000_smart_speed_on)
805 			data |= E1000_82580_PM_SPD;
806 		else if (phy->smart_speed == e1000_smart_speed_off)
807 			data &= ~E1000_82580_PM_SPD; }
808 
809 	wr32(E1000_82580_PHY_POWER_MGMT, data);
810 	return ret_val;
811 }
812 
813 /**
814  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
815  *  @hw: pointer to the HW structure
816  *  @active: boolean used to enable/disable lplu
817  *
818  *  Success returns 0, Failure returns 1
819  *
820  *  The low power link up (lplu) state is set to the power management level D3
821  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
822  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
823  *  is used during Dx states where the power conservation is most important.
824  *  During driver activity, SmartSpeed should be enabled so performance is
825  *  maintained.
826  **/
827 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
828 {
829 	struct e1000_phy_info *phy = &hw->phy;
830 	s32 ret_val = 0;
831 	u16 data;
832 
833 	data = rd32(E1000_82580_PHY_POWER_MGMT);
834 
835 	if (!active) {
836 		data &= ~E1000_82580_PM_D3_LPLU;
837 		/*
838 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
839 		 * during Dx states where the power conservation is most
840 		 * important.  During driver activity we should enable
841 		 * SmartSpeed, so performance is maintained.
842 		 */
843 		if (phy->smart_speed == e1000_smart_speed_on)
844 			data |= E1000_82580_PM_SPD;
845 		else if (phy->smart_speed == e1000_smart_speed_off)
846 			data &= ~E1000_82580_PM_SPD;
847 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
848 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
849 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
850 		data |= E1000_82580_PM_D3_LPLU;
851 		/* When LPLU is enabled, we should disable SmartSpeed */
852 		data &= ~E1000_82580_PM_SPD;
853 	}
854 
855 	wr32(E1000_82580_PHY_POWER_MGMT, data);
856 	return ret_val;
857 }
858 
859 /**
860  *  igb_acquire_nvm_82575 - Request for access to EEPROM
861  *  @hw: pointer to the HW structure
862  *
863  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
864  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
865  *  Return successful if access grant bit set, else clear the request for
866  *  EEPROM access and return -E1000_ERR_NVM (-1).
867  **/
868 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
869 {
870 	s32 ret_val;
871 
872 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
873 	if (ret_val)
874 		goto out;
875 
876 	ret_val = igb_acquire_nvm(hw);
877 
878 	if (ret_val)
879 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
880 
881 out:
882 	return ret_val;
883 }
884 
885 /**
886  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
887  *  @hw: pointer to the HW structure
888  *
889  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
890  *  then release the semaphores acquired.
891  **/
892 static void igb_release_nvm_82575(struct e1000_hw *hw)
893 {
894 	igb_release_nvm(hw);
895 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
896 }
897 
898 /**
899  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
900  *  @hw: pointer to the HW structure
901  *  @mask: specifies which semaphore to acquire
902  *
903  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
904  *  will also specify which port we're acquiring the lock for.
905  **/
906 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
907 {
908 	u32 swfw_sync;
909 	u32 swmask = mask;
910 	u32 fwmask = mask << 16;
911 	s32 ret_val = 0;
912 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
913 
914 	while (i < timeout) {
915 		if (igb_get_hw_semaphore(hw)) {
916 			ret_val = -E1000_ERR_SWFW_SYNC;
917 			goto out;
918 		}
919 
920 		swfw_sync = rd32(E1000_SW_FW_SYNC);
921 		if (!(swfw_sync & (fwmask | swmask)))
922 			break;
923 
924 		/*
925 		 * Firmware currently using resource (fwmask)
926 		 * or other software thread using resource (swmask)
927 		 */
928 		igb_put_hw_semaphore(hw);
929 		mdelay(5);
930 		i++;
931 	}
932 
933 	if (i == timeout) {
934 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
935 		ret_val = -E1000_ERR_SWFW_SYNC;
936 		goto out;
937 	}
938 
939 	swfw_sync |= swmask;
940 	wr32(E1000_SW_FW_SYNC, swfw_sync);
941 
942 	igb_put_hw_semaphore(hw);
943 
944 out:
945 	return ret_val;
946 }
947 
948 /**
949  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
950  *  @hw: pointer to the HW structure
951  *  @mask: specifies which semaphore to acquire
952  *
953  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
954  *  will also specify which port we're releasing the lock for.
955  **/
956 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
957 {
958 	u32 swfw_sync;
959 
960 	while (igb_get_hw_semaphore(hw) != 0);
961 	/* Empty */
962 
963 	swfw_sync = rd32(E1000_SW_FW_SYNC);
964 	swfw_sync &= ~mask;
965 	wr32(E1000_SW_FW_SYNC, swfw_sync);
966 
967 	igb_put_hw_semaphore(hw);
968 }
969 
970 /**
971  *  igb_get_cfg_done_82575 - Read config done bit
972  *  @hw: pointer to the HW structure
973  *
974  *  Read the management control register for the config done bit for
975  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
976  *  to read the config done bit, so an error is *ONLY* logged and returns
977  *  0.  If we were to return with error, EEPROM-less silicon
978  *  would not be able to be reset or change link.
