xref: /linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* e1000_82575
5  * e1000_82576
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/if_ether.h>
12 #include <linux/i2c.h>
13 
14 #include "e1000_mac.h"
15 #include "e1000_82575.h"
16 #include "e1000_i210.h"
17 #include "igb.h"
18 
19 static s32  igb_get_invariants_82575(struct e1000_hw *);
20 static s32  igb_acquire_phy_82575(struct e1000_hw *);
21 static void igb_release_phy_82575(struct e1000_hw *);
22 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
23 static void igb_release_nvm_82575(struct e1000_hw *);
24 static s32  igb_check_for_link_82575(struct e1000_hw *);
25 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
26 static s32  igb_init_hw_82575(struct e1000_hw *);
27 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29 static s32  igb_reset_hw_82575(struct e1000_hw *);
30 static s32  igb_reset_hw_82580(struct e1000_hw *);
31 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
35 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
36 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40 						 u16 *);
41 static s32  igb_get_phy_id_82575(struct e1000_hw *);
42 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43 static bool igb_sgmii_active_82575(struct e1000_hw *);
44 static s32  igb_reset_init_script_82575(struct e1000_hw *);
45 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
46 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52 static const u16 e1000_82580_rxpbs_table[] = {
53 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54 
55 /* Due to a hw errata, if the host tries to  configure the VFTA register
56  * while performing queries from the BMC or DMA, then the VFTA in some
57  * cases won't be written.
58  */
59 
60 /**
61  *  igb_write_vfta_i350 - Write value to VLAN filter table
62  *  @hw: pointer to the HW structure
63  *  @offset: register offset in VLAN filter table
64  *  @value: register value written to VLAN filter table
65  *
66  *  Writes value at the given offset in the register array which stores
67  *  the VLAN filter table.
68  **/
69 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70 {
71 	struct igb_adapter *adapter = hw->back;
72 	int i;
73 
74 	for (i = 10; i--;)
75 		array_wr32(E1000_VFTA, offset, value);
76 
77 	wrfl();
78 	adapter->shadow_vfta[offset] = value;
79 }
80 
81 /**
82  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83  *  @hw: pointer to the HW structure
84  *
85  *  Called to determine if the I2C pins are being used for I2C or as an
86  *  external MDIO interface since the two options are mutually exclusive.
87  **/
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90 	u32 reg = 0;
91 	bool ext_mdio = false;
92 
93 	switch (hw->mac.type) {
94 	case e1000_82575:
95 	case e1000_82576:
96 		reg = rd32(E1000_MDIC);
97 		ext_mdio = !!(reg & E1000_MDIC_DEST);
98 		break;
99 	case e1000_82580:
100 	case e1000_i350:
101 	case e1000_i354:
102 	case e1000_i210:
103 	case e1000_i211:
104 		reg = rd32(E1000_MDICNFG);
105 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 		break;
107 	default:
108 		break;
109 	}
110 	return ext_mdio;
111 }
112 
113 /**
114  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
115  *  @hw: pointer to the HW structure
116  *
117  *  Poll the M88E1112 interfaces to see which interface achieved link.
118  */
119 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120 {
121 	struct e1000_phy_info *phy = &hw->phy;
122 	s32 ret_val;
123 	u16 data;
124 	u8 port = 0;
125 
126 	/* Check the copper medium. */
127 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128 	if (ret_val)
129 		return ret_val;
130 
131 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132 	if (ret_val)
133 		return ret_val;
134 
135 	if (data & E1000_M88E1112_STATUS_LINK)
136 		port = E1000_MEDIA_PORT_COPPER;
137 
138 	/* Check the other medium. */
139 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140 	if (ret_val)
141 		return ret_val;
142 
143 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144 	if (ret_val)
145 		return ret_val;
146 
147 
148 	if (data & E1000_M88E1112_STATUS_LINK)
149 		port = E1000_MEDIA_PORT_OTHER;
150 
151 	/* Determine if a swap needs to happen. */
152 	if (port && (hw->dev_spec._82575.media_port != port)) {
153 		hw->dev_spec._82575.media_port = port;
154 		hw->dev_spec._82575.media_changed = true;
155 	}
156 
157 	if (port == E1000_MEDIA_PORT_COPPER) {
158 		/* reset page to 0 */
159 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160 		if (ret_val)
161 			return ret_val;
162 		igb_check_for_link_82575(hw);
163 	} else {
164 		igb_check_for_link_82575(hw);
165 		/* reset page to 0 */
166 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167 		if (ret_val)
168 			return ret_val;
169 	}
170 
171 	return 0;
172 }
173 
174 /**
175  *  igb_init_phy_params_82575 - Init PHY func ptrs.
176  *  @hw: pointer to the HW structure
177  **/
178 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179 {
180 	struct e1000_phy_info *phy = &hw->phy;
181 	s32 ret_val = 0;
182 	u32 ctrl_ext;
183 
184 	if (hw->phy.media_type != e1000_media_type_copper) {
185 		phy->type = e1000_phy_none;
186 		goto out;
187 	}
188 
189 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
190 	phy->reset_delay_us	= 100;
191 
192 	ctrl_ext = rd32(E1000_CTRL_EXT);
193 
194 	if (igb_sgmii_active_82575(hw)) {
195 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196 		ctrl_ext |= E1000_CTRL_I2C_ENA;
197 	} else {
198 		phy->ops.reset = igb_phy_hw_reset;
199 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200 	}
201 
202 	wr32(E1000_CTRL_EXT, ctrl_ext);
203 	igb_reset_mdicnfg_82580(hw);
204 
205 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208 	} else {
209 		switch (hw->mac.type) {
210 		case e1000_82580:
211 		case e1000_i350:
212 		case e1000_i354:
213 		case e1000_i210:
214 		case e1000_i211:
215 			phy->ops.read_reg = igb_read_phy_reg_82580;
216 			phy->ops.write_reg = igb_write_phy_reg_82580;
217 			break;
218 		default:
219 			phy->ops.read_reg = igb_read_phy_reg_igp;
220 			phy->ops.write_reg = igb_write_phy_reg_igp;
221 		}
222 	}
223 
224 	/* set lan id */
225 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
226 			E1000_STATUS_FUNC_SHIFT;
227 
228 	/* Set phy->phy_addr and phy->id. */
229 	ret_val = igb_get_phy_id_82575(hw);
230 	if (ret_val)
231 		return ret_val;
232 
233 	/* Verify phy id and set remaining function pointers */
234 	switch (phy->id) {
235 	case M88E1543_E_PHY_ID:
236 	case M88E1512_E_PHY_ID:
237 	case I347AT4_E_PHY_ID:
238 	case M88E1112_E_PHY_ID:
239 	case M88E1111_I_PHY_ID:
240 		phy->type		= e1000_phy_m88;
241 		phy->ops.check_polarity	= igb_check_polarity_m88;
242 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
243 		if (phy->id != M88E1111_I_PHY_ID)
244 			phy->ops.get_cable_length =
245 					 igb_get_cable_length_m88_gen2;
246 		else
247 			phy->ops.get_cable_length = igb_get_cable_length_m88;
248 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
249 		/* Check if this PHY is configured for media swap. */
250 		if (phy->id == M88E1112_E_PHY_ID) {
251 			u16 data;
252 
253 			ret_val = phy->ops.write_reg(hw,
254 						     E1000_M88E1112_PAGE_ADDR,
255 						     2);
256 			if (ret_val)
257 				goto out;
258 
259 			ret_val = phy->ops.read_reg(hw,
260 						    E1000_M88E1112_MAC_CTRL_1,
261 						    &data);
262 			if (ret_val)
263 				goto out;
264 
265 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
266 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
267 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
268 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
269 				hw->mac.ops.check_for_link =
270 						igb_check_for_link_media_swap;
271 		}
272 		if (phy->id == M88E1512_E_PHY_ID) {
273 			ret_val = igb_initialize_M88E1512_phy(hw);
274 			if (ret_val)
275 				goto out;
276 		}
277 		if (phy->id == M88E1543_E_PHY_ID) {
278 			ret_val = igb_initialize_M88E1543_phy(hw);
279 			if (ret_val)
280 				goto out;
281 		}
282 		break;
283 	case IGP03E1000_E_PHY_ID:
284 		phy->type = e1000_phy_igp_3;
285 		phy->ops.get_phy_info = igb_get_phy_info_igp;
286 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
287 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
288 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
289 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
290 		break;
291 	case I82580_I_PHY_ID:
292 	case I350_I_PHY_ID:
293 		phy->type = e1000_phy_82580;
294 		phy->ops.force_speed_duplex =
295 					 igb_phy_force_speed_duplex_82580;
296 		phy->ops.get_cable_length = igb_get_cable_length_82580;
297 		phy->ops.get_phy_info = igb_get_phy_info_82580;
298 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
299 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
300 		break;
301 	case I210_I_PHY_ID:
302 		phy->type		= e1000_phy_i210;
303 		phy->ops.check_polarity	= igb_check_polarity_m88;
304 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
305 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
306 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
307 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
308 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
309 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
310 		break;
311 	case BCM54616_E_PHY_ID:
312 		phy->type = e1000_phy_bcm54616;
313 		break;
314 	default:
315 		ret_val = -E1000_ERR_PHY;
316 		goto out;
317 	}
318 
319 out:
320 	return ret_val;
321 }
322 
323 /**
324  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
325  *  @hw: pointer to the HW structure
326  **/
327 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
328 {
329 	struct e1000_nvm_info *nvm = &hw->nvm;
330 	u32 eecd = rd32(E1000_EECD);
331 	u16 size;
332 
333 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
334 		     E1000_EECD_SIZE_EX_SHIFT);
335 
336 	/* Added to a constant, "size" becomes the left-shift value
337 	 * for setting word_size.
338 	 */
339 	size += NVM_WORD_SIZE_BASE_SHIFT;
340 
341 	/* Just in case size is out of range, cap it to the largest
342 	 * EEPROM size supported
343 	 */
344 	if (size > 15)
345 		size = 15;
346 
347 	nvm->word_size = BIT(size);
348 	nvm->opcode_bits = 8;
349 	nvm->delay_usec = 1;
350 
351 	switch (nvm->override) {
352 	case e1000_nvm_override_spi_large:
353 		nvm->page_size = 32;
354 		nvm->address_bits = 16;
355 		break;
356 	case e1000_nvm_override_spi_small:
357 		nvm->page_size = 8;
358 		nvm->address_bits = 8;
359 		break;
360 	default:
361 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
362 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
363 				    16 : 8;
364 		break;
365 	}
366 	if (nvm->word_size == BIT(15))
367 		nvm->page_size = 128;
368 
369 	nvm->type = e1000_nvm_eeprom_spi;
370 
371 	/* NVM Function Pointers */
372 	nvm->ops.acquire = igb_acquire_nvm_82575;
373 	nvm->ops.release = igb_release_nvm_82575;
374 	nvm->ops.write = igb_write_nvm_spi;
375 	nvm->ops.validate = igb_validate_nvm_checksum;
376 	nvm->ops.update = igb_update_nvm_checksum;
377 	if (nvm->word_size < BIT(15))
378 		nvm->ops.read = igb_read_nvm_eerd;
379 	else
380 		nvm->ops.read = igb_read_nvm_spi;
381 
382 	/* override generic family function pointers for specific descendants */
383 	switch (hw->mac.type) {
384 	case e1000_82580:
385 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
386 		nvm->ops.update = igb_update_nvm_checksum_82580;
387 		break;
388 	case e1000_i354:
389 	case e1000_i350:
390 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
391 		nvm->ops.update = igb_update_nvm_checksum_i350;
392 		break;
393 	default:
394 		break;
395 	}
396 
397 	return 0;
398 }
399 
400 /**
401  *  igb_init_mac_params_82575 - Init MAC func ptrs.
