xref: /linux/drivers/net/ethernet/intel/idpf/idpf_virtchnl.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include <net/libeth/rx.h>
5 
6 #include "idpf.h"
7 #include "idpf_virtchnl.h"
8 
9 #define IDPF_VC_XN_MIN_TIMEOUT_MSEC	2000
10 #define IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC	(60 * 1000)
11 #define IDPF_VC_XN_IDX_M		GENMASK(7, 0)
12 #define IDPF_VC_XN_SALT_M		GENMASK(15, 8)
13 #define IDPF_VC_XN_RING_LEN		U8_MAX
14 
15 /**
16  * enum idpf_vc_xn_state - Virtchnl transaction status
17  * @IDPF_VC_XN_IDLE: not expecting a reply, ready to be used
18  * @IDPF_VC_XN_WAITING: expecting a reply, not yet received
19  * @IDPF_VC_XN_COMPLETED_SUCCESS: a reply was expected and received,
20  *				  buffer updated
21  * @IDPF_VC_XN_COMPLETED_FAILED: a reply was expected and received, but there
22  *				 was an error, buffer not updated
23  * @IDPF_VC_XN_SHUTDOWN: transaction object cannot be used, VC torn down
24  * @IDPF_VC_XN_ASYNC: transaction sent asynchronously and doesn't have the
25  *		      return context; a callback may be provided to handle
26  *		      return
27  */
28 enum idpf_vc_xn_state {
29 	IDPF_VC_XN_IDLE = 1,
30 	IDPF_VC_XN_WAITING,
31 	IDPF_VC_XN_COMPLETED_SUCCESS,
32 	IDPF_VC_XN_COMPLETED_FAILED,
33 	IDPF_VC_XN_SHUTDOWN,
34 	IDPF_VC_XN_ASYNC,
35 };
36 
37 struct idpf_vc_xn;
38 /* Callback for asynchronous messages */
39 typedef int (*async_vc_cb) (struct idpf_adapter *, struct idpf_vc_xn *,
40 			    const struct idpf_ctlq_msg *);
41 
42 /**
43  * struct idpf_vc_xn - Data structure representing virtchnl transactions
44  * @completed: virtchnl event loop uses that to signal when a reply is
45  *	       available, uses kernel completion API
46  * @state: virtchnl event loop stores the data below, protected by the
47  *	   completion's lock.
48  * @reply_sz: Original size of reply, may be > reply_buf.iov_len; it will be
49  *	      truncated on its way to the receiver thread according to
50  *	      reply_buf.iov_len.
51  * @reply: Reference to the buffer(s) where the reply data should be written
52  *	   to. May be 0-length (then NULL address permitted) if the reply data
53  *	   should be ignored.
54  * @async_handler: if sent asynchronously, a callback can be provided to handle
55  *		   the reply when it's received
56  * @vc_op: corresponding opcode sent with this transaction
57  * @idx: index used as retrieval on reply receive, used for cookie
58  * @salt: changed every message to make unique, used for cookie
59  */
60 struct idpf_vc_xn {
61 	struct completion completed;
62 	enum idpf_vc_xn_state state;
63 	size_t reply_sz;
64 	struct kvec reply;
65 	async_vc_cb async_handler;
66 	u32 vc_op;
67 	u8 idx;
68 	u8 salt;
69 };
70 
71 /**
72  * struct idpf_vc_xn_params - Parameters for executing transaction
73  * @send_buf: kvec for send buffer
74  * @recv_buf: kvec for recv buffer, may be NULL, must then have zero length
75  * @timeout_ms: timeout to wait for reply
76  * @async: send message asynchronously, will not wait on completion
77  * @async_handler: If sent asynchronously, optional callback handler. The user
78  *		   must be careful when using async handlers as the memory for
79  *		   the recv_buf _cannot_ be on stack if this is async.
80  * @vc_op: virtchnl op to send
81  */
82 struct idpf_vc_xn_params {
83 	struct kvec send_buf;
84 	struct kvec recv_buf;
85 	int timeout_ms;
86 	bool async;
87 	async_vc_cb async_handler;
88 	u32 vc_op;
89 };
90 
91 /**
92  * struct idpf_vc_xn_manager - Manager for tracking transactions
93  * @ring: backing and lookup for transactions
94  * @free_xn_bm: bitmap for free transactions
95  * @xn_bm_lock: make bitmap access synchronous where necessary
96  * @salt: used to make cookie unique every message
97  */
98 struct idpf_vc_xn_manager {
99 	struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
100 	DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
101 	spinlock_t xn_bm_lock;
102 	u8 salt;
103 };
104 
105 /**
106  * idpf_vid_to_vport - Translate vport id to vport pointer
107  * @adapter: private data struct
108  * @v_id: vport id to translate
109  *
110  * Returns vport matching v_id, NULL if not found.
111  */
112 static
113 struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
114 {
115 	u16 num_max_vports = idpf_get_max_vports(adapter);
116 	int i;
117 
118 	for (i = 0; i < num_max_vports; i++)
119 		if (adapter->vport_ids[i] == v_id)
120 			return adapter->vports[i];
121 
122 	return NULL;
123 }
124 
125 /**
126  * idpf_handle_event_link - Handle link event message
127  * @adapter: private data struct
128  * @v2e: virtchnl event message
129  */
130 static void idpf_handle_event_link(struct idpf_adapter *adapter,
131 				   const struct virtchnl2_event *v2e)
132 {
133 	struct idpf_netdev_priv *np;
134 	struct idpf_vport *vport;
135 
136 	vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
137 	if (!vport) {
138 		dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
139 				    v2e->vport_id);
140 		return;
141 	}
142 	np = netdev_priv(vport->netdev);
143 
144 	np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
145 
146 	if (vport->link_up == v2e->link_status)
147 		return;
148 
149 	vport->link_up = v2e->link_status;
150 
151 	if (np->state != __IDPF_VPORT_UP)
152 		return;
153 
154 	if (vport->link_up) {
155 		netif_tx_start_all_queues(vport->netdev);
156 		netif_carrier_on(vport->netdev);
157 	} else {
158 		netif_tx_stop_all_queues(vport->netdev);
159 		netif_carrier_off(vport->netdev);
160 	}
161 }
162 
163 /**
164  * idpf_recv_event_msg - Receive virtchnl event message
165  * @adapter: Driver specific private structure
166  * @ctlq_msg: message to copy from
167  *
168  * Receive virtchnl event message
169  */
170 static void idpf_recv_event_msg(struct idpf_adapter *adapter,
171 				struct idpf_ctlq_msg *ctlq_msg)
172 {
173 	int payload_size = ctlq_msg->ctx.indirect.payload->size;
174 	struct virtchnl2_event *v2e;
175 	u32 event;
176 
177 	if (payload_size < sizeof(*v2e)) {
178 		dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
179 				    ctlq_msg->cookie.mbx.chnl_opcode,
180 				    payload_size);
181 		return;
182 	}
183 
184 	v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
185 	event = le32_to_cpu(v2e->event);
186 
187 	switch (event) {
188 	case VIRTCHNL2_EVENT_LINK_CHANGE:
189 		idpf_handle_event_link(adapter, v2e);
190 		return;
191 	default:
192 		dev_err(&adapter->pdev->dev,
193 			"Unknown event %d from PF\n", event);
194 		break;
195 	}
196 }
197 
198 /**
199  * idpf_mb_clean - Reclaim the send mailbox queue entries
200  * @adapter: Driver specific private structure
201  *
202  * Reclaim the send mailbox queue entries to be used to send further messages
203  *
204  * Returns 0 on success, negative on failure
205  */
206 static int idpf_mb_clean(struct idpf_adapter *adapter)
207 {
208 	u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
209 	struct idpf_ctlq_msg **q_msg;
210 	struct idpf_dma_mem *dma_mem;
211 	int err;
212 
213 	q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
214 	if (!q_msg)
215 		return -ENOMEM;
216 
217 	err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
218 	if (err)
219 		goto err_kfree;
220 
221 	for (i = 0; i < num_q_msg; i++) {
222 		if (!q_msg[i])
223 			continue;
224 		dma_mem = q_msg[i]->ctx.indirect.payload;
225 		if (dma_mem)
226 			dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
227 					  dma_mem->va, dma_mem->pa);
228 		kfree(q_msg[i]);
229 		kfree(dma_mem);
230 	}
231 
232 err_kfree:
233 	kfree(q_msg);
234 
235 	return err;
236 }
237 
238 /**
239  * idpf_send_mb_msg - Send message over mailbox
240  * @adapter: Driver specific private structure
241  * @op: virtchnl opcode
242  * @msg_size: size of the payload
243  * @msg: pointer to buffer holding the payload
244  * @cookie: unique SW generated cookie per message
245  *
246  * Will prepare the control queue message and initiates the send api
247  *
248  * Returns 0 on success, negative on failure
249  */
250 int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
251 		     u16 msg_size, u8 *msg, u16 cookie)
252 {
253 	struct idpf_ctlq_msg *ctlq_msg;
254 	struct idpf_dma_mem *dma_mem;
255 	int err;
256 
257 	/* If we are here and a reset is detected nothing much can be
258 	 * done. This thread should silently abort and expected to
259 	 * be corrected with a new run either by user or driver
260 	 * flows after reset
261 	 */
262 	if (idpf_is_reset_detected(adapter))
263 		return 0;
264 
265 	err = idpf_mb_clean(adapter);
266 	if (err)
267 		return err;
268 
269 	ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
270 	if (!ctlq_msg)
271 		return -ENOMEM;
272 
273 	dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
274 	if (!dma_mem) {
275 		err = -ENOMEM;
276 		goto dma_mem_error;
277 	}
278 
279 	ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
280 	ctlq_msg->func_id = 0;
281 	ctlq_msg->data_len = msg_size;
282 	ctlq_msg->cookie.mbx.chnl_opcode = op;
283 	ctlq_msg->cookie.mbx.chnl_retval = 0;
284 	dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
285 	dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
286 					 &dma_mem->pa, GFP_ATOMIC);
287 	if (!dma_mem->va) {
288 		err = -ENOMEM;
289 		goto dma_alloc_error;
290 	}
291 
292 	/* It's possible we're just sending an opcode but no buffer */
293 	if (msg && msg_size)
294 		memcpy(dma_mem->va, msg, msg_size);
295 	ctlq_msg->ctx.indirect.payload = dma_mem;
296 	ctlq_msg->ctx.sw_cookie.data = cookie;
297 
298 	err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
299 	if (err)
300 		goto send_error;
301 
302 	return 0;
303 
304 send_error:
305 	dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
306 			  dma_mem->pa);
307 dma_alloc_error:
308 	kfree(dma_mem);
309 dma_mem_error:
310 	kfree(ctlq_msg);
311 
312 	return err;
313 }
314 
315 /* API for virtchnl "transaction" support ("xn" for short).
316  *
317  * We are reusing the completion lock to serialize the accesses to the
318  * transaction state for simplicity, but it could be its own separate synchro
319  * as well. For now, this API is only used from within a workqueue context;
320  * raw_spin_lock() is enough.
321  */
322 /**
323  * idpf_vc_xn_lock - Request exclusive access to vc transaction
324  * @xn: struct idpf_vc_xn* to access
325  */
326 #define idpf_vc_xn_lock(xn)			\
327 	raw_spin_lock(&(xn)->completed.wait.lock)
328 
329 /**
330  * idpf_vc_xn_unlock - Release exclusive access to vc transaction
331  * @xn: struct idpf_vc_xn* to access
332  */
333 #define idpf_vc_xn_unlock(xn)		\
334 	raw_spin_unlock(&(xn)->completed.wait.lock)
335 
336 /**
337  * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
338  * reset the transaction state.
339  * @xn: struct idpf_vc_xn to update
340  */
341 static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
342 {
343 	xn->reply.iov_base = NULL;
344 	xn->reply.iov_len = 0;
345 
346 	if (xn->state != IDPF_VC_XN_SHUTDOWN)
347 		xn->state = IDPF_VC_XN_IDLE;
348 }
349 
350 /**
351  * idpf_vc_xn_init - Initialize virtchnl transaction object
352  * @vcxn_mngr: pointer to vc transaction manager struct
353  */
354 static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
355 {
356 	int i;
357 
358 	spin_lock_init(&vcxn_mngr->xn_bm_lock);
359 
360 	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
361 		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
362 
363 		xn->state = IDPF_VC_XN_IDLE;
364 		xn->idx = i;
365 		idpf_vc_xn_release_bufs(xn);
366 		init_completion(&xn->completed);
367 	}
368 
369 	bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
370 }
371 
372 /**
373  * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
374  * @vcxn_mngr: pointer to vc transaction manager struct
375  *
376  * All waiting threads will be woken-up and their transaction aborted. Further
377  * operations on that object will fail.
378  */
379 static void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
380 {
381 	int i;
382 
383 	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
384 	bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
385 	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
386 
387 	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
388 		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
389 
390 		idpf_vc_xn_lock(xn);
391 		xn->state = IDPF_VC_XN_SHUTDOWN;
392 		idpf_vc_xn_release_bufs(xn);
393 		idpf_vc_xn_unlock(xn);
394 		complete_all(&xn->completed);
395 	}
396 }
397 
398 /**
399  * idpf_vc_xn_pop_free - Pop a free transaction from free list
400  * @vcxn_mngr: transaction manager to pop from
401  *
402  * Returns NULL if no free transactions
403  */
404 static
405 struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
406 {
407 	struct idpf_vc_xn *xn = NULL;
408 	unsigned long free_idx;
409 
410 	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
411 	free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
412 	if (free_idx == IDPF_VC_XN_RING_LEN)
413 		goto do_unlock;
414 
415 	clear_bit(free_idx, vcxn_mngr->free_xn_bm);
416 	xn = &vcxn_mngr->ring[free_idx];
417 	xn->salt = vcxn_mngr->salt++;
418 
419 do_unlock:
420 	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
421 
422 	return xn;
423 }
424 
425 /**
426  * idpf_vc_xn_push_free - Push a free transaction to free list
427  * @vcxn_mngr: transaction manager to push to
428  * @xn: transaction to push
429  */
430 static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
431 				 struct idpf_vc_xn *xn)
432 {
433 	idpf_vc_xn_release_bufs(xn);
434 	set_bit(xn->idx, vcxn_mngr->free_xn_bm);
435 }
436 
437 /**
438  * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
439  * @adapter: driver specific private structure with vcxn_mngr
440  * @params: parameters for this particular transaction including
441  *   -vc_op: virtchannel operation to send
442  *   -send_buf: kvec iov for send buf and len
443  *   -recv_buf: kvec iov for recv buf and len (ignored if NULL)
444  *   -timeout_ms: timeout waiting for a reply (milliseconds)
445  *   -async: don't wait for message reply, will lose caller context
446  *   -async_handler: callback to handle async replies
447  *
448  * @returns >= 0 for success, the size of the initial reply (may or may not be
449  * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
450  * error.
