1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #ifndef _IDPF_TXRX_H_ 5 #define _IDPF_TXRX_H_ 6 7 #include <linux/dim.h> 8 9 #include <net/libeth/cache.h> 10 #include <net/tcp.h> 11 #include <net/netdev_queues.h> 12 13 #include "idpf_lan_txrx.h" 14 #include "virtchnl2_lan_desc.h" 15 16 #define IDPF_LARGE_MAX_Q 256 17 #define IDPF_MAX_Q 16 18 #define IDPF_MIN_Q 2 19 /* Mailbox Queue */ 20 #define IDPF_MAX_MBXQ 1 21 22 #define IDPF_MIN_TXQ_DESC 64 23 #define IDPF_MIN_RXQ_DESC 64 24 #define IDPF_MIN_TXQ_COMPLQ_DESC 256 25 #define IDPF_MAX_QIDS 256 26 27 /* Number of descriptors in a queue should be a multiple of 32. RX queue 28 * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE 29 * to achieve BufQ descriptors aligned to 32 30 */ 31 #define IDPF_REQ_DESC_MULTIPLE 32 32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32) 33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6) 34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2) 35 36 #define IDPF_MAX_DESCS 8160 37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE) 38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE) 39 #define MIN_SUPPORT_TXDID (\ 40 VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\ 41 VIRTCHNL2_TXDID_FLEX_TSO_CTX) 42 43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1 44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1 45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4 46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4 47 48 #define IDPF_COMPLQ_PER_GROUP 1 49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1 50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2 51 #define IDPF_BUFQ2_ENA 1 52 #define IDPF_NUMQ_PER_CHUNK 1 53 54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1 55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1 56 57 /* Default vector sharing */ 58 #define IDPF_MBX_Q_VEC 1 59 #define IDPF_MIN_Q_VEC 1 60 61 #define IDPF_DFLT_TX_Q_DESC_COUNT 512 62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512 63 #define IDPF_DFLT_RX_Q_DESC_COUNT 512 64 65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a 66 * given RX completion queue has descriptors. This includes _ALL_ buffer 67 * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers, 68 * you have a total of 1024 buffers so your RX queue _must_ have at least that 69 * many descriptors. This macro divides a given number of RX descriptors by 70 * number of buffer queues to calculate how many descriptors each buffer queue 71 * can have without overrunning the RX queue. 72 * 73 * If you give hardware more buffers than completion descriptors what will 74 * happen is that if hardware gets a chance to post more than ring wrap of 75 * descriptors before SW gets an interrupt and overwrites SW head, the gen bit 76 * in the descriptor will be wrong. Any overwritten descriptors' buffers will 77 * be gone forever and SW has no reasonable way to tell that this has happened. 78 * From SW perspective, when we finally get an interrupt, it looks like we're 79 * still waiting for descriptor to be done, stalling forever. 80 */ 81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ)) 82 83 #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1) 84 85 #define IDPF_RX_BUMP_NTC(rxq, ntc) \ 86 do { \ 87 if (unlikely(++(ntc) == (rxq)->desc_count)) { \ 88 ntc = 0; \ 89 idpf_queue_change(GEN_CHK, rxq); \ 90 } \ 91 } while (0) 92 93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \ 94 do { \ 95 if (unlikely(++(idx) == (q)->desc_count)) \ 96 idx = 0; \ 97 } while (0) 98 99 #define IDPF_RX_BUF_STRIDE 32 100 #define IDPF_RX_BUF_POST_STRIDE 16 101 #define IDPF_LOW_WATERMARK 64 102 103 #define IDPF_TX_TSO_MIN_MSS 88 104 105 /* Minimum number of descriptors between 2 descriptors with the RE bit set; 106 * only relevant in flow scheduling mode 107 */ 108 #define IDPF_TX_SPLITQ_RE_MIN_GAP 64 109 110 #define IDPF_RX_BI_GEN_M BIT(16) 111 #define IDPF_RX_BI_BUFID_M GENMASK(15, 0) 112 113 #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M 114 #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M 115 116 #define IDPF_DESC_UNUSED(txq) \ 117 ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ 118 (txq)->next_to_clean - (txq)->next_to_use - 1) 119 120 #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top) 121 #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ 122 (txq)->desc_count >> 2) 123 124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) 125 /* Determine the absolute number of completions pending, i.e. the number of 126 * completions that are expected to arrive on the TX completion queue. 