979  **/
980 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
981 {
982 	s32 timeout = PHY_CFG_TIMEOUT;
983 	s32 ret_val = 0;
984 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
985 
986 	if (hw->bus.func == 1)
987 		mask = E1000_NVM_CFG_DONE_PORT_1;
988 	else if (hw->bus.func == E1000_FUNC_2)
989 		mask = E1000_NVM_CFG_DONE_PORT_2;
990 	else if (hw->bus.func == E1000_FUNC_3)
991 		mask = E1000_NVM_CFG_DONE_PORT_3;
992 
993 	while (timeout) {
994 		if (rd32(E1000_EEMNGCTL) & mask)
995 			break;
996 		msleep(1);
997 		timeout--;
998 	}
999 	if (!timeout)
1000 		hw_dbg("MNG configuration cycle has not completed.\n");
1001 
1002 	/* If EEPROM is not marked present, init the PHY manually */
1003 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1004 	    (hw->phy.type == e1000_phy_igp_3))
1005 		igb_phy_init_script_igp3(hw);
1006 
1007 	return ret_val;
1008 }
1009 
1010 /**
1011  *  igb_check_for_link_82575 - Check for link
1012  *  @hw: pointer to the HW structure
1013  *
1014  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1015  *  use the generic interface for determining link.
1016  **/
1017 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1018 {
1019 	s32 ret_val;
1020 	u16 speed, duplex;
1021 
1022 	if (hw->phy.media_type != e1000_media_type_copper) {
1023 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1024 		                                             &duplex);
1025 		/*
1026 		 * Use this flag to determine if link needs to be checked or
1027 		 * not.  If  we have link clear the flag so that we do not
1028 		 * continue to check for link.
1029 		 */
1030 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1031 
1032 		/* Configure Flow Control now that Auto-Neg has completed.
1033 		 * First, we need to restore the desired flow control
1034 		 * settings because we may have had to re-autoneg with a
1035 		 * different link partner.
1036 		 */
1037 		ret_val = igb_config_fc_after_link_up(hw);
1038 		if (ret_val)
1039 			hw_dbg("Error configuring flow control\n");
1040 	} else {
1041 		ret_val = igb_check_for_copper_link(hw);
1042 	}
1043 
1044 	return ret_val;
1045 }
1046 
1047 /**
1048  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1049  *  @hw: pointer to the HW structure
1050  **/
1051 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1052 {
1053 	u32 reg;
1054 
1055 
1056 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1057 	    !igb_sgmii_active_82575(hw))
1058 		return;
1059 
1060 	/* Enable PCS to turn on link */
1061 	reg = rd32(E1000_PCS_CFG0);
1062 	reg |= E1000_PCS_CFG_PCS_EN;
1063 	wr32(E1000_PCS_CFG0, reg);
1064 
1065 	/* Power up the laser */
1066 	reg = rd32(E1000_CTRL_EXT);
1067 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1068 	wr32(E1000_CTRL_EXT, reg);
1069 
1070 	/* flush the write to verify completion */
1071 	wrfl();
1072 	msleep(1);
1073 }
1074 
1075 /**
1076  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1077  *  @hw: pointer to the HW structure
1078  *  @speed: stores the current speed
1079  *  @duplex: stores the current duplex
1080  *
1081  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1082  *  duplex, then store the values in the pointers provided.
1083  **/
1084 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1085 						u16 *duplex)
1086 {
1087 	struct e1000_mac_info *mac = &hw->mac;
1088 	u32 pcs;
1089 
1090 	/* Set up defaults for the return values of this function */
1091 	mac->serdes_has_link = false;
1092 	*speed = 0;
1093 	*duplex = 0;
1094 
1095 	/*
1096 	 * Read the PCS Status register for link state. For non-copper mode,
1097 	 * the status register is not accurate. The PCS status register is
1098 	 * used instead.
1099 	 */
1100 	pcs = rd32(E1000_PCS_LSTAT);
1101 
1102 	/*
1103 	 * The link up bit determines when link is up on autoneg. The sync ok
1104 	 * gets set once both sides sync up and agree upon link. Stable link
1105 	 * can be determined by checking for both link up and link sync ok
1106 	 */
1107 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1108 		mac->serdes_has_link = true;
1109 
1110 		/* Detect and store PCS speed */
1111 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1112 			*speed = SPEED_1000;
1113 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1114 			*speed = SPEED_100;
1115 		} else {
1116 			*speed = SPEED_10;
1117 		}
1118 
1119 		/* Detect and store PCS duplex */
1120 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1121 			*duplex = FULL_DUPLEX;
1122 		} else {
1123 			*duplex = HALF_DUPLEX;
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1132  *  @hw: pointer to the HW structure
1133  *
1134  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1135  *  when management pass thru is not enabled.
1136  **/
1137 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1138 {
1139 	u32 reg;
1140 
1141 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1142 	    igb_sgmii_active_82575(hw))
1143 		return;
1144 
1145 	if (!igb_enable_mng_pass_thru(hw)) {
1146 		/* Disable PCS to turn off link */
1147 		reg = rd32(E1000_PCS_CFG0);
1148 		reg &= ~E1000_PCS_CFG_PCS_EN;
1149 		wr32(E1000_PCS_CFG0, reg);
1150 
1151 		/* shutdown the laser */
1152 		reg = rd32(E1000_CTRL_EXT);
1153 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1154 		wr32(E1000_CTRL_EXT, reg);
1155 
1156 		/* flush the write to verify completion */
1157 		wrfl();
1158 		msleep(1);
1159 	}
1160 }
1161 
1162 /**
1163  *  igb_reset_hw_82575 - Reset hardware
1164  *  @hw: pointer to the HW structure
1165  *
1166  *  This resets the hardware into a known state.  This is a
1167  *  function pointer entry point called by the api module.
1168  **/
1169 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1170 {
1171 	u32 ctrl, icr;
1172 	s32 ret_val;
1173 
1174 	/*
1175 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1176 	 * on the last TLP read/write transaction when MAC is reset.