451  */
452 static ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
453 			       const struct idpf_vc_xn_params *params)
454 {
455 	const struct kvec *send_buf = &params->send_buf;
456 	struct idpf_vc_xn *xn;
457 	ssize_t retval;
458 	u16 cookie;
459 
460 	xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
461 	/* no free transactions available */
462 	if (!xn)
463 		return -ENOSPC;
464 
465 	idpf_vc_xn_lock(xn);
466 	if (xn->state == IDPF_VC_XN_SHUTDOWN) {
467 		retval = -ENXIO;
468 		goto only_unlock;
469 	} else if (xn->state != IDPF_VC_XN_IDLE) {
470 		/* We're just going to clobber this transaction even though
471 		 * it's not IDLE. If we don't reuse it we could theoretically
472 		 * eventually leak all the free transactions and not be able to
473 		 * send any messages. At least this way we make an attempt to
474 		 * remain functional even though something really bad is
475 		 * happening that's corrupting what was supposed to be free
476 		 * transactions.
477 		 */
478 		WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
479 			  xn->idx, xn->vc_op);
480 	}
481 
482 	xn->reply = params->recv_buf;
483 	xn->reply_sz = 0;
484 	xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
485 	xn->vc_op = params->vc_op;
486 	xn->async_handler = params->async_handler;
487 	idpf_vc_xn_unlock(xn);
488 
489 	if (!params->async)
490 		reinit_completion(&xn->completed);
491 	cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
492 		 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
493 
494 	retval = idpf_send_mb_msg(adapter, params->vc_op,
495 				  send_buf->iov_len, send_buf->iov_base,
496 				  cookie);
497 	if (retval) {
498 		idpf_vc_xn_lock(xn);
499 		goto release_and_unlock;
500 	}
501 
502 	if (params->async)
503 		return 0;
504 
505 	wait_for_completion_timeout(&xn->completed,
506 				    msecs_to_jiffies(params->timeout_ms));
507 
508 	/* No need to check the return value; we check the final state of the
509 	 * transaction below. It's possible the transaction actually gets more
510 	 * timeout than specified if we get preempted here but after
511 	 * wait_for_completion_timeout returns. This should be non-issue
512 	 * however.
513 	 */
514 	idpf_vc_xn_lock(xn);
515 	switch (xn->state) {
516 	case IDPF_VC_XN_SHUTDOWN:
517 		retval = -ENXIO;
518 		goto only_unlock;
519 	case IDPF_VC_XN_WAITING:
520 		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction timed-out (op %d, %dms)\n",
521 				       params->vc_op, params->timeout_ms);
522 		retval = -ETIME;
523 		break;
524 	case IDPF_VC_XN_COMPLETED_SUCCESS:
525 		retval = xn->reply_sz;
526 		break;
527 	case IDPF_VC_XN_COMPLETED_FAILED:
528 		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
529 				       params->vc_op);
530 		retval = -EIO;
531 		break;
532 	default:
533 		/* Invalid state. */
534 		WARN_ON_ONCE(1);
535 		retval = -EIO;
536 		break;
537 	}
538 
539 release_and_unlock:
540 	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
541 	/* If we receive a VC reply after here, it will be dropped. */
542 only_unlock:
543 	idpf_vc_xn_unlock(xn);
544 
545 	return retval;
546 }
547 
548 /**
549  * idpf_vc_xn_forward_async - Handle async reply receives
550  * @adapter: private data struct
551  * @xn: transaction to handle
552  * @ctlq_msg: corresponding ctlq_msg
553  *
554  * For async sends we're going to lose the caller's context so, if an
555  * async_handler was provided, it can deal with the reply, otherwise we'll just
556  * check and report if there is an error.
557  */
558 static int
559 idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
560 			 const struct idpf_ctlq_msg *ctlq_msg)
561 {
562 	int err = 0;
563 
564 	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
565 		dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
566 				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
567 		xn->reply_sz = 0;
568 		err = -EINVAL;
569 		goto release_bufs;
570 	}
571 
572 	if (xn->async_handler) {
573 		err = xn->async_handler(adapter, xn, ctlq_msg);
574 		goto release_bufs;
575 	}
576 
577 	if (ctlq_msg->cookie.mbx.chnl_retval) {
578 		xn->reply_sz = 0;
579 		dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
580 				    ctlq_msg->cookie.mbx.chnl_opcode);
581 		err = -EINVAL;
582 	}
583 
584 release_bufs:
585 	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
586 
587 	return err;
588 }
589 
590 /**
591  * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
592  * @adapter: driver specific private structure with vcxn_mngr
593  * @ctlq_msg: controlq message to send back to receiving thread
594  */
595 static int
596 idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
597 			 const struct idpf_ctlq_msg *ctlq_msg)
598 {
599 	const void *payload = NULL;
600 	size_t payload_size = 0;
601 	struct idpf_vc_xn *xn;
602 	u16 msg_info;
603 	int err = 0;
604 	u16 xn_idx;
605 	u16 salt;
606 
607 	msg_info = ctlq_msg->ctx.sw_cookie.data;
608 	xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
609 	if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
610 		dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
611 				    xn_idx);
612 		return -EINVAL;
613 	}
614 	xn = &adapter->vcxn_mngr->ring[xn_idx];
615 	salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
616 	if (xn->salt != salt) {
617 		dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (%02x != %02x)\n",
618 				    xn->salt, salt);
619 		return -EINVAL;
620 	}
621 
622 	idpf_vc_xn_lock(xn);
623 	switch (xn->state) {
624 	case IDPF_VC_XN_WAITING:
625 		/* success */
626 		break;
627 	case IDPF_VC_XN_IDLE:
628 		dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
629 				    ctlq_msg->cookie.mbx.chnl_opcode);
630 		err = -EINVAL;
631 		goto out_unlock;
632 	case IDPF_VC_XN_SHUTDOWN:
633 		/* ENXIO is a bit special here as the recv msg loop uses that
634 		 * know if it should stop trying to clean the ring if we lost
635 		 * the virtchnl. We need to stop playing with registers and
636 		 * yield.
637 		 */
638 		err = -ENXIO;
639 		goto out_unlock;
640 	case IDPF_VC_XN_ASYNC:
641 		err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
642 		idpf_vc_xn_unlock(xn);
643 		return err;
644 	default:
645 		dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
646 				    ctlq_msg->cookie.mbx.chnl_opcode);
647 		err = -EBUSY;
648 		goto out_unlock;
649 	}
650 
651 	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
652 		dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
653 				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
654 		xn->reply_sz = 0;
655 		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
656 		err = -EINVAL;
657 		goto out_unlock;
658 	}
659 
660 	if (ctlq_msg->cookie.mbx.chnl_retval) {
661 		xn->reply_sz = 0;
662 		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
663 		err = -EINVAL;
664 		goto out_unlock;
665 	}
666 
667 	if (ctlq_msg->data_len) {
668 		payload = ctlq_msg->ctx.indirect.payload->va;
669 		payload_size = ctlq_msg->data_len;
670 	}
671 
672 	xn->reply_sz = payload_size;
673 	xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
674 
675 	if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
676 		memcpy(xn->reply.iov_base, payload,
677 		       min_t(size_t, xn->reply.iov_len, payload_size));
678 
679 out_unlock:
680 	idpf_vc_xn_unlock(xn);
681 	/* we _cannot_ hold lock while calling complete */
682 	complete(&xn->completed);
683 
684 	return err;
685 }
686 
687 /**
688  * idpf_recv_mb_msg - Receive message over mailbox
689  * @adapter: Driver specific private structure
690  *
691  * Will receive control queue message and posts the receive buffer. Returns 0
692  * on success and negative on failure.
693  */
694 int idpf_recv_mb_msg(struct idpf_adapter *adapter)
695 {
696 	struct idpf_ctlq_msg ctlq_msg;
697 	struct idpf_dma_mem *dma_mem;
698 	int post_err, err;
699 	u16 num_recv;
700 
701 	while (1) {
702 		/* This will get <= num_recv messages and output how many
703 		 * actually received on num_recv.
704 		 */
705 		num_recv = 1;
706 		err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
707 		if (err || !num_recv)
708 			break;
709 
710 		if (ctlq_msg.data_len) {
711 			dma_mem = ctlq_msg.ctx.indirect.payload;
712 		} else {
713 			dma_mem = NULL;
714 			num_recv = 0;
715 		}
716 
717 		if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
718 			idpf_recv_event_msg(adapter, &ctlq_msg);
719 		else
720 			err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
721 
722 		post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
723 						   adapter->hw.arq,
724 						   &num_recv, &dma_mem);
725 
726 		/* If post failed clear the only buffer we supplied */
727 		if (post_err) {
728 			if (dma_mem)
729 				dmam_free_coherent(&adapter->pdev->dev,
730 						   dma_mem->size, dma_mem->va,
731 						   dma_mem->pa);
732 			break;
733 		}
734 
735 		/* virtchnl trying to shutdown, stop cleaning */
736 		if (err == -ENXIO)
737 			break;
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * idpf_wait_for_marker_event - wait for software marker response
745  * @vport: virtual port data structure
746  *
747  * Returns 0 success, negative on failure.
748  **/
749 static int idpf_wait_for_marker_event(struct idpf_vport *vport)
750 {
751 	int event;
752 	int i;
753 
754 	for (i = 0; i < vport->num_txq; i++)
755 		idpf_queue_set(SW_MARKER, vport->txqs[i]);
756 
757 	event = wait_event_timeout(vport->sw_marker_wq,
758 				   test_and_clear_bit(IDPF_VPORT_SW_MARKER,
759 						      vport->flags),
760 				   msecs_to_jiffies(500));
761 
762 	for (i = 0; i < vport->num_txq; i++)
763 		idpf_queue_clear(POLL_MODE, vport->txqs[i]);
764 
765 	if (event)
766 		return 0;
767 
768 	dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
769 
770 	return -ETIMEDOUT;
771 }
772 
773 /**
774  * idpf_send_ver_msg - send virtchnl version message
775  * @adapter: Driver specific private structure
776  *
777  * Send virtchnl version message.  Returns 0 on success, negative on failure.
778  */
779 static int idpf_send_ver_msg(struct idpf_adapter *adapter)
780 {
781 	struct idpf_vc_xn_params xn_params = {};
782 	struct virtchnl2_version_info vvi;
783 	ssize_t reply_sz;
784 	u32 major, minor;
785 	int err = 0;
786 
787 	if (adapter->virt_ver_maj) {
788 		vvi.major = cpu_to_le32(adapter->virt_ver_maj);
789 		vvi.minor = cpu_to_le32(adapter->virt_ver_min);
790 	} else {
791 		vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
792 		vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
793 	}
794 
795 	xn_params.vc_op = VIRTCHNL2_OP_VERSION;
796 	xn_params.send_buf.iov_base = &vvi;
797 	xn_params.send_buf.iov_len = sizeof(vvi);
798 	xn_params.recv_buf = xn_params.send_buf;
799 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
800 
801 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
802 	if (reply_sz < 0)
803 		return reply_sz;
804 	if (reply_sz < sizeof(vvi))
805 		return -EIO;
806 
807 	major = le32_to_cpu(vvi.major);
808 	minor = le32_to_cpu(vvi.minor);
809 
810 	if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
811 		dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
812 		return -EINVAL;
813 	}
814 
815 	if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
816 	    minor > IDPF_VIRTCHNL_VERSION_MINOR)
817 		dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
818 
819 	/* If we have a mismatch, resend version to update receiver on what
820 	 * version we will use.
821 	 */
822 	if (!adapter->virt_ver_maj &&
823 	    major != IDPF_VIRTCHNL_VERSION_MAJOR &&
824 	    minor != IDPF_VIRTCHNL_VERSION_MINOR)
825 		err = -EAGAIN;
826 
827 	adapter->virt_ver_maj = major;
828 	adapter->virt_ver_min = minor;
829 
830 	return err;
831 }
832 
833 /**
834  * idpf_send_get_caps_msg - Send virtchnl get capabilities message
835  * @adapter: Driver specific private structure
836  *
837  * Send virtchl get capabilities message. Returns 0 on success, negative on
838  * failure.