127 */ 128 #define IDPF_TX_COMPLQ_PENDING(txq) \ 129 (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ 130 0 : U32_MAX) + \ 131 (txq)->num_completions_pending - (txq)->complq->num_completions) 132 133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 134 /* Adjust the generation for the completion tag and wrap if necessary */ 135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ 136 ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ 137 0 : (txq)->compl_tag_cur_gen) 138 139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) 140 141 #define IDPF_TX_FLAGS_TSO BIT(0) 142 #define IDPF_TX_FLAGS_IPV4 BIT(1) 143 #define IDPF_TX_FLAGS_IPV6 BIT(2) 144 #define IDPF_TX_FLAGS_TUNNEL BIT(3) 145 146 union idpf_tx_flex_desc { 147 struct idpf_flex_tx_desc q; /* queue based scheduling */ 148 struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ 149 }; 150 151 #define idpf_tx_buf libeth_sqe 152 153 /** 154 * struct idpf_buf_lifo - LIFO for managing OOO completions 155 * @top: Used to know how many buffers are left 156 * @size: Total size of LIFO 157 * @bufs: Backing array 158 */ 159 struct idpf_buf_lifo { 160 u16 top; 161 u16 size; 162 struct idpf_tx_stash **bufs; 163 }; 164 165 /** 166 * struct idpf_tx_offload_params - Offload parameters for a given packet 167 * @tx_flags: Feature flags enabled for this packet 168 * @hdr_offsets: Offset parameter for single queue model 169 * @cd_tunneling: Type of tunneling enabled for single queue model 170 * @tso_len: Total length of payload to segment 171 * @mss: Segment size 172 * @tso_segs: Number of segments to be sent 173 * @tso_hdr_len: Length of headers to be duplicated 174 * @td_cmd: Command field to be inserted into descriptor 175 */ 176 struct idpf_tx_offload_params { 177 u32 tx_flags; 178 179 u32 hdr_offsets; 180 u32 cd_tunneling; 181 182 u32 tso_len; 183 u16 mss; 184 u16 tso_segs; 185 u16 tso_hdr_len; 186 187 u16 td_cmd; 188 }; 189 190 /** 191 * struct idpf_tx_splitq_params 192 * @dtype: General descriptor info 193 * @eop_cmd: Type of EOP 194 * @compl_tag: Associated tag for completion 195 * @td_tag: Descriptor tunneling tag 196 * @offload: Offload parameters 197 */ 198 struct idpf_tx_splitq_params { 199 enum idpf_tx_desc_dtype_value dtype; 200 u16 eop_cmd; 201 union { 202 u16 compl_tag; 203 u16 td_tag; 204 }; 205 206 struct idpf_tx_offload_params offload; 207 }; 208 209 enum idpf_tx_ctx_desc_eipt_offload { 210 IDPF_TX_CTX_EXT_IP_NONE = 0x0, 211 IDPF_TX_CTX_EXT_IP_IPV6 = 0x1, 212 IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2, 213 IDPF_TX_CTX_EXT_IP_IPV4 = 0x3 214 }; 215 216 #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256 217 #define IDPF_TX_MIN_PKT_LEN 17 218 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 219 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ 220 sizeof(struct idpf_flex_tx_desc)) 221 #define IDPF_TX_DESCS_FOR_CTX 1 222 /* TX descriptors needed, worst case */ 223 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ 224 IDPF_TX_DESCS_PER_CACHE_LINE + \ 225 IDPF_TX_DESCS_FOR_SKB_DATA_PTR) 226 227 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 228 * In order to align with the read requests we will align the value to 229 * the nearest 4K which represents our maximum read request size. 230 */ 231 #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K 232 #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) 233 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \ 234 ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) 235 236 #define idpf_rx_buf libeth_fqe 237 238 #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32 239 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \ 240 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS)) 241 #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info) 242 #define IDPF_RX_MAX_PTYPES_PER_BUF \ 243 DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \ 244 IDPF_RX_MAX_PTYPE_SZ) 245 246 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count) 247 248 #define IDPF_TUN_IP_GRE (\ 249 IDPF_PTYPE_TUNNEL_IP |\ 250 IDPF_PTYPE_TUNNEL_IP_GRENAT) 251 252 #define IDPF_TUN_IP_GRE_MAC (\ 253 IDPF_TUN_IP_GRE |\ 254 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC) 255 256 #define IDPF_RX_MAX_PTYPE 1024 257 #define IDPF_RX_MAX_BASE_PTYPE 256 258 #define IDPF_INVALID_PTYPE_ID 0xFFFF 259 260 enum idpf_tunnel_state { 261 IDPF_PTYPE_TUNNEL_IP = BIT(0), 262 IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1), 263 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2), 