1177 	 */
1178 	ret_val = igb_disable_pcie_master(hw);
1179 	if (ret_val)
1180 		hw_dbg("PCI-E Master disable polling has failed.\n");
1181 
1182 	/* set the completion timeout for interface */
1183 	ret_val = igb_set_pcie_completion_timeout(hw);
1184 	if (ret_val) {
1185 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1186 	}
1187 
1188 	hw_dbg("Masking off all interrupts\n");
1189 	wr32(E1000_IMC, 0xffffffff);
1190 
1191 	wr32(E1000_RCTL, 0);
1192 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1193 	wrfl();
1194 
1195 	msleep(10);
1196 
1197 	ctrl = rd32(E1000_CTRL);
1198 
1199 	hw_dbg("Issuing a global reset to MAC\n");
1200 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1201 
1202 	ret_val = igb_get_auto_rd_done(hw);
1203 	if (ret_val) {
1204 		/*
1205 		 * When auto config read does not complete, do not
1206 		 * return with an error. This can happen in situations
1207 		 * where there is no eeprom and prevents getting link.
1208 		 */
1209 		hw_dbg("Auto Read Done did not complete\n");
1210 	}
1211 
1212 	/* If EEPROM is not present, run manual init scripts */
1213 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1214 		igb_reset_init_script_82575(hw);
1215 
1216 	/* Clear any pending interrupt events. */
1217 	wr32(E1000_IMC, 0xffffffff);
1218 	icr = rd32(E1000_ICR);
1219 
1220 	/* Install any alternate MAC address into RAR0 */
1221 	ret_val = igb_check_alt_mac_addr(hw);
1222 
1223 	return ret_val;
1224 }
1225 
1226 /**
1227  *  igb_init_hw_82575 - Initialize hardware
1228  *  @hw: pointer to the HW structure
1229  *
1230  *  This inits the hardware readying it for operation.
1231  **/
1232 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1233 {
1234 	struct e1000_mac_info *mac = &hw->mac;
1235 	s32 ret_val;
1236 	u16 i, rar_count = mac->rar_entry_count;
1237 
1238 	/* Initialize identification LED */
1239 	ret_val = igb_id_led_init(hw);
1240 	if (ret_val) {
1241 		hw_dbg("Error initializing identification LED\n");
1242 		/* This is not fatal and we should not stop init due to this */
1243 	}
1244 
1245 	/* Disabling VLAN filtering */
1246 	hw_dbg("Initializing the IEEE VLAN\n");
1247 	if (hw->mac.type == e1000_i350)
1248 		igb_clear_vfta_i350(hw);
1249 	else
1250 		igb_clear_vfta(hw);
1251 
1252 	/* Setup the receive address */
1253 	igb_init_rx_addrs(hw, rar_count);
1254 
1255 	/* Zero out the Multicast HASH table */
1256 	hw_dbg("Zeroing the MTA\n");
1257 	for (i = 0; i < mac->mta_reg_count; i++)
1258 		array_wr32(E1000_MTA, i, 0);
1259 
1260 	/* Zero out the Unicast HASH table */
1261 	hw_dbg("Zeroing the UTA\n");
1262 	for (i = 0; i < mac->uta_reg_count; i++)
1263 		array_wr32(E1000_UTA, i, 0);
1264 
1265 	/* Setup link and flow control */
1266 	ret_val = igb_setup_link(hw);
1267 
1268 	/*
1269 	 * Clear all of the statistics registers (clear on read).  It is
1270 	 * important that we do this after we have tried to establish link
1271 	 * because the symbol error count will increment wildly if there
1272 	 * is no link.
1273 	 */
1274 	igb_clear_hw_cntrs_82575(hw);
1275 	return ret_val;
1276 }
1277 
1278 /**
1279  *  igb_setup_copper_link_82575 - Configure copper link settings
1280  *  @hw: pointer to the HW structure
1281  *
1282  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1283  *  for link, once link is established calls to configure collision distance
1284  *  and flow control are called.
1285  **/
1286 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1287 {
1288 	u32 ctrl;
1289 	s32  ret_val;
1290 	u32 phpm_reg;
1291 
1292 	ctrl = rd32(E1000_CTRL);
1293 	ctrl |= E1000_CTRL_SLU;
1294 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1295 	wr32(E1000_CTRL, ctrl);
1296 
1297 	/* Clear Go Link Disconnect bit */
1298 	if (hw->mac.type >= e1000_82580) {
1299 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1300 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1301 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1302 	}
1303 
1304 	ret_val = igb_setup_serdes_link_82575(hw);
1305 	if (ret_val)
1306 		goto out;
1307 
1308 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1309 		/* allow time for SFP cage time to power up phy */
1310 		msleep(300);
1311 
1312 		ret_val = hw->phy.ops.reset(hw);
1313 		if (ret_val) {
1314 			hw_dbg("Error resetting the PHY.\n");
1315 			goto out;
1316 		}
1317 	}
1318 	switch (hw->phy.type) {
1319 	case e1000_phy_i210:
1320 	case e1000_phy_m88:
1321 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1322 		    hw->phy.id == M88E1112_E_PHY_ID)
1323 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1324 		else
1325 			ret_val = igb_copper_link_setup_m88(hw);
1326 		break;
1327 	case e1000_phy_igp_3:
1328 		ret_val = igb_copper_link_setup_igp(hw);
1329 		break;
1330 	case e1000_phy_82580:
1331 		ret_val = igb_copper_link_setup_82580(hw);
1332 		break;
1333 	default:
1334 		ret_val = -E1000_ERR_PHY;
1335 		break;
1336 	}
1337 
1338 	if (ret_val)
1339 		goto out;
1340 
1341 	ret_val = igb_setup_copper_link(hw);
1342 out:
1343 	return ret_val;
1344 }
1345 
1346 /**
1347  *  igb_setup_serdes_link_82575 - Setup link for serdes
1348  *  @hw: pointer to the HW structure
1349  *
1350  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1351  *  used on copper connections where the serialized gigabit media independent
1352  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1353  *  for auto-negotiation or forces speed/duplex.
