xref: /linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40 
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64 						 u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77 	{ 36, 72, 144, 1, 2, 4, 8, 16,
78 	  35, 70, 140 };
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81 
82 /**
83  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84  *  @hw: pointer to the HW structure
85  *
86  *  Called to determine if the I2C pins are being used for I2C or as an
87  *  external MDIO interface since the two options are mutually exclusive.
88  **/
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90 {
91 	u32 reg = 0;
92 	bool ext_mdio = false;
93 
94 	switch (hw->mac.type) {
95 	case e1000_82575:
96 	case e1000_82576:
97 		reg = rd32(E1000_MDIC);
98 		ext_mdio = !!(reg & E1000_MDIC_DEST);
99 		break;
100 	case e1000_82580:
101 	case e1000_i350:
102 	case e1000_i210:
103 	case e1000_i211:
104 		reg = rd32(E1000_MDICNFG);
105 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 		break;
107 	default:
108 		break;
109 	}
110 	return ext_mdio;
111 }
112 
113 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114 {
115 	struct e1000_phy_info *phy = &hw->phy;
116 	struct e1000_nvm_info *nvm = &hw->nvm;
117 	struct e1000_mac_info *mac = &hw->mac;
118 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119 	u32 eecd;
120 	s32 ret_val;
121 	u16 size;
122 	u32 ctrl_ext = 0;
123 
124 	switch (hw->device_id) {
125 	case E1000_DEV_ID_82575EB_COPPER:
126 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
127 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
128 		mac->type = e1000_82575;
129 		break;
130 	case E1000_DEV_ID_82576:
131 	case E1000_DEV_ID_82576_NS:
132 	case E1000_DEV_ID_82576_NS_SERDES:
133 	case E1000_DEV_ID_82576_FIBER:
134 	case E1000_DEV_ID_82576_SERDES:
135 	case E1000_DEV_ID_82576_QUAD_COPPER:
136 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137 	case E1000_DEV_ID_82576_SERDES_QUAD:
138 		mac->type = e1000_82576;
139 		break;
140 	case E1000_DEV_ID_82580_COPPER:
141 	case E1000_DEV_ID_82580_FIBER:
142 	case E1000_DEV_ID_82580_QUAD_FIBER:
143 	case E1000_DEV_ID_82580_SERDES:
144 	case E1000_DEV_ID_82580_SGMII:
145 	case E1000_DEV_ID_82580_COPPER_DUAL:
146 	case E1000_DEV_ID_DH89XXCC_SGMII:
147 	case E1000_DEV_ID_DH89XXCC_SERDES:
148 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149 	case E1000_DEV_ID_DH89XXCC_SFP:
150 		mac->type = e1000_82580;
151 		break;
152 	case E1000_DEV_ID_I350_COPPER:
153 	case E1000_DEV_ID_I350_FIBER:
154 	case E1000_DEV_ID_I350_SERDES:
155 	case E1000_DEV_ID_I350_SGMII:
156 		mac->type = e1000_i350;
157 		break;
158 	case E1000_DEV_ID_I210_COPPER:
159 	case E1000_DEV_ID_I210_COPPER_OEM1:
160 	case E1000_DEV_ID_I210_COPPER_IT:
161 	case E1000_DEV_ID_I210_FIBER:
162 	case E1000_DEV_ID_I210_SERDES:
163 	case E1000_DEV_ID_I210_SGMII:
164 		mac->type = e1000_i210;
165 		break;
166 	case E1000_DEV_ID_I211_COPPER:
167 		mac->type = e1000_i211;
168 		break;
169 	default:
170 		return -E1000_ERR_MAC_INIT;
171 		break;
172 	}
173 
174 	/* Set media type */
175 	/*
176 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177 	 * based on the EEPROM. We cannot rely upon device ID. There
178 	 * is no distinguishable difference between fiber and internal
179 	 * SerDes mode on the 82575. There can be an external PHY attached
180 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
181 	 */
182 	phy->media_type = e1000_media_type_copper;
183 	dev_spec->sgmii_active = false;
184 
185 	ctrl_ext = rd32(E1000_CTRL_EXT);
186 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188 		dev_spec->sgmii_active = true;
189 		break;
190 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192 		hw->phy.media_type = e1000_media_type_internal_serdes;
193 		break;
194 	default:
195 		break;
196 	}
197 
198 	/* Set mta register count */
199 	mac->mta_reg_count = 128;
200 	/* Set rar entry count */
201 	switch (mac->type) {
202 	case e1000_82576:
203 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204 		break;
205 	case e1000_82580:
206 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207 		break;
208 	case e1000_i350:
209 	case e1000_i210:
210 	case e1000_i211:
211 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
212 		break;
213 	default:
214 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
215 		break;
216 	}
217 	/* reset */
218 	if (mac->type >= e1000_82580)
219 		mac->ops.reset_hw = igb_reset_hw_82580;
220 	else
221 		mac->ops.reset_hw = igb_reset_hw_82575;
222 
223 	if (mac->type >= e1000_i210) {
224 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
225 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
226 	} else {
227 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
228 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
229 	}
230 
231 	/* Set if part includes ASF firmware */
232 	mac->asf_firmware_present = true;
233 	/* Set if manageability features are enabled. */
234 	mac->arc_subsystem_valid =
235 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
236 			? true : false;
237 	/* enable EEE on i350 parts and later parts */
238 	if (mac->type >= e1000_i350)
239 		dev_spec->eee_disable = false;
240 	else
241 		dev_spec->eee_disable = true;
242 	/* physical interface link setup */
243 	mac->ops.setup_physical_interface =
244 		(hw->phy.media_type == e1000_media_type_copper)
245 			? igb_setup_copper_link_82575
246 			: igb_setup_serdes_link_82575;
247 
248 	/* NVM initialization */
249 	eecd = rd32(E1000_EECD);
250 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
251 		     E1000_EECD_SIZE_EX_SHIFT);
252 
253 	/*
254 	 * Added to a constant, "size" becomes the left-shift value
255 	 * for setting word_size.