839  */
840 static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
841 {
842 	struct virtchnl2_get_capabilities caps = {};
843 	struct idpf_vc_xn_params xn_params = {};
844 	ssize_t reply_sz;
845 
846 	caps.csum_caps =
847 		cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4	|
848 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP	|
849 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP	|
850 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP	|
851 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP	|
852 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP	|
853 			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP	|
854 			    VIRTCHNL2_CAP_RX_CSUM_L3_IPV4	|
855 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP	|
856 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP	|
857 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP	|
858 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP	|
859 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP	|
860 			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP	|
861 			    VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
862 			    VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
863 			    VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
864 			    VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
865 			    VIRTCHNL2_CAP_RX_CSUM_GENERIC);
866 
867 	caps.seg_caps =
868 		cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP		|
869 			    VIRTCHNL2_CAP_SEG_IPV4_UDP		|
870 			    VIRTCHNL2_CAP_SEG_IPV4_SCTP		|
871 			    VIRTCHNL2_CAP_SEG_IPV6_TCP		|
872 			    VIRTCHNL2_CAP_SEG_IPV6_UDP		|
873 			    VIRTCHNL2_CAP_SEG_IPV6_SCTP		|
874 			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
875 
876 	caps.rss_caps =
877 		cpu_to_le64(VIRTCHNL2_CAP_RSS_IPV4_TCP		|
878 			    VIRTCHNL2_CAP_RSS_IPV4_UDP		|
879 			    VIRTCHNL2_CAP_RSS_IPV4_SCTP		|
880 			    VIRTCHNL2_CAP_RSS_IPV4_OTHER	|
881 			    VIRTCHNL2_CAP_RSS_IPV6_TCP		|
882 			    VIRTCHNL2_CAP_RSS_IPV6_UDP		|
883 			    VIRTCHNL2_CAP_RSS_IPV6_SCTP		|
884 			    VIRTCHNL2_CAP_RSS_IPV6_OTHER);
885 
886 	caps.hsplit_caps =
887 		cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4	|
888 			    VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
889 
890 	caps.rsc_caps =
891 		cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP		|
892 			    VIRTCHNL2_CAP_RSC_IPV6_TCP);
893 
894 	caps.other_caps =
895 		cpu_to_le64(VIRTCHNL2_CAP_SRIOV			|
896 			    VIRTCHNL2_CAP_MACFILTER		|
897 			    VIRTCHNL2_CAP_SPLITQ_QSCHED		|
898 			    VIRTCHNL2_CAP_PROMISC		|
899 			    VIRTCHNL2_CAP_LOOPBACK);
900 
901 	xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
902 	xn_params.send_buf.iov_base = &caps;
903 	xn_params.send_buf.iov_len = sizeof(caps);
904 	xn_params.recv_buf.iov_base = &adapter->caps;
905 	xn_params.recv_buf.iov_len = sizeof(adapter->caps);
906 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
907 
908 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
909 	if (reply_sz < 0)
910 		return reply_sz;
911 	if (reply_sz < sizeof(adapter->caps))
912 		return -EIO;
913 
914 	return 0;
915 }
916 
917 /**
918  * idpf_vport_alloc_max_qs - Allocate max queues for a vport
919  * @adapter: Driver specific private structure
920  * @max_q: vport max queue structure
921  */
922 int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
923 			    struct idpf_vport_max_q *max_q)
924 {
925 	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
926 	struct virtchnl2_get_capabilities *caps = &adapter->caps;
927 	u16 default_vports = idpf_get_default_vports(adapter);
928 	int max_rx_q, max_tx_q;
929 
930 	mutex_lock(&adapter->queue_lock);
931 
932 	max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
933 	max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
934 	if (adapter->num_alloc_vports < default_vports) {
935 		max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
936 		max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
937 	} else {
938 		max_q->max_rxq = IDPF_MIN_Q;
939 		max_q->max_txq = IDPF_MIN_Q;
940 	}
941 	max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
942 	max_q->max_complq = max_q->max_txq;
943 
944 	if (avail_queues->avail_rxq < max_q->max_rxq ||
945 	    avail_queues->avail_txq < max_q->max_txq ||
946 	    avail_queues->avail_bufq < max_q->max_bufq ||
947 	    avail_queues->avail_complq < max_q->max_complq) {
948 		mutex_unlock(&adapter->queue_lock);
949 
950 		return -EINVAL;
951 	}
952 
953 	avail_queues->avail_rxq -= max_q->max_rxq;
954 	avail_queues->avail_txq -= max_q->max_txq;
955 	avail_queues->avail_bufq -= max_q->max_bufq;
956 	avail_queues->avail_complq -= max_q->max_complq;
957 
958 	mutex_unlock(&adapter->queue_lock);
959 
960 	return 0;
961 }
962 
963 /**
964  * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
965  * @adapter: Driver specific private structure
966  * @max_q: vport max queue structure
967  */
968 void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
969 			       struct idpf_vport_max_q *max_q)
970 {
971 	struct idpf_avail_queue_info *avail_queues;
972 
973 	mutex_lock(&adapter->queue_lock);
974 	avail_queues = &adapter->avail_queues;
975 
976 	avail_queues->avail_rxq += max_q->max_rxq;
977 	avail_queues->avail_txq += max_q->max_txq;
978 	avail_queues->avail_bufq += max_q->max_bufq;
979 	avail_queues->avail_complq += max_q->max_complq;
980 
981 	mutex_unlock(&adapter->queue_lock);
982 }
983 
984 /**
985  * idpf_init_avail_queues - Initialize available queues on the device
986  * @adapter: Driver specific private structure
987  */
988 static void idpf_init_avail_queues(struct idpf_adapter *adapter)
989 {
990 	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
991 	struct virtchnl2_get_capabilities *caps = &adapter->caps;
992 
993 	avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
994 	avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
995 	avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
996 	avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
997 }
998 
999 /**
1000  * idpf_get_reg_intr_vecs - Get vector queue register offset
1001  * @vport: virtual port structure
1002  * @reg_vals: Register offsets to store in
1003  *
1004  * Returns number of registers that got populated
1005  */
1006 int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1007 			   struct idpf_vec_regs *reg_vals)
1008 {
1009 	struct virtchnl2_vector_chunks *chunks;
1010 	struct idpf_vec_regs reg_val;
1011 	u16 num_vchunks, num_vec;
1012 	int num_regs = 0, i, j;
1013 
1014 	chunks = &vport->adapter->req_vec_chunks->vchunks;
1015 	num_vchunks = le16_to_cpu(chunks->num_vchunks);
1016 
1017 	for (j = 0; j < num_vchunks; j++) {
1018 		struct virtchnl2_vector_chunk *chunk;
1019 		u32 dynctl_reg_spacing;
1020 		u32 itrn_reg_spacing;
1021 
1022 		chunk = &chunks->vchunks[j];
1023 		num_vec = le16_to_cpu(chunk->num_vectors);
1024 		reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1025 		reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1026 		reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1027 
1028 		dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1029 		itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1030 
1031 		for (i = 0; i < num_vec; i++) {
1032 			reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1033 			reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1034 			reg_vals[num_regs].itrn_index_spacing =
1035 						reg_val.itrn_index_spacing;
1036 
1037 			reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1038 			reg_val.itrn_reg += itrn_reg_spacing;
1039 			num_regs++;
1040 		}
1041 	}
1042 
1043 	return num_regs;
1044 }
1045 
1046 /**
1047  * idpf_vport_get_q_reg - Get the queue registers for the vport
1048  * @reg_vals: register values needing to be set
1049  * @num_regs: amount we expect to fill
1050  * @q_type: queue model
1051  * @chunks: queue regs received over mailbox
1052  *
1053  * This function parses the queue register offsets from the queue register
1054  * chunk information, with a specific queue type and stores it into the array
1055  * passed as an argument. It returns the actual number of queue registers that
1056  * are filled.
1057  */
1058 static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1059 				struct virtchnl2_queue_reg_chunks *chunks)
1060 {
1061 	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1062 	int reg_filled = 0, i;
1063 	u32 reg_val;
1064 
1065 	while (num_chunks--) {
1066 		struct virtchnl2_queue_reg_chunk *chunk;
1067 		u16 num_q;
1068 
1069 		chunk = &chunks->chunks[num_chunks];
1070 		if (le32_to_cpu(chunk->type) != q_type)
1071 			continue;
1072 
1073 		num_q = le32_to_cpu(chunk->num_queues);
1074 		reg_val = le64_to_cpu(chunk->qtail_reg_start);
1075 		for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1076 			reg_vals[reg_filled++] = reg_val;
1077 			reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1078 		}
1079 	}
1080 
1081 	return reg_filled;
1082 }
1083 
1084 /**
1085  * __idpf_queue_reg_init - initialize queue registers
1086  * @vport: virtual port structure
1087  * @reg_vals: registers we are initializing
1088  * @num_regs: how many registers there are in total
1089  * @q_type: queue model
1090  *
1091  * Return number of queues that are initialized
1092  */
1093 static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1094 				 int num_regs, u32 q_type)
1095 {
1096 	struct idpf_adapter *adapter = vport->adapter;
1097 	int i, j, k = 0;
1098 
1099 	switch (q_type) {
1100 	case VIRTCHNL2_QUEUE_TYPE_TX:
1101 		for (i = 0; i < vport->num_txq_grp; i++) {
1102 			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1103 
1104 			for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1105 				tx_qgrp->txqs[j]->tail =
1106 					idpf_get_reg_addr(adapter, reg_vals[k]);
1107 		}
1108 		break;
1109 	case VIRTCHNL2_QUEUE_TYPE_RX:
1110 		for (i = 0; i < vport->num_rxq_grp; i++) {
1111 			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1112 			u16 num_rxq = rx_qgrp->singleq.num_rxq;
1113 
1114 			for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1115 				struct idpf_rx_queue *q;
1116 
1117 				q = rx_qgrp->singleq.rxqs[j];
1118 				q->tail = idpf_get_reg_addr(adapter,
1119 							    reg_vals[k]);
1120 			}
1121 		}
1122 		break;
1123 	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1124 		for (i = 0; i < vport->num_rxq_grp; i++) {
1125 			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1126 			u8 num_bufqs = vport->num_bufqs_per_qgrp;
1127 
1128 			for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1129 				struct idpf_buf_queue *q;
1130 
1131 				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1132 				q->tail = idpf_get_reg_addr(adapter,
1133 							    reg_vals[k]);
1134 			}
1135 		}
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 
1141 	return k;
1142 }
1143 
1144 /**
1145  * idpf_queue_reg_init - initialize queue registers
1146  * @vport: virtual port structure
1147  *
1148  * Return 0 on success, negative on failure
1149  */
1150 int idpf_queue_reg_init(struct idpf_vport *vport)
1151 {
1152 	struct virtchnl2_create_vport *vport_params;
1153 	struct virtchnl2_queue_reg_chunks *chunks;
1154 	struct idpf_vport_config *vport_config;
1155 	u16 vport_idx = vport->idx;
1156 	int num_regs, ret = 0;
1157 	u32 *reg_vals;
1158 
1159 	/* We may never deal with more than 256 same type of queues */
1160 	reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1161 	if (!reg_vals)
1162 		return -ENOMEM;
1163 
1164 	vport_config = vport->adapter->vport_config[vport_idx];
1165 	if (vport_config->req_qs_chunks) {
1166 		struct virtchnl2_add_queues *vc_aq =
1167 		  (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1168 		chunks = &vc_aq->chunks;
1169 	} else {
1170 		vport_params = vport->adapter->vport_params_recvd[vport_idx];
1171 		chunks = &vport_params->chunks;
1172 	}
1173 
1174 	/* Initialize Tx queue tail register address */
1175 	num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1176 					VIRTCHNL2_QUEUE_TYPE_TX,
1177 					chunks);
1178 	if (num_regs < vport->num_txq) {
1179 		ret = -EINVAL;
1180 		goto free_reg_vals;
1181 	}
1182 
1183 	num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1184 					 VIRTCHNL2_QUEUE_TYPE_TX);
1185 	if (num_regs < vport->num_txq) {
1186 		ret = -EINVAL;
1187 		goto free_reg_vals;
1188 	}
1189 
1190 	/* Initialize Rx/buffer queue tail register address based on Rx queue
1191 	 * model
1192 	 */
1193 	if (idpf_is_queue_model_split(vport->rxq_model)) {
1194 		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1195 						VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1196 						chunks);
1197 		if (num_regs < vport->num_bufq) {
1198 			ret = -EINVAL;
1199 			goto free_reg_vals;
1200 		}
1201 
1202 		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1203 						 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1204 		if (num_regs < vport->num_bufq) {
1205 			ret = -EINVAL;
1206 			goto free_reg_vals;
1207 		}
1208 	} else {
1209 		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1210 						VIRTCHNL2_QUEUE_TYPE_RX,
1211 						chunks);
1212 		if (num_regs < vport->num_rxq) {
1213 			ret = -EINVAL;
1214 			goto free_reg_vals;
1215 		}
1216 
1217 		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1218 						 VIRTCHNL2_QUEUE_TYPE_RX);
1219 		if (num_regs < vport->num_rxq) {
1220 			ret = -EINVAL;
1221 			goto free_reg_vals;
1222 		}
1223 	}
1224 
1225 free_reg_vals:
1226 	kfree(reg_vals);
1227 
1228 	return ret;
1229 }
1230 
1231 /**
1232  * idpf_send_create_vport_msg - Send virtchnl create vport message
1233  * @adapter: Driver specific private structure
1234  * @max_q: vport max queue info
1235  *
1236  * send virtchnl creae vport message
1237  *
1238  * Returns 0 on success, negative on failure
1239  */
1240 int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1241 			       struct idpf_vport_max_q *max_q)
1242 {
1243 	struct virtchnl2_create_vport *vport_msg;
1244 	struct idpf_vc_xn_params xn_params = {};
1245 	u16 idx = adapter->next_vport;
1246 	int err, buf_size;
1247 	ssize_t reply_sz;
1248 
1249 	buf_size = sizeof(struct virtchnl2_create_vport);
1250 	if (!adapter->vport_params_reqd[idx]) {
1251 		adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1252 							  GFP_KERNEL);
1253 		if (!adapter->vport_params_reqd[idx])
1254 			return -ENOMEM;
1255 	}
1256 
1257 	vport_msg = adapter->vport_params_reqd[idx];
1258 	vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1259 	vport_msg->vport_index = cpu_to_le16(idx);
1260 
1261 	if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1262 		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1263 	else
1264 		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1265 
1266 	if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1267 		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1268 	else
1269 		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1270 
1271 	err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1272 	if (err) {
1273 		dev_err(&adapter->pdev->dev, "Enough queues are not available");
1274 
1275 		return err;
1276 	}
1277 
1278 	if (!adapter->vport_params_recvd[idx]) {
1279 		adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1280 							   GFP_KERNEL);
1281 		if (!adapter->vport_params_recvd[idx]) {
1282 			err = -ENOMEM;
1283 			goto free_vport_params;
1284 		}
1285 	}
1286 
1287 	xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1288 	xn_params.send_buf.iov_base = vport_msg;
1289 	xn_params.send_buf.iov_len = buf_size;
1290 	xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1291 	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1292 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1293 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1294 	if (reply_sz < 0) {
1295 		err = reply_sz;
1296 		goto free_vport_params;
1297 	}
1298 
1299 	return 0;
1300 
1301 free_vport_params:
1302 	kfree(adapter->vport_params_recvd[idx]);
1303 	adapter->vport_params_recvd[idx] = NULL;
1304 	kfree(adapter->vport_params_reqd[idx]);
1305 	adapter->vport_params_reqd[idx] = NULL;
1306 
1307 	return err;
1308 }
1309 
1310 /**
1311  * idpf_check_supported_desc_ids - Verify we have required descriptor support
1312  * @vport: virtual port structure
1313  *
1314  * Return 0 on success, error on failure
1315  */
1316 int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1317 {
1318 	struct idpf_adapter *adapter = vport->adapter;
1319 	struct virtchnl2_create_vport *vport_msg;
1320 	u64 rx_desc_ids, tx_desc_ids;
1321 
1322 	vport_msg = adapter->vport_params_recvd[vport->idx];
1323 
1324 	if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1325 	    (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1326 	     vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1327 		pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1328 		return -EOPNOTSUPP;
1329 	}
1330 
1331 	rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1332 	tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1333 
1334 	if (idpf_is_queue_model_split(vport->rxq_model)) {
1335 		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1336 			dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1337 			vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1338 		}
1339 	} else {
1340 		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1341 			vport->base_rxd = true;
1342 	}
1343 
1344 	if (!idpf_is_queue_model_split(vport->txq_model))
1345 		return 0;
1346 
1347 	if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1348 		dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1349 		vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 /**
1356  * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1357  * @vport: virtual port data structure
1358  *
1359  * Send virtchnl destroy vport message.  Returns 0 on success, negative on
1360  * failure.
1361  */
1362 int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1363 {
1364 	struct idpf_vc_xn_params xn_params = {};
1365 	struct virtchnl2_vport v_id;
1366 	ssize_t reply_sz;
1367 
1368 	v_id.vport_id = cpu_to_le32(vport->vport_id);
1369 
1370 	xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1371 	xn_params.send_buf.iov_base = &v_id;
1372 	xn_params.send_buf.iov_len = sizeof(v_id);
1373 	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1374 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1375 
1376 	return reply_sz < 0 ? reply_sz : 0;
1377 }
1378 
1379 /**
1380  * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1381  * @vport: virtual port data structure
1382  *
1383  * Send enable vport virtchnl message.  Returns 0 on success, negative on
1384  * failure.
1385  */
1386 int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1387 {
1388 	struct idpf_vc_xn_params xn_params = {};
1389 	struct virtchnl2_vport v_id;
1390 	ssize_t reply_sz;
1391 
1392 	v_id.vport_id = cpu_to_le32(vport->vport_id);
1393 
1394 	xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1395 	xn_params.send_buf.iov_base = &v_id;
1396 	xn_params.send_buf.iov_len = sizeof(v_id);
1397 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1398 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1399 
1400 	return reply_sz < 0 ? reply_sz : 0;
1401 }
1402 
1403 /**
1404  * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1405  * @vport: virtual port data structure
1406  *
1407  * Send disable vport virtchnl message.  Returns 0 on success, negative on
1408  * failure.