264 }; 265 266 struct idpf_ptype_state { 267 bool outer_ip:1; 268 bool outer_frag:1; 269 u8 tunnel_state:6; 270 }; 271 272 /** 273 * enum idpf_queue_flags_t 274 * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to 275 * identify new descriptor writebacks on the ring. HW sets 276 * the gen bit to 1 on the first writeback of any given 277 * descriptor. After the ring wraps, HW sets the gen bit of 278 * those descriptors to 0, and continues flipping 279 * 0->1 or 1->0 on each ring wrap. SW maintains its own 280 * gen bit to know what value will indicate writebacks on 281 * the next pass around the ring. E.g. it is initialized 282 * to 1 and knows that reading a gen bit of 1 in any 283 * descriptor on the initial pass of the ring indicates a 284 * writeback. It also flips on every ring wrap. 285 * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW 286 * bit and Q_RFL_GEN is the SW bit. 287 * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling 288 * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions 289 * @__IDPF_Q_POLL_MODE: Enable poll mode 290 * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode 291 * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq) 292 * @__IDPF_Q_FLAGS_NBITS: Must be last 293 */ 294 enum idpf_queue_flags_t { 295 __IDPF_Q_GEN_CHK, 296 __IDPF_Q_RFL_GEN_CHK, 297 __IDPF_Q_FLOW_SCH_EN, 298 __IDPF_Q_SW_MARKER, 299 __IDPF_Q_POLL_MODE, 300 __IDPF_Q_CRC_EN, 301 __IDPF_Q_HSPLIT_EN, 302 303 __IDPF_Q_FLAGS_NBITS, 304 }; 305 306 #define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags) 307 #define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags) 308 #define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags) 309 #define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags) 310 311 #define idpf_queue_has_clear(f, q) \ 312 __test_and_clear_bit(__IDPF_Q_##f, (q)->flags) 313 #define idpf_queue_assign(f, q, v) \ 314 __assign_bit(__IDPF_Q_##f, (q)->flags, v) 315 316 /** 317 * struct idpf_vec_regs 318 * @dyn_ctl_reg: Dynamic control interrupt register offset 319 * @itrn_reg: Interrupt Throttling Rate register offset 320 * @itrn_index_spacing: Register spacing between ITR registers of the same 321 * vector 322 */ 323 struct idpf_vec_regs { 324 u32 dyn_ctl_reg; 325 u32 itrn_reg; 326 u32 itrn_index_spacing; 327 }; 328 329 /** 330 * struct idpf_intr_reg 331 * @dyn_ctl: Dynamic control interrupt register 332 * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable 333 * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask 334 * @dyn_ctl_itridx_s: Register bit offset for ITR index 335 * @dyn_ctl_itridx_m: Mask for ITR index 336 * @dyn_ctl_intrvl_s: Register bit offset for ITR interval 337 * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature 338 * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index 339 * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable 340 * @rx_itr: RX ITR register 341 * @tx_itr: TX ITR register 342 * @icr_ena: Interrupt cause register offset 343 * @icr_ena_ctlq_m: Mask for ICR 344 */ 345 struct idpf_intr_reg { 346 void __iomem *dyn_ctl; 347 u32 dyn_ctl_intena_m; 348 u32 dyn_ctl_intena_msk_m; 349 u32 dyn_ctl_itridx_s; 350 u32 dyn_ctl_itridx_m; 351 u32 dyn_ctl_intrvl_s; 352 u32 dyn_ctl_wb_on_itr_m; 353 u32 dyn_ctl_sw_itridx_ena_m; 354 u32 dyn_ctl_swint_trig_m; 355 void __iomem *rx_itr; 356 void __iomem *tx_itr; 357 void __iomem *icr_ena; 358 u32 icr_ena_ctlq_m; 359 }; 360 361 /** 362 * struct idpf_q_vector 363 * @vport: Vport back pointer 364 * @num_rxq: Number of RX queues 365 * @num_txq: Number of TX queues 366 * @num_bufq: Number of buffer queues 367 * @num_complq: number of completion queues 368 * @rx: Array of RX queues to service 369 * @tx: Array of TX queues to service 370 * @bufq: Array of buffer queues to service 371 * @complq: array of completion queues 372 * @intr_reg: See struct idpf_intr_reg 373 * @napi: napi handler 374 * @total_events: Number of interrupts processed 375 * @wb_on_itr: whether WB on ITR is enabled 376 * @tx_dim: Data for TX net_dim algorithm 377 * @tx_itr_value: TX interrupt throttling rate 378 * @tx_intr_mode: Dynamic ITR or not 379 * @tx_itr_idx: TX ITR index 380 * @rx_dim: Data for RX net_dim algorithm 381 * @rx_itr_value: RX interrupt throttling rate 382 * @rx_intr_mode: Dynamic ITR or not 383 * @rx_itr_idx: RX ITR index 384 * @v_idx: Vector index 385 */ 386 struct idpf_q_vector { 387 __cacheline_group_begin_aligned(read_mostly); 388 struct idpf_vport *vport; 389 390 u16 num_rxq; 391 u16 num_txq; 