402  *  @hw: pointer to the HW structure
403  **/
404 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
405 {
406 	struct e1000_mac_info *mac = &hw->mac;
407 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
408 
409 	/* Set mta register count */
410 	mac->mta_reg_count = 128;
411 	/* Set uta register count */
412 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
413 	/* Set rar entry count */
414 	switch (mac->type) {
415 	case e1000_82576:
416 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
417 		break;
418 	case e1000_82580:
419 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
420 		break;
421 	case e1000_i350:
422 	case e1000_i354:
423 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
424 		break;
425 	default:
426 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
427 		break;
428 	}
429 	/* reset */
430 	if (mac->type >= e1000_82580)
431 		mac->ops.reset_hw = igb_reset_hw_82580;
432 	else
433 		mac->ops.reset_hw = igb_reset_hw_82575;
434 
435 	if (mac->type >= e1000_i210) {
436 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
437 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
438 
439 	} else {
440 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
441 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
442 	}
443 
444 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
445 		mac->ops.write_vfta = igb_write_vfta_i350;
446 	else
447 		mac->ops.write_vfta = igb_write_vfta;
448 
449 	/* Set if part includes ASF firmware */
450 	mac->asf_firmware_present = true;
451 	/* Set if manageability features are enabled. */
452 	mac->arc_subsystem_valid =
453 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
454 			? true : false;
455 	/* enable EEE on i350 parts and later parts */
456 	if (mac->type >= e1000_i350)
457 		dev_spec->eee_disable = false;
458 	else
459 		dev_spec->eee_disable = true;
460 	/* Allow a single clear of the SW semaphore on I210 and newer */
461 	if (mac->type >= e1000_i210)
462 		dev_spec->clear_semaphore_once = true;
463 	/* physical interface link setup */
464 	mac->ops.setup_physical_interface =
465 		(hw->phy.media_type == e1000_media_type_copper)
466 			? igb_setup_copper_link_82575
467 			: igb_setup_serdes_link_82575;
468 
469 	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
470 		switch (hw->device_id) {
471 		/* feature not supported on these id's */
472 		case E1000_DEV_ID_DH89XXCC_SGMII:
473 		case E1000_DEV_ID_DH89XXCC_SERDES:
474 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
475 		case E1000_DEV_ID_DH89XXCC_SFP:
476 			break;
477 		default:
478 			hw->dev_spec._82575.mas_capable = true;
479 			break;
480 		}
481 	}
482 	return 0;
483 }
484 
485 /**
486  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
487  *  @hw: pointer to the HW structure
488  *
489  *  The media type is chosen based on SFP module.
490  *  compatibility flags retrieved from SFP ID EEPROM.
491  **/
492 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
493 {
494 	s32 ret_val = E1000_ERR_CONFIG;
495 	u32 ctrl_ext = 0;
496 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
497 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
498 	u8 tranceiver_type = 0;
499 	s32 timeout = 3;
500 
501 	/* Turn I2C interface ON and power on sfp cage */
502 	ctrl_ext = rd32(E1000_CTRL_EXT);
503 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
504 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
505 
506 	wrfl();
507 
508 	/* Read SFP module data */
509 	while (timeout) {
510 		ret_val = igb_read_sfp_data_byte(hw,
511 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
512 			&tranceiver_type);
513 		if (ret_val == 0)
514 			break;
515 		msleep(100);
516 		timeout--;
517 	}
518 	if (ret_val != 0)
519 		goto out;
520 
521 	ret_val = igb_read_sfp_data_byte(hw,
522 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
523 			(u8 *)eth_flags);
524 	if (ret_val != 0)
525 		goto out;
526 
527 	/* Check if there is some SFP module plugged and powered */
528 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
529 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
530 		dev_spec->module_plugged = true;
531 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
532 			hw->phy.media_type = e1000_media_type_internal_serdes;
533 		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
534 			dev_spec->sgmii_active = true;
535 			hw->phy.media_type = e1000_media_type_internal_serdes;
536 		} else if (eth_flags->e1000_base_t) {
537 			dev_spec->sgmii_active = true;
538 			hw->phy.media_type = e1000_media_type_copper;
539 		} else {
540 			hw->phy.media_type = e1000_media_type_unknown;
541 			hw_dbg("PHY module has not been recognized\n");
542 			goto out;
543 		}
544 	} else {
545 		hw->phy.media_type = e1000_media_type_unknown;
546 	}
547 	ret_val = 0;
548 out:
549 	/* Restore I2C interface setting */
550 	wr32(E1000_CTRL_EXT, ctrl_ext);
551 	return ret_val;
552 }
553 
554 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
555 {
556 	struct e1000_mac_info *mac = &hw->mac;
557 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
558 	s32 ret_val;
559 	u32 ctrl_ext = 0;
560 	u32 link_mode = 0;
561 
562 	switch (hw->device_id) {
563 	case E1000_DEV_ID_82575EB_COPPER:
564 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
565 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
566 		mac->type = e1000_82575;
567 		break;
568 	case E1000_DEV_ID_82576:
569 	case E1000_DEV_ID_82576_NS:
570 	case E1000_DEV_ID_82576_NS_SERDES:
571 	case E1000_DEV_ID_82576_FIBER:
572 	case E1000_DEV_ID_82576_SERDES:
573 	case E1000_DEV_ID_82576_QUAD_COPPER:
574 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
575 	case E1000_DEV_ID_82576_SERDES_QUAD:
576 		mac->type = e1000_82576;
577 		break;
578 	case E1000_DEV_ID_82580_COPPER:
579 	case E1000_DEV_ID_82580_FIBER:
580 	case E1000_DEV_ID_82580_QUAD_FIBER:
581 	case E1000_DEV_ID_82580_SERDES:
582 	case E1000_DEV_ID_82580_SGMII:
583 	case E1000_DEV_ID_82580_COPPER_DUAL:
584 	case E1000_DEV_ID_DH89XXCC_SGMII:
585 	case E1000_DEV_ID_DH89XXCC_SERDES:
586 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
587 	case E1000_DEV_ID_DH89XXCC_SFP:
588 		mac->type = e1000_82580;
589 		break;
590 	case E1000_DEV_ID_I350_COPPER:
591 	case E1000_DEV_ID_I350_FIBER:
592 	case E1000_DEV_ID_I350_SERDES:
593 	case E1000_DEV_ID_I350_SGMII:
594 		mac->type = e1000_i350;
595 		break;
596 	case E1000_DEV_ID_I210_COPPER:
597 	case E1000_DEV_ID_I210_FIBER:
598 	case E1000_DEV_ID_I210_SERDES:
599 	case E1000_DEV_ID_I210_SGMII:
600 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
601 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
602 		mac->type = e1000_i210;
603 		break;
604 	case E1000_DEV_ID_I211_COPPER:
605 		mac->type = e1000_i211;
606 		break;
607 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
608 	case E1000_DEV_ID_I354_SGMII:
609 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
610 		mac->type = e1000_i354;
611 		break;
612 	default:
613 		return -E1000_ERR_MAC_INIT;
614 	}
615 
616 	/* Set media type */
617 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
618 	 * based on the EEPROM. We cannot rely upon device ID. There
619 	 * is no distinguishable difference between fiber and internal
620 	 * SerDes mode on the 82575. There can be an external PHY attached
621 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
622 	 */
623 	hw->phy.media_type = e1000_media_type_copper;
624 	dev_spec->sgmii_active = false;
625 	dev_spec->module_plugged = false;
626 
627 	ctrl_ext = rd32(E1000_CTRL_EXT);
628 
629 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
630 	switch (link_mode) {
631 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
632 		hw->phy.media_type = e1000_media_type_internal_serdes;
633 		break;
634 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
635 		/* Get phy control interface type set (MDIO vs. I2C)*/
636 		if (igb_sgmii_uses_mdio_82575(hw)) {
637 			hw->phy.media_type = e1000_media_type_copper;
638 			dev_spec->sgmii_active = true;
639 			break;
640 		}
641 		/* fall through - for I2C based SGMII */
642 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
643 		/* read media type from SFP EEPROM */
644 		ret_val = igb_set_sfp_media_type_82575(hw);
645 		if ((ret_val != 0) ||
646 		    (hw->phy.media_type == e1000_media_type_unknown)) {
647 			/* If media type was not identified then return media
648 			 * type defined by the CTRL_EXT settings.
649 			 */
650 			hw->phy.media_type = e1000_media_type_internal_serdes;
651 
652 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
653 				hw->phy.media_type = e1000_media_type_copper;
654 				dev_spec->sgmii_active = true;
655 			}
656 
657 			break;
658 		}
659 
660 		/* change current link mode setting */
661 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
662 
663 		if (dev_spec->sgmii_active)
664 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
665 		else
666 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
667 
668 		wr32(E1000_CTRL_EXT, ctrl_ext);
669 
670 		break;
671 	default:
672 		break;
673 	}
674 
675 	/* mac initialization and operations */
676 	ret_val = igb_init_mac_params_82575(hw);
677 	if (ret_val)
678 		goto out;
679 
680 	/* NVM initialization */
681 	ret_val = igb_init_nvm_params_82575(hw);
682 	switch (hw->mac.type) {
683 	case e1000_i210:
684 	case e1000_i211:
685 		ret_val = igb_init_nvm_params_i210(hw);
686 		break;
687 	default:
688 		break;
689 	}
690 
691 	if (ret_val)
692 		goto out;
693 
694 	/* if part supports SR-IOV then initialize mailbox parameters */
695 	switch (mac->type) {
696 	case e1000_82576:
697 	case e1000_i350:
698 		igb_init_mbx_params_pf(hw);
699 		break;
700 	default:
701 		break;
702 	}
703 
704 	/* setup PHY parameters */
705 	ret_val = igb_init_phy_params_82575(hw);
706 
707 out:
708 	return ret_val;
709 }
710 
711 /**
712  *  igb_acquire_phy_82575 - Acquire rights to access PHY
713  *  @hw: pointer to the HW structure
714  *
715  *  Acquire access rights to the correct PHY.  This is a
716  *  function pointer entry point called by the api module.