1409  */
1410 int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1411 {
1412 	struct idpf_vc_xn_params xn_params = {};
1413 	struct virtchnl2_vport v_id;
1414 	ssize_t reply_sz;
1415 
1416 	v_id.vport_id = cpu_to_le32(vport->vport_id);
1417 
1418 	xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1419 	xn_params.send_buf.iov_base = &v_id;
1420 	xn_params.send_buf.iov_len = sizeof(v_id);
1421 	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1422 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1423 
1424 	return reply_sz < 0 ? reply_sz : 0;
1425 }
1426 
1427 /**
1428  * idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
1429  * @vport: virtual port data structure
1430  *
1431  * Send config tx queues virtchnl message. Returns 0 on success, negative on
1432  * failure.
1433  */
1434 static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1435 {
1436 	struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
1437 	struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1438 	struct idpf_vc_xn_params xn_params = {};
1439 	u32 config_sz, chunk_sz, buf_sz;
1440 	int totqs, num_msgs, num_chunks;
1441 	ssize_t reply_sz;
1442 	int i, k = 0;
1443 
1444 	totqs = vport->num_txq + vport->num_complq;
1445 	qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
1446 	if (!qi)
1447 		return -ENOMEM;
1448 
1449 	/* Populate the queue info buffer with all queue context info */
1450 	for (i = 0; i < vport->num_txq_grp; i++) {
1451 		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1452 		int j, sched_mode;
1453 
1454 		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1455 			qi[k].queue_id =
1456 				cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1457 			qi[k].model =
1458 				cpu_to_le16(vport->txq_model);
1459 			qi[k].type =
1460 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1461 			qi[k].ring_len =
1462 				cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
1463 			qi[k].dma_ring_addr =
1464 				cpu_to_le64(tx_qgrp->txqs[j]->dma);
1465 			if (idpf_is_queue_model_split(vport->txq_model)) {
1466 				struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1467 
1468 				qi[k].tx_compl_queue_id =
1469 					cpu_to_le16(tx_qgrp->complq->q_id);
1470 				qi[k].relative_queue_id = cpu_to_le16(j);
1471 
1472 				if (idpf_queue_has(FLOW_SCH_EN, q))
1473 					qi[k].sched_mode =
1474 					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
1475 				else
1476 					qi[k].sched_mode =
1477 					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1478 			} else {
1479 				qi[k].sched_mode =
1480 					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1481 			}
1482 		}
1483 
1484 		if (!idpf_is_queue_model_split(vport->txq_model))
1485 			continue;
1486 
1487 		qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1488 		qi[k].model = cpu_to_le16(vport->txq_model);
1489 		qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1490 		qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
1491 		qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
1492 
1493 		if (idpf_queue_has(FLOW_SCH_EN, tx_qgrp->complq))
1494 			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1495 		else
1496 			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1497 		qi[k].sched_mode = cpu_to_le16(sched_mode);
1498 
1499 		k++;
1500 	}
1501 
1502 	/* Make sure accounting agrees */
1503 	if (k != totqs)
1504 		return -EINVAL;
1505 
1506 	/* Chunk up the queue contexts into multiple messages to avoid
1507 	 * sending a control queue message buffer that is too large
1508 	 */
1509 	config_sz = sizeof(struct virtchnl2_config_tx_queues);
1510 	chunk_sz = sizeof(struct virtchnl2_txq_info);
1511 
1512 	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1513 			   totqs);
1514 	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1515 
1516 	buf_sz = struct_size(ctq, qinfo, num_chunks);
1517 	ctq = kzalloc(buf_sz, GFP_KERNEL);
1518 	if (!ctq)
1519 		return -ENOMEM;
1520 
1521 	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
1522 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1523 
1524 	for (i = 0, k = 0; i < num_msgs; i++) {
1525 		memset(ctq, 0, buf_sz);
1526 		ctq->vport_id = cpu_to_le32(vport->vport_id);
1527 		ctq->num_qinfo = cpu_to_le16(num_chunks);
1528 		memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
1529 
1530 		xn_params.send_buf.iov_base = ctq;
1531 		xn_params.send_buf.iov_len = buf_sz;
1532 		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1533 		if (reply_sz < 0)
1534 			return reply_sz;
1535 
1536 		k += num_chunks;
1537 		totqs -= num_chunks;
1538 		num_chunks = min(num_chunks, totqs);
1539 		/* Recalculate buffer size */
1540 		buf_sz = struct_size(ctq, qinfo, num_chunks);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
1548  * @vport: virtual port data structure
1549  *
1550  * Send config rx queues virtchnl message.  Returns 0 on success, negative on
1551  * failure.
1552  */
1553 static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
1554 {
1555 	struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
1556 	struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1557 	struct idpf_vc_xn_params xn_params = {};
1558 	u32 config_sz, chunk_sz, buf_sz;
1559 	int totqs, num_msgs, num_chunks;
1560 	ssize_t reply_sz;
1561 	int i, k = 0;
1562 
1563 	totqs = vport->num_rxq + vport->num_bufq;
1564 	qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
1565 	if (!qi)
1566 		return -ENOMEM;
1567 
1568 	/* Populate the queue info buffer with all queue context info */
1569 	for (i = 0; i < vport->num_rxq_grp; i++) {
1570 		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1571 		u16 num_rxq;
1572 		int j;
1573 
1574 		if (!idpf_is_queue_model_split(vport->rxq_model))
1575 			goto setup_rxqs;
1576 
1577 		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1578 			struct idpf_buf_queue *bufq =
1579 				&rx_qgrp->splitq.bufq_sets[j].bufq;
1580 
1581 			qi[k].queue_id = cpu_to_le32(bufq->q_id);
1582 			qi[k].model = cpu_to_le16(vport->rxq_model);
1583 			qi[k].type =
1584 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1585 			qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1586 			qi[k].ring_len = cpu_to_le16(bufq->desc_count);
1587 			qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
1588 			qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
1589 			qi[k].buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1590 			qi[k].rx_buffer_low_watermark =
1591 				cpu_to_le16(bufq->rx_buffer_low_watermark);
1592 			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1593 				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1594 		}
1595 
1596 setup_rxqs:
1597 		if (idpf_is_queue_model_split(vport->rxq_model))
1598 			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1599 		else
1600 			num_rxq = rx_qgrp->singleq.num_rxq;
1601 
1602 		for (j = 0; j < num_rxq; j++, k++) {
1603 			const struct idpf_bufq_set *sets;
1604 			struct idpf_rx_queue *rxq;
1605 
1606 			if (!idpf_is_queue_model_split(vport->rxq_model)) {
1607 				rxq = rx_qgrp->singleq.rxqs[j];
1608 				goto common_qi_fields;
1609 			}
1610 
1611 			rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1612 			sets = rxq->bufq_sets;
1613 
1614 			/* In splitq mode, RXQ buffer size should be
1615 			 * set to that of the first buffer queue
1616 			 * associated with this RXQ.
1617 			 */
1618 			rxq->rx_buf_size = sets[0].bufq.rx_buf_size;
1619 
1620 			qi[k].rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1621 			if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1622 				qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
1623 				qi[k].rx_bufq2_id =
1624 					cpu_to_le16(sets[1].bufq.q_id);
1625 			}
1626 			qi[k].rx_buffer_low_watermark =
1627 				cpu_to_le16(rxq->rx_buffer_low_watermark);
1628 			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1629 				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1630 
1631 			rxq->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1632 
1633 			if (idpf_queue_has(HSPLIT_EN, rxq)) {
1634 				qi[k].qflags |=
1635 					cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1636 				qi[k].hdr_buffer_size =
1637 					cpu_to_le16(rxq->rx_hbuf_size);
1638 			}
1639 
1640 common_qi_fields:
1641 			qi[k].queue_id = cpu_to_le32(rxq->q_id);
1642 			qi[k].model = cpu_to_le16(vport->rxq_model);
1643 			qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1644 			qi[k].ring_len = cpu_to_le16(rxq->desc_count);
1645 			qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
1646 			qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
1647 			qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
1648 			qi[k].qflags |=
1649 				cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1650 			qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
1651 		}
1652 	}
1653 
1654 	/* Make sure accounting agrees */
1655 	if (k != totqs)
1656 		return -EINVAL;
1657 
1658 	/* Chunk up the queue contexts into multiple messages to avoid
1659 	 * sending a control queue message buffer that is too large
1660 	 */
1661 	config_sz = sizeof(struct virtchnl2_config_rx_queues);
1662 	chunk_sz = sizeof(struct virtchnl2_rxq_info);
1663 
1664 	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1665 			   totqs);
1666 	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1667 
1668 	buf_sz = struct_size(crq, qinfo, num_chunks);
1669 	crq = kzalloc(buf_sz, GFP_KERNEL);
1670 	if (!crq)
1671 		return -ENOMEM;
1672 
1673 	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
1674 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1675 
1676 	for (i = 0, k = 0; i < num_msgs; i++) {
1677 		memset(crq, 0, buf_sz);
1678 		crq->vport_id = cpu_to_le32(vport->vport_id);
1679 		crq->num_qinfo = cpu_to_le16(num_chunks);
1680 		memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
1681 
1682 		xn_params.send_buf.iov_base = crq;
1683 		xn_params.send_buf.iov_len = buf_sz;
1684 		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1685 		if (reply_sz < 0)
1686 			return reply_sz;
1687 
1688 		k += num_chunks;
1689 		totqs -= num_chunks;
1690 		num_chunks = min(num_chunks, totqs);
1691 		/* Recalculate buffer size */
1692 		buf_sz = struct_size(crq, qinfo, num_chunks);
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
1700  * queues message
1701  * @vport: virtual port data structure
1702  * @ena: if true enable, false disable
1703  *
1704  * Send enable or disable queues virtchnl message. Returns 0 on success,
1705  * negative on failure.
1706  */
1707 static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
1708 {
1709 	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
1710 	struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
1711 	u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
1712 	struct idpf_vc_xn_params xn_params = {};
1713 	struct virtchnl2_queue_chunks *qcs;
1714 	u32 config_sz, chunk_sz, buf_sz;
1715 	ssize_t reply_sz;
1716 	int i, j, k = 0;
1717 
1718 	num_txq = vport->num_txq + vport->num_complq;
1719 	num_rxq = vport->num_rxq + vport->num_bufq;
1720 	num_q = num_txq + num_rxq;
1721 	buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
1722 	qc = kzalloc(buf_sz, GFP_KERNEL);
1723 	if (!qc)
1724 		return -ENOMEM;
1725 
1726 	for (i = 0; i < vport->num_txq_grp; i++) {
1727 		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1728 
1729 		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1730 			qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1731 			qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1732 			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1733 		}
1734 	}
1735 	if (vport->num_txq != k)
1736 		return -EINVAL;
1737 
1738 	if (!idpf_is_queue_model_split(vport->txq_model))
1739 		goto setup_rx;
1740 
1741 	for (i = 0; i < vport->num_txq_grp; i++, k++) {
1742 		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1743 
1744 		qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1745 		qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1746 		qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1747 	}
1748 	if (vport->num_complq != (k - vport->num_txq))
1749 		return -EINVAL;
1750 
1751 setup_rx:
1752 	for (i = 0; i < vport->num_rxq_grp; i++) {
1753 		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1754 
1755 		if (idpf_is_queue_model_split(vport->rxq_model))
1756 			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1757 		else
1758 			num_rxq = rx_qgrp->singleq.num_rxq;
1759 
1760 		for (j = 0; j < num_rxq; j++, k++) {
1761 			if (idpf_is_queue_model_split(vport->rxq_model)) {
1762 				qc[k].start_queue_id =
1763 				cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
1764 				qc[k].type =
1765 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1766 			} else {
1767 				qc[k].start_queue_id =
1768 				cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
1769 				qc[k].type =
1770 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1771 			}
1772 			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1773 		}
1774 	}
1775 	if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
1776 		return -EINVAL;
1777 
1778 	if (!idpf_is_queue_model_split(vport->rxq_model))
1779 		goto send_msg;
1780 
1781 	for (i = 0; i < vport->num_rxq_grp; i++) {
1782 		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1783 
1784 		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1785 			const struct idpf_buf_queue *q;
1786 
1787 			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1788 			qc[k].type =
1789 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1790 			qc[k].start_queue_id = cpu_to_le32(q->q_id);
1791 			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1792 		}
1793 	}
1794 	if (vport->num_bufq != k - (vport->num_txq +
1795 				    vport->num_complq +
1796 				    vport->num_rxq))
1797 		return -EINVAL;
1798 
1799 send_msg:
1800 	/* Chunk up the queue info into multiple messages */
1801 	config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
1802 	chunk_sz = sizeof(struct virtchnl2_queue_chunk);
1803 
1804 	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1805 			   num_q);
1806 	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1807 
1808 	buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1809 	eq = kzalloc(buf_sz, GFP_KERNEL);
1810 	if (!eq)
1811 		return -ENOMEM;
1812 
1813 	if (ena) {
1814 		xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
1815 		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1816 	} else {
1817 		xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
1818 		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1819 	}
1820 
1821 	for (i = 0, k = 0; i < num_msgs; i++) {
1822 		memset(eq, 0, buf_sz);
1823 		eq->vport_id = cpu_to_le32(vport->vport_id);
1824 		eq->chunks.num_chunks = cpu_to_le16(num_chunks);
1825 		qcs = &eq->chunks;
1826 		memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
1827 
1828 		xn_params.send_buf.iov_base = eq;
1829 		xn_params.send_buf.iov_len = buf_sz;
1830 		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1831 		if (reply_sz < 0)
1832 			return reply_sz;
1833 
1834 		k += num_chunks;
1835 		num_q -= num_chunks;
1836 		num_chunks = min(num_chunks, num_q);
1837 		/* Recalculate buffer size */
1838 		buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
1846  * vector message
1847  * @vport: virtual port data structure
1848  * @map: true for map and false for unmap
1849  *
1850  * Send map or unmap queue vector virtchnl message.  Returns 0 on success,
1851  * negative on failure.
