1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #ifndef _IDPF_TXRX_H_ 5 #define _IDPF_TXRX_H_ 6 7 #include <linux/dim.h> 8 9 #include <net/libeth/cache.h> 10 #include <net/tcp.h> 11 #include <net/netdev_queues.h> 12 13 #include "idpf_lan_txrx.h" 14 #include "virtchnl2_lan_desc.h" 15 16 #define IDPF_LARGE_MAX_Q 256 17 #define IDPF_MAX_Q 16 18 #define IDPF_MIN_Q 2 19 /* Mailbox Queue */ 20 #define IDPF_MAX_MBXQ 1 21 22 #define IDPF_MIN_TXQ_DESC 64 23 #define IDPF_MIN_RXQ_DESC 64 24 #define IDPF_MIN_TXQ_COMPLQ_DESC 256 25 #define IDPF_MAX_QIDS 256 26 27 /* Number of descriptors in a queue should be a multiple of 32. RX queue 28 * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE 29 * to achieve BufQ descriptors aligned to 32 30 */ 31 #define IDPF_REQ_DESC_MULTIPLE 32 32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32) 33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6) 34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2) 35 36 #define IDPF_MAX_DESCS 8160 37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE) 38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE) 39 #define MIN_SUPPORT_TXDID (\ 40 VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\ 41 VIRTCHNL2_TXDID_FLEX_TSO_CTX) 42 43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1 44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1 45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4 46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4 47 48 #define IDPF_COMPLQ_PER_GROUP 1 49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1 50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2 51 #define IDPF_BUFQ2_ENA 1 52 #define IDPF_NUMQ_PER_CHUNK 1 53 54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1 55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1 56 57 /* Default vector sharing */ 58 #define IDPF_MBX_Q_VEC 1 59 #define IDPF_MIN_Q_VEC 1 60 61 #define IDPF_DFLT_TX_Q_DESC_COUNT 512 62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512 63 #define IDPF_DFLT_RX_Q_DESC_COUNT 512 64 65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a 66 * given RX completion queue has descriptors. This includes _ALL_ buffer 67 * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers, 68 * you have a total of 1024 buffers so your RX queue _must_ have at least that 69 * many descriptors. This macro divides a given number of RX descriptors by 70 * number of buffer queues to calculate how many descriptors each buffer queue 71 * can have without overrunning the RX queue. 72 * 73 * If you give hardware more buffers than completion descriptors what will 74 * happen is that if hardware gets a chance to post more than ring wrap of 75 * descriptors before SW gets an interrupt and overwrites SW head, the gen bit 76 * in the descriptor will be wrong. Any overwritten descriptors' buffers will 77 * be gone forever and SW has no reasonable way to tell that this has happened. 78 * From SW perspective, when we finally get an interrupt, it looks like we're 79 * still waiting for descriptor to be done, stalling forever. 