717  **/
718 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
719 {
720 	u16 mask = E1000_SWFW_PHY0_SM;
721 
722 	if (hw->bus.func == E1000_FUNC_1)
723 		mask = E1000_SWFW_PHY1_SM;
724 	else if (hw->bus.func == E1000_FUNC_2)
725 		mask = E1000_SWFW_PHY2_SM;
726 	else if (hw->bus.func == E1000_FUNC_3)
727 		mask = E1000_SWFW_PHY3_SM;
728 
729 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
730 }
731 
732 /**
733  *  igb_release_phy_82575 - Release rights to access PHY
734  *  @hw: pointer to the HW structure
735  *
736  *  A wrapper to release access rights to the correct PHY.  This is a
737  *  function pointer entry point called by the api module.
738  **/
739 static void igb_release_phy_82575(struct e1000_hw *hw)
740 {
741 	u16 mask = E1000_SWFW_PHY0_SM;
742 
743 	if (hw->bus.func == E1000_FUNC_1)
744 		mask = E1000_SWFW_PHY1_SM;
745 	else if (hw->bus.func == E1000_FUNC_2)
746 		mask = E1000_SWFW_PHY2_SM;
747 	else if (hw->bus.func == E1000_FUNC_3)
748 		mask = E1000_SWFW_PHY3_SM;
749 
750 	hw->mac.ops.release_swfw_sync(hw, mask);
751 }
752 
753 /**
754  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
755  *  @hw: pointer to the HW structure
756  *  @offset: register offset to be read
757  *  @data: pointer to the read data
758  *
759  *  Reads the PHY register at offset using the serial gigabit media independent
760  *  interface and stores the retrieved information in data.
761  **/
762 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
763 					  u16 *data)
764 {
765 	s32 ret_val = -E1000_ERR_PARAM;
766 
767 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
768 		hw_dbg("PHY Address %u is out of range\n", offset);
769 		goto out;
770 	}
771 
772 	ret_val = hw->phy.ops.acquire(hw);
773 	if (ret_val)
774 		goto out;
775 
776 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
777 
778 	hw->phy.ops.release(hw);
779 
780 out:
781 	return ret_val;
782 }
783 
784 /**
785  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
786  *  @hw: pointer to the HW structure
787  *  @offset: register offset to write to
788  *  @data: data to write at register offset
789  *
790  *  Writes the data to PHY register at the offset using the serial gigabit
791  *  media independent interface.
792  **/
793 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
794 					   u16 data)
795 {
796 	s32 ret_val = -E1000_ERR_PARAM;
797 
798 
799 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
800 		hw_dbg("PHY Address %d is out of range\n", offset);
801 		goto out;
802 	}
803 
804 	ret_val = hw->phy.ops.acquire(hw);
805 	if (ret_val)
806 		goto out;
807 
808 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
809 
810 	hw->phy.ops.release(hw);
811 
812 out:
813 	return ret_val;
814 }
815 
816 /**
817  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
818  *  @hw: pointer to the HW structure
819  *
820  *  Retrieves the PHY address and ID for both PHY's which do and do not use
821  *  sgmi interface.
822  **/
823 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
824 {
825 	struct e1000_phy_info *phy = &hw->phy;
826 	s32  ret_val = 0;
827 	u16 phy_id;
828 	u32 ctrl_ext;
829 	u32 mdic;
830 
831 	/* Extra read required for some PHY's on i354 */
832 	if (hw->mac.type == e1000_i354)
833 		igb_get_phy_id(hw);
834 
835 	/* For SGMII PHYs, we try the list of possible addresses until
836 	 * we find one that works.  For non-SGMII PHYs
837 	 * (e.g. integrated copper PHYs), an address of 1 should
838 	 * work.  The result of this function should mean phy->phy_addr
839 	 * and phy->id are set correctly.
840 	 */
841 	if (!(igb_sgmii_active_82575(hw))) {
842 		phy->addr = 1;
843 		ret_val = igb_get_phy_id(hw);
844 		goto out;
845 	}
846 
847 	if (igb_sgmii_uses_mdio_82575(hw)) {
848 		switch (hw->mac.type) {
849 		case e1000_82575:
850 		case e1000_82576:
851 			mdic = rd32(E1000_MDIC);
852 			mdic &= E1000_MDIC_PHY_MASK;
853 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
854 			break;
855 		case e1000_82580:
856 		case e1000_i350:
857 		case e1000_i354:
858 		case e1000_i210:
859 		case e1000_i211:
860 			mdic = rd32(E1000_MDICNFG);
861 			mdic &= E1000_MDICNFG_PHY_MASK;
862 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
863 			break;
864 		default:
865 			ret_val = -E1000_ERR_PHY;
866 			goto out;
867 		}
868 		ret_val = igb_get_phy_id(hw);
869 		goto out;
870 	}
871 
872 	/* Power on sgmii phy if it is disabled */
873 	ctrl_ext = rd32(E1000_CTRL_EXT);
874 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
875 	wrfl();
876 	msleep(300);
877 
878 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
879 	 * Therefore, we need to test 1-7
880 	 */
881 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
882 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
883 		if (ret_val == 0) {
884 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
885 			       phy_id, phy->addr);
886 			/* At the time of this writing, The M88 part is
887 			 * the only supported SGMII PHY product.
888 			 */
889 			if (phy_id == M88_VENDOR)
890 				break;
891 		} else {
892 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
893 		}
894 	}
895 
896 	/* A valid PHY type couldn't be found. */
897 	if (phy->addr == 8) {
898 		phy->addr = 0;
899 		ret_val = -E1000_ERR_PHY;
900 		goto out;
901 	} else {
902 		ret_val = igb_get_phy_id(hw);
903 	}
904 
905 	/* restore previous sfp cage power state */
906 	wr32(E1000_CTRL_EXT, ctrl_ext);
907 
908 out:
909 	return ret_val;
910 }
911 
912 /**
913  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
914  *  @hw: pointer to the HW structure
915  *
916  *  Resets the PHY using the serial gigabit media independent interface.
917  **/
918 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
919 {
920 	struct e1000_phy_info *phy = &hw->phy;
921 	s32 ret_val;
922 
923 	/* This isn't a true "hard" reset, but is the only reset
924 	 * available to us at this time.
925 	 */
926 
927 	hw_dbg("Soft resetting SGMII attached PHY...\n");
928 
929 	/* SFP documentation requires the following to configure the SPF module
930 	 * to work on SGMII.  No further documentation is given.
931 	 */
932 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
933 	if (ret_val)
934 		goto out;
935 
936 	ret_val = igb_phy_sw_reset(hw);
937 	if (ret_val)
938 		goto out;
939 
940 	if (phy->id == M88E1512_E_PHY_ID)
941 		ret_val = igb_initialize_M88E1512_phy(hw);
942 	if (phy->id == M88E1543_E_PHY_ID)
943 		ret_val = igb_initialize_M88E1543_phy(hw);
944 out:
945 	return ret_val;
946 }
947 
948 /**
949  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
950  *  @hw: pointer to the HW structure
951  *  @active: true to enable LPLU, false to disable
952  *
953  *  Sets the LPLU D0 state according to the active flag.  When
954  *  activating LPLU this function also disables smart speed
955  *  and vice versa.  LPLU will not be activated unless the
956  *  device autonegotiation advertisement meets standards of
957  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
958  *  This is a function pointer entry point only called by
959  *  PHY setup routines.
960  **/
961 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
962 {
963 	struct e1000_phy_info *phy = &hw->phy;
964 	s32 ret_val;
965 	u16 data;
966 
967 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
968 	if (ret_val)
969 		goto out;
970 
971 	if (active) {
972 		data |= IGP02E1000_PM_D0_LPLU;
973 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974 						 data);
975 		if (ret_val)
976 			goto out;
977 
978 		/* When LPLU is enabled, we should disable SmartSpeed */
979 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
980 						&data);
981 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
982 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
983 						 data);
984 		if (ret_val)
985 			goto out;
986 	} else {
987 		data &= ~IGP02E1000_PM_D0_LPLU;
988 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
989 						 data);
990 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
991 		 * during Dx states where the power conservation is most
992 		 * important.  During driver activity we should enable
993 		 * SmartSpeed, so performance is maintained.
994 		 */
995 		if (phy->smart_speed == e1000_smart_speed_on) {
996 			ret_val = phy->ops.read_reg(hw,
997 					IGP01E1000_PHY_PORT_CONFIG, &data);
998 			if (ret_val)
999 				goto out;
1000 
1001 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1002 			ret_val = phy->ops.write_reg(hw,
1003 					IGP01E1000_PHY_PORT_CONFIG, data);
1004 			if (ret_val)
1005 				goto out;
1006 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1007 			ret_val = phy->ops.read_reg(hw,
1008 					IGP01E1000_PHY_PORT_CONFIG, &data);
1009 			if (ret_val)
1010 				goto out;
1011 
1012 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013 			ret_val = phy->ops.write_reg(hw,
1014 					IGP01E1000_PHY_PORT_CONFIG, data);
1015 			if (ret_val)
1016 				goto out;
1017 		}
1018 	}
1019 
1020 out:
1021 	return ret_val;
1022 }
1023 
1024 /**
1025  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026  *  @hw: pointer to the HW structure
1027  *  @active: true to enable LPLU, false to disable
1028  *
1029  *  Sets the LPLU D0 state according to the active flag.  When
1030  *  activating LPLU this function also disables smart speed
1031  *  and vice versa.  LPLU will not be activated unless the
1032  *  device autonegotiation advertisement meets standards of
1033  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1034  *  This is a function pointer entry point only called by
1035  *  PHY setup routines.
1036  **/
1037 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038 {
1039 	struct e1000_phy_info *phy = &hw->phy;
1040 	u16 data;
1041 
1042 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1043 
1044 	if (active) {
1045 		data |= E1000_82580_PM_D0_LPLU;
1046 
1047 		/* When LPLU is enabled, we should disable SmartSpeed */
1048 		data &= ~E1000_82580_PM_SPD;
1049 	} else {
1050 		data &= ~E1000_82580_PM_D0_LPLU;
1051 
1052 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1053 		 * during Dx states where the power conservation is most
1054 		 * important.  During driver activity we should enable
1055 		 * SmartSpeed, so performance is maintained.