1354  **/
1355 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1356 {
1357 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1358 	bool pcs_autoneg;
1359 	s32 ret_val = E1000_SUCCESS;
1360 	u16 data;
1361 
1362 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1363 	    !igb_sgmii_active_82575(hw))
1364 		return ret_val;
1365 
1366 
1367 	/*
1368 	 * On the 82575, SerDes loopback mode persists until it is
1369 	 * explicitly turned off or a power cycle is performed.  A read to
1370 	 * the register does not indicate its status.  Therefore, we ensure
1371 	 * loopback mode is disabled during initialization.
1372 	 */
1373 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1374 
1375 	/* power on the sfp cage if present */
1376 	ctrl_ext = rd32(E1000_CTRL_EXT);
1377 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1378 	wr32(E1000_CTRL_EXT, ctrl_ext);
1379 
1380 	ctrl_reg = rd32(E1000_CTRL);
1381 	ctrl_reg |= E1000_CTRL_SLU;
1382 
1383 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1384 		/* set both sw defined pins */
1385 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1386 
1387 		/* Set switch control to serdes energy detect */
1388 		reg = rd32(E1000_CONNSW);
1389 		reg |= E1000_CONNSW_ENRGSRC;
1390 		wr32(E1000_CONNSW, reg);
1391 	}
1392 
1393 	reg = rd32(E1000_PCS_LCTL);
1394 
1395 	/* default pcs_autoneg to the same setting as mac autoneg */
1396 	pcs_autoneg = hw->mac.autoneg;
1397 
1398 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1399 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1400 		/* sgmii mode lets the phy handle forcing speed/duplex */
1401 		pcs_autoneg = true;
1402 		/* autoneg time out should be disabled for SGMII mode */
1403 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1404 		break;
1405 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1406 		/* disable PCS autoneg and support parallel detect only */
1407 		pcs_autoneg = false;
1408 	default:
1409 		if (hw->mac.type == e1000_82575 ||
1410 		    hw->mac.type == e1000_82576) {
1411 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1412 			if (ret_val) {
1413 				printk(KERN_DEBUG "NVM Read Error\n\n");
1414 				return ret_val;
1415 			}
1416 
1417 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1418 				pcs_autoneg = false;
1419 		}
1420 
1421 		/*
1422 		 * non-SGMII modes only supports a speed of 1000/Full for the
1423 		 * link so it is best to just force the MAC and let the pcs
1424 		 * link either autoneg or be forced to 1000/Full
1425 		 */
1426 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1427 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1428 
1429 		/* set speed of 1000/Full if speed/duplex is forced */
1430 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1431 		break;
1432 	}
1433 
1434 	wr32(E1000_CTRL, ctrl_reg);
1435 
1436 	/*
1437 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1438 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1439 	 * mode that will be compatible with older link partners and switches.
1440 	 * However, both are supported by the hardware and some drivers/tools.
1441 	 */
1442 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1443 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1444 
1445 	if (pcs_autoneg) {
1446 		/* Set PCS register for autoneg */
1447 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1448 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1449 
1450 		/* Disable force flow control for autoneg */
1451 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1452 
1453 		/* Configure flow control advertisement for autoneg */
1454 		anadv_reg = rd32(E1000_PCS_ANADV);
1455 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1456 		switch (hw->fc.requested_mode) {
1457 		case e1000_fc_full:
1458 		case e1000_fc_rx_pause:
1459 			anadv_reg |= E1000_TXCW_ASM_DIR;
1460 			anadv_reg |= E1000_TXCW_PAUSE;
1461 			break;
1462 		case e1000_fc_tx_pause:
1463 			anadv_reg |= E1000_TXCW_ASM_DIR;
1464 			break;
1465 		default:
1466 			break;
1467 		}
1468 		wr32(E1000_PCS_ANADV, anadv_reg);
1469 
1470 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1471 	} else {
1472 		/* Set PCS register for forced link */
1473 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1474 
1475 		/* Force flow control for forced link */
1476 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1477 
1478 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1479 	}
1480 
1481 	wr32(E1000_PCS_LCTL, reg);
1482 
1483 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1484 		igb_force_mac_fc(hw);
1485 
1486 	return ret_val;
1487 }
1488 
1489 /**
1490  *  igb_sgmii_active_82575 - Return sgmii state
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1494  *  which can be enabled for use in the embedded applications.  Simply
1495  *  return the current state of the sgmii interface.
1496  **/
1497 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1498 {
1499 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1500 	return dev_spec->sgmii_active;
1501 }
1502 
1503 /**
1504  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1505  *  @hw: pointer to the HW structure
1506  *
1507  *  Inits recommended HW defaults after a reset when there is no EEPROM
1508  *  detected. This is only for the 82575.
1509  **/
1510 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1511 {
1512 	if (hw->mac.type == e1000_82575) {
1513 		hw_dbg("Running reset init script for 82575\n");
1514 		/* SerDes configuration via SERDESCTRL */
1515 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1516 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1517 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1518 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1519 
1520 		/* CCM configuration via CCMCTL register */
1521 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1522 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1523 
1524 		/* PCIe lanes configuration */
1525 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1526 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1527 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1528 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1529 
1530 		/* PCIe PLL Configuration */
1531 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1532 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1533 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /**
1540  *  igb_read_mac_addr_82575 - Read device MAC address
1541  *  @hw: pointer to the HW structure
1542  **/
1543 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1544 {
1545 	s32 ret_val = 0;
1546 
1547 	/*
1548 	 * If there's an alternate MAC address place it in RAR0
1549 	 * so that it will override the Si installed default perm
1550 	 * address.