256 	 */
257 	size += NVM_WORD_SIZE_BASE_SHIFT;
258 
259 	nvm->word_size = 1 << size;
260 	if (hw->mac.type < e1000_i210) {
261 		nvm->opcode_bits        = 8;
262 		nvm->delay_usec         = 1;
263 		switch (nvm->override) {
264 		case e1000_nvm_override_spi_large:
265 			nvm->page_size    = 32;
266 			nvm->address_bits = 16;
267 			break;
268 		case e1000_nvm_override_spi_small:
269 			nvm->page_size    = 8;
270 			nvm->address_bits = 8;
271 			break;
272 		default:
273 			nvm->page_size    = eecd
274 				& E1000_EECD_ADDR_BITS ? 32 : 8;
275 			nvm->address_bits = eecd
276 				& E1000_EECD_ADDR_BITS ? 16 : 8;
277 			break;
278 		}
279 		if (nvm->word_size == (1 << 15))
280 			nvm->page_size = 128;
281 
282 		nvm->type = e1000_nvm_eeprom_spi;
283 	} else
284 		nvm->type = e1000_nvm_flash_hw;
285 
286 	/*
287 	 * Check for invalid size
288 	 */
289 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
290 		pr_notice("The NVM size is not valid, defaulting to 32K\n");
291 		size = 15;
292 	}
293 
294 	/* NVM Function Pointers */
295 	switch (hw->mac.type) {
296 	case e1000_82580:
297 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
298 		nvm->ops.update = igb_update_nvm_checksum_82580;
299 		nvm->ops.acquire = igb_acquire_nvm_82575;
300 		nvm->ops.release = igb_release_nvm_82575;
301 		if (nvm->word_size < (1 << 15))
302 			nvm->ops.read = igb_read_nvm_eerd;
303 		else
304 			nvm->ops.read = igb_read_nvm_spi;
305 		nvm->ops.write = igb_write_nvm_spi;
306 		break;
307 	case e1000_i350:
308 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
309 		nvm->ops.update = igb_update_nvm_checksum_i350;
310 		nvm->ops.acquire = igb_acquire_nvm_82575;
311 		nvm->ops.release = igb_release_nvm_82575;
312 		if (nvm->word_size < (1 << 15))
313 			nvm->ops.read = igb_read_nvm_eerd;
314 		else
315 			nvm->ops.read = igb_read_nvm_spi;
316 		nvm->ops.write = igb_write_nvm_spi;
317 		break;
318 	case e1000_i210:
319 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
320 		nvm->ops.update   = igb_update_nvm_checksum_i210;
321 		nvm->ops.acquire = igb_acquire_nvm_i210;
322 		nvm->ops.release = igb_release_nvm_i210;
323 		nvm->ops.read    = igb_read_nvm_srrd_i210;
324 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
325 		break;
326 	case e1000_i211:
327 		nvm->ops.acquire  = igb_acquire_nvm_i210;
328 		nvm->ops.release  = igb_release_nvm_i210;
329 		nvm->ops.read     = igb_read_nvm_i211;
330 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
331 		nvm->ops.validate = NULL;
332 		nvm->ops.update   = NULL;
333 		nvm->ops.write    = NULL;
334 		break;
335 	default:
336 		nvm->ops.validate = igb_validate_nvm_checksum;
337 		nvm->ops.update = igb_update_nvm_checksum;
338 		nvm->ops.acquire = igb_acquire_nvm_82575;
339 		nvm->ops.release = igb_release_nvm_82575;
340 		if (nvm->word_size < (1 << 15))
341 			nvm->ops.read = igb_read_nvm_eerd;
342 		else
343 			nvm->ops.read = igb_read_nvm_spi;
344 		nvm->ops.write = igb_write_nvm_spi;
345 		break;
346 	}
347 
348 	/* if part supports SR-IOV then initialize mailbox parameters */
349 	switch (mac->type) {
350 	case e1000_82576:
351 	case e1000_i350:
352 		igb_init_mbx_params_pf(hw);
353 		break;
354 	default:
355 		break;
356 	}
357 
358 	/* setup PHY parameters */
359 	if (phy->media_type != e1000_media_type_copper) {
360 		phy->type = e1000_phy_none;
361 		return 0;
362 	}
363 
364 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
365 	phy->reset_delay_us      = 100;
366 
367 	ctrl_ext = rd32(E1000_CTRL_EXT);
368 
369 	/* PHY function pointers */
370 	if (igb_sgmii_active_82575(hw)) {
371 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
372 		ctrl_ext |= E1000_CTRL_I2C_ENA;
373 	} else {
374 		phy->ops.reset      = igb_phy_hw_reset;
375 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
376 	}
377 
378 	wr32(E1000_CTRL_EXT, ctrl_ext);
379 	igb_reset_mdicnfg_82580(hw);
380 
381 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
382 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
383 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
384 	} else if ((hw->mac.type == e1000_82580)
385 		|| (hw->mac.type == e1000_i350)) {
386 		phy->ops.read_reg   = igb_read_phy_reg_82580;
387 		phy->ops.write_reg  = igb_write_phy_reg_82580;
388 	} else if (hw->phy.type >= e1000_phy_i210) {
389 		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
390 		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
391 	} else {
392 		phy->ops.read_reg   = igb_read_phy_reg_igp;
393 		phy->ops.write_reg  = igb_write_phy_reg_igp;
394 	}
395 
396 	/* set lan id */
397 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
398 	               E1000_STATUS_FUNC_SHIFT;
399 
400 	/* Set phy->phy_addr and phy->id. */
401 	ret_val = igb_get_phy_id_82575(hw);
402 	if (ret_val)
403 		return ret_val;
404 
405 	/* Verify phy id and set remaining function pointers */
406 	switch (phy->id) {
407 	case I347AT4_E_PHY_ID:
408 	case M88E1112_E_PHY_ID:
409 	case M88E1111_I_PHY_ID:
410 		phy->type                   = e1000_phy_m88;
411 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
412 
413 		if (phy->id == I347AT4_E_PHY_ID ||
414 		    phy->id == M88E1112_E_PHY_ID)
415 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
416 		else
417 			phy->ops.get_cable_length = igb_get_cable_length_m88;
418 
419 		if (phy->id == I210_I_PHY_ID) {
420 			phy->ops.get_cable_length =
421 					 igb_get_cable_length_m88_gen2;
422 			phy->ops.set_d0_lplu_state =
423 					igb_set_d0_lplu_state_82580;
424 			phy->ops.set_d3_lplu_state =
425 					igb_set_d3_lplu_state_82580;
426 		}
427 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
428 		break;
429 	case IGP03E1000_E_PHY_ID:
430 		phy->type                   = e1000_phy_igp_3;
431 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
432 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
433 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
434 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
435 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
436 		break;
437 	case I82580_I_PHY_ID:
438 	case I350_I_PHY_ID:
439 		phy->type                   = e1000_phy_82580;
440 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
441 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
442 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
443 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
444 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
445 		break;
446 	case I210_I_PHY_ID:
447 		phy->type                   = e1000_phy_i210;
448 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
449 		phy->ops.check_polarity     = igb_check_polarity_m88;
450 		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
451 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
452 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
453 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
454 		break;
455 	default:
456 		return -E1000_ERR_PHY;
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  *  igb_acquire_phy_82575 - Acquire rights to access PHY
464  *  @hw: pointer to the HW structure
465  *
466  *  Acquire access rights to the correct PHY.  This is a
467  *  function pointer entry point called by the api module.
468  **/
469 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
470 {
471 	u16 mask = E1000_SWFW_PHY0_SM;
472 
473 	if (hw->bus.func == E1000_FUNC_1)
474 		mask = E1000_SWFW_PHY1_SM;
475 	else if (hw->bus.func == E1000_FUNC_2)
476 		mask = E1000_SWFW_PHY2_SM;
477 	else if (hw->bus.func == E1000_FUNC_3)
478 		mask = E1000_SWFW_PHY3_SM;
479 
480 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
481 }
482 
483 /**
484  *  igb_release_phy_82575 - Release rights to access PHY
485  *  @hw: pointer to the HW structure
486  *
487  *  A wrapper to release access rights to the correct PHY.  This is a
488  *  function pointer entry point called by the api module.
489  **/
490 static void igb_release_phy_82575(struct e1000_hw *hw)
491 {
492 	u16 mask = E1000_SWFW_PHY0_SM;
493 
494 	if (hw->bus.func == E1000_FUNC_1)
495 		mask = E1000_SWFW_PHY1_SM;
496 	else if (hw->bus.func == E1000_FUNC_2)
497 		mask = E1000_SWFW_PHY2_SM;
498 	else if (hw->bus.func == E1000_FUNC_3)
499 		mask = E1000_SWFW_PHY3_SM;
500 
501 	hw->mac.ops.release_swfw_sync(hw, mask);
502 }
503 
504 /**
505  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
506  *  @hw: pointer to the HW structure
507  *  @offset: register offset to be read
508  *  @data: pointer to the read data
509  *
510  *  Reads the PHY register at offset using the serial gigabit media independent
511  *  interface and stores the retrieved information in data.
512  **/
513 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
514 					  u16 *data)
515 {
516 	s32 ret_val = -E1000_ERR_PARAM;
517 
518 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
519 		hw_dbg("PHY Address %u is out of range\n", offset);
520 		goto out;
521 	}
522 
523 	ret_val = hw->phy.ops.acquire(hw);
524 	if (ret_val)
525 		goto out;
526 
527 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
528 
529 	hw->phy.ops.release(hw);
530 
531 out:
532 	return ret_val;
533 }
534 
535 /**
536  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
537  *  @hw: pointer to the HW structure
538  *  @offset: register offset to write to
539  *  @data: data to write at register offset
540  *
541  *  Writes the data to PHY register at the offset using the serial gigabit
542  *  media independent interface.
543  **/
544 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
545 					   u16 data)
546 {
547 	s32 ret_val = -E1000_ERR_PARAM;
548 
549 
550 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
551 		hw_dbg("PHY Address %d is out of range\n", offset);
552 		goto out;
553 	}
554 
555 	ret_val = hw->phy.ops.acquire(hw);
556 	if (ret_val)
557 		goto out;
558 
559 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
560 
561 	hw->phy.ops.release(hw);
562 
563 out:
564 	return ret_val;
565 }
566 
567 /**
568  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
569  *  @hw: pointer to the HW structure
570  *
571  *  Retrieves the PHY address and ID for both PHY's which do and do not use
572  *  sgmi interface.
573  **/
574 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
575 {
576 	struct e1000_phy_info *phy = &hw->phy;
577 	s32  ret_val = 0;
578 	u16 phy_id;
579 	u32 ctrl_ext;
580 	u32 mdic;
581 
582 	/*
583 	 * For SGMII PHYs, we try the list of possible addresses until
584 	 * we find one that works.  For non-SGMII PHYs
585 	 * (e.g. integrated copper PHYs), an address of 1 should
586 	 * work.  The result of this function should mean phy->phy_addr
587 	 * and phy->id are set correctly.