1056 		 */
1057 		if (phy->smart_speed == e1000_smart_speed_on)
1058 			data |= E1000_82580_PM_SPD;
1059 		else if (phy->smart_speed == e1000_smart_speed_off)
1060 			data &= ~E1000_82580_PM_SPD; }
1061 
1062 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1063 	return 0;
1064 }
1065 
1066 /**
1067  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068  *  @hw: pointer to the HW structure
1069  *  @active: boolean used to enable/disable lplu
1070  *
1071  *  Success returns 0, Failure returns 1
1072  *
1073  *  The low power link up (lplu) state is set to the power management level D3
1074  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1075  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1076  *  is used during Dx states where the power conservation is most important.
1077  *  During driver activity, SmartSpeed should be enabled so performance is
1078  *  maintained.
1079  **/
1080 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081 {
1082 	struct e1000_phy_info *phy = &hw->phy;
1083 	u16 data;
1084 
1085 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1086 
1087 	if (!active) {
1088 		data &= ~E1000_82580_PM_D3_LPLU;
1089 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090 		 * during Dx states where the power conservation is most
1091 		 * important.  During driver activity we should enable
1092 		 * SmartSpeed, so performance is maintained.
1093 		 */
1094 		if (phy->smart_speed == e1000_smart_speed_on)
1095 			data |= E1000_82580_PM_SPD;
1096 		else if (phy->smart_speed == e1000_smart_speed_off)
1097 			data &= ~E1000_82580_PM_SPD;
1098 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101 		data |= E1000_82580_PM_D3_LPLU;
1102 		/* When LPLU is enabled, we should disable SmartSpeed */
1103 		data &= ~E1000_82580_PM_SPD;
1104 	}
1105 
1106 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1107 	return 0;
1108 }
1109 
1110 /**
1111  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1112  *  @hw: pointer to the HW structure
1113  *
1114  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1115  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116  *  Return successful if access grant bit set, else clear the request for
1117  *  EEPROM access and return -E1000_ERR_NVM (-1).
1118  **/
1119 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120 {
1121 	s32 ret_val;
1122 
1123 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124 	if (ret_val)
1125 		goto out;
1126 
1127 	ret_val = igb_acquire_nvm(hw);
1128 
1129 	if (ret_val)
1130 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131 
1132 out:
1133 	return ret_val;
1134 }
1135 
1136 /**
1137  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141  *  then release the semaphores acquired.
1142  **/
1143 static void igb_release_nvm_82575(struct e1000_hw *hw)
1144 {
1145 	igb_release_nvm(hw);
1146 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147 }
1148 
1149 /**
1150  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151  *  @hw: pointer to the HW structure
1152  *  @mask: specifies which semaphore to acquire
1153  *
1154  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1155  *  will also specify which port we're acquiring the lock for.
1156  **/
1157 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158 {
1159 	u32 swfw_sync;
1160 	u32 swmask = mask;
1161 	u32 fwmask = mask << 16;
1162 	s32 ret_val = 0;
1163 	s32 i = 0, timeout = 200;
1164 
1165 	while (i < timeout) {
1166 		if (igb_get_hw_semaphore(hw)) {
1167 			ret_val = -E1000_ERR_SWFW_SYNC;
1168 			goto out;
1169 		}
1170 
1171 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1172 		if (!(swfw_sync & (fwmask | swmask)))
1173 			break;
1174 
1175 		/* Firmware currently using resource (fwmask)
1176 		 * or other software thread using resource (swmask)
1177 		 */
1178 		igb_put_hw_semaphore(hw);
1179 		mdelay(5);
1180 		i++;
1181 	}
1182 
1183 	if (i == timeout) {
1184 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185 		ret_val = -E1000_ERR_SWFW_SYNC;
1186 		goto out;
1187 	}
1188 
1189 	swfw_sync |= swmask;
1190 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1191 
1192 	igb_put_hw_semaphore(hw);
1193 
1194 out:
1195 	return ret_val;
1196 }
1197 
1198 /**
1199  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200  *  @hw: pointer to the HW structure
1201  *  @mask: specifies which semaphore to acquire
1202  *
1203  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1204  *  will also specify which port we're releasing the lock for.
1205  **/
1206 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207 {
1208 	u32 swfw_sync;
1209 
1210 	while (igb_get_hw_semaphore(hw) != 0)
1211 		; /* Empty */
1212 
1213 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1214 	swfw_sync &= ~mask;
1215 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1216 
1217 	igb_put_hw_semaphore(hw);
1218 }
1219 
1220 /**
1221  *  igb_get_cfg_done_82575 - Read config done bit
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Read the management control register for the config done bit for
1225  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1226  *  to read the config done bit, so an error is *ONLY* logged and returns
1227  *  0.  If we were to return with error, EEPROM-less silicon
1228  *  would not be able to be reset or change link.
1229  **/
1230 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231 {
1232 	s32 timeout = PHY_CFG_TIMEOUT;
1233 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234 
1235 	if (hw->bus.func == 1)
1236 		mask = E1000_NVM_CFG_DONE_PORT_1;
1237 	else if (hw->bus.func == E1000_FUNC_2)
1238 		mask = E1000_NVM_CFG_DONE_PORT_2;
1239 	else if (hw->bus.func == E1000_FUNC_3)
1240 		mask = E1000_NVM_CFG_DONE_PORT_3;
1241 
1242 	while (timeout) {
1243 		if (rd32(E1000_EEMNGCTL) & mask)
1244 			break;
1245 		usleep_range(1000, 2000);
1246 		timeout--;
1247 	}
1248 	if (!timeout)
1249 		hw_dbg("MNG configuration cycle has not completed.\n");
1250 
1251 	/* If EEPROM is not marked present, init the PHY manually */
1252 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253 	    (hw->phy.type == e1000_phy_igp_3))
1254 		igb_phy_init_script_igp3(hw);
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1261  *  @hw: pointer to the HW structure
1262  *  @speed: stores the current speed
1263  *  @duplex: stores the current duplex
1264  *
1265  *  This is a wrapper function, if using the serial gigabit media independent
1266  *  interface, use PCS to retrieve the link speed and duplex information.
1267  *  Otherwise, use the generic function to get the link speed and duplex info.
1268  **/
1269 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270 					u16 *duplex)
1271 {
1272 	s32 ret_val;
1273 
1274 	if (hw->phy.media_type != e1000_media_type_copper)
1275 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276 							       duplex);
1277 	else
1278 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279 								    duplex);
1280 
1281 	return ret_val;
1282 }
1283 
1284 /**
1285  *  igb_check_for_link_82575 - Check for link
1286  *  @hw: pointer to the HW structure
1287  *
1288  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1289  *  use the generic interface for determining link.
1290  **/
1291 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292 {
1293 	s32 ret_val;
1294 	u16 speed, duplex;
1295 
1296 	if (hw->phy.media_type != e1000_media_type_copper) {
1297 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298 							     &duplex);
1299 		/* Use this flag to determine if link needs to be checked or
1300 		 * not.  If  we have link clear the flag so that we do not
1301 		 * continue to check for link.
1302 		 */
1303 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304 
1305 		/* Configure Flow Control now that Auto-Neg has completed.
1306 		 * First, we need to restore the desired flow control
1307 		 * settings because we may have had to re-autoneg with a
1308 		 * different link partner.
1309 		 */
1310 		ret_val = igb_config_fc_after_link_up(hw);
1311 		if (ret_val)
1312 			hw_dbg("Error configuring flow control\n");
1313 	} else {
1314 		ret_val = igb_check_for_copper_link(hw);
1315 	}
1316 
1317 	return ret_val;
1318 }
1319 
1320 /**
1321  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322  *  @hw: pointer to the HW structure
1323  **/
1324 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325 {
1326 	u32 reg;
1327 
1328 
1329 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330 	    !igb_sgmii_active_82575(hw))
1331 		return;
1332 
1333 	/* Enable PCS to turn on link */
1334 	reg = rd32(E1000_PCS_CFG0);
1335 	reg |= E1000_PCS_CFG_PCS_EN;
1336 	wr32(E1000_PCS_CFG0, reg);
1337 
1338 	/* Power up the laser */
1339 	reg = rd32(E1000_CTRL_EXT);
1340 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341 	wr32(E1000_CTRL_EXT, reg);
1342 
1343 	/* flush the write to verify completion */
1344 	wrfl();
1345 	usleep_range(1000, 2000);
1346 }
1347 
1348 /**
1349  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350  *  @hw: pointer to the HW structure
1351  *  @speed: stores the current speed
1352  *  @duplex: stores the current duplex
1353  *
1354  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1355  *  duplex, then store the values in the pointers provided.
1356  **/
1357 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358 						u16 *duplex)
1359 {
1360 	struct e1000_mac_info *mac = &hw->mac;
1361 	u32 pcs, status;
1362 
1363 	/* Set up defaults for the return values of this function */
1364 	mac->serdes_has_link = false;
1365 	*speed = 0;
1366 	*duplex = 0;
1367 
1368 	/* Read the PCS Status register for link state. For non-copper mode,
1369 	 * the status register is not accurate. The PCS status register is
1370 	 * used instead.
1371 	 */
1372 	pcs = rd32(E1000_PCS_LSTAT);
1373 
1374 	/* The link up bit determines when link is up on autoneg. The sync ok
1375 	 * gets set once both sides sync up and agree upon link. Stable link
1376 	 * can be determined by checking for both link up and link sync ok
1377 	 */
1378 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379 		mac->serdes_has_link = true;
1380 
1381 		/* Detect and store PCS speed */
1382 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383 			*speed = SPEED_1000;
1384 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385 			*speed = SPEED_100;
1386 		else
1387 			*speed = SPEED_10;
1388 
1389 		/* Detect and store PCS duplex */
1390 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391 			*duplex = FULL_DUPLEX;
1392 		else
1393 			*duplex = HALF_DUPLEX;
1394 
1395 	/* Check if it is an I354 2.5Gb backplane connection. */
1396 		if (mac->type == e1000_i354) {
1397 			status = rd32(E1000_STATUS);
1398 			if ((status & E1000_STATUS_2P5_SKU) &&
1399 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400 				*speed = SPEED_2500;
1401 				*duplex = FULL_DUPLEX;
1402 				hw_dbg("2500 Mbs, ");
1403 				hw_dbg("Full Duplex\n");
1404 			}
1405 		}
1406 
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 /**
1413  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1414  *  @hw: pointer to the HW structure
1415  *
1416  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1417  *  when management pass thru is not enabled.