392 u16 num_bufq; 393 u16 num_complq; 394 struct idpf_rx_queue **rx; 395 struct idpf_tx_queue **tx; 396 struct idpf_buf_queue **bufq; 397 struct idpf_compl_queue **complq; 398 399 struct idpf_intr_reg intr_reg; 400 __cacheline_group_end_aligned(read_mostly); 401 402 __cacheline_group_begin_aligned(read_write); 403 struct napi_struct napi; 404 u16 total_events; 405 bool wb_on_itr; 406 407 struct dim tx_dim; 408 u16 tx_itr_value; 409 bool tx_intr_mode; 410 u32 tx_itr_idx; 411 412 struct dim rx_dim; 413 u16 rx_itr_value; 414 bool rx_intr_mode; 415 u32 rx_itr_idx; 416 __cacheline_group_end_aligned(read_write); 417 418 __cacheline_group_begin_aligned(cold); 419 u16 v_idx; 420 421 __cacheline_group_end_aligned(cold); 422 }; 423 libeth_cacheline_set_assert(struct idpf_q_vector, 120, 424 24 + sizeof(struct napi_struct) + 425 2 * sizeof(struct dim), 426 8); 427 428 struct idpf_rx_queue_stats { 429 u64_stats_t packets; 430 u64_stats_t bytes; 431 u64_stats_t rsc_pkts; 432 u64_stats_t hw_csum_err; 433 u64_stats_t hsplit_pkts; 434 u64_stats_t hsplit_buf_ovf; 435 u64_stats_t bad_descs; 436 }; 437 438 struct idpf_tx_queue_stats { 439 u64_stats_t packets; 440 u64_stats_t bytes; 441 u64_stats_t lso_pkts; 442 u64_stats_t linearize; 443 u64_stats_t q_busy; 444 u64_stats_t skb_drops; 445 u64_stats_t dma_map_errs; 446 }; 447 448 #define IDPF_ITR_DYNAMIC 1 449 #define IDPF_ITR_MAX 0x1FE0 450 #define IDPF_ITR_20K 0x0032 451 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ 452 #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 453 #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK) 454 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode) 455 #define IDPF_ITR_TX_DEF IDPF_ITR_20K 456 #define IDPF_ITR_RX_DEF IDPF_ITR_20K 457 /* Index used for 'SW ITR' update in DYN_CTL register */ 458 #define IDPF_SW_ITR_UPDATE_IDX 2 459 /* Index used for 'No ITR' update in DYN_CTL register */ 460 #define IDPF_NO_ITR_UPDATE_IDX 3 461 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt) 462 #define IDPF_DIM_DEFAULT_PROFILE_IX 1 463 464 /** 465 * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode 466 * @buf_stack: Stack of empty buffers to store buffer info for out of order 467 * buffer completions. See struct idpf_buf_lifo 468 * @sched_buf_hash: Hash table to store buffers 469 */ 470 struct idpf_txq_stash { 471 struct idpf_buf_lifo buf_stack; 472 DECLARE_HASHTABLE(sched_buf_hash, 12); 473 } ____cacheline_aligned; 474 475 /** 476 * struct idpf_rx_queue - software structure representing a receive queue 477 * @rx: universal receive descriptor array 478 * @single_buf: buffer descriptor array in singleq 479 * @desc_ring: virtual descriptor ring address 480 * @bufq_sets: Pointer to the array of buffer queues in splitq mode 481 * @napi: NAPI instance corresponding to this queue (splitq) 482 * @rx_buf: See struct &libeth_fqe 483 * @pp: Page pool pointer in singleq mode 484 * @netdev: &net_device corresponding to this queue 485 * @tail: Tail offset. Used for both queue models single and split. 486 * @flags: See enum idpf_queue_flags_t 487 * @idx: For RX queue, it is used to index to total RX queue across groups and 488 * used for skb reporting. 489 * @desc_count: Number of descriptors 490 * @rxdids: Supported RX descriptor ids 491 * @rx_ptype_lkup: LUT of Rx ptypes 492 * @next_to_use: Next descriptor to use 493 * @next_to_clean: Next descriptor to clean 494 * @next_to_alloc: RX buffer to allocate at 495 * @skb: Pointer to the skb 496 * @truesize: data buffer truesize in singleq 497 * @stats_sync: See struct u64_stats_sync 498 * @q_stats: See union idpf_rx_queue_stats 499 * @q_id: Queue id 500 * @size: Length of descriptor ring in bytes 501 * @dma: Physical address of ring 502 * @q_vector: Backreference to associated vector 503 * @rx_buffer_low_watermark: RX buffer low watermark 504 * @rx_hbuf_size: Header buffer size 505 * @rx_buf_size: Buffer size 506 * @rx_max_pkt_size: RX max packet size 507 */ 508 struct idpf_rx_queue { 509 __cacheline_group_begin_aligned(read_mostly); 510 union { 511 union virtchnl2_rx_desc *rx; 512 struct virtchnl2_singleq_rx_buf_desc *single_buf; 513 514 void *desc_ring; 515 }; 516 union { 517 struct { 518 struct idpf_bufq_set *bufq_sets; 519 struct napi_struct *napi; 520 }; 521 struct { 522 struct libeth_fqe *rx_buf; 523 struct page_pool *pp; 524 }; 525 }; 526 struct net_device *netdev; 527 void __iomem *tail; 528 529 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 530 u16 idx; 531 u16 desc_count; 532 533 u32 rxdids; 534 const