588 	 */
589 	if (!(igb_sgmii_active_82575(hw))) {
590 		phy->addr = 1;
591 		ret_val = igb_get_phy_id(hw);
592 		goto out;
593 	}
594 
595 	if (igb_sgmii_uses_mdio_82575(hw)) {
596 		switch (hw->mac.type) {
597 		case e1000_82575:
598 		case e1000_82576:
599 			mdic = rd32(E1000_MDIC);
600 			mdic &= E1000_MDIC_PHY_MASK;
601 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
602 			break;
603 		case e1000_82580:
604 		case e1000_i350:
605 		case e1000_i210:
606 		case e1000_i211:
607 			mdic = rd32(E1000_MDICNFG);
608 			mdic &= E1000_MDICNFG_PHY_MASK;
609 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
610 			break;
611 		default:
612 			ret_val = -E1000_ERR_PHY;
613 			goto out;
614 			break;
615 		}
616 		ret_val = igb_get_phy_id(hw);
617 		goto out;
618 	}
619 
620 	/* Power on sgmii phy if it is disabled */
621 	ctrl_ext = rd32(E1000_CTRL_EXT);
622 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
623 	wrfl();
624 	msleep(300);
625 
626 	/*
627 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
628 	 * Therefore, we need to test 1-7
629 	 */
630 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
631 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
632 		if (ret_val == 0) {
633 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
634 			       phy_id, phy->addr);
635 			/*
636 			 * At the time of this writing, The M88 part is
637 			 * the only supported SGMII PHY product.
638 			 */
639 			if (phy_id == M88_VENDOR)
640 				break;
641 		} else {
642 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
643 		}
644 	}
645 
646 	/* A valid PHY type couldn't be found. */
647 	if (phy->addr == 8) {
648 		phy->addr = 0;
649 		ret_val = -E1000_ERR_PHY;
650 		goto out;
651 	} else {
652 		ret_val = igb_get_phy_id(hw);
653 	}
654 
655 	/* restore previous sfp cage power state */
656 	wr32(E1000_CTRL_EXT, ctrl_ext);
657 
658 out:
659 	return ret_val;
660 }
661 
662 /**
663  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
664  *  @hw: pointer to the HW structure
665  *
666  *  Resets the PHY using the serial gigabit media independent interface.
667  **/
668 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
669 {
670 	s32 ret_val;
671 
672 	/*
673 	 * This isn't a true "hard" reset, but is the only reset
674 	 * available to us at this time.
675 	 */
676 
677 	hw_dbg("Soft resetting SGMII attached PHY...\n");
678 
679 	/*
680 	 * SFP documentation requires the following to configure the SPF module
681 	 * to work on SGMII.  No further documentation is given.
682 	 */
683 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
684 	if (ret_val)
685 		goto out;
686 
687 	ret_val = igb_phy_sw_reset(hw);
688 
689 out:
690 	return ret_val;
691 }
692 
693 /**
694  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
695  *  @hw: pointer to the HW structure
696  *  @active: true to enable LPLU, false to disable
697  *
698  *  Sets the LPLU D0 state according to the active flag.  When
699  *  activating LPLU this function also disables smart speed
700  *  and vice versa.  LPLU will not be activated unless the
701  *  device autonegotiation advertisement meets standards of
702  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
703  *  This is a function pointer entry point only called by
704  *  PHY setup routines.
705  **/
706 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
707 {
708 	struct e1000_phy_info *phy = &hw->phy;
709 	s32 ret_val;
710 	u16 data;
711 
712 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
713 	if (ret_val)
714 		goto out;
715 
716 	if (active) {
717 		data |= IGP02E1000_PM_D0_LPLU;
718 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
719 						 data);
720 		if (ret_val)
721 			goto out;
722 
723 		/* When LPLU is enabled, we should disable SmartSpeed */
724 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
725 						&data);
726 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
727 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
728 						 data);
729 		if (ret_val)
730 			goto out;
731 	} else {
732 		data &= ~IGP02E1000_PM_D0_LPLU;
733 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
734 						 data);
735 		/*
736 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
737 		 * during Dx states where the power conservation is most
738 		 * important.  During driver activity we should enable
739 		 * SmartSpeed, so performance is maintained.
740 		 */
741 		if (phy->smart_speed == e1000_smart_speed_on) {
742 			ret_val = phy->ops.read_reg(hw,
743 					IGP01E1000_PHY_PORT_CONFIG, &data);
744 			if (ret_val)
745 				goto out;
746 
747 			data |= IGP01E1000_PSCFR_SMART_SPEED;
748 			ret_val = phy->ops.write_reg(hw,
749 					IGP01E1000_PHY_PORT_CONFIG, data);
750 			if (ret_val)
751 				goto out;
752 		} else if (phy->smart_speed == e1000_smart_speed_off) {
753 			ret_val = phy->ops.read_reg(hw,
754 					IGP01E1000_PHY_PORT_CONFIG, &data);
755 			if (ret_val)
756 				goto out;
757 
758 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
759 			ret_val = phy->ops.write_reg(hw,
760 					IGP01E1000_PHY_PORT_CONFIG, data);
761 			if (ret_val)
762 				goto out;
763 		}
764 	}
765 
766 out:
767 	return ret_val;
768 }
769 
770 /**
771  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
772  *  @hw: pointer to the HW structure
773  *  @active: true to enable LPLU, false to disable
774  *
775  *  Sets the LPLU D0 state according to the active flag.  When
776  *  activating LPLU this function also disables smart speed
777  *  and vice versa.  LPLU will not be activated unless the
778  *  device autonegotiation advertisement meets standards of
779  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
780  *  This is a function pointer entry point only called by
781  *  PHY setup routines.
782  **/
783 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
784 {
785 	struct e1000_phy_info *phy = &hw->phy;
786 	s32 ret_val = 0;
787 	u16 data;
788 
789 	data = rd32(E1000_82580_PHY_POWER_MGMT);
790 
791 	if (active) {
792 		data |= E1000_82580_PM_D0_LPLU;
793 
794 		/* When LPLU is enabled, we should disable SmartSpeed */
795 		data &= ~E1000_82580_PM_SPD;
796 	} else {
797 		data &= ~E1000_82580_PM_D0_LPLU;
798 
799 		/*
800 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
801 		 * during Dx states where the power conservation is most
802 		 * important.  During driver activity we should enable
803 		 * SmartSpeed, so performance is maintained.
804 		 */
805 		if (phy->smart_speed == e1000_smart_speed_on)
806 			data |= E1000_82580_PM_SPD;
807 		else if (phy->smart_speed == e1000_smart_speed_off)
808 			data &= ~E1000_82580_PM_SPD; }
809 
810 	wr32(E1000_82580_PHY_POWER_MGMT, data);
811 	return ret_val;
812 }
813 
814 /**
815  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
816  *  @hw: pointer to the HW structure
817  *  @active: boolean used to enable/disable lplu
818  *
819  *  Success returns 0, Failure returns 1
820  *
821  *  The low power link up (lplu) state is set to the power management level D3
822  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
823  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
824  *  is used during Dx states where the power conservation is most important.
825  *  During driver activity, SmartSpeed should be enabled so performance is
826  *  maintained.
827  **/
828 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
829 {
830 	struct e1000_phy_info *phy = &hw->phy;
831 	s32 ret_val = 0;
832 	u16 data;
833 
834 	data = rd32(E1000_82580_PHY_POWER_MGMT);
835 
836 	if (!active) {
837 		data &= ~E1000_82580_PM_D3_LPLU;
838 		/*
839 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
840 		 * during Dx states where the power conservation is most
841 		 * important.  During driver activity we should enable
842 		 * SmartSpeed, so performance is maintained.
843 		 */
844 		if (phy->smart_speed == e1000_smart_speed_on)
845 			data |= E1000_82580_PM_SPD;
846 		else if (phy->smart_speed == e1000_smart_speed_off)
847 			data &= ~E1000_82580_PM_SPD;
848 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
849 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
850 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
851 		data |= E1000_82580_PM_D3_LPLU;
852 		/* When LPLU is enabled, we should disable SmartSpeed */
853 		data &= ~E1000_82580_PM_SPD;
854 	}
855 
856 	wr32(E1000_82580_PHY_POWER_MGMT, data);
857 	return ret_val;
858 }
859 
860 /**
861  *  igb_acquire_nvm_82575 - Request for access to EEPROM
862  *  @hw: pointer to the HW structure
863  *
864  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
865  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
866  *  Return successful if access grant bit set, else clear the request for
867  *  EEPROM access and return -E1000_ERR_NVM (-1).