1852  */
1853 int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
1854 {
1855 	struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
1856 	struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
1857 	struct idpf_vc_xn_params xn_params = {};
1858 	u32 config_sz, chunk_sz, buf_sz;
1859 	u32 num_msgs, num_chunks, num_q;
1860 	ssize_t reply_sz;
1861 	int i, j, k = 0;
1862 
1863 	num_q = vport->num_txq + vport->num_rxq;
1864 
1865 	buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
1866 	vqv = kzalloc(buf_sz, GFP_KERNEL);
1867 	if (!vqv)
1868 		return -ENOMEM;
1869 
1870 	for (i = 0; i < vport->num_txq_grp; i++) {
1871 		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1872 
1873 		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1874 			vqv[k].queue_type =
1875 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1876 			vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1877 
1878 			if (idpf_is_queue_model_split(vport->txq_model)) {
1879 				vqv[k].vector_id =
1880 				cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
1881 				vqv[k].itr_idx =
1882 				cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
1883 			} else {
1884 				vqv[k].vector_id =
1885 				cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
1886 				vqv[k].itr_idx =
1887 				cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
1888 			}
1889 		}
1890 	}
1891 
1892 	if (vport->num_txq != k)
1893 		return -EINVAL;
1894 
1895 	for (i = 0; i < vport->num_rxq_grp; i++) {
1896 		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1897 		u16 num_rxq;
1898 
1899 		if (idpf_is_queue_model_split(vport->rxq_model))
1900 			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1901 		else
1902 			num_rxq = rx_qgrp->singleq.num_rxq;
1903 
1904 		for (j = 0; j < num_rxq; j++, k++) {
1905 			struct idpf_rx_queue *rxq;
1906 
1907 			if (idpf_is_queue_model_split(vport->rxq_model))
1908 				rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1909 			else
1910 				rxq = rx_qgrp->singleq.rxqs[j];
1911 
1912 			vqv[k].queue_type =
1913 				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1914 			vqv[k].queue_id = cpu_to_le32(rxq->q_id);
1915 			vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
1916 			vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
1917 		}
1918 	}
1919 
1920 	if (idpf_is_queue_model_split(vport->txq_model)) {
1921 		if (vport->num_rxq != k - vport->num_complq)
1922 			return -EINVAL;
1923 	} else {
1924 		if (vport->num_rxq != k - vport->num_txq)
1925 			return -EINVAL;
1926 	}
1927 
1928 	/* Chunk up the vector info into multiple messages */
1929 	config_sz = sizeof(struct virtchnl2_queue_vector_maps);
1930 	chunk_sz = sizeof(struct virtchnl2_queue_vector);
1931 
1932 	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1933 			   num_q);
1934 	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1935 
1936 	buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1937 	vqvm = kzalloc(buf_sz, GFP_KERNEL);
1938 	if (!vqvm)
1939 		return -ENOMEM;
1940 
1941 	if (map) {
1942 		xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
1943 		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1944 	} else {
1945 		xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
1946 		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1947 	}
1948 
1949 	for (i = 0, k = 0; i < num_msgs; i++) {
1950 		memset(vqvm, 0, buf_sz);
1951 		xn_params.send_buf.iov_base = vqvm;
1952 		xn_params.send_buf.iov_len = buf_sz;
1953 		vqvm->vport_id = cpu_to_le32(vport->vport_id);
1954 		vqvm->num_qv_maps = cpu_to_le16(num_chunks);
1955 		memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
1956 
1957 		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1958 		if (reply_sz < 0)
1959 			return reply_sz;
1960 
1961 		k += num_chunks;
1962 		num_q -= num_chunks;
1963 		num_chunks = min(num_chunks, num_q);
1964 		/* Recalculate buffer size */
1965 		buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 /**
1972  * idpf_send_enable_queues_msg - send enable queues virtchnl message
1973  * @vport: Virtual port private data structure
1974  *
1975  * Will send enable queues virtchnl message.  Returns 0 on success, negative on
1976  * failure.
1977  */
1978 int idpf_send_enable_queues_msg(struct idpf_vport *vport)
1979 {
1980 	return idpf_send_ena_dis_queues_msg(vport, true);
1981 }
1982 
1983 /**
1984  * idpf_send_disable_queues_msg - send disable queues virtchnl message
1985  * @vport: Virtual port private data structure
1986  *
1987  * Will send disable queues virtchnl message.  Returns 0 on success, negative
1988  * on failure.
1989  */
1990 int idpf_send_disable_queues_msg(struct idpf_vport *vport)
1991 {
1992 	int err, i;
1993 
1994 	err = idpf_send_ena_dis_queues_msg(vport, false);
1995 	if (err)
1996 		return err;
1997 
1998 	/* switch to poll mode as interrupts will be disabled after disable
1999 	 * queues virtchnl message is sent
2000 	 */
2001 	for (i = 0; i < vport->num_txq; i++)
2002 		idpf_queue_set(POLL_MODE, vport->txqs[i]);
2003 
2004 	/* schedule the napi to receive all the marker packets */
2005 	local_bh_disable();
2006 	for (i = 0; i < vport->num_q_vectors; i++)
2007 		napi_schedule(&vport->q_vectors[i].napi);
2008 	local_bh_enable();
2009 
2010 	return idpf_wait_for_marker_event(vport);
2011 }
2012 
2013 /**
2014  * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2015  * structure
2016  * @dchunks: Destination chunks to store data to
2017  * @schunks: Source chunks to copy data from
2018  * @num_chunks: number of chunks to copy
2019  */
2020 static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2021 					     struct virtchnl2_queue_reg_chunk *schunks,
2022 					     u16 num_chunks)
2023 {
2024 	u16 i;
2025 
2026 	for (i = 0; i < num_chunks; i++) {
2027 		dchunks[i].type = schunks[i].type;
2028 		dchunks[i].start_queue_id = schunks[i].start_queue_id;
2029 		dchunks[i].num_queues = schunks[i].num_queues;
2030 	}
2031 }
2032 
2033 /**
2034  * idpf_send_delete_queues_msg - send delete queues virtchnl message
2035  * @vport: Virtual port private data structure
2036  *
2037  * Will send delete queues virtchnl message. Return 0 on success, negative on
2038  * failure.
2039  */
2040 int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2041 {
2042 	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2043 	struct virtchnl2_create_vport *vport_params;
2044 	struct virtchnl2_queue_reg_chunks *chunks;
2045 	struct idpf_vc_xn_params xn_params = {};
2046 	struct idpf_vport_config *vport_config;
2047 	u16 vport_idx = vport->idx;
2048 	ssize_t reply_sz;
2049 	u16 num_chunks;
2050 	int buf_size;
2051 
2052 	vport_config = vport->adapter->vport_config[vport_idx];
2053 	if (vport_config->req_qs_chunks) {
2054 		chunks = &vport_config->req_qs_chunks->chunks;
2055 	} else {
2056 		vport_params = vport->adapter->vport_params_recvd[vport_idx];
2057 		chunks = &vport_params->chunks;
2058 	}
2059 
2060 	num_chunks = le16_to_cpu(chunks->num_chunks);
2061 	buf_size = struct_size(eq, chunks.chunks, num_chunks);
2062 
2063 	eq = kzalloc(buf_size, GFP_KERNEL);
2064 	if (!eq)
2065 		return -ENOMEM;
2066 
2067 	eq->vport_id = cpu_to_le32(vport->vport_id);
2068 	eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2069 
2070 	idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2071 					 num_chunks);
2072 
2073 	xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2074 	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2075 	xn_params.send_buf.iov_base = eq;
2076 	xn_params.send_buf.iov_len = buf_size;
2077 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2078 
2079 	return reply_sz < 0 ? reply_sz : 0;
2080 }
2081 
2082 /**
2083  * idpf_send_config_queues_msg - Send config queues virtchnl message
2084  * @vport: Virtual port private data structure
2085  *
2086  * Will send config queues virtchnl message. Returns 0 on success, negative on
2087  * failure.
2088  */
2089 int idpf_send_config_queues_msg(struct idpf_vport *vport)
2090 {
2091 	int err;
2092 
2093 	err = idpf_send_config_tx_queues_msg(vport);
2094 	if (err)
2095 		return err;
2096 
2097 	return idpf_send_config_rx_queues_msg(vport);
2098 }
2099 
2100 /**
2101  * idpf_send_add_queues_msg - Send virtchnl add queues message
2102  * @vport: Virtual port private data structure
2103  * @num_tx_q: number of transmit queues
2104  * @num_complq: number of transmit completion queues
2105  * @num_rx_q: number of receive queues
2106  * @num_rx_bufq: number of receive buffer queues
2107  *
2108  * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2109  * we should not change any fields within vport itself in this function.
2110  */
2111 int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2112 			     u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2113 {
2114 	struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2115 	struct idpf_vc_xn_params xn_params = {};
2116 	struct idpf_vport_config *vport_config;
2117 	struct virtchnl2_add_queues aq = {};
2118 	u16 vport_idx = vport->idx;
2119 	ssize_t reply_sz;
2120 	int size;
2121 
2122 	vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2123 	if (!vc_msg)
2124 		return -ENOMEM;
2125 
2126 	vport_config = vport->adapter->vport_config[vport_idx];
2127 	kfree(vport_config->req_qs_chunks);
2128 	vport_config->req_qs_chunks = NULL;
2129 
2130 	aq.vport_id = cpu_to_le32(vport->vport_id);
2131 	aq.num_tx_q = cpu_to_le16(num_tx_q);
2132 	aq.num_tx_complq = cpu_to_le16(num_complq);
2133 	aq.num_rx_q = cpu_to_le16(num_rx_q);
2134 	aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2135 
2136 	xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2137 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2138 	xn_params.send_buf.iov_base = &aq;
2139 	xn_params.send_buf.iov_len = sizeof(aq);
2140 	xn_params.recv_buf.iov_base = vc_msg;
2141 	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2142 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2143 	if (reply_sz < 0)
2144 		return reply_sz;
2145 
2146 	/* compare vc_msg num queues with vport num queues */
2147 	if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2148 	    le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2149 	    le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2150 	    le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2151 		return -EINVAL;
2152 
2153 	size = struct_size(vc_msg, chunks.chunks,
2154 			   le16_to_cpu(vc_msg->chunks.num_chunks));
2155 	if (reply_sz < size)
2156 		return -EIO;
2157 
2158 	vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2159 	if (!vport_config->req_qs_chunks)
2160 		return -ENOMEM;
2161 
2162 	return 0;
2163 }
2164 
2165 /**
2166  * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2167  * @adapter: Driver specific private structure
2168  * @num_vectors: number of vectors to be allocated
2169  *
2170  * Returns 0 on success, negative on failure.
2171  */
2172 int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2173 {
2174 	struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2175 	struct idpf_vc_xn_params xn_params = {};
2176 	struct virtchnl2_alloc_vectors ac = {};
2177 	ssize_t reply_sz;
2178 	u16 num_vchunks;
2179 	int size;
2180 
2181 	ac.num_vectors = cpu_to_le16(num_vectors);
2182 
2183 	rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2184 	if (!rcvd_vec)
2185 		return -ENOMEM;
2186 
2187 	xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2188 	xn_params.send_buf.iov_base = &ac;
2189 	xn_params.send_buf.iov_len = sizeof(ac);
2190 	xn_params.recv_buf.iov_base = rcvd_vec;
2191 	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2192 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2193 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2194 	if (reply_sz < 0)
2195 		return reply_sz;
2196 
2197 	num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2198 	size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2199 	if (reply_sz < size)
2200 		return -EIO;
2201 
2202 	if (size > IDPF_CTLQ_MAX_BUF_LEN)
2203 		return -EINVAL;
2204 
2205 	kfree(adapter->req_vec_chunks);
2206 	adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2207 	if (!adapter->req_vec_chunks)
2208 		return -ENOMEM;
2209 
2210 	if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2211 		kfree(adapter->req_vec_chunks);
2212 		adapter->req_vec_chunks = NULL;
2213 		return -EINVAL;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2221  * @adapter: Driver specific private structure
2222  *
2223  * Returns 0 on success, negative on failure.
2224  */
2225 int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2226 {
2227 	struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2228 	struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2229 	struct idpf_vc_xn_params xn_params = {};
2230 	ssize_t reply_sz;
2231 	int buf_size;
2232 
2233 	buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2234 
2235 	xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2236 	xn_params.send_buf.iov_base = vcs;
2237 	xn_params.send_buf.iov_len = buf_size;
2238 	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2239 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2240 	if (reply_sz < 0)
2241 		return reply_sz;
2242 
2243 	kfree(adapter->req_vec_chunks);
2244 	adapter->req_vec_chunks = NULL;
2245 
2246 	return 0;
2247 }
2248 
2249 /**
2250  * idpf_get_max_vfs - Get max number of vfs supported
2251  * @adapter: Driver specific private structure
2252  *
2253  * Returns max number of VFs
2254  */
2255 static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2256 {
2257 	return le16_to_cpu(adapter->caps.max_sriov_vfs);
2258 }
2259 
2260 /**
2261  * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2262  * @adapter: Driver specific private structure
2263  * @num_vfs: number of virtual functions to be created
2264  *
2265  * Returns 0 on success, negative on failure.
2266  */
2267 int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2268 {
2269 	struct virtchnl2_sriov_vfs_info svi = {};
2270 	struct idpf_vc_xn_params xn_params = {};
2271 	ssize_t reply_sz;
2272 
2273 	svi.num_vfs = cpu_to_le16(num_vfs);
2274 	xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2275 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2276 	xn_params.send_buf.iov_base = &svi;
2277 	xn_params.send_buf.iov_len = sizeof(svi);
2278 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2279 
2280 	return reply_sz < 0 ? reply_sz : 0;
2281 }
2282 
2283 /**
2284  * idpf_send_get_stats_msg - Send virtchnl get statistics message
2285  * @vport: vport to get stats for
2286  *
2287  * Returns 0 on success, negative on failure.
2288  */
2289 int idpf_send_get_stats_msg(struct idpf_vport *vport)
2290 {
2291 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2292 	struct rtnl_link_stats64 *netstats = &np->netstats;
2293 	struct virtchnl2_vport_stats stats_msg = {};
2294 	struct idpf_vc_xn_params xn_params = {};
2295 	ssize_t reply_sz;
2296 
2297 
2298 	/* Don't send get_stats message if the link is down */
2299 	if (np->state <= __IDPF_VPORT_DOWN)
2300 		return 0;
2301 
2302 	stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2303 
2304 	xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2305 	xn_params.send_buf.iov_base = &stats_msg;
2306 	xn_params.send_buf.iov_len = sizeof(stats_msg);
2307 	xn_params.recv_buf = xn_params.send_buf;
2308 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2309 
2310 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2311 	if (reply_sz < 0)
2312 		return reply_sz;
2313 	if (reply_sz < sizeof(stats_msg))
2314 		return -EIO;
2315 
2316 	spin_lock_bh(&np->stats_lock);
2317 
2318 	netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2319 			       le64_to_cpu(stats_msg.rx_multicast) +
2320 			       le64_to_cpu(stats_msg.rx_broadcast);
2321 	netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2322 			       le64_to_cpu(stats_msg.tx_multicast) +
2323 			       le64_to_cpu(stats_msg.tx_broadcast);
2324 	netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2325 	netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2326 	netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2327 	netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2328 	netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2329 	netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2330 
2331 	vport->port_stats.vport_stats = stats_msg;
2332 
2333 	spin_unlock_bh(&np->stats_lock);
2334 
2335 	return 0;
2336 }
2337 
2338 /**
2339  * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2340  * @vport: virtual port data structure
2341  * @get: flag to set or get rss look up table
2342  *
2343  * Returns 0 on success, negative on failure.