80 */ 81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ)) 82 83 #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1) 84 85 #define IDPF_RX_BUMP_NTC(rxq, ntc) \ 86 do { \ 87 if (unlikely(++(ntc) == (rxq)->desc_count)) { \ 88 ntc = 0; \ 89 idpf_queue_change(GEN_CHK, rxq); \ 90 } \ 91 } while (0) 92 93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \ 94 do { \ 95 if (unlikely(++(idx) == (q)->desc_count)) \ 96 idx = 0; \ 97 } while (0) 98 99 #define IDPF_RX_BUF_STRIDE 32 100 #define IDPF_RX_BUF_POST_STRIDE 16 101 #define IDPF_LOW_WATERMARK 64 102 103 #define IDPF_TX_TSO_MIN_MSS 88 104 105 /* Minimum number of descriptors between 2 descriptors with the RE bit set; 106 * only relevant in flow scheduling mode 107 */ 108 #define IDPF_TX_SPLITQ_RE_MIN_GAP 64 109 110 #define IDPF_RX_BI_GEN_M BIT(16) 111 #define IDPF_RX_BI_BUFID_M GENMASK(15, 0) 112 113 #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M 114 #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M 115 116 #define IDPF_DESC_UNUSED(txq) \ 117 ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ 118 (txq)->next_to_clean - (txq)->next_to_use - 1) 119 120 #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top) 121 #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ 122 (txq)->desc_count >> 2) 123 124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) 125 /* Determine the absolute number of completions pending, i.e. the number of 126 * completions that are expected to arrive on the TX completion queue. 127 */ 128 #define IDPF_TX_COMPLQ_PENDING(txq) \ 129 (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ 130 0 : U32_MAX) + \ 131 (txq)->num_completions_pending - (txq)->complq->num_completions) 132 133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 134 /* Adjust the generation for the completion tag and wrap if necessary */ 135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ 136 ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ 137 0 : (txq)->compl_tag_cur_gen) 138 139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) 140 141 #define IDPF_TX_FLAGS_TSO BIT(0) 142 #define IDPF_TX_FLAGS_IPV4 BIT(1) 143 #define IDPF_TX_FLAGS_IPV6 BIT(2) 144 #define IDPF_TX_FLAGS_TUNNEL BIT(3) 145 146 union idpf_tx_flex_desc { 147 struct idpf_flex_tx_desc q; /* queue based scheduling */ 148 struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ 149 }; 150 151 #define idpf_tx_buf libeth_sqe 152 153 /** 154 * struct idpf_buf_lifo - LIFO for managing OOO completions 155 * @top: Used to know how many buffers are left 156 * @size: Total size of LIFO 157 * @bufs: Backing array 158 */ 159 struct idpf_buf_lifo { 160 u16 top; 161 u16 size; 162 struct idpf_tx_stash **bufs; 163 }; 164 165 /** 166 * struct idpf_tx_offload_params - Offload parameters for a given packet 167 * @tx_flags: Feature flags enabled for this packet 168 * @hdr_offsets: Offset parameter for single queue model 169 * @cd_tunneling: Type of tunneling enabled for single queue model 170 * @tso_len: Total length of payload to segment 171 * @mss: Segment size 172 * @tso_segs: Number of segments to be sent 173 * @tso_hdr_len: Length of headers to be duplicated 174 * @td_cmd: Command field to be inserted into descriptor 175 */ 176 struct idpf_tx_offload_params { 177 u32 tx_flags; 178 179 u32 hdr_offsets; 180 u32 cd_tunneling; 181 182 u32 tso_len; 183 u16 mss; 184 u16 tso_segs; 185 u16 tso_hdr_len; 186 187 u16 td_cmd; 188 }; 189 190 /** 191 * struct idpf_tx_splitq_params 192 * @dtype: General descriptor info 193 * @eop_cmd: Type of EOP 194 * @compl_tag: Associated tag for completion 195 * @td_tag: Descriptor tunneling tag 196 * @offload: Offload parameters 197 */ 198 struct idpf_tx_splitq_params { 199 enum idpf_tx_desc_dtype_value dtype; 200 u16 eop_cmd; 201 union { 202 u16 compl_tag; 203 u16 td_tag; 204 }; 205 206 struct idpf_tx_offload_params offload; 207 }; 208 209 enum idpf_tx_ctx_desc_eipt_offload { 210 IDPF_TX_CTX_EXT_IP_NONE = 0x0, 211 IDPF_TX_CTX_EXT_IP_IPV6 = 0x1, 212 IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2, 