1418  **/
1419 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420 {
1421 	u32 reg;
1422 
1423 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424 	    igb_sgmii_active_82575(hw))
1425 		return;
1426 
1427 	if (!igb_enable_mng_pass_thru(hw)) {
1428 		/* Disable PCS to turn off link */
1429 		reg = rd32(E1000_PCS_CFG0);
1430 		reg &= ~E1000_PCS_CFG_PCS_EN;
1431 		wr32(E1000_PCS_CFG0, reg);
1432 
1433 		/* shutdown the laser */
1434 		reg = rd32(E1000_CTRL_EXT);
1435 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1436 		wr32(E1000_CTRL_EXT, reg);
1437 
1438 		/* flush the write to verify completion */
1439 		wrfl();
1440 		usleep_range(1000, 2000);
1441 	}
1442 }
1443 
1444 /**
1445  *  igb_reset_hw_82575 - Reset hardware
1446  *  @hw: pointer to the HW structure
1447  *
1448  *  This resets the hardware into a known state.  This is a
1449  *  function pointer entry point called by the api module.
1450  **/
1451 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452 {
1453 	u32 ctrl;
1454 	s32 ret_val;
1455 
1456 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1457 	 * on the last TLP read/write transaction when MAC is reset.
1458 	 */
1459 	ret_val = igb_disable_pcie_master(hw);
1460 	if (ret_val)
1461 		hw_dbg("PCI-E Master disable polling has failed.\n");
1462 
1463 	/* set the completion timeout for interface */
1464 	ret_val = igb_set_pcie_completion_timeout(hw);
1465 	if (ret_val)
1466 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1467 
1468 	hw_dbg("Masking off all interrupts\n");
1469 	wr32(E1000_IMC, 0xffffffff);
1470 
1471 	wr32(E1000_RCTL, 0);
1472 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1473 	wrfl();
1474 
1475 	usleep_range(10000, 20000);
1476 
1477 	ctrl = rd32(E1000_CTRL);
1478 
1479 	hw_dbg("Issuing a global reset to MAC\n");
1480 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481 
1482 	ret_val = igb_get_auto_rd_done(hw);
1483 	if (ret_val) {
1484 		/* When auto config read does not complete, do not
1485 		 * return with an error. This can happen in situations
1486 		 * where there is no eeprom and prevents getting link.
1487 		 */
1488 		hw_dbg("Auto Read Done did not complete\n");
1489 	}
1490 
1491 	/* If EEPROM is not present, run manual init scripts */
1492 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493 		igb_reset_init_script_82575(hw);
1494 
1495 	/* Clear any pending interrupt events. */
1496 	wr32(E1000_IMC, 0xffffffff);
1497 	rd32(E1000_ICR);
1498 
1499 	/* Install any alternate MAC address into RAR0 */
1500 	ret_val = igb_check_alt_mac_addr(hw);
1501 
1502 	return ret_val;
1503 }
1504 
1505 /**
1506  *  igb_init_hw_82575 - Initialize hardware
1507  *  @hw: pointer to the HW structure
1508  *
1509  *  This inits the hardware readying it for operation.
1510  **/
1511 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512 {
1513 	struct e1000_mac_info *mac = &hw->mac;
1514 	s32 ret_val;
1515 	u16 i, rar_count = mac->rar_entry_count;
1516 
1517 	if ((hw->mac.type >= e1000_i210) &&
1518 	    !(igb_get_flash_presence_i210(hw))) {
1519 		ret_val = igb_pll_workaround_i210(hw);
1520 		if (ret_val)
1521 			return ret_val;
1522 	}
1523 
1524 	/* Initialize identification LED */
1525 	ret_val = igb_id_led_init(hw);
1526 	if (ret_val) {
1527 		hw_dbg("Error initializing identification LED\n");
1528 		/* This is not fatal and we should not stop init due to this */
1529 	}
1530 
1531 	/* Disabling VLAN filtering */
1532 	hw_dbg("Initializing the IEEE VLAN\n");
1533 	igb_clear_vfta(hw);
1534 
1535 	/* Setup the receive address */
1536 	igb_init_rx_addrs(hw, rar_count);
1537 
1538 	/* Zero out the Multicast HASH table */
1539 	hw_dbg("Zeroing the MTA\n");
1540 	for (i = 0; i < mac->mta_reg_count; i++)
1541 		array_wr32(E1000_MTA, i, 0);
1542 
1543 	/* Zero out the Unicast HASH table */
1544 	hw_dbg("Zeroing the UTA\n");
1545 	for (i = 0; i < mac->uta_reg_count; i++)
1546 		array_wr32(E1000_UTA, i, 0);
1547 
1548 	/* Setup link and flow control */
1549 	ret_val = igb_setup_link(hw);
1550 
1551 	/* Clear all of the statistics registers (clear on read).  It is
1552 	 * important that we do this after we have tried to establish link
1553 	 * because the symbol error count will increment wildly if there
1554 	 * is no link.
1555 	 */
1556 	igb_clear_hw_cntrs_82575(hw);
1557 	return ret_val;
1558 }
1559 
1560 /**
1561  *  igb_setup_copper_link_82575 - Configure copper link settings
1562  *  @hw: pointer to the HW structure
1563  *
1564  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1565  *  for link, once link is established calls to configure collision distance
1566  *  and flow control are called.
1567  **/
1568 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569 {
1570 	u32 ctrl;
1571 	s32  ret_val;
1572 	u32 phpm_reg;
1573 
1574 	ctrl = rd32(E1000_CTRL);
1575 	ctrl |= E1000_CTRL_SLU;
1576 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577 	wr32(E1000_CTRL, ctrl);
1578 
1579 	/* Clear Go Link Disconnect bit on supported devices */
1580 	switch (hw->mac.type) {
1581 	case e1000_82580:
1582 	case e1000_i350:
1583 	case e1000_i210:
1584 	case e1000_i211:
1585 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588 		break;
1589 	default:
1590 		break;
1591 	}
1592 
1593 	ret_val = igb_setup_serdes_link_82575(hw);
1594 	if (ret_val)
1595 		goto out;
1596 
1597 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598 		/* allow time for SFP cage time to power up phy */
1599 		msleep(300);
1600 
1601 		ret_val = hw->phy.ops.reset(hw);
1602 		if (ret_val) {
1603 			hw_dbg("Error resetting the PHY.\n");
1604 			goto out;
1605 		}
1606 	}
1607 	switch (hw->phy.type) {
1608 	case e1000_phy_i210:
1609 	case e1000_phy_m88:
1610 		switch (hw->phy.id) {
1611 		case I347AT4_E_PHY_ID:
1612 		case M88E1112_E_PHY_ID:
1613 		case M88E1543_E_PHY_ID:
1614 		case M88E1512_E_PHY_ID:
1615 		case I210_I_PHY_ID:
1616 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1617 			break;
1618 		default:
1619 			ret_val = igb_copper_link_setup_m88(hw);
1620 			break;
1621 		}
1622 		break;
1623 	case e1000_phy_igp_3:
1624 		ret_val = igb_copper_link_setup_igp(hw);
1625 		break;
1626 	case e1000_phy_82580:
1627 		ret_val = igb_copper_link_setup_82580(hw);
1628 		break;
1629 	case e1000_phy_bcm54616:
1630 		ret_val = 0;
1631 		break;
1632 	default:
1633 		ret_val = -E1000_ERR_PHY;
1634 		break;
1635 	}
1636 
1637 	if (ret_val)
1638 		goto out;
1639 
1640 	ret_val = igb_setup_copper_link(hw);
1641 out:
1642 	return ret_val;
1643 }
1644 
1645 /**
1646  *  igb_setup_serdes_link_82575 - Setup link for serdes
1647  *  @hw: pointer to the HW structure
1648  *
1649  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1650  *  used on copper connections where the serialized gigabit media independent
1651  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1652  *  for auto-negotiation or forces speed/duplex.
1653  **/
1654 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655 {
1656 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657 	bool pcs_autoneg;
1658 	s32 ret_val = 0;
1659 	u16 data;
1660 
1661 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662 	    !igb_sgmii_active_82575(hw))
1663 		return ret_val;
1664 
1665 
1666 	/* On the 82575, SerDes loopback mode persists until it is
1667 	 * explicitly turned off or a power cycle is performed.  A read to
1668 	 * the register does not indicate its status.  Therefore, we ensure
1669 	 * loopback mode is disabled during initialization.
1670 	 */
1671 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672 
1673 	/* power on the sfp cage if present and turn on I2C */
1674 	ctrl_ext = rd32(E1000_CTRL_EXT);
1675 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1677 	wr32(E1000_CTRL_EXT, ctrl_ext);
1678 
1679 	ctrl_reg = rd32(E1000_CTRL);
1680 	ctrl_reg |= E1000_CTRL_SLU;
1681 
1682 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683 		/* set both sw defined pins */
1684 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685 
1686 		/* Set switch control to serdes energy detect */
1687 		reg = rd32(E1000_CONNSW);
1688 		reg |= E1000_CONNSW_ENRGSRC;
1689 		wr32(E1000_CONNSW, reg);
1690 	}
1691 
1692 	reg = rd32(E1000_PCS_LCTL);
1693 
1694 	/* default pcs_autoneg to the same setting as mac autoneg */
1695 	pcs_autoneg = hw->mac.autoneg;
1696 
1697 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699 		/* sgmii mode lets the phy handle forcing speed/duplex */
1700 		pcs_autoneg = true;
1701 		/* autoneg time out should be disabled for SGMII mode */
1702 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703 		break;
1704 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705 		/* disable PCS autoneg and support parallel detect only */
1706 		pcs_autoneg = false;
1707 		/* fall through */
1708 	default:
1709 		if (hw->mac.type == e1000_82575 ||
1710 		    hw->mac.type == e1000_82576) {
1711 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712 			if (ret_val) {
1713 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714 				return ret_val;
1715 			}
1716 
1717 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718 				pcs_autoneg = false;
1719 		}
1720 
1721 		/* non-SGMII modes only supports a speed of 1000/Full for the
1722 		 * link so it is best to just force the MAC and let the pcs
1723 		 * link either autoneg or be forced to 1000/Full
1724 		 */
1725 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727 
1728 		/* set speed of 1000/Full if speed/duplex is forced */
1729 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730 		break;
1731 	}
1732 
1733 	wr32(E1000_CTRL, ctrl_reg);
1734 
1735 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1736 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1737 	 * mode that will be compatible with older link partners and switches.
1738 	 * However, both are supported by the hardware and some drivers/tools.
1739 	 */
1740 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742 
1743 	if (pcs_autoneg) {
1744 		/* Set PCS register for autoneg */
1745 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747 
1748 		/* Disable force flow control for autoneg */
1749 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750 
1751 		/* Configure flow control advertisement for autoneg */
1752 		anadv_reg = rd32(E1000_PCS_ANADV);
1753 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754 		switch (hw->fc.requested_mode) {
1755 		case e1000_fc_full:
1756 		case e1000_fc_rx_pause:
1757 			anadv_reg |= E1000_TXCW_ASM_DIR;
1758 			anadv_reg |= E1000_TXCW_PAUSE;
1759 			break;
1760 		case e1000_fc_tx_pause:
1761 			anadv_reg |= E1000_TXCW_ASM_DIR;
1762 			break;
1763 		default:
1764 			break;
1765 		}
1766 		wr32(E1000_PCS_ANADV, anadv_reg);
1767 
1768 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769 	} else {
1770 		/* Set PCS register for forced link */
1771 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1772 
1773 		/* Force flow control for forced link */
1774 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775 
1776 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777 	}
1778 
1779 	wr32(E1000_PCS_LCTL, reg);
1780 
1781 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782 		igb_force_mac_fc(hw);
1783 
1784 	return ret_val;
1785 }
1786 
1787 /**
1788  *  igb_sgmii_active_82575 - Return sgmii state
1789  *  @hw: pointer to the HW structure
1790  *
1791  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1792  *  which can be enabled for use in the embedded applications.  Simply
1793  *  return the current state of the sgmii interface.