2344  */
2345 int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2346 {
2347 	struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2348 	struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2349 	struct idpf_vc_xn_params xn_params = {};
2350 	struct idpf_rss_data *rss_data;
2351 	int buf_size, lut_buf_size;
2352 	ssize_t reply_sz;
2353 	int i;
2354 
2355 	rss_data =
2356 		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2357 	buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2358 	rl = kzalloc(buf_size, GFP_KERNEL);
2359 	if (!rl)
2360 		return -ENOMEM;
2361 
2362 	rl->vport_id = cpu_to_le32(vport->vport_id);
2363 
2364 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2365 	xn_params.send_buf.iov_base = rl;
2366 	xn_params.send_buf.iov_len = buf_size;
2367 
2368 	if (get) {
2369 		recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2370 		if (!recv_rl)
2371 			return -ENOMEM;
2372 		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2373 		xn_params.recv_buf.iov_base = recv_rl;
2374 		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2375 	} else {
2376 		rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2377 		for (i = 0; i < rss_data->rss_lut_size; i++)
2378 			rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2379 
2380 		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2381 	}
2382 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2383 	if (reply_sz < 0)
2384 		return reply_sz;
2385 	if (!get)
2386 		return 0;
2387 	if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2388 		return -EIO;
2389 
2390 	lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2391 	if (reply_sz < lut_buf_size)
2392 		return -EIO;
2393 
2394 	/* size didn't change, we can reuse existing lut buf */
2395 	if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2396 		goto do_memcpy;
2397 
2398 	rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2399 	kfree(rss_data->rss_lut);
2400 
2401 	rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2402 	if (!rss_data->rss_lut) {
2403 		rss_data->rss_lut_size = 0;
2404 		return -ENOMEM;
2405 	}
2406 
2407 do_memcpy:
2408 	memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2415  * @vport: virtual port data structure
2416  * @get: flag to set or get rss look up table
2417  *
2418  * Returns 0 on success, negative on failure
2419  */
2420 int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2421 {
2422 	struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2423 	struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2424 	struct idpf_vc_xn_params xn_params = {};
2425 	struct idpf_rss_data *rss_data;
2426 	ssize_t reply_sz;
2427 	int i, buf_size;
2428 	u16 key_size;
2429 
2430 	rss_data =
2431 		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2432 	buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2433 	rk = kzalloc(buf_size, GFP_KERNEL);
2434 	if (!rk)
2435 		return -ENOMEM;
2436 
2437 	rk->vport_id = cpu_to_le32(vport->vport_id);
2438 	xn_params.send_buf.iov_base = rk;
2439 	xn_params.send_buf.iov_len = buf_size;
2440 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2441 	if (get) {
2442 		recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2443 		if (!recv_rk)
2444 			return -ENOMEM;
2445 
2446 		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2447 		xn_params.recv_buf.iov_base = recv_rk;
2448 		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2449 	} else {
2450 		rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2451 		for (i = 0; i < rss_data->rss_key_size; i++)
2452 			rk->key_flex[i] = rss_data->rss_key[i];
2453 
2454 		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2455 	}
2456 
2457 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2458 	if (reply_sz < 0)
2459 		return reply_sz;
2460 	if (!get)
2461 		return 0;
2462 	if (reply_sz < sizeof(struct virtchnl2_rss_key))
2463 		return -EIO;
2464 
2465 	key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2466 			 le16_to_cpu(recv_rk->key_len));
2467 	if (reply_sz < key_size)
2468 		return -EIO;
2469 
2470 	/* key len didn't change, reuse existing buf */
2471 	if (rss_data->rss_key_size == key_size)
2472 		goto do_memcpy;
2473 
2474 	rss_data->rss_key_size = key_size;
2475 	kfree(rss_data->rss_key);
2476 	rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2477 	if (!rss_data->rss_key) {
2478 		rss_data->rss_key_size = 0;
2479 		return -ENOMEM;
2480 	}
2481 
2482 do_memcpy:
2483 	memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2484 
2485 	return 0;
2486 }
2487 
2488 /**
2489  * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2490  * @ptype: ptype lookup table
2491  * @pstate: state machine for ptype lookup table
2492  * @ipv4: ipv4 or ipv6
2493  * @frag: fragmentation allowed
2494  *
2495  */
2496 static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2497 				   struct idpf_ptype_state *pstate,
2498 				   bool ipv4, bool frag)
2499 {
2500 	if (!pstate->outer_ip || !pstate->outer_frag) {
2501 		pstate->outer_ip = true;
2502 
2503 		if (ipv4)
2504 			ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2505 		else
2506 			ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2507 
2508 		if (frag) {
2509 			ptype->outer_frag = LIBETH_RX_PT_FRAG;
2510 			pstate->outer_frag = true;
2511 		}
2512 	} else {
2513 		ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2514 		pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2515 
2516 		if (ipv4)
2517 			ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
2518 		else
2519 			ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
2520 
2521 		if (frag)
2522 			ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2523 	}
2524 }
2525 
2526 static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2527 {
2528 	if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2529 	    ptype->inner_prot)
2530 		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2531 	else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2532 		 ptype->outer_ip)
2533 		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2534 	else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2535 		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
2536 	else
2537 		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
2538 
2539 	libeth_rx_pt_gen_hash_type(ptype);
2540 }
2541 
2542 /**
2543  * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
2544  * @vport: virtual port data structure
2545  *
2546  * Returns 0 on success, negative on failure.
2547  */
2548 int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
2549 {
2550 	struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
2551 	struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
2552 	struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
2553 	int max_ptype, ptypes_recvd = 0, ptype_offset;
2554 	struct idpf_adapter *adapter = vport->adapter;
2555 	struct idpf_vc_xn_params xn_params = {};
2556 	u16 next_ptype_id = 0;
2557 	ssize_t reply_sz;
2558 	int i, j, k;
2559 
2560 	if (vport->rx_ptype_lkup)
2561 		return 0;
2562 
2563 	if (idpf_is_queue_model_split(vport->rxq_model))
2564 		max_ptype = IDPF_RX_MAX_PTYPE;
2565 	else
2566 		max_ptype = IDPF_RX_MAX_BASE_PTYPE;
2567 
2568 	ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
2569 	if (!ptype_lkup)
2570 		return -ENOMEM;
2571 
2572 	get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
2573 	if (!get_ptype_info)
2574 		return -ENOMEM;
2575 
2576 	ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2577 	if (!ptype_info)
2578 		return -ENOMEM;
2579 
2580 	xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
2581 	xn_params.send_buf.iov_base = get_ptype_info;
2582 	xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
2583 	xn_params.recv_buf.iov_base = ptype_info;
2584 	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2585 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2586 
2587 	while (next_ptype_id < max_ptype) {
2588 		get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
2589 
2590 		if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
2591 			get_ptype_info->num_ptypes =
2592 				cpu_to_le16(max_ptype - next_ptype_id);
2593 		else
2594 			get_ptype_info->num_ptypes =
2595 				cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
2596 
2597 		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2598 		if (reply_sz < 0)
2599 			return reply_sz;
2600 
2601 		ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
2602 		if (ptypes_recvd > max_ptype)
2603 			return -EINVAL;
2604 
2605 		next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
2606 				le16_to_cpu(get_ptype_info->num_ptypes);
2607 
2608 		ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
2609 
2610 		for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
2611 			struct idpf_ptype_state pstate = { };
2612 			struct virtchnl2_ptype *ptype;
2613 			u16 id;
2614 
2615 			ptype = (struct virtchnl2_ptype *)
2616 					((u8 *)ptype_info + ptype_offset);
2617 
2618 			ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
2619 			if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
2620 				return -EINVAL;
2621 
2622 			/* 0xFFFF indicates end of ptypes */
2623 			if (le16_to_cpu(ptype->ptype_id_10) ==
2624 							IDPF_INVALID_PTYPE_ID)
2625 				goto out;
2626 
2627 			if (idpf_is_queue_model_split(vport->rxq_model))
2628 				k = le16_to_cpu(ptype->ptype_id_10);
2629 			else
2630 				k = ptype->ptype_id_8;
2631 
2632 			for (j = 0; j < ptype->proto_id_count; j++) {
2633 				id = le16_to_cpu(ptype->proto_id[j]);
2634 				switch (id) {
2635 				case VIRTCHNL2_PROTO_HDR_GRE:
2636 					if (pstate.tunnel_state ==
2637 							IDPF_PTYPE_TUNNEL_IP) {
2638 						ptype_lkup[k].tunnel_type =
2639 						LIBETH_RX_PT_TUNNEL_IP_GRENAT;
2640 						pstate.tunnel_state |=
2641 						IDPF_PTYPE_TUNNEL_IP_GRENAT;
2642 					}
2643 					break;
2644 				case VIRTCHNL2_PROTO_HDR_MAC:
2645 					ptype_lkup[k].outer_ip =
2646 						LIBETH_RX_PT_OUTER_L2;
2647 					if (pstate.tunnel_state ==
2648 							IDPF_TUN_IP_GRE) {
2649 						ptype_lkup[k].tunnel_type =
2650 						LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
2651 						pstate.tunnel_state |=
2652 						IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
2653 					}
2654 					break;
2655 				case VIRTCHNL2_PROTO_HDR_IPV4:
2656 					idpf_fill_ptype_lookup(&ptype_lkup[k],
2657 							       &pstate, true,
2658 							       false);
2659 					break;
2660 				case VIRTCHNL2_PROTO_HDR_IPV6:
2661 					idpf_fill_ptype_lookup(&ptype_lkup[k],
2662 							       &pstate, false,
2663 							       false);
2664 					break;
2665 				case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
2666 					idpf_fill_ptype_lookup(&ptype_lkup[k],
2667 							       &pstate, true,
2668 							       true);
2669 					break;
2670 				case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
2671 					idpf_fill_ptype_lookup(&ptype_lkup[k],
2672 							       &pstate, false,
2673 							       true);
2674 					break;
2675 				case VIRTCHNL2_PROTO_HDR_UDP:
2676 					ptype_lkup[k].inner_prot =
2677 					LIBETH_RX_PT_INNER_UDP;
2678 					break;
2679 				case VIRTCHNL2_PROTO_HDR_TCP:
2680 					ptype_lkup[k].inner_prot =
2681 					LIBETH_RX_PT_INNER_TCP;
2682 					break;
2683 				case VIRTCHNL2_PROTO_HDR_SCTP:
2684 					ptype_lkup[k].inner_prot =
2685 					LIBETH_RX_PT_INNER_SCTP;
2686 					break;
2687 				case VIRTCHNL2_PROTO_HDR_ICMP:
2688 					ptype_lkup[k].inner_prot =
2689 					LIBETH_RX_PT_INNER_ICMP;
2690 					break;
2691 				case VIRTCHNL2_PROTO_HDR_PAY:
2692 					ptype_lkup[k].payload_layer =
2693 						LIBETH_RX_PT_PAYLOAD_L2;
2694 					break;
2695 				case VIRTCHNL2_PROTO_HDR_ICMPV6:
2696 				case VIRTCHNL2_PROTO_HDR_IPV6_EH:
2697 				case VIRTCHNL2_PROTO_HDR_PRE_MAC:
2698 				case VIRTCHNL2_PROTO_HDR_POST_MAC:
2699 				case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
2700 				case VIRTCHNL2_PROTO_HDR_SVLAN:
2701 				case VIRTCHNL2_PROTO_HDR_CVLAN:
2702 				case VIRTCHNL2_PROTO_HDR_MPLS:
2703 				case VIRTCHNL2_PROTO_HDR_MMPLS:
2704 				case VIRTCHNL2_PROTO_HDR_PTP:
2705 				case VIRTCHNL2_PROTO_HDR_CTRL:
2706 				case VIRTCHNL2_PROTO_HDR_LLDP:
2707 				case VIRTCHNL2_PROTO_HDR_ARP:
2708 				case VIRTCHNL2_PROTO_HDR_ECP:
2709 				case VIRTCHNL2_PROTO_HDR_EAPOL:
2710 				case VIRTCHNL2_PROTO_HDR_PPPOD:
2711 				case VIRTCHNL2_PROTO_HDR_PPPOE:
2712 				case VIRTCHNL2_PROTO_HDR_IGMP:
2713 				case VIRTCHNL2_PROTO_HDR_AH:
2714 				case VIRTCHNL2_PROTO_HDR_ESP:
2715 				case VIRTCHNL2_PROTO_HDR_IKE:
2716 				case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
2717 				case VIRTCHNL2_PROTO_HDR_L2TPV2:
2718 				case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
2719 				case VIRTCHNL2_PROTO_HDR_L2TPV3:
2720 				case VIRTCHNL2_PROTO_HDR_GTP:
2721 				case VIRTCHNL2_PROTO_HDR_GTP_EH:
2722 				case VIRTCHNL2_PROTO_HDR_GTPCV2:
2723 				case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
2724 				case VIRTCHNL2_PROTO_HDR_GTPU:
2725 				case VIRTCHNL2_PROTO_HDR_GTPU_UL:
2726 				case VIRTCHNL2_PROTO_HDR_GTPU_DL:
2727 				case VIRTCHNL2_PROTO_HDR_ECPRI:
2728 				case VIRTCHNL2_PROTO_HDR_VRRP:
2729 				case VIRTCHNL2_PROTO_HDR_OSPF:
2730 				case VIRTCHNL2_PROTO_HDR_TUN:
2731 				case VIRTCHNL2_PROTO_HDR_NVGRE:
2732 				case VIRTCHNL2_PROTO_HDR_VXLAN:
2733 				case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
2734 				case VIRTCHNL2_PROTO_HDR_GENEVE:
2735 				case VIRTCHNL2_PROTO_HDR_NSH:
2736 				case VIRTCHNL2_PROTO_HDR_QUIC:
2737 				case VIRTCHNL2_PROTO_HDR_PFCP:
2738 				case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
2739 				case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
2740 				case VIRTCHNL2_PROTO_HDR_RTP:
2741 				case VIRTCHNL2_PROTO_HDR_NO_PROTO:
2742 					break;
2743 				default:
2744 					break;
2745 				}
2746 			}
2747 
2748 			idpf_finalize_ptype_lookup(&ptype_lkup[k]);
2749 		}
2750 	}
2751 
2752 out:
2753 	vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
2760  *				    message
2761  * @vport: virtual port data structure
2762  *
2763  * Returns 0 on success, negative on failure.
2764  */
2765 int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
2766 {
2767 	struct idpf_vc_xn_params xn_params = {};
2768 	struct virtchnl2_loopback loopback;
2769 	ssize_t reply_sz;
2770 
2771 	loopback.vport_id = cpu_to_le32(vport->vport_id);
2772 	loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
2773 
2774 	xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
2775 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2776 	xn_params.send_buf.iov_base = &loopback;
2777 	xn_params.send_buf.iov_len = sizeof(loopback);
2778 	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2779 
2780 	return reply_sz < 0 ? reply_sz : 0;
2781 }
2782 
2783 /**
2784  * idpf_find_ctlq - Given a type and id, find ctlq info
2785  * @hw: hardware struct
2786  * @type: type of ctrlq to find
2787  * @id: ctlq id to find
2788  *
2789  * Returns pointer to found ctlq info struct, NULL otherwise.