1551 	 */
1552 	ret_val = igb_check_alt_mac_addr(hw);
1553 	if (ret_val)
1554 		goto out;
1555 
1556 	ret_val = igb_read_mac_addr(hw);
1557 
1558 out:
1559 	return ret_val;
1560 }
1561 
1562 /**
1563  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1564  * @hw: pointer to the HW structure
1565  *
1566  * In the case of a PHY power down to save power, or to turn off link during a
1567  * driver unload, or wake on lan is not enabled, remove the link.
1568  **/
1569 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1570 {
1571 	/* If the management interface is not enabled, then power down */
1572 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1573 		igb_power_down_phy_copper(hw);
1574 }
1575 
1576 /**
1577  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1578  *  @hw: pointer to the HW structure
1579  *
1580  *  Clears the hardware counters by reading the counter registers.
1581  **/
1582 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1583 {
1584 	igb_clear_hw_cntrs_base(hw);
1585 
1586 	rd32(E1000_PRC64);
1587 	rd32(E1000_PRC127);
1588 	rd32(E1000_PRC255);
1589 	rd32(E1000_PRC511);
1590 	rd32(E1000_PRC1023);
1591 	rd32(E1000_PRC1522);
1592 	rd32(E1000_PTC64);
1593 	rd32(E1000_PTC127);
1594 	rd32(E1000_PTC255);
1595 	rd32(E1000_PTC511);
1596 	rd32(E1000_PTC1023);
1597 	rd32(E1000_PTC1522);
1598 
1599 	rd32(E1000_ALGNERRC);
1600 	rd32(E1000_RXERRC);
1601 	rd32(E1000_TNCRS);
1602 	rd32(E1000_CEXTERR);
1603 	rd32(E1000_TSCTC);
1604 	rd32(E1000_TSCTFC);
1605 
1606 	rd32(E1000_MGTPRC);
1607 	rd32(E1000_MGTPDC);
1608 	rd32(E1000_MGTPTC);
1609 
1610 	rd32(E1000_IAC);
1611 	rd32(E1000_ICRXOC);
1612 
1613 	rd32(E1000_ICRXPTC);
1614 	rd32(E1000_ICRXATC);
1615 	rd32(E1000_ICTXPTC);
1616 	rd32(E1000_ICTXATC);
1617 	rd32(E1000_ICTXQEC);
1618 	rd32(E1000_ICTXQMTC);
1619 	rd32(E1000_ICRXDMTC);
1620 
1621 	rd32(E1000_CBTMPC);
1622 	rd32(E1000_HTDPMC);
1623 	rd32(E1000_CBRMPC);
1624 	rd32(E1000_RPTHC);
1625 	rd32(E1000_HGPTC);
1626 	rd32(E1000_HTCBDPC);
1627 	rd32(E1000_HGORCL);
1628 	rd32(E1000_HGORCH);
1629 	rd32(E1000_HGOTCL);
1630 	rd32(E1000_HGOTCH);
1631 	rd32(E1000_LENERRS);
1632 
1633 	/* This register should not be read in copper configurations */
1634 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1635 	    igb_sgmii_active_82575(hw))
1636 		rd32(E1000_SCVPC);
1637 }
1638 
1639 /**
1640  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1641  *  @hw: pointer to the HW structure
1642  *
1643  *  After rx enable if managability is enabled then there is likely some
1644  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1645  *  function clears the fifos and flushes any packets that came in as rx was
1646  *  being enabled.
1647  **/
1648 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1649 {
1650 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1651 	int i, ms_wait;
1652 
1653 	if (hw->mac.type != e1000_82575 ||
1654 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1655 		return;
1656 
1657 	/* Disable all RX queues */
1658 	for (i = 0; i < 4; i++) {
1659 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1660 		wr32(E1000_RXDCTL(i),
1661 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1662 	}
1663 	/* Poll all queues to verify they have shut down */
1664 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1665 		msleep(1);
1666 		rx_enabled = 0;
1667 		for (i = 0; i < 4; i++)
1668 			rx_enabled |= rd32(E1000_RXDCTL(i));
1669 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1670 			break;
1671 	}
1672 
1673 	if (ms_wait == 10)
1674 		hw_dbg("Queue disable timed out after 10ms\n");
1675 
1676 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1677 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1678 	 * any packet that was coming in as RCTL.EN was set is flushed
1679 	 */
1680 	rfctl = rd32(E1000_RFCTL);
1681 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1682 
1683 	rlpml = rd32(E1000_RLPML);
1684 	wr32(E1000_RLPML, 0);
1685 
1686 	rctl = rd32(E1000_RCTL);
1687 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1688 	temp_rctl |= E1000_RCTL_LPE;
1689 
1690 	wr32(E1000_RCTL, temp_rctl);
1691 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1692 	wrfl();
1693 	msleep(2);
1694 
1695 	/* Enable RX queues that were previously enabled and restore our
1696 	 * previous state
1697 	 */
1698 	for (i = 0; i < 4; i++)
1699 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1700 	wr32(E1000_RCTL, rctl);
1701 	wrfl();
1702 
1703 	wr32(E1000_RLPML, rlpml);
1704 	wr32(E1000_RFCTL, rfctl);
1705 
1706 	/* Flush receive errors generated by workaround */
1707 	rd32(E1000_ROC);
1708 	rd32(E1000_RNBC);
1709 	rd32(E1000_MPC);
1710 }
1711 
1712 /**
1713  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1714  *  @hw: pointer to the HW structure
1715  *
1716  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1717  *  however the hardware default for these parts is 500us to 1ms which is less
1718  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1719  *  increase the value to either 10ms to 200ms for capability version 1 config,
1720  *  or 16ms to 55ms for version 2.