1794  **/
1795 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796 {
1797 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798 	return dev_spec->sgmii_active;
1799 }
1800 
1801 /**
1802  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1803  *  @hw: pointer to the HW structure
1804  *
1805  *  Inits recommended HW defaults after a reset when there is no EEPROM
1806  *  detected. This is only for the 82575.
1807  **/
1808 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809 {
1810 	if (hw->mac.type == e1000_82575) {
1811 		hw_dbg("Running reset init script for 82575\n");
1812 		/* SerDes configuration via SERDESCTRL */
1813 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817 
1818 		/* CCM configuration via CCMCTL register */
1819 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821 
1822 		/* PCIe lanes configuration */
1823 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827 
1828 		/* PCIe PLL Configuration */
1829 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  *  igb_read_mac_addr_82575 - Read device MAC address
1839  *  @hw: pointer to the HW structure
1840  **/
1841 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842 {
1843 	s32 ret_val = 0;
1844 
1845 	/* If there's an alternate MAC address place it in RAR0
1846 	 * so that it will override the Si installed default perm
1847 	 * address.
1848 	 */
1849 	ret_val = igb_check_alt_mac_addr(hw);
1850 	if (ret_val)
1851 		goto out;
1852 
1853 	ret_val = igb_read_mac_addr(hw);
1854 
1855 out:
1856 	return ret_val;
1857 }
1858 
1859 /**
1860  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861  * @hw: pointer to the HW structure
1862  *
1863  * In the case of a PHY power down to save power, or to turn off link during a
1864  * driver unload, or wake on lan is not enabled, remove the link.
1865  **/
1866 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867 {
1868 	/* If the management interface is not enabled, then power down */
1869 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870 		igb_power_down_phy_copper(hw);
1871 }
1872 
1873 /**
1874  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875  *  @hw: pointer to the HW structure
1876  *
1877  *  Clears the hardware counters by reading the counter registers.
1878  **/
1879 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880 {
1881 	igb_clear_hw_cntrs_base(hw);
1882 
1883 	rd32(E1000_PRC64);
1884 	rd32(E1000_PRC127);
1885 	rd32(E1000_PRC255);
1886 	rd32(E1000_PRC511);
1887 	rd32(E1000_PRC1023);
1888 	rd32(E1000_PRC1522);
1889 	rd32(E1000_PTC64);
1890 	rd32(E1000_PTC127);
1891 	rd32(E1000_PTC255);
1892 	rd32(E1000_PTC511);
1893 	rd32(E1000_PTC1023);
1894 	rd32(E1000_PTC1522);
1895 
1896 	rd32(E1000_ALGNERRC);
1897 	rd32(E1000_RXERRC);
1898 	rd32(E1000_TNCRS);
1899 	rd32(E1000_CEXTERR);
1900 	rd32(E1000_TSCTC);
1901 	rd32(E1000_TSCTFC);
1902 
1903 	rd32(E1000_MGTPRC);
1904 	rd32(E1000_MGTPDC);
1905 	rd32(E1000_MGTPTC);
1906 
1907 	rd32(E1000_IAC);
1908 	rd32(E1000_ICRXOC);
1909 
1910 	rd32(E1000_ICRXPTC);
1911 	rd32(E1000_ICRXATC);
1912 	rd32(E1000_ICTXPTC);
1913 	rd32(E1000_ICTXATC);
1914 	rd32(E1000_ICTXQEC);
1915 	rd32(E1000_ICTXQMTC);
1916 	rd32(E1000_ICRXDMTC);
1917 
1918 	rd32(E1000_CBTMPC);
1919 	rd32(E1000_HTDPMC);
1920 	rd32(E1000_CBRMPC);
1921 	rd32(E1000_RPTHC);
1922 	rd32(E1000_HGPTC);
1923 	rd32(E1000_HTCBDPC);
1924 	rd32(E1000_HGORCL);
1925 	rd32(E1000_HGORCH);
1926 	rd32(E1000_HGOTCL);
1927 	rd32(E1000_HGOTCH);
1928 	rd32(E1000_LENERRS);
1929 
1930 	/* This register should not be read in copper configurations */
1931 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932 	    igb_sgmii_active_82575(hw))
1933 		rd32(E1000_SCVPC);
1934 }
1935 
1936 /**
1937  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938  *  @hw: pointer to the HW structure
1939  *
1940  *  After rx enable if manageability is enabled then there is likely some
1941  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1942  *  function clears the fifos and flushes any packets that came in as rx was
1943  *  being enabled.
1944  **/
1945 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946 {
1947 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948 	int i, ms_wait;
1949 
1950 	/* disable IPv6 options as per hardware errata */
1951 	rfctl = rd32(E1000_RFCTL);
1952 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953 	wr32(E1000_RFCTL, rfctl);
1954 
1955 	if (hw->mac.type != e1000_82575 ||
1956 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957 		return;
1958 
1959 	/* Disable all RX queues */
1960 	for (i = 0; i < 4; i++) {
1961 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1962 		wr32(E1000_RXDCTL(i),
1963 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964 	}
1965 	/* Poll all queues to verify they have shut down */
1966 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967 		usleep_range(1000, 2000);
1968 		rx_enabled = 0;
1969 		for (i = 0; i < 4; i++)
1970 			rx_enabled |= rd32(E1000_RXDCTL(i));
1971 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972 			break;
1973 	}
1974 
1975 	if (ms_wait == 10)
1976 		hw_dbg("Queue disable timed out after 10ms\n");
1977 
1978 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1980 	 * any packet that was coming in as RCTL.EN was set is flushed
1981 	 */
1982 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983 
1984 	rlpml = rd32(E1000_RLPML);
1985 	wr32(E1000_RLPML, 0);
1986 
1987 	rctl = rd32(E1000_RCTL);
1988 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989 	temp_rctl |= E1000_RCTL_LPE;
1990 
1991 	wr32(E1000_RCTL, temp_rctl);
1992 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993 	wrfl();
1994 	usleep_range(2000, 3000);
1995 
1996 	/* Enable RX queues that were previously enabled and restore our
1997 	 * previous state
1998 	 */
1999 	for (i = 0; i < 4; i++)
2000 		wr32(E1000_RXDCTL(i), rxdctl[i]);
2001 	wr32(E1000_RCTL, rctl);
2002 	wrfl();
2003 
2004 	wr32(E1000_RLPML, rlpml);
2005 	wr32(E1000_RFCTL, rfctl);
2006 
2007 	/* Flush receive errors generated by workaround */
2008 	rd32(E1000_ROC);
2009 	rd32(E1000_RNBC);
2010 	rd32(E1000_MPC);
2011 }
2012 
2013 /**
2014  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2015  *  @hw: pointer to the HW structure
2016  *
2017  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018  *  however the hardware default for these parts is 500us to 1ms which is less
2019  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2020  *  increase the value to either 10ms to 200ms for capability version 1 config,
2021  *  or 16ms to 55ms for version 2.
2022  **/
2023 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024 {
2025 	u32 gcr = rd32(E1000_GCR);
2026 	s32 ret_val = 0;
2027 	u16 pcie_devctl2;
2028 
2029 	/* only take action if timeout value is defaulted to 0 */
2030 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031 		goto out;
2032 
2033 	/* if capabilities version is type 1 we can write the
2034 	 * timeout of 10ms to 200ms through the GCR register
2035 	 */
2036 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2037 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038 		goto out;
2039 	}
2040 
2041 	/* for version 2 capabilities we need to write the config space
2042 	 * directly in order to set the completion timeout value for
2043 	 * 16ms to 55ms
2044 	 */
2045 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046 					&pcie_devctl2);
2047 	if (ret_val)
2048 		goto out;
2049 
2050 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051 
2052 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053 					 &pcie_devctl2);
2054 out:
2055 	/* disable completion timeout resend */
2056 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057 
2058 	wr32(E1000_GCR, gcr);
2059 	return ret_val;
2060 }
2061 
2062 /**
2063  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064  *  @hw: pointer to the hardware struct
2065  *  @enable: state to enter, either enabled or disabled
2066  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2067  *
2068  *  enables/disables L2 switch anti-spoofing functionality.
2069  **/
2070 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071 {
2072 	u32 reg_val, reg_offset;
2073 
2074 	switch (hw->mac.type) {
2075 	case e1000_82576:
2076 		reg_offset = E1000_DTXSWC;
2077 		break;
2078 	case e1000_i350:
2079 	case e1000_i354:
2080 		reg_offset = E1000_TXSWC;
2081 		break;
2082 	default:
2083 		return;
2084 	}
2085 
2086 	reg_val = rd32(reg_offset);
2087 	if (enable) {
2088 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2090 		/* The PF can spoof - it has to in order to
2091 		 * support emulation mode NICs
2092 		 */
2093 		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094 	} else {
2095 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2097 	}
2098 	wr32(reg_offset, reg_val);
2099 }
2100 
2101 /**
2102  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103  *  @hw: pointer to the hardware struct
2104  *  @enable: state to enter, either enabled or disabled
2105  *
2106  *  enables/disables L2 switch loopback functionality.
2107  **/
2108 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109 {
2110 	u32 dtxswc;
2111 
2112 	switch (hw->mac.type) {
2113 	case e1000_82576:
2114 		dtxswc = rd32(E1000_DTXSWC);
2115 		if (enable)
2116 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117 		else
2118 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119 		wr32(E1000_DTXSWC, dtxswc);
2120 		break;
2121 	case e1000_i354:
2122 	case e1000_i350:
2123 		dtxswc = rd32(E1000_TXSWC);
2124 		if (enable)
2125 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126 		else
2127 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128 		wr32(E1000_TXSWC, dtxswc);
2129 		break;
2130 	default:
2131 		/* Currently no other hardware supports loopback */
2132 		break;
2133 	}
2134 
2135 }
2136 
2137 /**
2138  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139  *  @hw: pointer to the hardware struct
2140  *  @enable: state to enter, either enabled or disabled
2141  *
2142  *  enables/disables replication of packets across multiple pools.