213 IDPF_TX_CTX_EXT_IP_IPV4 = 0x3 214 }; 215 216 /* Checksum offload bits decoded from the receive descriptor. */ 217 struct idpf_rx_csum_decoded { 218 u32 l3l4p : 1; 219 u32 ipe : 1; 220 u32 eipe : 1; 221 u32 eudpe : 1; 222 u32 ipv6exadd : 1; 223 u32 l4e : 1; 224 u32 pprs : 1; 225 u32 nat : 1; 226 u32 raw_csum_inv : 1; 227 u32 raw_csum : 16; 228 }; 229 230 struct idpf_rx_extracted { 231 unsigned int size; 232 u16 rx_ptype; 233 }; 234 235 #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256 236 #define IDPF_TX_MIN_PKT_LEN 17 237 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 238 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ 239 sizeof(struct idpf_flex_tx_desc)) 240 #define IDPF_TX_DESCS_FOR_CTX 1 241 /* TX descriptors needed, worst case */ 242 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ 243 IDPF_TX_DESCS_PER_CACHE_LINE + \ 244 IDPF_TX_DESCS_FOR_SKB_DATA_PTR) 245 246 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 247 * In order to align with the read requests we will align the value to 248 * the nearest 4K which represents our maximum read request size. 249 */ 250 #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K 251 #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) 252 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \ 253 ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) 254 255 #define idpf_rx_buf libeth_fqe 256 257 #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32 258 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \ 259 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS)) 260 #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info) 261 #define IDPF_RX_MAX_PTYPES_PER_BUF \ 262 DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \ 263 IDPF_RX_MAX_PTYPE_SZ) 264 265 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count) 266 267 #define IDPF_TUN_IP_GRE (\ 268 IDPF_PTYPE_TUNNEL_IP |\ 269 IDPF_PTYPE_TUNNEL_IP_GRENAT) 270 271 #define IDPF_TUN_IP_GRE_MAC (\ 272 IDPF_TUN_IP_GRE |\ 273 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC) 274 275 #define IDPF_RX_MAX_PTYPE 1024 276 #define IDPF_RX_MAX_BASE_PTYPE 256 277 #define IDPF_INVALID_PTYPE_ID 0xFFFF 278 279 enum idpf_tunnel_state { 280 IDPF_PTYPE_TUNNEL_IP = BIT(0), 281 IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1), 282 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2), 283 }; 284 285 struct idpf_ptype_state { 286 bool outer_ip:1; 287 bool outer_frag:1; 288 u8 tunnel_state:6; 289 }; 290 291 /** 292 * enum idpf_queue_flags_t 293 * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to 294 * identify new descriptor writebacks on the ring. HW sets 295 * the gen bit to 1 on the first writeback of any given 296 * descriptor. After the ring wraps, HW sets the gen bit of 297 * those descriptors to 0, and continues flipping 298 * 0->1 or 1->0 on each ring wrap. SW maintains its own 299 * gen bit to know what value will indicate writebacks on 300 * the next pass around the ring. E.g. it is initialized 301 * to 1 and knows that reading a gen bit of 1 in any 302 * descriptor on the initial pass of the ring indicates a 303 * writeback. It also flips on every ring wrap. 304 * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW 305 * bit and Q_RFL_GEN is the SW bit. 306 * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling 307 * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions 308 * @__IDPF_Q_POLL_MODE: Enable poll mode 309 * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode 310 * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq) 