868  **/
869 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
870 {
871 	s32 ret_val;
872 
873 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
874 	if (ret_val)
875 		goto out;
876 
877 	ret_val = igb_acquire_nvm(hw);
878 
879 	if (ret_val)
880 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
881 
882 out:
883 	return ret_val;
884 }
885 
886 /**
887  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
888  *  @hw: pointer to the HW structure
889  *
890  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
891  *  then release the semaphores acquired.
892  **/
893 static void igb_release_nvm_82575(struct e1000_hw *hw)
894 {
895 	igb_release_nvm(hw);
896 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
897 }
898 
899 /**
900  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
901  *  @hw: pointer to the HW structure
902  *  @mask: specifies which semaphore to acquire
903  *
904  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
905  *  will also specify which port we're acquiring the lock for.
906  **/
907 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
908 {
909 	u32 swfw_sync;
910 	u32 swmask = mask;
911 	u32 fwmask = mask << 16;
912 	s32 ret_val = 0;
913 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
914 
915 	while (i < timeout) {
916 		if (igb_get_hw_semaphore(hw)) {
917 			ret_val = -E1000_ERR_SWFW_SYNC;
918 			goto out;
919 		}
920 
921 		swfw_sync = rd32(E1000_SW_FW_SYNC);
922 		if (!(swfw_sync & (fwmask | swmask)))
923 			break;
924 
925 		/*
926 		 * Firmware currently using resource (fwmask)
927 		 * or other software thread using resource (swmask)
928 		 */
929 		igb_put_hw_semaphore(hw);
930 		mdelay(5);
931 		i++;
932 	}
933 
934 	if (i == timeout) {
935 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
936 		ret_val = -E1000_ERR_SWFW_SYNC;
937 		goto out;
938 	}
939 
940 	swfw_sync |= swmask;
941 	wr32(E1000_SW_FW_SYNC, swfw_sync);
942 
943 	igb_put_hw_semaphore(hw);
944 
945 out:
946 	return ret_val;
947 }
948 
949 /**
950  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
951  *  @hw: pointer to the HW structure
952  *  @mask: specifies which semaphore to acquire
953  *
954  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
955  *  will also specify which port we're releasing the lock for.
956  **/
957 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
958 {
959 	u32 swfw_sync;
960 
961 	while (igb_get_hw_semaphore(hw) != 0);
962 	/* Empty */
963 
964 	swfw_sync = rd32(E1000_SW_FW_SYNC);
965 	swfw_sync &= ~mask;
966 	wr32(E1000_SW_FW_SYNC, swfw_sync);
967 
968 	igb_put_hw_semaphore(hw);
969 }
970 
971 /**
972  *  igb_get_cfg_done_82575 - Read config done bit
973  *  @hw: pointer to the HW structure
974  *
975  *  Read the management control register for the config done bit for
976  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
977  *  to read the config done bit, so an error is *ONLY* logged and returns
978  *  0.  If we were to return with error, EEPROM-less silicon
979  *  would not be able to be reset or change link.
980  **/
981 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
982 {
983 	s32 timeout = PHY_CFG_TIMEOUT;
984 	s32 ret_val = 0;
985 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
986 
987 	if (hw->bus.func == 1)
988 		mask = E1000_NVM_CFG_DONE_PORT_1;
989 	else if (hw->bus.func == E1000_FUNC_2)
990 		mask = E1000_NVM_CFG_DONE_PORT_2;
991 	else if (hw->bus.func == E1000_FUNC_3)
992 		mask = E1000_NVM_CFG_DONE_PORT_3;
993 
994 	while (timeout) {
995 		if (rd32(E1000_EEMNGCTL) & mask)
996 			break;
997 		msleep(1);
998 		timeout--;
999 	}
1000 	if (!timeout)
1001 		hw_dbg("MNG configuration cycle has not completed.\n");
1002 
1003 	/* If EEPROM is not marked present, init the PHY manually */
1004 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1005 	    (hw->phy.type == e1000_phy_igp_3))
1006 		igb_phy_init_script_igp3(hw);
1007 
1008 	return ret_val;
1009 }
1010 
1011 /**
1012  *  igb_check_for_link_82575 - Check for link
1013  *  @hw: pointer to the HW structure
1014  *
1015  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1016  *  use the generic interface for determining link.
1017  **/
1018 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1019 {
1020 	s32 ret_val;
1021 	u16 speed, duplex;
1022 
1023 	if (hw->phy.media_type != e1000_media_type_copper) {
1024 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1025 		                                             &duplex);
1026 		/*
1027 		 * Use this flag to determine if link needs to be checked or
1028 		 * not.  If  we have link clear the flag so that we do not
1029 		 * continue to check for link.
1030 		 */
1031 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1032 	} else {
1033 		ret_val = igb_check_for_copper_link(hw);
1034 	}
1035 
1036 	return ret_val;
1037 }
1038 
1039 /**
1040  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1041  *  @hw: pointer to the HW structure
1042  **/
1043 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1044 {
1045 	u32 reg;
1046 
1047 
1048 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1049 	    !igb_sgmii_active_82575(hw))
1050 		return;
1051 
1052 	/* Enable PCS to turn on link */
1053 	reg = rd32(E1000_PCS_CFG0);
1054 	reg |= E1000_PCS_CFG_PCS_EN;
1055 	wr32(E1000_PCS_CFG0, reg);
1056 
1057 	/* Power up the laser */
1058 	reg = rd32(E1000_CTRL_EXT);
1059 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1060 	wr32(E1000_CTRL_EXT, reg);
1061 
1062 	/* flush the write to verify completion */
1063 	wrfl();
1064 	msleep(1);
1065 }
1066 
1067 /**
1068  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1069  *  @hw: pointer to the HW structure
1070  *  @speed: stores the current speed
1071  *  @duplex: stores the current duplex
1072  *
1073  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1074  *  duplex, then store the values in the pointers provided.
1075  **/
1076 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1077 						u16 *duplex)
1078 {
1079 	struct e1000_mac_info *mac = &hw->mac;
1080 	u32 pcs;
1081 
1082 	/* Set up defaults for the return values of this function */
1083 	mac->serdes_has_link = false;
1084 	*speed = 0;
1085 	*duplex = 0;
1086 
1087 	/*
1088 	 * Read the PCS Status register for link state. For non-copper mode,
1089 	 * the status register is not accurate. The PCS status register is
1090 	 * used instead.
1091 	 */
1092 	pcs = rd32(E1000_PCS_LSTAT);
1093 
1094 	/*
1095 	 * The link up bit determines when link is up on autoneg. The sync ok
1096 	 * gets set once both sides sync up and agree upon link. Stable link
1097 	 * can be determined by checking for both link up and link sync ok
1098 	 */
1099 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1100 		mac->serdes_has_link = true;
1101 
1102 		/* Detect and store PCS speed */
1103 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1104 			*speed = SPEED_1000;
1105 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1106 			*speed = SPEED_100;
1107 		} else {
1108 			*speed = SPEED_10;
1109 		}
1110 
1111 		/* Detect and store PCS duplex */
1112 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1113 			*duplex = FULL_DUPLEX;
1114 		} else {
1115 			*duplex = HALF_DUPLEX;
1116 		}
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1124  *  @hw: pointer to the HW structure
1125  *
1126  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1127  *  when management pass thru is not enabled.
1128  **/
1129 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1130 {
1131 	u32 reg;
1132 
1133 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1134 	    igb_sgmii_active_82575(hw))
1135 		return;
1136 
1137 	if (!igb_enable_mng_pass_thru(hw)) {
1138 		/* Disable PCS to turn off link */
1139 		reg = rd32(E1000_PCS_CFG0);
1140 		reg &= ~E1000_PCS_CFG_PCS_EN;
1141 		wr32(E1000_PCS_CFG0, reg);
1142 
1143 		/* shutdown the laser */
1144 		reg = rd32(E1000_CTRL_EXT);
1145 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1146 		wr32(E1000_CTRL_EXT, reg);
1147 
1148 		/* flush the write to verify completion */
1149 		wrfl();
1150 		msleep(1);
1151 	}
1152 }
1153 
1154 /**
1155  *  igb_reset_hw_82575 - Reset hardware
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  This resets the hardware into a known state.  This is a
1159  *  function pointer entry point called by the api module.