struct libeth_rx_pt *rx_ptype_lkup; 535 __cacheline_group_end_aligned(read_mostly); 536 537 __cacheline_group_begin_aligned(read_write); 538 u16 next_to_use; 539 u16 next_to_clean; 540 u16 next_to_alloc; 541 542 struct sk_buff *skb; 543 u32 truesize; 544 545 struct u64_stats_sync stats_sync; 546 struct idpf_rx_queue_stats q_stats; 547 __cacheline_group_end_aligned(read_write); 548 549 __cacheline_group_begin_aligned(cold); 550 u32 q_id; 551 u32 size; 552 dma_addr_t dma; 553 554 struct idpf_q_vector *q_vector; 555 556 u16 rx_buffer_low_watermark; 557 u16 rx_hbuf_size; 558 u16 rx_buf_size; 559 u16 rx_max_pkt_size; 560 __cacheline_group_end_aligned(cold); 561 }; 562 libeth_cacheline_set_assert(struct idpf_rx_queue, 64, 563 80 + sizeof(struct u64_stats_sync), 564 32); 565 566 /** 567 * struct idpf_tx_queue - software structure representing a transmit queue 568 * @base_tx: base Tx descriptor array 569 * @base_ctx: base Tx context descriptor array 570 * @flex_tx: flex Tx descriptor array 571 * @flex_ctx: flex Tx context descriptor array 572 * @desc_ring: virtual descriptor ring address 573 * @tx_buf: See struct idpf_tx_buf 574 * @txq_grp: See struct idpf_txq_group 575 * @dev: Device back pointer for DMA mapping 576 * @tail: Tail offset. Used for both queue models single and split 577 * @flags: See enum idpf_queue_flags_t 578 * @idx: For TX queue, it is used as index to map between TX queue group and 579 * hot path TX pointers stored in vport. Used in both singleq/splitq. 580 * @desc_count: Number of descriptors 581 * @tx_min_pkt_len: Min supported packet length 582 * @compl_tag_gen_s: Completion tag generation bit 583 * The format of the completion tag will change based on the TXQ 584 * descriptor ring size so that we can maintain roughly the same level 585 * of "uniqueness" across all descriptor sizes. For example, if the 586 * TXQ descriptor ring size is 64 (the minimum size supported), the 587 * completion tag will be formatted as below: 588 * 15 6 5 0 589 * -------------------------------- 590 * | GEN=0-1023 |IDX = 0-63| 591 * -------------------------------- 592 * 593 * This gives us 64*1024 = 65536 possible unique values. Similarly, if 594 * the TXQ descriptor ring size is 8160 (the maximum size supported), 595 * the completion tag will be formatted as below: 596 * 15 13 12 0 597 * -------------------------------- 598 * |GEN | IDX = 0-8159 | 599 * -------------------------------- 600 * 601 * This gives us 8*8160 = 65280 possible unique values. 602 * @netdev: &net_device corresponding to this queue 603 * @next_to_use: Next descriptor to use 604 * @next_to_clean: Next descriptor to clean 605 * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on 606 * the TX completion queue, it can be for any TXQ associated 607 * with that completion queue. This means we can clean up to 608 * N TXQs during a single call to clean the completion queue. 609 * cleaned_bytes|pkts tracks the clean stats per TXQ during 610 * that single call to clean the completion queue. By doing so, 611 * we can update BQL with aggregate cleaned stats for each TXQ 612 * only once at the end of the cleaning routine. 613 * @clean_budget: singleq only, queue cleaning budget 614 * @cleaned_pkts: Number of packets cleaned for the above said case 615 * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather 616 * @stash: Tx buffer stash for Flow-based scheduling mode 617 * @compl_tag_bufid_m: Completion tag buffer id mask 618 * @compl_tag_cur_gen: Used to keep track of current completion tag generation 619 * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset 620 * @stats_sync: See struct u64_stats_sync 621 * @q_stats: See union idpf_tx_queue_stats 622 * @q_id: Queue id 623 * @size: Length of descriptor ring in bytes 624 * @dma: Physical address of ring 625 * @q_vector: Backreference to associated vector 626 */ 627 struct idpf_tx_queue { 628 __cacheline_group_begin_aligned(read_mostly); 629 union { 630 struct idpf_base_tx_desc *base_tx; 631 struct idpf_base_tx_ctx_desc *base_ctx; 632 union idpf_tx_flex_desc *flex_tx; 633 struct idpf_flex_tx_ctx_desc *flex_ctx; 634 635 void *desc_ring; 636 }; 637 struct libeth_sqe *tx_buf; 638 struct idpf_txq_group *txq_grp; 639 struct device *dev; 640 void __iomem *tail; 641 642 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 643 u16 idx; 644 u16 desc_count; 645 646 u16 tx_min_pkt_len; 647 u16 compl_tag_gen_s; 648 649 struct net_device *netdev; 650 __cacheline_group_end_aligned(read_mostly); 651 652 __cacheline_group_begin_aligned(read_write); 