1721  **/
1722 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1723 {
1724 	u32 gcr = rd32(E1000_GCR);
1725 	s32 ret_val = 0;
1726 	u16 pcie_devctl2;
1727 
1728 	/* only take action if timeout value is defaulted to 0 */
1729 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1730 		goto out;
1731 
1732 	/*
1733 	 * if capababilities version is type 1 we can write the
1734 	 * timeout of 10ms to 200ms through the GCR register
1735 	 */
1736 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1737 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1738 		goto out;
1739 	}
1740 
1741 	/*
1742 	 * for version 2 capabilities we need to write the config space
1743 	 * directly in order to set the completion timeout value for
1744 	 * 16ms to 55ms
1745 	 */
1746 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1747 	                                &pcie_devctl2);
1748 	if (ret_val)
1749 		goto out;
1750 
1751 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1752 
1753 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1754 	                                 &pcie_devctl2);
1755 out:
1756 	/* disable completion timeout resend */
1757 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1758 
1759 	wr32(E1000_GCR, gcr);
1760 	return ret_val;
1761 }
1762 
1763 /**
1764  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1765  *  @hw: pointer to the hardware struct
1766  *  @enable: state to enter, either enabled or disabled
1767  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1768  *
1769  *  enables/disables L2 switch anti-spoofing functionality.
1770  **/
1771 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1772 {
1773 	u32 dtxswc;
1774 
1775 	switch (hw->mac.type) {
1776 	case e1000_82576:
1777 	case e1000_i350:
1778 		dtxswc = rd32(E1000_DTXSWC);
1779 		if (enable) {
1780 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1781 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1782 			/* The PF can spoof - it has to in order to
1783 			 * support emulation mode NICs */
1784 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1785 		} else {
1786 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1787 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1788 		}
1789 		wr32(E1000_DTXSWC, dtxswc);
1790 		break;
1791 	default:
1792 		break;
1793 	}
1794 }
1795 
1796 /**
1797  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1798  *  @hw: pointer to the hardware struct
1799  *  @enable: state to enter, either enabled or disabled
1800  *
1801  *  enables/disables L2 switch loopback functionality.
1802  **/
1803 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1804 {
1805 	u32 dtxswc;
1806 
1807 	switch (hw->mac.type) {
1808 	case e1000_82576:
1809 		dtxswc = rd32(E1000_DTXSWC);
1810 		if (enable)
1811 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1812 		else
1813 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1814 		wr32(E1000_DTXSWC, dtxswc);
1815 		break;
1816 	case e1000_i350:
1817 		dtxswc = rd32(E1000_TXSWC);
1818 		if (enable)
1819 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1820 		else
1821 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1822 		wr32(E1000_TXSWC, dtxswc);
1823 		break;
1824 	default:
1825 		/* Currently no other hardware supports loopback */
1826 		break;
1827 	}
1828 
1829 
1830 }
1831 
1832 /**
1833  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1834  *  @hw: pointer to the hardware struct
1835  *  @enable: state to enter, either enabled or disabled
1836  *
1837  *  enables/disables replication of packets across multiple pools.
1838  **/
1839 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1840 {
1841 	u32 vt_ctl = rd32(E1000_VT_CTL);
1842 
1843 	if (enable)
1844 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1845 	else
1846 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1847 
1848 	wr32(E1000_VT_CTL, vt_ctl);
1849 }
1850 
1851 /**
1852  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1853  *  @hw: pointer to the HW structure
1854  *  @offset: register offset to be read
1855  *  @data: pointer to the read data
1856  *
1857  *  Reads the MDI control register in the PHY at offset and stores the
1858  *  information read to data.
1859  **/
1860 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1861 {
1862 	s32 ret_val;
1863 
1864 
1865 	ret_val = hw->phy.ops.acquire(hw);
1866 	if (ret_val)
1867 		goto out;
1868 
1869 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1870 
1871 	hw->phy.ops.release(hw);
1872 
1873 out:
1874 	return ret_val;
1875 }
1876 
1877 /**
1878  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1879  *  @hw: pointer to the HW structure
1880  *  @offset: register offset to write to
1881  *  @data: data to write to register at offset
1882  *
1883  *  Writes data to MDI control register in the PHY at offset.
1884  **/
1885 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1886 {
1887 	s32 ret_val;
1888 
1889 
1890 	ret_val = hw->phy.ops.acquire(hw);
1891 	if (ret_val)
1892 		goto out;
1893 
1894 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1895 
1896 	hw->phy.ops.release(hw);
1897 
1898 out:
1899 	return ret_val;
1900 }
1901 
1902 /**
1903  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1907  *  the values found in the EEPROM.  This addresses an issue in which these
1908  *  bits are not restored from EEPROM after reset.
1909  **/
1910 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1911 {
1912 	s32 ret_val = 0;
1913 	u32 mdicnfg;
1914 	u16 nvm_data = 0;
1915 
1916 	if (hw->mac.type != e1000_82580)
1917 		goto out;
1918 	if (!igb_sgmii_active_82575(hw))
1919 		goto out;
1920 
1921 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1922 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1923 				   &nvm_data);
1924 	if (ret_val) {
1925 		hw_dbg("NVM Read Error\n");
1926 		goto out;
1927 	}
1928 
1929 	mdicnfg = rd32(E1000_MDICNFG);
1930 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1931 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1932 	if (nvm_data & NVM_WORD24_COM_MDIO)
1933 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1934 	wr32(E1000_MDICNFG, mdicnfg);
1935 out:
1936 	return ret_val;
1937 }
1938 
1939 /**
1940  *  igb_reset_hw_82580 - Reset hardware
1941  *  @hw: pointer to the HW structure
1942  *
1943  *  This resets function or entire device (all ports, etc.)