311 * @__IDPF_Q_FLAGS_NBITS: Must be last 312 */ 313 enum idpf_queue_flags_t { 314 __IDPF_Q_GEN_CHK, 315 __IDPF_Q_RFL_GEN_CHK, 316 __IDPF_Q_FLOW_SCH_EN, 317 __IDPF_Q_SW_MARKER, 318 __IDPF_Q_POLL_MODE, 319 __IDPF_Q_CRC_EN, 320 __IDPF_Q_HSPLIT_EN, 321 322 __IDPF_Q_FLAGS_NBITS, 323 }; 324 325 #define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags) 326 #define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags) 327 #define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags) 328 #define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags) 329 330 #define idpf_queue_has_clear(f, q) \ 331 __test_and_clear_bit(__IDPF_Q_##f, (q)->flags) 332 #define idpf_queue_assign(f, q, v) \ 333 __assign_bit(__IDPF_Q_##f, (q)->flags, v) 334 335 /** 336 * struct idpf_vec_regs 337 * @dyn_ctl_reg: Dynamic control interrupt register offset 338 * @itrn_reg: Interrupt Throttling Rate register offset 339 * @itrn_index_spacing: Register spacing between ITR registers of the same 340 * vector 341 */ 342 struct idpf_vec_regs { 343 u32 dyn_ctl_reg; 344 u32 itrn_reg; 345 u32 itrn_index_spacing; 346 }; 347 348 /** 349 * struct idpf_intr_reg 350 * @dyn_ctl: Dynamic control interrupt register 351 * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable 352 * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask 353 * @dyn_ctl_itridx_s: Register bit offset for ITR index 354 * @dyn_ctl_itridx_m: Mask for ITR index 355 * @dyn_ctl_intrvl_s: Register bit offset for ITR interval 356 * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature 357 * @rx_itr: RX ITR register 358 * @tx_itr: TX ITR register 359 * @icr_ena: Interrupt cause register offset 360 * @icr_ena_ctlq_m: Mask for ICR 361 */ 362 struct idpf_intr_reg { 363 void __iomem *dyn_ctl; 364 u32 dyn_ctl_intena_m; 365 u32 dyn_ctl_intena_msk_m; 366 u32 dyn_ctl_itridx_s; 367 u32 dyn_ctl_itridx_m; 368 u32 dyn_ctl_intrvl_s; 369 u32 dyn_ctl_wb_on_itr_m; 370 void __iomem *rx_itr; 371 void __iomem *tx_itr; 372 void __iomem *icr_ena; 373 u32 icr_ena_ctlq_m; 374 }; 375 376 /** 377 * struct idpf_q_vector 378 * @vport: Vport back pointer 379 * @num_rxq: Number of RX queues 380 * @num_txq: Number of TX queues 381 * @num_bufq: Number of buffer queues 382 * @num_complq: number of completion queues 383 * @rx: Array of RX queues to service 384 * @tx: Array of TX queues to service 385 * @bufq: Array of buffer queues to service 386 * @complq: array of completion queues 387 * @intr_reg: See struct idpf_intr_reg 388 * @napi: napi handler 389 * @total_events: Number of interrupts processed 390 * @wb_on_itr: whether WB on ITR is enabled 391 * @tx_dim: Data for TX net_dim algorithm 392 * @tx_itr_value: TX interrupt throttling rate 393 * @tx_intr_mode: Dynamic ITR or not 394 * @tx_itr_idx: TX ITR index 395 * @rx_dim: Data for RX net_dim algorithm 396 * @rx_itr_value: RX interrupt throttling rate 397 * @rx_intr_mode: Dynamic ITR or not 398 * @rx_itr_idx: RX ITR index 399 * @v_idx: Vector index 400 * @affinity_mask: CPU affinity mask 401 */ 402 struct idpf_q_vector { 403 __cacheline_group_begin_aligned(read_mostly); 404 struct idpf_vport *vport; 405 406 u16 num_rxq; 407 u16 num_txq; 408 u16 num_bufq; 409 u16 num_complq; 410 struct idpf_rx_queue **rx; 411 struct idpf_tx_queue **tx; 412 struct idpf_buf_queue **bufq; 413 struct idpf_compl_queue **complq; 414 415 struct idpf_intr_reg intr_reg; 416 __cacheline_group_end_aligned(read_mostly); 417 418 __cacheline_group_begin_aligned(read_write); 419 struct napi_struct napi; 420 u16 total_events; 421 bool wb_on_itr; 422 423 