1160  **/
1161 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1162 {
1163 	u32 ctrl, icr;
1164 	s32 ret_val;
1165 
1166 	/*
1167 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1168 	 * on the last TLP read/write transaction when MAC is reset.
1169 	 */
1170 	ret_val = igb_disable_pcie_master(hw);
1171 	if (ret_val)
1172 		hw_dbg("PCI-E Master disable polling has failed.\n");
1173 
1174 	/* set the completion timeout for interface */
1175 	ret_val = igb_set_pcie_completion_timeout(hw);
1176 	if (ret_val) {
1177 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1178 	}
1179 
1180 	hw_dbg("Masking off all interrupts\n");
1181 	wr32(E1000_IMC, 0xffffffff);
1182 
1183 	wr32(E1000_RCTL, 0);
1184 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1185 	wrfl();
1186 
1187 	msleep(10);
1188 
1189 	ctrl = rd32(E1000_CTRL);
1190 
1191 	hw_dbg("Issuing a global reset to MAC\n");
1192 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1193 
1194 	ret_val = igb_get_auto_rd_done(hw);
1195 	if (ret_val) {
1196 		/*
1197 		 * When auto config read does not complete, do not
1198 		 * return with an error. This can happen in situations
1199 		 * where there is no eeprom and prevents getting link.
1200 		 */
1201 		hw_dbg("Auto Read Done did not complete\n");
1202 	}
1203 
1204 	/* If EEPROM is not present, run manual init scripts */
1205 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1206 		igb_reset_init_script_82575(hw);
1207 
1208 	/* Clear any pending interrupt events. */
1209 	wr32(E1000_IMC, 0xffffffff);
1210 	icr = rd32(E1000_ICR);
1211 
1212 	/* Install any alternate MAC address into RAR0 */
1213 	ret_val = igb_check_alt_mac_addr(hw);
1214 
1215 	return ret_val;
1216 }
1217 
1218 /**
1219  *  igb_init_hw_82575 - Initialize hardware
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  This inits the hardware readying it for operation.
1223  **/
1224 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1225 {
1226 	struct e1000_mac_info *mac = &hw->mac;
1227 	s32 ret_val;
1228 	u16 i, rar_count = mac->rar_entry_count;
1229 
1230 	/* Initialize identification LED */
1231 	ret_val = igb_id_led_init(hw);
1232 	if (ret_val) {
1233 		hw_dbg("Error initializing identification LED\n");
1234 		/* This is not fatal and we should not stop init due to this */
1235 	}
1236 
1237 	/* Disabling VLAN filtering */
1238 	hw_dbg("Initializing the IEEE VLAN\n");
1239 	if (hw->mac.type == e1000_i350)
1240 		igb_clear_vfta_i350(hw);
1241 	else
1242 		igb_clear_vfta(hw);
1243 
1244 	/* Setup the receive address */
1245 	igb_init_rx_addrs(hw, rar_count);
1246 
1247 	/* Zero out the Multicast HASH table */
1248 	hw_dbg("Zeroing the MTA\n");
1249 	for (i = 0; i < mac->mta_reg_count; i++)
1250 		array_wr32(E1000_MTA, i, 0);
1251 
1252 	/* Zero out the Unicast HASH table */
1253 	hw_dbg("Zeroing the UTA\n");
1254 	for (i = 0; i < mac->uta_reg_count; i++)
1255 		array_wr32(E1000_UTA, i, 0);
1256 
1257 	/* Setup link and flow control */
1258 	ret_val = igb_setup_link(hw);
1259 
1260 	/*
1261 	 * Clear all of the statistics registers (clear on read).  It is
1262 	 * important that we do this after we have tried to establish link
1263 	 * because the symbol error count will increment wildly if there
1264 	 * is no link.
1265 	 */
1266 	igb_clear_hw_cntrs_82575(hw);
1267 	return ret_val;
1268 }
1269 
1270 /**
1271  *  igb_setup_copper_link_82575 - Configure copper link settings
1272  *  @hw: pointer to the HW structure
1273  *
1274  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1275  *  for link, once link is established calls to configure collision distance
1276  *  and flow control are called.
1277  **/
1278 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1279 {
1280 	u32 ctrl;
1281 	s32  ret_val;
1282 
1283 	ctrl = rd32(E1000_CTRL);
1284 	ctrl |= E1000_CTRL_SLU;
1285 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1286 	wr32(E1000_CTRL, ctrl);
1287 
1288 	ret_val = igb_setup_serdes_link_82575(hw);
1289 	if (ret_val)
1290 		goto out;
1291 
1292 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1293 		/* allow time for SFP cage time to power up phy */
1294 		msleep(300);
1295 
1296 		ret_val = hw->phy.ops.reset(hw);
1297 		if (ret_val) {
1298 			hw_dbg("Error resetting the PHY.\n");
1299 			goto out;
1300 		}
1301 	}
1302 	switch (hw->phy.type) {
1303 	case e1000_phy_i210:
1304 	case e1000_phy_m88:
1305 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1306 		    hw->phy.id == M88E1112_E_PHY_ID)
1307 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1308 		else
1309 			ret_val = igb_copper_link_setup_m88(hw);
1310 		break;
1311 	case e1000_phy_igp_3:
1312 		ret_val = igb_copper_link_setup_igp(hw);
1313 		break;
1314 	case e1000_phy_82580:
1315 		ret_val = igb_copper_link_setup_82580(hw);
1316 		break;
1317 	default:
1318 		ret_val = -E1000_ERR_PHY;
1319 		break;
1320 	}
1321 
1322 	if (ret_val)
1323 		goto out;
1324 
1325 	ret_val = igb_setup_copper_link(hw);
1326 out:
1327 	return ret_val;
1328 }
1329 
1330 /**
1331  *  igb_setup_serdes_link_82575 - Setup link for serdes
1332  *  @hw: pointer to the HW structure
1333  *
1334  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1335  *  used on copper connections where the serialized gigabit media independent
1336  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1337  *  for auto-negotiation or forces speed/duplex.
1338  **/
1339 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1340 {
1341 	u32 ctrl_ext, ctrl_reg, reg;
1342 	bool pcs_autoneg;
1343 	s32 ret_val = E1000_SUCCESS;
1344 	u16 data;
1345 
1346 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1347 	    !igb_sgmii_active_82575(hw))
1348 		return ret_val;
1349 
1350 
1351 	/*
1352 	 * On the 82575, SerDes loopback mode persists until it is
1353 	 * explicitly turned off or a power cycle is performed.  A read to
1354 	 * the register does not indicate its status.  Therefore, we ensure
1355 	 * loopback mode is disabled during initialization.
1356 	 */
1357 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1358 
1359 	/* power on the sfp cage if present */
1360 	ctrl_ext = rd32(E1000_CTRL_EXT);
1361 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1362 	wr32(E1000_CTRL_EXT, ctrl_ext);
1363 
1364 	ctrl_reg = rd32(E1000_CTRL);
1365 	ctrl_reg |= E1000_CTRL_SLU;
1366 
1367 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1368 		/* set both sw defined pins */
1369 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1370 
1371 		/* Set switch control to serdes energy detect */
1372 		reg = rd32(E1000_CONNSW);
1373 		reg |= E1000_CONNSW_ENRGSRC;
1374 		wr32(E1000_CONNSW, reg);
1375 	}
1376 
1377 	reg = rd32(E1000_PCS_LCTL);
1378 
1379 	/* default pcs_autoneg to the same setting as mac autoneg */
1380 	pcs_autoneg = hw->mac.autoneg;
1381 
1382 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1383 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1384 		/* sgmii mode lets the phy handle forcing speed/duplex */
1385 		pcs_autoneg = true;
1386 		/* autoneg time out should be disabled for SGMII mode */
1387 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1388 		break;
1389 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1390 		/* disable PCS autoneg and support parallel detect only */
1391 		pcs_autoneg = false;
1392 	default:
1393 		if (hw->mac.type == e1000_82575 ||
1394 		    hw->mac.type == e1000_82576) {
1395 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1396 			if (ret_val) {
1397 				printk(KERN_DEBUG "NVM Read Error\n\n");
1398 				return ret_val;
1399 			}
1400 
1401 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1402 				pcs_autoneg = false;
1403 		}
1404 
1405 		/*
1406 		 * non-SGMII modes only supports a speed of 1000/Full for the
1407 		 * link so it is best to just force the MAC and let the pcs
1408 		 * link either autoneg or be forced to 1000/Full
1409 		 */
1410 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1411 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1412 
1413 		/* set speed of 1000/Full if speed/duplex is forced */
1414 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1415 		break;
1416 	}
1417 
1418 	wr32(E1000_CTRL, ctrl_reg);
1419 
1420 	/*
1421 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1422 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1423 	 * mode that will be compatible with older link partners and switches.