2143  **/
2144 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145 {
2146 	u32 vt_ctl = rd32(E1000_VT_CTL);
2147 
2148 	if (enable)
2149 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150 	else
2151 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152 
2153 	wr32(E1000_VT_CTL, vt_ctl);
2154 }
2155 
2156 /**
2157  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2158  *  @hw: pointer to the HW structure
2159  *  @offset: register offset to be read
2160  *  @data: pointer to the read data
2161  *
2162  *  Reads the MDI control register in the PHY at offset and stores the
2163  *  information read to data.
2164  **/
2165 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166 {
2167 	s32 ret_val;
2168 
2169 	ret_val = hw->phy.ops.acquire(hw);
2170 	if (ret_val)
2171 		goto out;
2172 
2173 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174 
2175 	hw->phy.ops.release(hw);
2176 
2177 out:
2178 	return ret_val;
2179 }
2180 
2181 /**
2182  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2183  *  @hw: pointer to the HW structure
2184  *  @offset: register offset to write to
2185  *  @data: data to write to register at offset
2186  *
2187  *  Writes data to MDI control register in the PHY at offset.
2188  **/
2189 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190 {
2191 	s32 ret_val;
2192 
2193 
2194 	ret_val = hw->phy.ops.acquire(hw);
2195 	if (ret_val)
2196 		goto out;
2197 
2198 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199 
2200 	hw->phy.ops.release(hw);
2201 
2202 out:
2203 	return ret_val;
2204 }
2205 
2206 /**
2207  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208  *  @hw: pointer to the HW structure
2209  *
2210  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211  *  the values found in the EEPROM.  This addresses an issue in which these
2212  *  bits are not restored from EEPROM after reset.
2213  **/
2214 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215 {
2216 	s32 ret_val = 0;
2217 	u32 mdicnfg;
2218 	u16 nvm_data = 0;
2219 
2220 	if (hw->mac.type != e1000_82580)
2221 		goto out;
2222 	if (!igb_sgmii_active_82575(hw))
2223 		goto out;
2224 
2225 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227 				   &nvm_data);
2228 	if (ret_val) {
2229 		hw_dbg("NVM Read Error\n");
2230 		goto out;
2231 	}
2232 
2233 	mdicnfg = rd32(E1000_MDICNFG);
2234 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2235 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236 	if (nvm_data & NVM_WORD24_COM_MDIO)
2237 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238 	wr32(E1000_MDICNFG, mdicnfg);
2239 out:
2240 	return ret_val;
2241 }
2242 
2243 /**
2244  *  igb_reset_hw_82580 - Reset hardware
2245  *  @hw: pointer to the HW structure
2246  *
2247  *  This resets function or entire device (all ports, etc.)
2248  *  to a known state.
2249  **/
2250 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251 {
2252 	s32 ret_val = 0;
2253 	/* BH SW mailbox bit in SW_FW_SYNC */
2254 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255 	u32 ctrl;
2256 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257 
2258 	hw->dev_spec._82575.global_device_reset = false;
2259 
2260 	/* due to hw errata, global device reset doesn't always
2261 	 * work on 82580
2262 	 */
2263 	if (hw->mac.type == e1000_82580)
2264 		global_device_reset = false;
2265 
2266 	/* Get current control state. */
2267 	ctrl = rd32(E1000_CTRL);
2268 
2269 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2270 	 * on the last TLP read/write transaction when MAC is reset.
2271 	 */
2272 	ret_val = igb_disable_pcie_master(hw);
2273 	if (ret_val)
2274 		hw_dbg("PCI-E Master disable polling has failed.\n");
2275 
2276 	hw_dbg("Masking off all interrupts\n");
2277 	wr32(E1000_IMC, 0xffffffff);
2278 	wr32(E1000_RCTL, 0);
2279 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2280 	wrfl();
2281 
2282 	usleep_range(10000, 11000);
2283 
2284 	/* Determine whether or not a global dev reset is requested */
2285 	if (global_device_reset &&
2286 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287 			global_device_reset = false;
2288 
2289 	if (global_device_reset &&
2290 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291 		ctrl |= E1000_CTRL_DEV_RST;
2292 	else
2293 		ctrl |= E1000_CTRL_RST;
2294 
2295 	wr32(E1000_CTRL, ctrl);
2296 	wrfl();
2297 
2298 	/* Add delay to insure DEV_RST has time to complete */
2299 	if (global_device_reset)
2300 		usleep_range(5000, 6000);
2301 
2302 	ret_val = igb_get_auto_rd_done(hw);
2303 	if (ret_val) {
2304 		/* When auto config read does not complete, do not
2305 		 * return with an error. This can happen in situations
2306 		 * where there is no eeprom and prevents getting link.
2307 		 */
2308 		hw_dbg("Auto Read Done did not complete\n");
2309 	}
2310 
2311 	/* clear global device reset status bit */
2312 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313 
2314 	/* Clear any pending interrupt events. */
2315 	wr32(E1000_IMC, 0xffffffff);
2316 	rd32(E1000_ICR);
2317 
2318 	ret_val = igb_reset_mdicnfg_82580(hw);
2319 	if (ret_val)
2320 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321 
2322 	/* Install any alternate MAC address into RAR0 */
2323 	ret_val = igb_check_alt_mac_addr(hw);
2324 
2325 	/* Release semaphore */
2326 	if (global_device_reset)
2327 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328 
2329 	return ret_val;
2330 }
2331 
2332 /**
2333  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334  *  @data: data received by reading RXPBS register
2335  *
2336  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2337  *  This function converts the retrieved value into the correct table value
2338  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339  *  0x0 36  72 144   1   2   4   8  16
2340  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2341  */
2342 u16 igb_rxpbs_adjust_82580(u32 data)
2343 {
2344 	u16 ret_val = 0;
2345 
2346 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347 		ret_val = e1000_82580_rxpbs_table[data];
2348 
2349 	return ret_val;
2350 }
2351 
2352 /**
2353  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354  *  checksum
2355  *  @hw: pointer to the HW structure
2356  *  @offset: offset in words of the checksum protected region
2357  *
2358  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360  **/
2361 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362 						 u16 offset)
2363 {
2364 	s32 ret_val = 0;
2365 	u16 checksum = 0;
2366 	u16 i, nvm_data;
2367 
2368 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370 		if (ret_val) {
2371 			hw_dbg("NVM Read Error\n");
2372 			goto out;
2373 		}
2374 		checksum += nvm_data;
2375 	}
2376 
2377 	if (checksum != (u16) NVM_SUM) {
2378 		hw_dbg("NVM Checksum Invalid\n");
2379 		ret_val = -E1000_ERR_NVM;
2380 		goto out;
2381 	}
2382 
2383 out:
2384 	return ret_val;
2385 }
2386 
2387 /**
2388  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2389  *  checksum
2390  *  @hw: pointer to the HW structure
2391  *  @offset: offset in words of the checksum protected region
2392  *
2393  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2395  *  value to the EEPROM.
2396  **/
2397 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398 {
2399 	s32 ret_val;
2400 	u16 checksum = 0;
2401 	u16 i, nvm_data;
2402 
2403 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405 		if (ret_val) {
2406 			hw_dbg("NVM Read Error while updating checksum.\n");
2407 			goto out;
2408 		}
2409 		checksum += nvm_data;
2410 	}
2411 	checksum = (u16) NVM_SUM - checksum;
2412 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413 				&checksum);
2414 	if (ret_val)
2415 		hw_dbg("NVM Write Error while updating checksum.\n");
2416 
2417 out:
2418 	return ret_val;
2419 }
2420 
2421 /**
2422  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423  *  @hw: pointer to the HW structure
2424  *
2425  *  Calculates the EEPROM section checksum by reading/adding each word of
2426  *  the EEPROM and then verifies that the sum of the EEPROM is
2427  *  equal to 0xBABA.
2428  **/
2429 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430 {
2431 	s32 ret_val = 0;
2432 	u16 eeprom_regions_count = 1;
2433 	u16 j, nvm_data;
2434 	u16 nvm_offset;
2435 
2436 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437 	if (ret_val) {
2438 		hw_dbg("NVM Read Error\n");
2439 		goto out;
2440 	}
2441 
2442 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443 		/* if checksums compatibility bit is set validate checksums
2444 		 * for all 4 ports.
2445 		 */
2446 		eeprom_regions_count = 4;
2447 	}
2448 
2449 	for (j = 0; j < eeprom_regions_count; j++) {
2450 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452 								nvm_offset);
2453 		if (ret_val != 0)
2454 			goto out;
2455 	}
2456 
2457 out:
2458 	return ret_val;
2459 }
2460 
2461 /**
2462  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463  *  @hw: pointer to the HW structure
2464  *
2465  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2466  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2467  *  checksum and writes the value to the EEPROM.
2468  **/
2469 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470 {
2471 	s32 ret_val;
2472 	u16 j, nvm_data;
2473 	u16 nvm_offset;
2474 
2475 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476 	if (ret_val) {
2477 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478 		goto out;
2479 	}
2480 
2481 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482 		/* set compatibility bit to validate checksums appropriately */
2483 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485 					&nvm_data);
2486 		if (ret_val) {
2487 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488 			goto out;
2489 		}
2490 	}
2491 
2492 	for (j = 0; j < 4; j++) {
2493 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495 		if (ret_val)
2496 			goto out;
2497 	}
2498 
2499 out:
2500 	return ret_val;
2501 }
2502 
2503 /**
2504  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505  *  @hw: pointer to the HW structure
2506  *
2507  *  Calculates the EEPROM section checksum by reading/adding each word of
2508  *  the EEPROM and then verifies that the sum of the EEPROM is
2509  *  equal to 0xBABA.
2510  **/
2511 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512 {
2513 	s32 ret_val = 0;
2514 	u16 j;
2515 	u16 nvm_offset;
2516 
2517 	for (j = 0; j < 4; j++) {
2518 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520 								nvm_offset);
2521 		if (ret_val != 0)
2522 			goto out;
2523 	}
2524 
2525 out:
2526 	return ret_val;
2527 }
2528 
2529 /**
2530  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531  *  @hw: pointer to the HW structure
2532  *
2533  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2534  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2535  *  checksum and writes the value to the EEPROM.