653 u16 next_to_use; 654 u16 next_to_clean; 655 656 union { 657 u32 cleaned_bytes; 658 u32 clean_budget; 659 }; 660 u16 cleaned_pkts; 661 662 u16 tx_max_bufs; 663 struct idpf_txq_stash *stash; 664 665 u16 compl_tag_bufid_m; 666 u16 compl_tag_cur_gen; 667 u16 compl_tag_gen_max; 668 669 struct u64_stats_sync stats_sync; 670 struct idpf_tx_queue_stats q_stats; 671 __cacheline_group_end_aligned(read_write); 672 673 __cacheline_group_begin_aligned(cold); 674 u32 q_id; 675 u32 size; 676 dma_addr_t dma; 677 678 struct idpf_q_vector *q_vector; 679 __cacheline_group_end_aligned(cold); 680 }; 681 libeth_cacheline_set_assert(struct idpf_tx_queue, 64, 682 88 + sizeof(struct u64_stats_sync), 683 24); 684 685 /** 686 * struct idpf_buf_queue - software structure representing a buffer queue 687 * @split_buf: buffer descriptor array 688 * @hdr_buf: &libeth_fqe for header buffers 689 * @hdr_pp: &page_pool for header buffers 690 * @buf: &libeth_fqe for data buffers 691 * @pp: &page_pool for data buffers 692 * @tail: Tail offset 693 * @flags: See enum idpf_queue_flags_t 694 * @desc_count: Number of descriptors 695 * @next_to_use: Next descriptor to use 696 * @next_to_clean: Next descriptor to clean 697 * @next_to_alloc: RX buffer to allocate at 698 * @hdr_truesize: truesize for buffer headers 699 * @truesize: truesize for data buffers 700 * @q_id: Queue id 701 * @size: Length of descriptor ring in bytes 702 * @dma: Physical address of ring 703 * @q_vector: Backreference to associated vector 704 * @rx_buffer_low_watermark: RX buffer low watermark 705 * @rx_hbuf_size: Header buffer size 706 * @rx_buf_size: Buffer size 707 */ 708 struct idpf_buf_queue { 709 __cacheline_group_begin_aligned(read_mostly); 710 struct virtchnl2_splitq_rx_buf_desc *split_buf; 711 struct libeth_fqe *hdr_buf; 712 struct page_pool *hdr_pp; 713 struct libeth_fqe *buf; 714 struct page_pool *pp; 715 void __iomem *tail; 716 717 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 718 u32 desc_count; 719 __cacheline_group_end_aligned(read_mostly); 720 721 __cacheline_group_begin_aligned(read_write); 722 u32 next_to_use; 723 u32 next_to_clean; 724 u32 next_to_alloc; 725 726 u32 hdr_truesize; 727 u32 truesize; 728 __cacheline_group_end_aligned(read_write); 729 730 __cacheline_group_begin_aligned(cold); 731 u32 q_id; 732 u32 size; 733 dma_addr_t dma; 734 735 struct idpf_q_vector *q_vector; 736 737 u16 rx_buffer_low_watermark; 738 u16 rx_hbuf_size; 739 u16 rx_buf_size; 740 __cacheline_group_end_aligned(cold); 741 }; 742 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32); 743 744 /** 745 * struct idpf_compl_queue - software structure representing a completion queue 746 * @comp: completion descriptor array 747 * @txq_grp: See struct idpf_txq_group 748 * @flags: See enum idpf_queue_flags_t 749 * @desc_count: Number of descriptors 750 * @clean_budget: queue cleaning budget 751 * @netdev: &net_device corresponding to this queue 752 * @next_to_use: Next descriptor to use. Relevant in both split & single txq 753 * and bufq. 754 * @next_to_clean: Next descriptor to clean 755 * @num_completions: Only relevant for TX completion queue. It tracks the 756 * number of completions received to compare against the 757 * number of completions pending, as accumulated by the 758 * TX queues. 759 * @q_id: Queue id 760 * @size: Length of descriptor ring in bytes 761 * @dma: Physical address of ring 762 * @q_vector: Backreference to associated vector 763 */ 764 struct idpf_compl_queue { 765 __cacheline_group_begin_aligned(read_mostly); 766 struct idpf_splitq_tx_compl_desc *comp; 767 struct idpf_txq_group *txq_grp; 768 769 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 770 u32 desc_count; 771 772 u32 clean_budget; 773 struct net_device *netdev; 774 __cacheline_group_end_aligned(read_mostly); 775 776 __cacheline_group_begin_aligned(read_write); 777 u32 next_to_use; 778 u32 next_to_clean; 779 780 aligned_u64 num_completions; 781 __cacheline_group_end_aligned(read_write); 782 783 __cacheline_group_begin_aligned(cold); 784 u32 q_id; 785 u32 size; 786 dma_addr_t dma; 787 788 struct idpf_q_vector *q_vector; 789 __cacheline_group_end_aligned(cold); 790 }; 791 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24); 792 793 /** 794 * struct idpf_sw_queue 795 * @ring: Pointer to the ring 796 * @flags: See enum idpf_queue_flags_t 797 * @desc_count: Descriptor count 798 * @next_to_use: Buffer to allocate at 799 * @next_to_clean: Next descriptor to clean 800 * 801 * Software queues are used in splitq mode to manage buffers between rxq 802 * producer and the bufq consumer. These are required in order to maintain a 803 * lockless buffer management system and are strictly software only constructs. 