1424 	 * However, both are supported by the hardware and some drivers/tools.
1425 	 */
1426 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1427 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1428 
1429 	/*
1430 	 * We force flow control to prevent the CTRL register values from being
1431 	 * overwritten by the autonegotiated flow control values
1432 	 */
1433 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1434 
1435 	if (pcs_autoneg) {
1436 		/* Set PCS register for autoneg */
1437 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1438 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1439 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1440 	} else {
1441 		/* Set PCS register for forced link */
1442 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1443 
1444 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1445 	}
1446 
1447 	wr32(E1000_PCS_LCTL, reg);
1448 
1449 	if (!igb_sgmii_active_82575(hw))
1450 		igb_force_mac_fc(hw);
1451 
1452 	return ret_val;
1453 }
1454 
1455 /**
1456  *  igb_sgmii_active_82575 - Return sgmii state
1457  *  @hw: pointer to the HW structure
1458  *
1459  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1460  *  which can be enabled for use in the embedded applications.  Simply
1461  *  return the current state of the sgmii interface.
1462  **/
1463 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1464 {
1465 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1466 	return dev_spec->sgmii_active;
1467 }
1468 
1469 /**
1470  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1471  *  @hw: pointer to the HW structure
1472  *
1473  *  Inits recommended HW defaults after a reset when there is no EEPROM
1474  *  detected. This is only for the 82575.
1475  **/
1476 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1477 {
1478 	if (hw->mac.type == e1000_82575) {
1479 		hw_dbg("Running reset init script for 82575\n");
1480 		/* SerDes configuration via SERDESCTRL */
1481 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1482 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1483 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1484 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1485 
1486 		/* CCM configuration via CCMCTL register */
1487 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1488 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1489 
1490 		/* PCIe lanes configuration */
1491 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1492 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1493 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1494 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1495 
1496 		/* PCIe PLL Configuration */
1497 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1498 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1499 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 /**
1506  *  igb_read_mac_addr_82575 - Read device MAC address
1507  *  @hw: pointer to the HW structure
1508  **/
1509 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1510 {
1511 	s32 ret_val = 0;
1512 
1513 	/*
1514 	 * If there's an alternate MAC address place it in RAR0
1515 	 * so that it will override the Si installed default perm
1516 	 * address.
1517 	 */
1518 	ret_val = igb_check_alt_mac_addr(hw);
1519 	if (ret_val)
1520 		goto out;
1521 
1522 	ret_val = igb_read_mac_addr(hw);
1523 
1524 out:
1525 	return ret_val;
1526 }
1527 
1528 /**
1529  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1530  * @hw: pointer to the HW structure
1531  *
1532  * In the case of a PHY power down to save power, or to turn off link during a
1533  * driver unload, or wake on lan is not enabled, remove the link.
1534  **/
1535 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1536 {
1537 	/* If the management interface is not enabled, then power down */
1538 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1539 		igb_power_down_phy_copper(hw);
1540 }
1541 
1542 /**
1543  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1544  *  @hw: pointer to the HW structure
1545  *
1546  *  Clears the hardware counters by reading the counter registers.
1547  **/
1548 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1549 {
1550 	igb_clear_hw_cntrs_base(hw);
1551 
1552 	rd32(E1000_PRC64);
1553 	rd32(E1000_PRC127);
1554 	rd32(E1000_PRC255);
1555 	rd32(E1000_PRC511);
1556 	rd32(E1000_PRC1023);
1557 	rd32(E1000_PRC1522);
1558 	rd32(E1000_PTC64);
1559 	rd32(E1000_PTC127);
1560 	rd32(E1000_PTC255);
1561 	rd32(E1000_PTC511);
1562 	rd32(E1000_PTC1023);
1563 	rd32(E1000_PTC1522);
1564 
1565 	rd32(E1000_ALGNERRC);
1566 	rd32(E1000_RXERRC);
1567 	rd32(E1000_TNCRS);
1568 	rd32(E1000_CEXTERR);
1569 	rd32(E1000_TSCTC);
1570 	rd32(E1000_TSCTFC);
1571 
1572 	rd32(E1000_MGTPRC);
1573 	rd32(E1000_MGTPDC);
1574 	rd32(E1000_MGTPTC);
1575 
1576 	rd32(E1000_IAC);
1577 	rd32(E1000_ICRXOC);
1578 
1579 	rd32(E1000_ICRXPTC);
1580 	rd32(E1000_ICRXATC);
1581 	rd32(E1000_ICTXPTC);
1582 	rd32(E1000_ICTXATC);
1583 	rd32(E1000_ICTXQEC);
1584 	rd32(E1000_ICTXQMTC);
1585 	rd32(E1000_ICRXDMTC);
1586 
1587 	rd32(E1000_CBTMPC);
1588 	rd32(E1000_HTDPMC);
1589 	rd32(E1000_CBRMPC);
1590 	rd32(E1000_RPTHC);
1591 	rd32(E1000_HGPTC);
1592 	rd32(E1000_HTCBDPC);
1593 	rd32(E1000_HGORCL);
1594 	rd32(E1000_HGORCH);
1595 	rd32(E1000_HGOTCL);
1596 	rd32(E1000_HGOTCH);
1597 	rd32(E1000_LENERRS);
1598 
1599 	/* This register should not be read in copper configurations */
1600 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1601 	    igb_sgmii_active_82575(hw))
1602 		rd32(E1000_SCVPC);
1603 }
1604 
1605 /**
1606  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1607  *  @hw: pointer to the HW structure
1608  *
1609  *  After rx enable if managability is enabled then there is likely some
1610  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1611  *  function clears the fifos and flushes any packets that came in as rx was
1612  *  being enabled.
1613  **/
1614 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1615 {
1616 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1617 	int i, ms_wait;
1618 
1619 	if (hw->mac.type != e1000_82575 ||
1620 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1621 		return;
1622 
1623 	/* Disable all RX queues */
1624 	for (i = 0; i < 4; i++) {
1625 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1626 		wr32(E1000_RXDCTL(i),
1627 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1628 	}
1629 	/* Poll all queues to verify they have shut down */
1630 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1631 		msleep(1);
1632 		rx_enabled = 0;
1633 		for (i = 0; i < 4; i++)
1634 			rx_enabled |= rd32(E1000_RXDCTL(i));
1635 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1636 			break;
1637 	}
1638 
1639 	if (ms_wait == 10)
1640 		hw_dbg("Queue disable timed out after 10ms\n");
1641 
1642 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1643 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1644 	 * any packet that was coming in as RCTL.EN was set is flushed
1645 	 */
1646 	rfctl = rd32(E1000_RFCTL);
1647 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1648 
1649 	rlpml = rd32(E1000_RLPML);
1650 	wr32(E1000_RLPML, 0);
1651 
1652 	rctl = rd32(E1000_RCTL);
1653 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1654 	temp_rctl |= E1000_RCTL_LPE;
1655 
1656 	wr32(E1000_RCTL, temp_rctl);
1657 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1658 	wrfl();
1659 	msleep(2);
1660 
1661 	/* Enable RX queues that were previously enabled and restore our
1662 	 * previous state
1663 	 */
1664 	for (i = 0; i < 4; i++)
1665 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1666 	wr32(E1000_RCTL, rctl);
1667 	wrfl();
1668 
1669 	wr32(E1000_RLPML, rlpml);
1670 	wr32(E1000_RFCTL, rfctl);
1671 
1672 	/* Flush receive errors generated by workaround */
1673 	rd32(E1000_ROC);
1674 	rd32(E1000_RNBC);
1675 	rd32(E1000_MPC);
1676 }
1677 
1678 /**
1679  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1680  *  @hw: pointer to the HW structure
1681  *
1682  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1683  *  however the hardware default for these parts is 500us to 1ms which is less
1684  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1685  *  increase the value to either 10ms to 200ms for capability version 1 config,
1686  *  or 16ms to 55ms for version 2.