2536  **/
2537 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538 {
2539 	s32 ret_val = 0;
2540 	u16 j;
2541 	u16 nvm_offset;
2542 
2543 	for (j = 0; j < 4; j++) {
2544 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546 		if (ret_val != 0)
2547 			goto out;
2548 	}
2549 
2550 out:
2551 	return ret_val;
2552 }
2553 
2554 /**
2555  *  __igb_access_emi_reg - Read/write EMI register
2556  *  @hw: pointer to the HW structure
2557  *  @addr: EMI address to program
2558  *  @data: pointer to value to read/write from/to the EMI address
2559  *  @read: boolean flag to indicate read or write
2560  **/
2561 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562 				  u16 *data, bool read)
2563 {
2564 	s32 ret_val = 0;
2565 
2566 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567 	if (ret_val)
2568 		return ret_val;
2569 
2570 	if (read)
2571 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572 	else
2573 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574 
2575 	return ret_val;
2576 }
2577 
2578 /**
2579  *  igb_read_emi_reg - Read Extended Management Interface register
2580  *  @hw: pointer to the HW structure
2581  *  @addr: EMI address to program
2582  *  @data: value to be read from the EMI address
2583  **/
2584 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585 {
2586 	return __igb_access_emi_reg(hw, addr, data, true);
2587 }
2588 
2589 /**
2590  *  igb_set_eee_i350 - Enable/disable EEE support
2591  *  @hw: pointer to the HW structure
2592  *  @adv1G: boolean flag enabling 1G EEE advertisement
2593  *  @adv100m: boolean flag enabling 100M EEE advertisement
2594  *
2595  *  Enable/disable EEE based on setting in dev_spec structure.
2596  *
2597  **/
2598 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599 {
2600 	u32 ipcnfg, eeer;
2601 
2602 	if ((hw->mac.type < e1000_i350) ||
2603 	    (hw->phy.media_type != e1000_media_type_copper))
2604 		goto out;
2605 	ipcnfg = rd32(E1000_IPCNFG);
2606 	eeer = rd32(E1000_EEER);
2607 
2608 	/* enable or disable per user setting */
2609 	if (!(hw->dev_spec._82575.eee_disable)) {
2610 		u32 eee_su = rd32(E1000_EEE_SU);
2611 
2612 		if (adv100M)
2613 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614 		else
2615 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616 
2617 		if (adv1G)
2618 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619 		else
2620 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621 
2622 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623 			E1000_EEER_LPI_FC);
2624 
2625 		/* This bit should not be set in normal operation. */
2626 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628 
2629 	} else {
2630 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631 			E1000_IPCNFG_EEE_100M_AN);
2632 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2633 			E1000_EEER_RX_LPI_EN |
2634 			E1000_EEER_LPI_FC);
2635 	}
2636 	wr32(E1000_IPCNFG, ipcnfg);
2637 	wr32(E1000_EEER, eeer);
2638 	rd32(E1000_IPCNFG);
2639 	rd32(E1000_EEER);
2640 out:
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  *  igb_set_eee_i354 - Enable/disable EEE support
2647  *  @hw: pointer to the HW structure
2648  *  @adv1G: boolean flag enabling 1G EEE advertisement
2649  *  @adv100m: boolean flag enabling 100M EEE advertisement
2650  *
2651  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652  *
2653  **/
2654 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655 {
2656 	struct e1000_phy_info *phy = &hw->phy;
2657 	s32 ret_val = 0;
2658 	u16 phy_data;
2659 
2660 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2661 	    ((phy->id != M88E1543_E_PHY_ID) &&
2662 	     (phy->id != M88E1512_E_PHY_ID)))
2663 		goto out;
2664 
2665 	if (!hw->dev_spec._82575.eee_disable) {
2666 		/* Switch to PHY page 18. */
2667 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668 		if (ret_val)
2669 			goto out;
2670 
2671 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672 					    &phy_data);
2673 		if (ret_val)
2674 			goto out;
2675 
2676 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678 					     phy_data);
2679 		if (ret_val)
2680 			goto out;
2681 
2682 		/* Return the PHY to page 0. */
2683 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684 		if (ret_val)
2685 			goto out;
2686 
2687 		/* Turn on EEE advertisement. */
2688 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689 					     E1000_EEE_ADV_DEV_I354,
2690 					     &phy_data);
2691 		if (ret_val)
2692 			goto out;
2693 
2694 		if (adv100M)
2695 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696 		else
2697 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698 
2699 		if (adv1G)
2700 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701 		else
2702 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703 
2704 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705 						E1000_EEE_ADV_DEV_I354,
2706 						phy_data);
2707 	} else {
2708 		/* Turn off EEE advertisement. */
2709 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710 					     E1000_EEE_ADV_DEV_I354,
2711 					     &phy_data);
2712 		if (ret_val)
2713 			goto out;
2714 
2715 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716 			      E1000_EEE_ADV_1000_SUPPORTED);
2717 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718 					      E1000_EEE_ADV_DEV_I354,
2719 					      phy_data);
2720 	}
2721 
2722 out:
2723 	return ret_val;
2724 }
2725 
2726 /**
2727  *  igb_get_eee_status_i354 - Get EEE status
2728  *  @hw: pointer to the HW structure
2729  *  @status: EEE status
2730  *
2731  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732  *  been received.
2733  **/
2734 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735 {
2736 	struct e1000_phy_info *phy = &hw->phy;
2737 	s32 ret_val = 0;
2738 	u16 phy_data;
2739 
2740 	/* Check if EEE is supported on this device. */
2741 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2742 	    ((phy->id != M88E1543_E_PHY_ID) &&
2743 	     (phy->id != M88E1512_E_PHY_ID)))
2744 		goto out;
2745 
2746 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747 				     E1000_PCS_STATUS_DEV_I354,
2748 				     &phy_data);
2749 	if (ret_val)
2750 		goto out;
2751 
2752 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754 
2755 out:
2756 	return ret_val;
2757 }
2758 
2759 static const u8 e1000_emc_temp_data[4] = {
2760 	E1000_EMC_INTERNAL_DATA,
2761 	E1000_EMC_DIODE1_DATA,
2762 	E1000_EMC_DIODE2_DATA,
2763 	E1000_EMC_DIODE3_DATA
2764 };
2765 static const u8 e1000_emc_therm_limit[4] = {
2766 	E1000_EMC_INTERNAL_THERM_LIMIT,
2767 	E1000_EMC_DIODE1_THERM_LIMIT,
2768 	E1000_EMC_DIODE2_THERM_LIMIT,
2769 	E1000_EMC_DIODE3_THERM_LIMIT
2770 };
2771 
2772 #ifdef CONFIG_IGB_HWMON
2773 /**
2774  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775  *  @hw: pointer to hardware structure
2776  *
2777  *  Updates the temperatures in mac.thermal_sensor_data
2778  **/
2779 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780 {
2781 	u16 ets_offset;
2782 	u16 ets_cfg;
2783 	u16 ets_sensor;
2784 	u8  num_sensors;
2785 	u8  sensor_index;
2786 	u8  sensor_location;
2787 	u8  i;
2788 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789 
2790 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791 		return E1000_NOT_IMPLEMENTED;
2792 
2793 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794 
2795 	/* Return the internal sensor only if ETS is unsupported */
2796 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798 		return 0;
2799 
2800 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802 	    != NVM_ETS_TYPE_EMC)
2803 		return E1000_NOT_IMPLEMENTED;
2804 
2805 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806 	if (num_sensors > E1000_MAX_SENSORS)
2807 		num_sensors = E1000_MAX_SENSORS;
2808 
2809 	for (i = 1; i < num_sensors; i++) {
2810 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812 				NVM_ETS_DATA_INDEX_SHIFT);
2813 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814 				   NVM_ETS_DATA_LOC_SHIFT);
2815 
2816 		if (sensor_location != 0)
2817 			hw->phy.ops.read_i2c_byte(hw,
2818 					e1000_emc_temp_data[sensor_index],
2819 					E1000_I2C_THERMAL_SENSOR_ADDR,
2820 					&data->sensor[i].temp);
2821 	}
2822 	return 0;
2823 }
2824 
2825 /**
2826  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827  *  @hw: pointer to hardware structure
2828  *
2829  *  Sets the thermal sensor thresholds according to the NVM map
2830  *  and save off the threshold and location values into mac.thermal_sensor_data
2831  **/
2832 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833 {
2834 	u16 ets_offset;
2835 	u16 ets_cfg;
2836 	u16 ets_sensor;
2837 	u8  low_thresh_delta;
2838 	u8  num_sensors;
2839 	u8  sensor_index;
2840 	u8  sensor_location;
2841 	u8  therm_limit;
2842 	u8  i;
2843 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844 
2845 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846 		return E1000_NOT_IMPLEMENTED;
2847 
2848 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849 
2850 	data->sensor[0].location = 0x1;
2851 	data->sensor[0].caution_thresh =
2852 		(rd32(E1000_THHIGHTC) & 0xFF);
2853 	data->sensor[0].max_op_thresh =
2854 		(rd32(E1000_THLOWTC) & 0xFF);
2855 
2856 	/* Return the internal sensor only if ETS is unsupported */
2857 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859 		return 0;
2860 
2861 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863 	    != NVM_ETS_TYPE_EMC)
2864 		return E1000_NOT_IMPLEMENTED;
2865 
2866 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2868 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869 
2870 	for (i = 1; i <= num_sensors; i++) {
2871 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873 				NVM_ETS_DATA_INDEX_SHIFT);
2874 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875 				   NVM_ETS_DATA_LOC_SHIFT);
2876 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877 
2878 		hw->phy.ops.write_i2c_byte(hw,
2879 			e1000_emc_therm_limit[sensor_index],
2880 			E1000_I2C_THERMAL_SENSOR_ADDR,
2881 			therm_limit);
2882 
2883 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884 			data->sensor[i].location = sensor_location;
2885 			data->sensor[i].caution_thresh = therm_limit;
2886 			data->sensor[i].max_op_thresh = therm_limit -
2887 							low_thresh_delta;
2888 		}
2889 	}
2890 	return 0;
2891 }
2892 
2893 #endif
2894 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895 	.init_hw              = igb_init_hw_82575,
2896 	.check_for_link       = igb_check_for_link_82575,
2897 	.rar_set              = igb_rar_set,
2898 	.read_mac_addr        = igb_read_mac_addr_82575,
2899 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2900 #ifdef CONFIG_IGB_HWMON
2901 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903 #endif
2904 };
2905 
2906 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907 	.acquire              = igb_acquire_phy_82575,
2908 	.get_cfg_done         = igb_get_cfg_done_82575,
2909 	.release              = igb_release_phy_82575,
2910 	.write_i2c_byte       = igb_write_i2c_byte,
2911 	.read_i2c_byte        = igb_read_i2c_byte,
2912 };
2913 
2914 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915 	.acquire              = igb_acquire_nvm_82575,
2916 	.read                 = igb_read_nvm_eerd,
2917 	.release              = igb_release_nvm_82575,
2918 	.write                = igb_write_nvm_spi,
2919 };
2920 
2921 const struct e1000_info e1000_82575_info = {
2922 	.get_invariants = igb_get_invariants_82575,
2923 	.mac_ops = &e1000_mac_ops_82575,
2924 	.phy_ops = &e1000_phy_ops_82575,
2925 	.nvm_ops = &e1000_nvm_ops_82575,
2926 };
2927 
2928