1944  *  to a known state.
1945  **/
1946 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1947 {
1948 	s32 ret_val = 0;
1949 	/* BH SW mailbox bit in SW_FW_SYNC */
1950 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1951 	u32 ctrl, icr;
1952 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1953 
1954 
1955 	hw->dev_spec._82575.global_device_reset = false;
1956 
1957 	/* due to hw errata, global device reset doesn't always
1958 	 * work on 82580
1959 	 */
1960 	if (hw->mac.type == e1000_82580)
1961 		global_device_reset = false;
1962 
1963 	/* Get current control state. */
1964 	ctrl = rd32(E1000_CTRL);
1965 
1966 	/*
1967 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1968 	 * on the last TLP read/write transaction when MAC is reset.
1969 	 */
1970 	ret_val = igb_disable_pcie_master(hw);
1971 	if (ret_val)
1972 		hw_dbg("PCI-E Master disable polling has failed.\n");
1973 
1974 	hw_dbg("Masking off all interrupts\n");
1975 	wr32(E1000_IMC, 0xffffffff);
1976 	wr32(E1000_RCTL, 0);
1977 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1978 	wrfl();
1979 
1980 	msleep(10);
1981 
1982 	/* Determine whether or not a global dev reset is requested */
1983 	if (global_device_reset &&
1984 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1985 			global_device_reset = false;
1986 
1987 	if (global_device_reset &&
1988 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1989 		ctrl |= E1000_CTRL_DEV_RST;
1990 	else
1991 		ctrl |= E1000_CTRL_RST;
1992 
1993 	wr32(E1000_CTRL, ctrl);
1994 	wrfl();
1995 
1996 	/* Add delay to insure DEV_RST has time to complete */
1997 	if (global_device_reset)
1998 		msleep(5);
1999 
2000 	ret_val = igb_get_auto_rd_done(hw);
2001 	if (ret_val) {
2002 		/*
2003 		 * When auto config read does not complete, do not
2004 		 * return with an error. This can happen in situations
2005 		 * where there is no eeprom and prevents getting link.
2006 		 */
2007 		hw_dbg("Auto Read Done did not complete\n");
2008 	}
2009 
2010 	/* If EEPROM is not present, run manual init scripts */
2011 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2012 		igb_reset_init_script_82575(hw);
2013 
2014 	/* clear global device reset status bit */
2015 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2016 
2017 	/* Clear any pending interrupt events. */
2018 	wr32(E1000_IMC, 0xffffffff);
2019 	icr = rd32(E1000_ICR);
2020 
2021 	ret_val = igb_reset_mdicnfg_82580(hw);
2022 	if (ret_val)
2023 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2024 
2025 	/* Install any alternate MAC address into RAR0 */
2026 	ret_val = igb_check_alt_mac_addr(hw);
2027 
2028 	/* Release semaphore */
2029 	if (global_device_reset)
2030 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2031 
2032 	return ret_val;
2033 }
2034 
2035 /**
2036  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2037  *  @data: data received by reading RXPBS register
2038  *
2039  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2040  *  This function converts the retrieved value into the correct table value
2041  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2042  *  0x0 36  72 144   1   2   4   8  16
2043  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2044  */
2045 u16 igb_rxpbs_adjust_82580(u32 data)
2046 {
2047 	u16 ret_val = 0;
2048 
2049 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2050 		ret_val = e1000_82580_rxpbs_table[data];
2051 
2052 	return ret_val;
2053 }
2054 
2055 /**
2056  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2057  *  checksum
2058  *  @hw: pointer to the HW structure
2059  *  @offset: offset in words of the checksum protected region
2060  *
2061  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2062  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2063  **/
2064 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2065 						 u16 offset)
2066 {
2067 	s32 ret_val = 0;
2068 	u16 checksum = 0;
2069 	u16 i, nvm_data;
2070 
2071 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2072 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2073 		if (ret_val) {
2074 			hw_dbg("NVM Read Error\n");
2075 			goto out;
2076 		}
2077 		checksum += nvm_data;
2078 	}
2079 
2080 	if (checksum != (u16) NVM_SUM) {
2081 		hw_dbg("NVM Checksum Invalid\n");
2082 		ret_val = -E1000_ERR_NVM;
2083 		goto out;
2084 	}
2085 
2086 out:
2087 	return ret_val;
2088 }
2089 
2090 /**
2091  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2092  *  checksum
2093  *  @hw: pointer to the HW structure
2094  *  @offset: offset in words of the checksum protected region
2095  *
2096  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2097  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2098  *  value to the EEPROM.
2099  **/
2100 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2101 {
2102 	s32 ret_val;
2103 	u16 checksum = 0;
2104 	u16 i, nvm_data;
2105 
2106 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2107 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2108 		if (ret_val) {
2109 			hw_dbg("NVM Read Error while updating checksum.\n");
2110 			goto out;
2111 		}
2112 		checksum += nvm_data;
2113 	}
2114 	checksum = (u16) NVM_SUM - checksum;
2115 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2116 				&checksum);
2117 	if (ret_val)
2118 		hw_dbg("NVM Write Error while updating checksum.\n");
2119 
2120 out:
2121 	return ret_val;
2122 }
2123 
2124 /**
2125  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2126  *  @hw: pointer to the HW structure
2127  *
2128  *  Calculates the EEPROM section checksum by reading/adding each word of
2129  *  the EEPROM and then verifies that the sum of the EEPROM is
2130  *  equal to 0xBABA.