804 */ 805 struct idpf_sw_queue { 806 __cacheline_group_begin_aligned(read_mostly); 807 u32 *ring; 808 809 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 810 u32 desc_count; 811 __cacheline_group_end_aligned(read_mostly); 812 813 __cacheline_group_begin_aligned(read_write); 814 u32 next_to_use; 815 u32 next_to_clean; 816 __cacheline_group_end_aligned(read_write); 817 }; 818 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24); 819 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8); 820 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8); 821 822 /** 823 * struct idpf_rxq_set 824 * @rxq: RX queue 825 * @refillq: pointers to refill queues 826 * 827 * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs. 828 * Each rxq needs a refillq to return used buffers back to the respective bufq. 829 * Bufqs then clean these refillqs for buffers to give to hardware. 830 */ 831 struct idpf_rxq_set { 832 struct idpf_rx_queue rxq; 833 struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP]; 834 }; 835 836 /** 837 * struct idpf_bufq_set 838 * @bufq: Buffer queue 839 * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets 840 * in idpf_rxq_group. 841 * @refillqs: Pointer to refill queues array. 842 * 843 * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs. 844 * In this bufq_set, there will be one refillq for each rxq in this rxq_group. 845 * Used buffers received by rxqs will be put on refillqs which bufqs will 846 * clean to return new buffers back to hardware. 847 * 848 * Buffers needed by some number of rxqs associated in this rxq_group are 849 * managed by at most two bufqs (depending on performance configuration). 850 */ 851 struct idpf_bufq_set { 852 struct idpf_buf_queue bufq; 853 int num_refillqs; 854 struct idpf_sw_queue *refillqs; 855 }; 856 857 /** 858 * struct idpf_rxq_group 859 * @vport: Vport back pointer 860 * @singleq: Struct with single queue related members 861 * @singleq.num_rxq: Number of RX queues associated 862 * @singleq.rxqs: Array of RX queue pointers 863 * @splitq: Struct with split queue related members 864 * @splitq.num_rxq_sets: Number of RX queue sets 865 * @splitq.rxq_sets: Array of RX queue sets 866 * @splitq.bufq_sets: Buffer queue set pointer 867 * 868 * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a 869 * rxq_group contains all the rxqs, bufqs and refillqs needed to 870 * manage buffers in splitq mode. 871 */ 872 struct idpf_rxq_group { 873 struct idpf_vport *vport; 874 875 union { 876 struct { 877 u16 num_rxq; 878 struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q]; 879 } singleq; 880 struct { 881 u16 num_rxq_sets; 882 struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q]; 883 struct idpf_bufq_set *bufq_sets; 884 } splitq; 885 }; 886 }; 887 888 /** 889 * struct idpf_txq_group 890 * @vport: Vport back pointer 891 * @num_txq: Number of TX queues associated 892 * @txqs: Array of TX queue pointers 893 * @stashes: array of OOO stashes for the queues 894 * @complq: Associated completion queue pointer, split queue only 895 * @num_completions_pending: Total number of completions pending for the 896 * completion queue, acculumated for all TX queues 897 * associated with that completion queue. 898 * 899 * Between singleq and splitq, a txq_group is largely the same except for the 900 * complq. In splitq a single complq is responsible for handling completions 901 * for some number of txqs associated in this txq_group. 902 */ 903 struct idpf_txq_group { 904 struct idpf_vport *vport; 905 906 u16 num_txq; 907 struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q]; 908 struct idpf_txq_stash *stashes; 909 910 struct idpf_compl_queue *complq; 911 912 aligned_u64 num_completions_pending; 913 }; 914 915 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector) 916 { 917 u32 cpu; 918 919 if (!q_vector) 920 return NUMA_NO_NODE; 921 922 cpu = cpumask_first(&q_vector->napi.config->affinity_mask); 923 924 return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE; 925 } 926 927 /** 928 * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag 929 * @size: transmit request size in bytes 930 * 931 * In the case where a large frag (>= 16K) needs to be split across multiple 932 * descriptors, we need to assume that we can have no more than 12K of data 933 * per descriptor due to hardware alignment restrictions (4K alignment). 