2790  */
2791 static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
2792 					     enum idpf_ctlq_type type, int id)
2793 {
2794 	struct idpf_ctlq_info *cq, *tmp;
2795 
2796 	list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
2797 		if (cq->q_id == id && cq->cq_type == type)
2798 			return cq;
2799 
2800 	return NULL;
2801 }
2802 
2803 /**
2804  * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
2805  * @adapter: adapter info struct
2806  *
2807  * Returns 0 on success, negative otherwise
2808  */
2809 int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
2810 {
2811 	struct idpf_ctlq_create_info ctlq_info[] = {
2812 		{
2813 			.type = IDPF_CTLQ_TYPE_MAILBOX_TX,
2814 			.id = IDPF_DFLT_MBX_ID,
2815 			.len = IDPF_DFLT_MBX_Q_LEN,
2816 			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2817 		},
2818 		{
2819 			.type = IDPF_CTLQ_TYPE_MAILBOX_RX,
2820 			.id = IDPF_DFLT_MBX_ID,
2821 			.len = IDPF_DFLT_MBX_Q_LEN,
2822 			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2823 		}
2824 	};
2825 	struct idpf_hw *hw = &adapter->hw;
2826 	int err;
2827 
2828 	adapter->dev_ops.reg_ops.ctlq_reg_init(ctlq_info);
2829 
2830 	err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
2831 	if (err)
2832 		return err;
2833 
2834 	hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
2835 				 IDPF_DFLT_MBX_ID);
2836 	hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
2837 				 IDPF_DFLT_MBX_ID);
2838 
2839 	if (!hw->asq || !hw->arq) {
2840 		idpf_ctlq_deinit(hw);
2841 
2842 		return -ENOENT;
2843 	}
2844 
2845 	adapter->state = __IDPF_VER_CHECK;
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  * idpf_deinit_dflt_mbx - Free up ctlqs setup
2852  * @adapter: Driver specific private data structure
2853  */
2854 void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
2855 {
2856 	if (adapter->hw.arq && adapter->hw.asq) {
2857 		idpf_mb_clean(adapter);
2858 		idpf_ctlq_deinit(&adapter->hw);
2859 	}
2860 	adapter->hw.arq = NULL;
2861 	adapter->hw.asq = NULL;
2862 }
2863 
2864 /**
2865  * idpf_vport_params_buf_rel - Release memory for MailBox resources
2866  * @adapter: Driver specific private data structure
2867  *
2868  * Will release memory to hold the vport parameters received on MailBox
2869  */
2870 static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
2871 {
2872 	kfree(adapter->vport_params_recvd);
2873 	adapter->vport_params_recvd = NULL;
2874 	kfree(adapter->vport_params_reqd);
2875 	adapter->vport_params_reqd = NULL;
2876 	kfree(adapter->vport_ids);
2877 	adapter->vport_ids = NULL;
2878 }
2879 
2880 /**
2881  * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
2882  * @adapter: Driver specific private data structure
2883  *
2884  * Will alloc memory to hold the vport parameters received on MailBox
2885  */
2886 static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
2887 {
2888 	u16 num_max_vports = idpf_get_max_vports(adapter);
2889 
2890 	adapter->vport_params_reqd = kcalloc(num_max_vports,
2891 					     sizeof(*adapter->vport_params_reqd),
2892 					     GFP_KERNEL);
2893 	if (!adapter->vport_params_reqd)
2894 		return -ENOMEM;
2895 
2896 	adapter->vport_params_recvd = kcalloc(num_max_vports,
2897 					      sizeof(*adapter->vport_params_recvd),
2898 					      GFP_KERNEL);
2899 	if (!adapter->vport_params_recvd)
2900 		goto err_mem;
2901 
2902 	adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
2903 	if (!adapter->vport_ids)
2904 		goto err_mem;
2905 
2906 	if (adapter->vport_config)
2907 		return 0;
2908 
2909 	adapter->vport_config = kcalloc(num_max_vports,
2910 					sizeof(*adapter->vport_config),
2911 					GFP_KERNEL);
2912 	if (!adapter->vport_config)
2913 		goto err_mem;
2914 
2915 	return 0;
2916 
2917 err_mem:
2918 	idpf_vport_params_buf_rel(adapter);
2919 
2920 	return -ENOMEM;
2921 }
2922 
2923 /**
2924  * idpf_vc_core_init - Initialize state machine and get driver specific
2925  * resources
2926  * @adapter: Driver specific private structure
2927  *
2928  * This function will initialize the state machine and request all necessary
2929  * resources required by the device driver. Once the state machine is
2930  * initialized, allocate memory to store vport specific information and also
2931  * requests required interrupts.
2932  *
2933  * Returns 0 on success, -EAGAIN function will get called again,
2934  * otherwise negative on failure.
2935  */
2936 int idpf_vc_core_init(struct idpf_adapter *adapter)
2937 {
2938 	int task_delay = 30;
2939 	u16 num_max_vports;
2940 	int err = 0;
2941 
2942 	if (!adapter->vcxn_mngr) {
2943 		adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
2944 		if (!adapter->vcxn_mngr) {
2945 			err = -ENOMEM;
2946 			goto init_failed;
2947 		}
2948 	}
2949 	idpf_vc_xn_init(adapter->vcxn_mngr);
2950 
2951 	while (adapter->state != __IDPF_INIT_SW) {
2952 		switch (adapter->state) {
2953 		case __IDPF_VER_CHECK:
2954 			err = idpf_send_ver_msg(adapter);
2955 			switch (err) {
2956 			case 0:
2957 				/* success, move state machine forward */
2958 				adapter->state = __IDPF_GET_CAPS;
2959 				fallthrough;
2960 			case -EAGAIN:
2961 				goto restart;
2962 			default:
2963 				/* Something bad happened, try again but only a
2964 				 * few times.
2965 				 */
2966 				goto init_failed;
2967 			}
2968 		case __IDPF_GET_CAPS:
2969 			err = idpf_send_get_caps_msg(adapter);
2970 			if (err)
2971 				goto init_failed;
2972 			adapter->state = __IDPF_INIT_SW;
2973 			break;
2974 		default:
2975 			dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
2976 				adapter->state);
2977 			err = -EINVAL;
2978 			goto init_failed;
2979 		}
2980 		break;
2981 restart:
2982 		/* Give enough time before proceeding further with
2983 		 * state machine
2984 		 */
2985 		msleep(task_delay);
2986 	}
2987 
2988 	pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
2989 	num_max_vports = idpf_get_max_vports(adapter);
2990 	adapter->max_vports = num_max_vports;
2991 	adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
2992 				  GFP_KERNEL);
2993 	if (!adapter->vports)
2994 		return -ENOMEM;
2995 
2996 	if (!adapter->netdevs) {
2997 		adapter->netdevs = kcalloc(num_max_vports,
2998 					   sizeof(struct net_device *),
2999 					   GFP_KERNEL);
3000 		if (!adapter->netdevs) {
3001 			err = -ENOMEM;
3002 			goto err_netdev_alloc;
3003 		}
3004 	}
3005 
3006 	err = idpf_vport_params_buf_alloc(adapter);
3007 	if (err) {
3008 		dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3009 			err);
3010 		goto err_netdev_alloc;
3011 	}
3012 
3013 	/* Start the mailbox task before requesting vectors. This will ensure
3014 	 * vector information response from mailbox is handled
3015 	 */
3016 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3017 
3018 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3019 			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3020 
3021 	err = idpf_intr_req(adapter);
3022 	if (err) {
3023 		dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3024 			err);
3025 		goto err_intr_req;
3026 	}
3027 
3028 	idpf_init_avail_queues(adapter);
3029 
3030 	/* Skew the delay for init tasks for each function based on fn number
3031 	 * to prevent every function from making the same call simultaneously.
3032 	 */
3033 	queue_delayed_work(adapter->init_wq, &adapter->init_task,
3034 			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3035 
3036 	set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3037 
3038 	return 0;
3039 
3040 err_intr_req:
3041 	cancel_delayed_work_sync(&adapter->serv_task);
3042 	cancel_delayed_work_sync(&adapter->mbx_task);
3043 	idpf_vport_params_buf_rel(adapter);
3044 err_netdev_alloc:
3045 	kfree(adapter->vports);
3046 	adapter->vports = NULL;
3047 	return err;
3048 
3049 init_failed:
3050 	/* Don't retry if we're trying to go down, just bail. */
3051 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3052 		return err;
3053 
3054 	if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3055 		dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3056 
3057 		return -EFAULT;
3058 	}
3059 	/* If it reached here, it is possible that mailbox queue initialization
3060 	 * register writes might not have taken effect. Retry to initialize
3061 	 * the mailbox again
3062 	 */
3063 	adapter->state = __IDPF_VER_CHECK;
3064 	if (adapter->vcxn_mngr)
3065 		idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3066 	set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3067 	queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3068 			   msecs_to_jiffies(task_delay));
3069 
3070 	return -EAGAIN;
3071 }
3072 
3073 /**
3074  * idpf_vc_core_deinit - Device deinit routine
3075  * @adapter: Driver specific private structure
3076  *
3077  */
3078 void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3079 {
3080 	if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3081 		return;
3082 
3083 	idpf_deinit_task(adapter);
3084 	idpf_intr_rel(adapter);
3085 	idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3086 
3087 	cancel_delayed_work_sync(&adapter->serv_task);
3088 	cancel_delayed_work_sync(&adapter->mbx_task);
3089 
3090 	idpf_vport_params_buf_rel(adapter);
3091 
3092 	kfree(adapter->vports);
3093 	adapter->vports = NULL;
3094 
3095 	clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3096 }
3097 
3098 /**
3099  * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3100  * @vport: virtual port data struct
3101  *
3102  * This function requests the vector information required for the vport and
3103  * stores the vector indexes received from the 'global vector distribution'
3104  * in the vport's queue vectors array.
3105  *
3106  * Return 0 on success, error on failure
3107  */
3108 int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3109 {
3110 	struct idpf_vector_info vec_info;
3111 	int num_alloc_vecs;
3112 
3113 	vec_info.num_curr_vecs = vport->num_q_vectors;
3114 	vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
3115 	vec_info.default_vport = vport->default_vport;
3116 	vec_info.index = vport->idx;
3117 
3118 	num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3119 						     vport->q_vector_idxs,
3120 						     &vec_info);
3121 	if (num_alloc_vecs <= 0) {
3122 		dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3123 			num_alloc_vecs);
3124 		return -EINVAL;
3125 	}
3126 
3127 	vport->num_q_vectors = num_alloc_vecs;
3128 
3129 	return 0;
3130 }
3131 
3132 /**
3133  * idpf_vport_init - Initialize virtual port
3134  * @vport: virtual port to be initialized
3135  * @max_q: vport max queue info
3136  *
3137  * Will initialize vport with the info received through MB earlier
3138  */
3139 void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3140 {
3141 	struct idpf_adapter *adapter = vport->adapter;
3142 	struct virtchnl2_create_vport *vport_msg;
3143 	struct idpf_vport_config *vport_config;
3144 	u16 tx_itr[] = {2, 8, 64, 128, 256};
3145 	u16 rx_itr[] = {2, 8, 32, 96, 128};
3146 	struct idpf_rss_data *rss_data;
3147 	u16 idx = vport->idx;
3148 
3149 	vport_config = adapter->vport_config[idx];
3150 	rss_data = &vport_config->user_config.rss_data;
3151 	vport_msg = adapter->vport_params_recvd[idx];
3152 
3153 	vport_config->max_q.max_txq = max_q->max_txq;
3154 	vport_config->max_q.max_rxq = max_q->max_rxq;
3155 	vport_config->max_q.max_complq = max_q->max_complq;
3156 	vport_config->max_q.max_bufq = max_q->max_bufq;
3157 
3158 	vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3159 	vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3160 	vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3161 	vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3162 
3163 	rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3164 				       le16_to_cpu(vport_msg->rss_key_size));
3165 	rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3166 
3167 	ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3168 	vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3169 
3170 	/* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3171 	memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3172 	memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3173 
3174 	idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3175 
3176 	idpf_vport_init_num_qs(vport, vport_msg);
3177 	idpf_vport_calc_num_q_desc(vport);
3178 	idpf_vport_calc_num_q_groups(vport);
3179 	idpf_vport_alloc_vec_indexes(vport);
3180 
3181 	vport->crc_enable = adapter->crc_enable;
3182 }
3183 
3184 /**
3185  * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3186  * @adapter: adapter structure to get the mailbox vector id
3187  * @vecids: Array of vector ids
3188  * @num_vecids: number of vector ids
3189  * @chunks: vector ids received over mailbox
3190  *
3191  * Will initialize the mailbox vector id which is received from the
3192  * get capabilities and data queue vector ids with ids received as
3193  * mailbox parameters.
3194  * Returns number of ids filled
3195  */
3196 int idpf_get_vec_ids(struct idpf_adapter *adapter,
3197 		     u16 *vecids, int num_vecids,
3198 		     struct virtchnl2_vector_chunks *chunks)
3199 {
3200 	u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3201 	int num_vecid_filled = 0;
3202 	int i, j;
3203 
3204 	vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3205 	num_vecid_filled++;
3206 
3207 	for (j = 0; j < num_chunks; j++) {
3208 		struct virtchnl2_vector_chunk *chunk;
3209 		u16 start_vecid, num_vec;
3210 
3211 		chunk = &chunks->vchunks[j];
3212 		num_vec = le16_to_cpu(chunk->num_vectors);
3213 		start_vecid = le16_to_cpu(chunk->start_vector_id);
3214 
3215 		for (i = 0; i < num_vec; i++) {
3216 			if ((num_vecid_filled + i) < num_vecids) {
3217 				vecids[num_vecid_filled + i] = start_vecid;
3218 				start_vecid++;
3219 			} else {
3220 				break;
3221 			}
3222 		}
3223 		num_vecid_filled = num_vecid_filled + i;
3224 	}
3225 
3226 	return num_vecid_filled;
3227 }
3228 
3229 /**
3230  * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3231  * @qids: Array of queue ids
3232  * @num_qids: number of queue ids
3233  * @q_type: queue model
3234  * @chunks: queue ids received over mailbox
3235  *
3236  * Will initialize all queue ids with ids received as mailbox parameters
3237  * Returns number of ids filled
3238  */
3239 static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3240 				    struct virtchnl2_queue_reg_chunks *chunks)
3241 {
3242 	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3243 	u32 num_q_id_filled = 0, i;
3244 	u32 start_q_id, num_q;
3245 
3246 	while (num_chunks--) {
3247 		struct virtchnl2_queue_reg_chunk *chunk;
3248 
3249 		chunk = &chunks->chunks[num_chunks];
3250 		if (le32_to_cpu(chunk->type) != q_type)
3251 			continue;
3252 
3253 		num_q = le32_to_cpu(chunk->num_queues);
3254 		start_q_id = le32_to_cpu(chunk->start_queue_id);
3255 
3256 		for (i = 0; i < num_q; i++) {
3257 			if ((num_q_id_filled + i) < num_qids) {
3258 				qids[num_q_id_filled + i] = start_q_id;
3259 				start_q_id++;
3260 			} else {
3261 				break;
3262 			}
3263 		}
3264 		num_q_id_filled = num_q_id_filled + i;
3265 	}
3266 
3267 	return num_q_id_filled;
3268 }
3269 
3270 /**
3271  * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3272  * @vport: virtual port for which the queues ids are initialized
3273  * @qids: queue ids
3274  * @num_qids: number of queue ids
3275  * @q_type: type of queue
3276  *
3277  * Will initialize all queue ids with ids received as mailbox
3278  * parameters. Returns number of queue ids initialized.