2131  **/
2132 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2133 {
2134 	s32 ret_val = 0;
2135 	u16 eeprom_regions_count = 1;
2136 	u16 j, nvm_data;
2137 	u16 nvm_offset;
2138 
2139 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2140 	if (ret_val) {
2141 		hw_dbg("NVM Read Error\n");
2142 		goto out;
2143 	}
2144 
2145 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2146 		/* if checksums compatibility bit is set validate checksums
2147 		 * for all 4 ports. */
2148 		eeprom_regions_count = 4;
2149 	}
2150 
2151 	for (j = 0; j < eeprom_regions_count; j++) {
2152 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2153 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2154 								nvm_offset);
2155 		if (ret_val != 0)
2156 			goto out;
2157 	}
2158 
2159 out:
2160 	return ret_val;
2161 }
2162 
2163 /**
2164  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2165  *  @hw: pointer to the HW structure
2166  *
2167  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2168  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2169  *  checksum and writes the value to the EEPROM.
2170  **/
2171 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2172 {
2173 	s32 ret_val;
2174 	u16 j, nvm_data;
2175 	u16 nvm_offset;
2176 
2177 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2178 	if (ret_val) {
2179 		hw_dbg("NVM Read Error while updating checksum"
2180 			" compatibility bit.\n");
2181 		goto out;
2182 	}
2183 
2184 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2185 		/* set compatibility bit to validate checksums appropriately */
2186 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2187 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2188 					&nvm_data);
2189 		if (ret_val) {
2190 			hw_dbg("NVM Write Error while updating checksum"
2191 				" compatibility bit.\n");
2192 			goto out;
2193 		}
2194 	}
2195 
2196 	for (j = 0; j < 4; j++) {
2197 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2198 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2199 		if (ret_val)
2200 			goto out;
2201 	}
2202 
2203 out:
2204 	return ret_val;
2205 }
2206 
2207 /**
2208  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2209  *  @hw: pointer to the HW structure
2210  *
2211  *  Calculates the EEPROM section checksum by reading/adding each word of
2212  *  the EEPROM and then verifies that the sum of the EEPROM is
2213  *  equal to 0xBABA.
2214  **/
2215 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2216 {
2217 	s32 ret_val = 0;
2218 	u16 j;
2219 	u16 nvm_offset;
2220 
2221 	for (j = 0; j < 4; j++) {
2222 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2223 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2224 								nvm_offset);
2225 		if (ret_val != 0)
2226 			goto out;
2227 	}
2228 
2229 out:
2230 	return ret_val;
2231 }
2232 
2233 /**
2234  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2235  *  @hw: pointer to the HW structure
2236  *
2237  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2238  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2239  *  checksum and writes the value to the EEPROM.
2240  **/
2241 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2242 {
2243 	s32 ret_val = 0;
2244 	u16 j;
2245 	u16 nvm_offset;
2246 
2247 	for (j = 0; j < 4; j++) {
2248 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2249 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2250 		if (ret_val != 0)
2251 			goto out;
2252 	}
2253 
2254 out:
2255 	return ret_val;
2256 }
2257 
2258 /**
2259  *  igb_set_eee_i350 - Enable/disable EEE support
2260  *  @hw: pointer to the HW structure
2261  *
2262  *  Enable/disable EEE based on setting in dev_spec structure.
2263  *
2264  **/
2265 s32 igb_set_eee_i350(struct e1000_hw *hw)
2266 {
2267 	s32 ret_val = 0;
2268 	u32 ipcnfg, eeer;
2269 
2270 	if ((hw->mac.type < e1000_i350) ||
2271 	    (hw->phy.media_type != e1000_media_type_copper))
2272 		goto out;
2273 	ipcnfg = rd32(E1000_IPCNFG);
2274 	eeer = rd32(E1000_EEER);
2275 
2276 	/* enable or disable per user setting */
2277 	if (!(hw->dev_spec._82575.eee_disable)) {
2278 		u32 eee_su = rd32(E1000_EEE_SU);
2279 
2280 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2281 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2282 			E1000_EEER_LPI_FC);
2283 
2284 		/* This bit should not be set in normal operation. */
2285 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2286 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2287 
2288 
2289 	} else {
2290 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2291 			E1000_IPCNFG_EEE_100M_AN);
2292 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2293 			E1000_EEER_RX_LPI_EN |
2294 			E1000_EEER_LPI_FC);
2295 	}
2296 	wr32(E1000_IPCNFG, ipcnfg);
2297 	wr32(E1000_EEER, eeer);
2298 	rd32(E1000_IPCNFG);
2299 	rd32(E1000_EEER);
2300 out:
2301 
2302 	return ret_val;
2303 }
2304 
2305 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2306 	.init_hw              = igb_init_hw_82575,
2307 	.check_for_link       = igb_check_for_link_82575,
2308 	.rar_set              = igb_rar_set,
2309 	.read_mac_addr        = igb_read_mac_addr_82575,
2310 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2311 };
2312 
2313 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2314 	.acquire              = igb_acquire_phy_82575,
2315 	.get_cfg_done         = igb_get_cfg_done_82575,
2316 	.release              = igb_release_phy_82575,
2317 };
2318 
2319 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2320 	.acquire              = igb_acquire_nvm_82575,
2321 	.read                 = igb_read_nvm_eerd,
2322 	.release              = igb_release_nvm_82575,
2323 	.write                = igb_write_nvm_spi,
2324 };
2325 
2326 const struct e1000_info e1000_82575_info = {
2327 	.get_invariants = igb_get_invariants_82575,
2328 	.mac_ops = &e1000_mac_ops_82575,
2329 	.phy_ops = &e1000_phy_ops_82575,
2330 	.nvm_ops = &e1000_nvm_ops_82575,
2331 };
2332 
2333