1687  **/
1688 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1689 {
1690 	u32 gcr = rd32(E1000_GCR);
1691 	s32 ret_val = 0;
1692 	u16 pcie_devctl2;
1693 
1694 	/* only take action if timeout value is defaulted to 0 */
1695 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1696 		goto out;
1697 
1698 	/*
1699 	 * if capababilities version is type 1 we can write the
1700 	 * timeout of 10ms to 200ms through the GCR register
1701 	 */
1702 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1703 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1704 		goto out;
1705 	}
1706 
1707 	/*
1708 	 * for version 2 capabilities we need to write the config space
1709 	 * directly in order to set the completion timeout value for
1710 	 * 16ms to 55ms
1711 	 */
1712 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1713 	                                &pcie_devctl2);
1714 	if (ret_val)
1715 		goto out;
1716 
1717 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1718 
1719 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1720 	                                 &pcie_devctl2);
1721 out:
1722 	/* disable completion timeout resend */
1723 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1724 
1725 	wr32(E1000_GCR, gcr);
1726 	return ret_val;
1727 }
1728 
1729 /**
1730  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1731  *  @hw: pointer to the hardware struct
1732  *  @enable: state to enter, either enabled or disabled
1733  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1734  *
1735  *  enables/disables L2 switch anti-spoofing functionality.
1736  **/
1737 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1738 {
1739 	u32 dtxswc;
1740 
1741 	switch (hw->mac.type) {
1742 	case e1000_82576:
1743 	case e1000_i350:
1744 		dtxswc = rd32(E1000_DTXSWC);
1745 		if (enable) {
1746 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1747 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1748 			/* The PF can spoof - it has to in order to
1749 			 * support emulation mode NICs */
1750 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1751 		} else {
1752 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1753 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1754 		}
1755 		wr32(E1000_DTXSWC, dtxswc);
1756 		break;
1757 	default:
1758 		break;
1759 	}
1760 }
1761 
1762 /**
1763  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1764  *  @hw: pointer to the hardware struct
1765  *  @enable: state to enter, either enabled or disabled
1766  *
1767  *  enables/disables L2 switch loopback functionality.
1768  **/
1769 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1770 {
1771 	u32 dtxswc;
1772 
1773 	switch (hw->mac.type) {
1774 	case e1000_82576:
1775 		dtxswc = rd32(E1000_DTXSWC);
1776 		if (enable)
1777 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778 		else
1779 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1780 		wr32(E1000_DTXSWC, dtxswc);
1781 		break;
1782 	case e1000_i350:
1783 		dtxswc = rd32(E1000_TXSWC);
1784 		if (enable)
1785 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786 		else
1787 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1788 		wr32(E1000_TXSWC, dtxswc);
1789 		break;
1790 	default:
1791 		/* Currently no other hardware supports loopback */
1792 		break;
1793 	}
1794 
1795 
1796 }
1797 
1798 /**
1799  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1800  *  @hw: pointer to the hardware struct
1801  *  @enable: state to enter, either enabled or disabled
1802  *
1803  *  enables/disables replication of packets across multiple pools.
1804  **/
1805 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1806 {
1807 	u32 vt_ctl = rd32(E1000_VT_CTL);
1808 
1809 	if (enable)
1810 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1811 	else
1812 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1813 
1814 	wr32(E1000_VT_CTL, vt_ctl);
1815 }
1816 
1817 /**
1818  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1819  *  @hw: pointer to the HW structure
1820  *  @offset: register offset to be read
1821  *  @data: pointer to the read data
1822  *
1823  *  Reads the MDI control register in the PHY at offset and stores the
1824  *  information read to data.
1825  **/
1826 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1827 {
1828 	s32 ret_val;
1829 
1830 
1831 	ret_val = hw->phy.ops.acquire(hw);
1832 	if (ret_val)
1833 		goto out;
1834 
1835 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1836 
1837 	hw->phy.ops.release(hw);
1838 
1839 out:
1840 	return ret_val;
1841 }
1842 
1843 /**
1844  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1845  *  @hw: pointer to the HW structure
1846  *  @offset: register offset to write to
1847  *  @data: data to write to register at offset
1848  *
1849  *  Writes data to MDI control register in the PHY at offset.
1850  **/
1851 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1852 {
1853 	s32 ret_val;
1854 
1855 
1856 	ret_val = hw->phy.ops.acquire(hw);
1857 	if (ret_val)
1858 		goto out;
1859 
1860 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1861 
1862 	hw->phy.ops.release(hw);
1863 
1864 out:
1865 	return ret_val;
1866 }
1867 
1868 /**
1869  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1870  *  @hw: pointer to the HW structure
1871  *
1872  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1873  *  the values found in the EEPROM.  This addresses an issue in which these
1874  *  bits are not restored from EEPROM after reset.
1875  **/
1876 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1877 {
1878 	s32 ret_val = 0;
1879 	u32 mdicnfg;
1880 	u16 nvm_data = 0;
1881 
1882 	if (hw->mac.type != e1000_82580)
1883 		goto out;
1884 	if (!igb_sgmii_active_82575(hw))
1885 		goto out;
1886 
1887 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1888 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1889 				   &nvm_data);
1890 	if (ret_val) {
1891 		hw_dbg("NVM Read Error\n");
1892 		goto out;
1893 	}
1894 
1895 	mdicnfg = rd32(E1000_MDICNFG);
1896 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1897 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1898 	if (nvm_data & NVM_WORD24_COM_MDIO)
1899 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1900 	wr32(E1000_MDICNFG, mdicnfg);
1901 out:
1902 	return ret_val;
1903 }
1904 
1905 /**
1906  *  igb_reset_hw_82580 - Reset hardware
1907  *  @hw: pointer to the HW structure
1908  *
1909  *  This resets function or entire device (all ports, etc.)
1910  *  to a known state.
1911  **/
1912 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1913 {
1914 	s32 ret_val = 0;
1915 	/* BH SW mailbox bit in SW_FW_SYNC */
1916 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1917 	u32 ctrl, icr;
1918 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1919 
1920 
1921 	hw->dev_spec._82575.global_device_reset = false;
1922 
1923 	/* Get current control state. */
1924 	ctrl = rd32(E1000_CTRL);
1925 
1926 	/*
1927 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1928 	 * on the last TLP read/write transaction when MAC is reset.
1929 	 */
1930 	ret_val = igb_disable_pcie_master(hw);
1931 	if (ret_val)
1932 		hw_dbg("PCI-E Master disable polling has failed.\n");
1933 
1934 	hw_dbg("Masking off all interrupts\n");
1935 	wr32(E1000_IMC, 0xffffffff);
1936 	wr32(E1000_RCTL, 0);
1937 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1938 	wrfl();
1939 
1940 	msleep(10);
1941 
1942 	/* Determine whether or not a global dev reset is requested */
1943 	if (global_device_reset &&
1944 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1945 			global_device_reset = false;
1946 
1947 	if (global_device_reset &&
1948 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1949 		ctrl |= E1000_CTRL_DEV_RST;
1950 	else
1951 		ctrl |= E1000_CTRL_RST;
1952 
1953 	wr32(E1000_CTRL, ctrl);
1954 	wrfl();
1955 
1956 	/* Add delay to insure DEV_RST has time to complete */
1957 	if (global_device_reset)
1958 		msleep(5);
1959 
1960 	ret_val = igb_get_auto_rd_done(hw);
1961 	if (ret_val) {
1962 		/*
1963 		 * When auto config read does not complete, do not
1964 		 * return with an error. This can happen in situations
1965 		 * where there is no eeprom and prevents getting link.