3279  */
3280 static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3281 				       const u32 *qids,
3282 				       int num_qids,
3283 				       u32 q_type)
3284 {
3285 	int i, j, k = 0;
3286 
3287 	switch (q_type) {
3288 	case VIRTCHNL2_QUEUE_TYPE_TX:
3289 		for (i = 0; i < vport->num_txq_grp; i++) {
3290 			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3291 
3292 			for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3293 				tx_qgrp->txqs[j]->q_id = qids[k];
3294 		}
3295 		break;
3296 	case VIRTCHNL2_QUEUE_TYPE_RX:
3297 		for (i = 0; i < vport->num_rxq_grp; i++) {
3298 			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3299 			u16 num_rxq;
3300 
3301 			if (idpf_is_queue_model_split(vport->rxq_model))
3302 				num_rxq = rx_qgrp->splitq.num_rxq_sets;
3303 			else
3304 				num_rxq = rx_qgrp->singleq.num_rxq;
3305 
3306 			for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3307 				struct idpf_rx_queue *q;
3308 
3309 				if (idpf_is_queue_model_split(vport->rxq_model))
3310 					q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3311 				else
3312 					q = rx_qgrp->singleq.rxqs[j];
3313 				q->q_id = qids[k];
3314 			}
3315 		}
3316 		break;
3317 	case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3318 		for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3319 			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3320 
3321 			tx_qgrp->complq->q_id = qids[k];
3322 		}
3323 		break;
3324 	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3325 		for (i = 0; i < vport->num_rxq_grp; i++) {
3326 			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3327 			u8 num_bufqs = vport->num_bufqs_per_qgrp;
3328 
3329 			for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3330 				struct idpf_buf_queue *q;
3331 
3332 				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3333 				q->q_id = qids[k];
3334 			}
3335 		}
3336 		break;
3337 	default:
3338 		break;
3339 	}
3340 
3341 	return k;
3342 }
3343 
3344 /**
3345  * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3346  * @vport: virtual port for which the queues ids are initialized
3347  *
3348  * Will initialize all queue ids with ids received as mailbox parameters.
3349  * Returns 0 on success, negative if all the queues are not initialized.
3350  */
3351 int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3352 {
3353 	struct virtchnl2_create_vport *vport_params;
3354 	struct virtchnl2_queue_reg_chunks *chunks;
3355 	struct idpf_vport_config *vport_config;
3356 	u16 vport_idx = vport->idx;
3357 	int num_ids, err = 0;
3358 	u16 q_type;
3359 	u32 *qids;
3360 
3361 	vport_config = vport->adapter->vport_config[vport_idx];
3362 	if (vport_config->req_qs_chunks) {
3363 		struct virtchnl2_add_queues *vc_aq =
3364 			(struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3365 		chunks = &vc_aq->chunks;
3366 	} else {
3367 		vport_params = vport->adapter->vport_params_recvd[vport_idx];
3368 		chunks = &vport_params->chunks;
3369 	}
3370 
3371 	qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3372 	if (!qids)
3373 		return -ENOMEM;
3374 
3375 	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3376 					   VIRTCHNL2_QUEUE_TYPE_TX,
3377 					   chunks);
3378 	if (num_ids < vport->num_txq) {
3379 		err = -EINVAL;
3380 		goto mem_rel;
3381 	}
3382 	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3383 					      VIRTCHNL2_QUEUE_TYPE_TX);
3384 	if (num_ids < vport->num_txq) {
3385 		err = -EINVAL;
3386 		goto mem_rel;
3387 	}
3388 
3389 	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3390 					   VIRTCHNL2_QUEUE_TYPE_RX,
3391 					   chunks);
3392 	if (num_ids < vport->num_rxq) {
3393 		err = -EINVAL;
3394 		goto mem_rel;
3395 	}
3396 	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3397 					      VIRTCHNL2_QUEUE_TYPE_RX);
3398 	if (num_ids < vport->num_rxq) {
3399 		err = -EINVAL;
3400 		goto mem_rel;
3401 	}
3402 
3403 	if (!idpf_is_queue_model_split(vport->txq_model))
3404 		goto check_rxq;
3405 
3406 	q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3407 	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3408 	if (num_ids < vport->num_complq) {
3409 		err = -EINVAL;
3410 		goto mem_rel;
3411 	}
3412 	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3413 	if (num_ids < vport->num_complq) {
3414 		err = -EINVAL;
3415 		goto mem_rel;
3416 	}
3417 
3418 check_rxq:
3419 	if (!idpf_is_queue_model_split(vport->rxq_model))
3420 		goto mem_rel;
3421 
3422 	q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3423 	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3424 	if (num_ids < vport->num_bufq) {
3425 		err = -EINVAL;
3426 		goto mem_rel;
3427 	}
3428 	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3429 	if (num_ids < vport->num_bufq)
3430 		err = -EINVAL;
3431 
3432 mem_rel:
3433 	kfree(qids);
3434 
3435 	return err;
3436 }
3437 
3438 /**
3439  * idpf_vport_adjust_qs - Adjust to new requested queues
3440  * @vport: virtual port data struct
3441  *
3442  * Renegotiate queues.  Returns 0 on success, negative on failure.
3443  */
3444 int idpf_vport_adjust_qs(struct idpf_vport *vport)
3445 {
3446 	struct virtchnl2_create_vport vport_msg;
3447 	int err;
3448 
3449 	vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3450 	vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3451 	err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3452 				       NULL);
3453 	if (err)
3454 		return err;
3455 
3456 	idpf_vport_init_num_qs(vport, &vport_msg);
3457 	idpf_vport_calc_num_q_groups(vport);
3458 
3459 	return 0;
3460 }
3461 
3462 /**
3463  * idpf_is_capability_ena - Default implementation of capability checking
3464  * @adapter: Private data struct
3465  * @all: all or one flag
3466  * @field: caps field to check for flags
3467  * @flag: flag to check
3468  *
3469  * Return true if all capabilities are supported, false otherwise
3470  */
3471 bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3472 			    enum idpf_cap_field field, u64 flag)
3473 {
3474 	u8 *caps = (u8 *)&adapter->caps;
3475 	u32 *cap_field;
3476 
3477 	if (!caps)
3478 		return false;
3479 
3480 	if (field == IDPF_BASE_CAPS)
3481 		return false;
3482 
3483 	cap_field = (u32 *)(caps + field);
3484 
3485 	if (all)
3486 		return (*cap_field & flag) == flag;
3487 	else
3488 		return !!(*cap_field & flag);
3489 }
3490 
3491 /**
3492  * idpf_get_vport_id: Get vport id
3493  * @vport: virtual port structure
3494  *
3495  * Return vport id from the adapter persistent data
3496  */
3497 u32 idpf_get_vport_id(struct idpf_vport *vport)
3498 {
3499 	struct virtchnl2_create_vport *vport_msg;
3500 
3501 	vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3502 
3503 	return le32_to_cpu(vport_msg->vport_id);
3504 }
3505 
3506 /**
3507  * idpf_mac_filter_async_handler - Async callback for mac filters
3508  * @adapter: private data struct
3509  * @xn: transaction for message
3510  * @ctlq_msg: received message
3511  *
3512  * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
3513  * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
3514  * situation to deal with errors returned on the reply. The best we can
3515  * ultimately do is remove it from our list of mac filters and report the
3516  * error.
3517  */
3518 static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
3519 					 struct idpf_vc_xn *xn,
3520 					 const struct idpf_ctlq_msg *ctlq_msg)
3521 {
3522 	struct virtchnl2_mac_addr_list *ma_list;
3523 	struct idpf_vport_config *vport_config;
3524 	struct virtchnl2_mac_addr *mac_addr;
3525 	struct idpf_mac_filter *f, *tmp;
3526 	struct list_head *ma_list_head;
3527 	struct idpf_vport *vport;
3528 	u16 num_entries;
3529 	int i;
3530 
3531 	/* if success we're done, we're only here if something bad happened */
3532 	if (!ctlq_msg->cookie.mbx.chnl_retval)
3533 		return 0;
3534 
3535 	/* make sure at least struct is there */
3536 	if (xn->reply_sz < sizeof(*ma_list))
3537 		goto invalid_payload;
3538 
3539 	ma_list = ctlq_msg->ctx.indirect.payload->va;
3540 	mac_addr = ma_list->mac_addr_list;
3541 	num_entries = le16_to_cpu(ma_list->num_mac_addr);
3542 	/* we should have received a buffer at least this big */
3543 	if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
3544 		goto invalid_payload;
3545 
3546 	vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
3547 	if (!vport)
3548 		goto invalid_payload;
3549 
3550 	vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
3551 	ma_list_head = &vport_config->user_config.mac_filter_list;
3552 
3553 	/* We can't do much to reconcile bad filters at this point, however we
3554 	 * should at least remove them from our list one way or the other so we
3555 	 * have some idea what good filters we have.
3556 	 */
3557 	spin_lock_bh(&vport_config->mac_filter_list_lock);
3558 	list_for_each_entry_safe(f, tmp, ma_list_head, list)
3559 		for (i = 0; i < num_entries; i++)
3560 			if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
3561 				list_del(&f->list);
3562 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3563 	dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
3564 			    xn->vc_op);
3565 
3566 	return 0;
3567 
3568 invalid_payload:
3569 	dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
3570 			    xn->vc_op, xn->reply_sz);
3571 
3572 	return -EINVAL;
3573 }
3574 
3575 /**
3576  * idpf_add_del_mac_filters - Add/del mac filters
3577  * @vport: Virtual port data structure
3578  * @np: Netdev private structure
3579  * @add: Add or delete flag
3580  * @async: Don't wait for return message
3581  *
3582  * Returns 0 on success, error on failure.
3583  **/
3584 int idpf_add_del_mac_filters(struct idpf_vport *vport,
3585 			     struct idpf_netdev_priv *np,
3586 			     bool add, bool async)
3587 {
3588 	struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
3589 	struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
3590 	struct idpf_adapter *adapter = np->adapter;
3591 	struct idpf_vc_xn_params xn_params = {};
3592 	struct idpf_vport_config *vport_config;
3593 	u32 num_msgs, total_filters = 0;
3594 	struct idpf_mac_filter *f;
3595 	ssize_t reply_sz;
3596 	int i = 0, k;
3597 
3598 	xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
3599 				VIRTCHNL2_OP_DEL_MAC_ADDR;
3600 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3601 	xn_params.async = async;
3602 	xn_params.async_handler = idpf_mac_filter_async_handler;
3603 
3604 	vport_config = adapter->vport_config[np->vport_idx];
3605 	spin_lock_bh(&vport_config->mac_filter_list_lock);
3606 
3607 	/* Find the number of newly added filters */
3608 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3609 			    list) {
3610 		if (add && f->add)
3611 			total_filters++;
3612 		else if (!add && f->remove)
3613 			total_filters++;
3614 	}
3615 
3616 	if (!total_filters) {
3617 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3618 
3619 		return 0;
3620 	}
3621 
3622 	/* Fill all the new filters into virtchannel message */
3623 	mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
3624 			   GFP_ATOMIC);
3625 	if (!mac_addr) {
3626 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3627 
3628 		return -ENOMEM;
3629 	}
3630 
3631 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3632 			    list) {
3633 		if (add && f->add) {
3634 			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3635 			i++;
3636 			f->add = false;
3637 			if (i == total_filters)
3638 				break;
3639 		}
3640 		if (!add && f->remove) {
3641 			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3642 			i++;
3643 			f->remove = false;
3644 			if (i == total_filters)
3645 				break;
3646 		}
3647 	}
3648 
3649 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3650 
3651 	/* Chunk up the filters into multiple messages to avoid
3652 	 * sending a control queue message buffer that is too large
3653 	 */
3654 	num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
3655 
3656 	for (i = 0, k = 0; i < num_msgs; i++) {
3657 		u32 entries_size, buf_size, num_entries;
3658 
3659 		num_entries = min_t(u32, total_filters,
3660 				    IDPF_NUM_FILTERS_PER_MSG);
3661 		entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
3662 		buf_size = struct_size(ma_list, mac_addr_list, num_entries);
3663 
3664 		if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
3665 			kfree(ma_list);
3666 			ma_list = kzalloc(buf_size, GFP_ATOMIC);
3667 			if (!ma_list)
3668 				return -ENOMEM;
3669 		} else {
3670 			memset(ma_list, 0, buf_size);
3671 		}
3672 
3673 		ma_list->vport_id = cpu_to_le32(np->vport_id);
3674 		ma_list->num_mac_addr = cpu_to_le16(num_entries);
3675 		memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
3676 
3677 		xn_params.send_buf.iov_base = ma_list;
3678 		xn_params.send_buf.iov_len = buf_size;
3679 		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3680 		if (reply_sz < 0)
3681 			return reply_sz;
3682 
3683 		k += num_entries;
3684 		total_filters -= num_entries;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 /**
3691  * idpf_set_promiscuous - set promiscuous and send message to mailbox
3692  * @adapter: Driver specific private structure
3693  * @config_data: Vport specific config data
3694  * @vport_id: Vport identifier
3695  *
3696  * Request to enable promiscuous mode for the vport. Message is sent
3697  * asynchronously and won't wait for response.  Returns 0 on success, negative
3698  * on failure;
3699  */
3700 int idpf_set_promiscuous(struct idpf_adapter *adapter,
3701 			 struct idpf_vport_user_config_data *config_data,
3702 			 u32 vport_id)
3703 {
3704 	struct idpf_vc_xn_params xn_params = {};
3705 	struct virtchnl2_promisc_info vpi;
3706 	ssize_t reply_sz;
3707 	u16 flags = 0;
3708 
3709 	if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
3710 		flags |= VIRTCHNL2_UNICAST_PROMISC;
3711 	if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
3712 		flags |= VIRTCHNL2_MULTICAST_PROMISC;
3713 
3714 	vpi.vport_id = cpu_to_le32(vport_id);
3715 	vpi.flags = cpu_to_le16(flags);
3716 
3717 	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
3718 	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3719 	xn_params.send_buf.iov_base = &vpi;
3720 	xn_params.send_buf.iov_len = sizeof(vpi);
3721 	/* setting promiscuous is only ever done asynchronously */
3722 	xn_params.async = true;
3723 	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3724 
3725 	return reply_sz < 0 ? reply_sz : 0;
3726 }
3727