934 */ 935 static inline u32 idpf_size_to_txd_count(unsigned int size) 936 { 937 return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); 938 } 939 940 /** 941 * idpf_tx_singleq_build_ctob - populate command tag offset and size 942 * @td_cmd: Command to be filled in desc 943 * @td_offset: Offset to be filled in desc 944 * @size: Size of the buffer 945 * @td_tag: td tag to be filled 946 * 947 * Returns the 64 bit value populated with the input parameters 948 */ 949 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset, 950 unsigned int size, u64 td_tag) 951 { 952 return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA | 953 (td_cmd << IDPF_TXD_QW1_CMD_S) | 954 (td_offset << IDPF_TXD_QW1_OFFSET_S) | 955 ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) | 956 (td_tag << IDPF_TXD_QW1_L2TAG1_S)); 957 } 958 959 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, 960 struct idpf_tx_splitq_params *params, 961 u16 td_cmd, u16 size); 962 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, 963 struct idpf_tx_splitq_params *params, 964 u16 td_cmd, u16 size); 965 /** 966 * idpf_tx_splitq_build_desc - determine which type of data descriptor to build 967 * @desc: descriptor to populate 968 * @params: pointer to tx params struct 969 * @td_cmd: command to be filled in desc 970 * @size: size of buffer 971 */ 972 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, 973 struct idpf_tx_splitq_params *params, 974 u16 td_cmd, u16 size) 975 { 976 if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) 977 idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); 978 else 979 idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); 980 } 981 982 /** 983 * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts 984 * @q_vector: pointer to queue vector struct 985 */ 986 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector) 987 { 988 struct idpf_intr_reg *reg; 989 990 if (q_vector->wb_on_itr) 991 return; 992 993 q_vector->wb_on_itr = true; 994 reg = &q_vector->intr_reg; 995 996 writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m | 997 (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s), 998 reg->dyn_ctl); 999 } 1000 1001 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget); 1002 void idpf_vport_init_num_qs(struct idpf_vport *vport, 1003 struct virtchnl2_create_vport *vport_msg); 1004 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport); 1005 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index, 1006 struct virtchnl2_create_vport *vport_msg, 1007 struct idpf_vport_max_q *max_q); 1008 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport); 1009 int idpf_vport_queues_alloc(struct idpf_vport *vport); 1010 void idpf_vport_queues_rel(struct idpf_vport *vport); 1011 void idpf_vport_intr_rel(struct idpf_vport *vport); 1012 int idpf_vport_intr_alloc(struct idpf_vport *vport); 1013 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector); 1014 void idpf_vport_intr_deinit(struct idpf_vport *vport); 1015 int idpf_vport_intr_init(struct idpf_vport *vport); 1016 void idpf_vport_intr_ena(struct idpf_vport *vport); 1017 int idpf_config_rss(struct idpf_vport *vport); 1018 int idpf_init_rss(struct idpf_vport *vport); 1019 void idpf_deinit_rss(struct idpf_vport *vport); 1020 int idpf_rx_bufs_init_all(struct idpf_vport *vport); 1021 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, 1022 unsigned int size); 1023 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size); 1024 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val, 1025 bool xmit_more); 1026 unsigned int idpf_size_to_txd_count(unsigned int size); 1027 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb); 1028 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb, 1029 struct idpf_tx_buf *first, u16 ring_idx); 1030 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq, 1031 struct sk_buff *skb); 1032 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue); 1033 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb, 1034 struct idpf_tx_queue *tx_q); 1035 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev); 1036 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq, 1037 u16 cleaned_count); 1038 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off); 1039 1040 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, 1041 u32 needed) 1042 { 1043 return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx, 1044 IDPF_DESC_UNUSED(tx_q), 1045 needed, needed); 1046 } 1047 1048 #endif /* !_IDPF_TXRX_H_ */ 1049