1966 		 */
1967 		hw_dbg("Auto Read Done did not complete\n");
1968 	}
1969 
1970 	/* If EEPROM is not present, run manual init scripts */
1971 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1972 		igb_reset_init_script_82575(hw);
1973 
1974 	/* clear global device reset status bit */
1975 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1976 
1977 	/* Clear any pending interrupt events. */
1978 	wr32(E1000_IMC, 0xffffffff);
1979 	icr = rd32(E1000_ICR);
1980 
1981 	ret_val = igb_reset_mdicnfg_82580(hw);
1982 	if (ret_val)
1983 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1984 
1985 	/* Install any alternate MAC address into RAR0 */
1986 	ret_val = igb_check_alt_mac_addr(hw);
1987 
1988 	/* Release semaphore */
1989 	if (global_device_reset)
1990 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1991 
1992 	return ret_val;
1993 }
1994 
1995 /**
1996  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1997  *  @data: data received by reading RXPBS register
1998  *
1999  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2000  *  This function converts the retrieved value into the correct table value
2001  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2002  *  0x0 36  72 144   1   2   4   8  16
2003  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2004  */
2005 u16 igb_rxpbs_adjust_82580(u32 data)
2006 {
2007 	u16 ret_val = 0;
2008 
2009 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2010 		ret_val = e1000_82580_rxpbs_table[data];
2011 
2012 	return ret_val;
2013 }
2014 
2015 /**
2016  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2017  *  checksum
2018  *  @hw: pointer to the HW structure
2019  *  @offset: offset in words of the checksum protected region
2020  *
2021  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2022  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2023  **/
2024 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2025 						 u16 offset)
2026 {
2027 	s32 ret_val = 0;
2028 	u16 checksum = 0;
2029 	u16 i, nvm_data;
2030 
2031 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2032 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2033 		if (ret_val) {
2034 			hw_dbg("NVM Read Error\n");
2035 			goto out;
2036 		}
2037 		checksum += nvm_data;
2038 	}
2039 
2040 	if (checksum != (u16) NVM_SUM) {
2041 		hw_dbg("NVM Checksum Invalid\n");
2042 		ret_val = -E1000_ERR_NVM;
2043 		goto out;
2044 	}
2045 
2046 out:
2047 	return ret_val;
2048 }
2049 
2050 /**
2051  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2052  *  checksum
2053  *  @hw: pointer to the HW structure
2054  *  @offset: offset in words of the checksum protected region
2055  *
2056  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2057  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2058  *  value to the EEPROM.
2059  **/
2060 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2061 {
2062 	s32 ret_val;
2063 	u16 checksum = 0;
2064 	u16 i, nvm_data;
2065 
2066 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2067 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2068 		if (ret_val) {
2069 			hw_dbg("NVM Read Error while updating checksum.\n");
2070 			goto out;
2071 		}
2072 		checksum += nvm_data;
2073 	}
2074 	checksum = (u16) NVM_SUM - checksum;
2075 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2076 				&checksum);
2077 	if (ret_val)
2078 		hw_dbg("NVM Write Error while updating checksum.\n");
2079 
2080 out:
2081 	return ret_val;
2082 }
2083 
2084 /**
2085  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2086  *  @hw: pointer to the HW structure
2087  *
2088  *  Calculates the EEPROM section checksum by reading/adding each word of
2089  *  the EEPROM and then verifies that the sum of the EEPROM is
2090  *  equal to 0xBABA.
2091  **/
2092 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2093 {
2094 	s32 ret_val = 0;
2095 	u16 eeprom_regions_count = 1;
2096 	u16 j, nvm_data;
2097 	u16 nvm_offset;
2098 
2099 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2100 	if (ret_val) {
2101 		hw_dbg("NVM Read Error\n");
2102 		goto out;
2103 	}
2104 
2105 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2106 		/* if checksums compatibility bit is set validate checksums
2107 		 * for all 4 ports. */
2108 		eeprom_regions_count = 4;
2109 	}
2110 
2111 	for (j = 0; j < eeprom_regions_count; j++) {
2112 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2113 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2114 								nvm_offset);
2115 		if (ret_val != 0)
2116 			goto out;
2117 	}
2118 
2119 out:
2120 	return ret_val;
2121 }
2122 
2123 /**
2124  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2125  *  @hw: pointer to the HW structure
2126  *
2127  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2128  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2129  *  checksum and writes the value to the EEPROM.
2130  **/
2131 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2132 {
2133 	s32 ret_val;
2134 	u16 j, nvm_data;
2135 	u16 nvm_offset;
2136 
2137 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2138 	if (ret_val) {
2139 		hw_dbg("NVM Read Error while updating checksum"
2140 			" compatibility bit.\n");
2141 		goto out;
2142 	}
2143 
2144 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2145 		/* set compatibility bit to validate checksums appropriately */
2146 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2147 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2148 					&nvm_data);
2149 		if (ret_val) {
2150 			hw_dbg("NVM Write Error while updating checksum"
2151 				" compatibility bit.\n");
2152 			goto out;
2153 		}
2154 	}
2155 
2156 	for (j = 0; j < 4; j++) {
2157 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2158 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2159 		if (ret_val)
2160 			goto out;
2161 	}
2162 
2163 out:
2164 	return ret_val;
2165 }
2166 
2167 /**
2168  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2169  *  @hw: pointer to the HW structure
2170  *
2171  *  Calculates the EEPROM section checksum by reading/adding each word of
2172  *  the EEPROM and then verifies that the sum of the EEPROM is
2173  *  equal to 0xBABA.
2174  **/
2175 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2176 {
2177 	s32 ret_val = 0;
2178 	u16 j;
2179 	u16 nvm_offset;
2180 
2181 	for (j = 0; j < 4; j++) {
2182 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2183 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2184 								nvm_offset);
2185 		if (ret_val != 0)
2186 			goto out;
2187 	}
2188 
2189 out:
2190 	return ret_val;
2191 }
2192 
2193 /**
2194  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2195  *  @hw: pointer to the HW structure
2196  *
2197  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2198  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2199  *  checksum and writes the value to the EEPROM.
2200  **/
2201 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2202 {
2203 	s32 ret_val = 0;
2204 	u16 j;
2205 	u16 nvm_offset;
2206 
2207 	for (j = 0; j < 4; j++) {
2208 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2209 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2210 		if (ret_val != 0)
2211 			goto out;
2212 	}
2213 
2214 out:
2215 	return ret_val;
2216 }
2217 
2218 /**
2219  *  igb_set_eee_i350 - Enable/disable EEE support
2220  *  @hw: pointer to the HW structure
2221  *
2222  *  Enable/disable EEE based on setting in dev_spec structure.
2223  *
2224  **/
2225 s32 igb_set_eee_i350(struct e1000_hw *hw)
2226 {
2227 	s32 ret_val = 0;
2228 	u32 ipcnfg, eeer, ctrl_ext;
2229 
2230 	ctrl_ext = rd32(E1000_CTRL_EXT);
2231 	if ((hw->mac.type != e1000_i350) ||
2232 	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2233 		goto out;
2234 	ipcnfg = rd32(E1000_IPCNFG);
2235 	eeer = rd32(E1000_EEER);
2236 
2237 	/* enable or disable per user setting */
2238 	if (!(hw->dev_spec._82575.eee_disable)) {
2239 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2240 			E1000_IPCNFG_EEE_100M_AN);
2241 		eeer |= (E1000_EEER_TX_LPI_EN |
2242 			E1000_EEER_RX_LPI_EN |
2243 			E1000_EEER_LPI_FC);
2244 
2245 	} else {
2246 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2247 			E1000_IPCNFG_EEE_100M_AN);
2248 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2249 			E1000_EEER_RX_LPI_EN |
2250 			E1000_EEER_LPI_FC);
2251 	}
2252 	wr32(E1000_IPCNFG, ipcnfg);
2253 	wr32(E1000_EEER, eeer);
2254 out:
2255 
2256 	return ret_val;
2257 }
2258 
2259 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2260 	.init_hw              = igb_init_hw_82575,
2261 	.check_for_link       = igb_check_for_link_82575,
2262 	.rar_set              = igb_rar_set,
2263 	.read_mac_addr        = igb_read_mac_addr_82575,
2264 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2265 };
2266 
2267 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2268 	.acquire              = igb_acquire_phy_82575,
2269 	.get_cfg_done         = igb_get_cfg_done_82575,
2270 	.release              = igb_release_phy_82575,
2271 };
2272 
2273 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2274 	.acquire              = igb_acquire_nvm_82575,
2275 	.read                 = igb_read_nvm_eerd,
2276 	.release              = igb_release_nvm_82575,
2277 	.write                = igb_write_nvm_spi,
2278 };
2279 
2280 const struct e1000_info e1000_82575_info = {
2281 	.get_invariants = igb_get_invariants_82575,
2282 	.mac_ops = &e1000_mac_ops_82575,
2283 	.phy_ops = &e1000_phy_ops_82575,
2284 	.nvm_ops = &e1000_nvm_ops_82575,
2285 };
2286 
2287