struct dim tx_dim; 424 u16 tx_itr_value; 425 bool tx_intr_mode; 426 u32 tx_itr_idx; 427 428 struct dim rx_dim; 429 u16 rx_itr_value; 430 bool rx_intr_mode; 431 u32 rx_itr_idx; 432 __cacheline_group_end_aligned(read_write); 433 434 __cacheline_group_begin_aligned(cold); 435 u16 v_idx; 436 437 cpumask_var_t affinity_mask; 438 __cacheline_group_end_aligned(cold); 439 }; 440 libeth_cacheline_set_assert(struct idpf_q_vector, 112, 441 424 + 2 * sizeof(struct dim), 442 8 + sizeof(cpumask_var_t)); 443 444 struct idpf_rx_queue_stats { 445 u64_stats_t packets; 446 u64_stats_t bytes; 447 u64_stats_t rsc_pkts; 448 u64_stats_t hw_csum_err; 449 u64_stats_t hsplit_pkts; 450 u64_stats_t hsplit_buf_ovf; 451 u64_stats_t bad_descs; 452 }; 453 454 struct idpf_tx_queue_stats { 455 u64_stats_t packets; 456 u64_stats_t bytes; 457 u64_stats_t lso_pkts; 458 u64_stats_t linearize; 459 u64_stats_t q_busy; 460 u64_stats_t skb_drops; 461 u64_stats_t dma_map_errs; 462 }; 463 464 #define IDPF_ITR_DYNAMIC 1 465 #define IDPF_ITR_MAX 0x1FE0 466 #define IDPF_ITR_20K 0x0032 467 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ 468 #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 469 #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK) 470 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode) 471 #define IDPF_ITR_TX_DEF IDPF_ITR_20K 472 #define IDPF_ITR_RX_DEF IDPF_ITR_20K 473 /* Index used for 'No ITR' update in DYN_CTL register */ 474 #define IDPF_NO_ITR_UPDATE_IDX 3 475 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt) 476 #define IDPF_DIM_DEFAULT_PROFILE_IX 1 477 478 /** 479 * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode 480 * @buf_stack: Stack of empty buffers to store buffer info for out of order 481 * buffer completions. See struct idpf_buf_lifo 482 * @sched_buf_hash: Hash table to store buffers 483 */ 484 struct idpf_txq_stash { 485 struct idpf_buf_lifo buf_stack; 486 DECLARE_HASHTABLE(sched_buf_hash, 12); 487 } ____cacheline_aligned; 488 489 /** 490 * struct idpf_rx_queue - software structure representing a receive queue 491 * @rx: universal receive descriptor array 492 * @single_buf: buffer descriptor array in singleq 493 * @desc_ring: virtual descriptor ring address 494 * @bufq_sets: Pointer to the array of buffer queues in splitq mode 495 * @napi: NAPI instance corresponding to this queue (splitq) 496 * @rx_buf: See struct &libeth_fqe 497 * @pp: Page pool pointer in singleq mode 498 * @netdev: &net_device corresponding to this queue 499 * @tail: Tail offset. Used for both queue models single and split. 500 * @flags: See enum idpf_queue_flags_t 501 * @idx: For RX queue, it is used to index to total RX queue across groups and 502 * used for skb reporting. 503 * @desc_count: Number of descriptors 504 * @rxdids: Supported RX descriptor ids 505 * @rx_ptype_lkup: LUT of Rx ptypes 506 * @next_to_use: Next descriptor to use 507 * @next_to_clean: Next descriptor to clean 508 * @next_to_alloc: RX buffer to allocate at 509 * @skb: Pointer to the skb 510 * @truesize: data buffer truesize in singleq 511 * @stats_sync: See struct u64_stats_sync 512 * @q_stats: See union idpf_rx_queue_stats 513 * @q_id: Queue id 514 * @size: Length of descriptor ring in bytes 515 * @dma: Physical address of ring 516 * @q_vector: Backreference to associated vector 517 * @rx_buffer_low_watermark: RX buffer low watermark 518 * @rx_hbuf_size: Header buffer size 519 * @rx_buf_size: Buffer size 520 * @rx_max_pkt_size: RX max packet size 521 */ 522 struct idpf_rx_queue { 523 __cacheline_group_begin_aligned(read_mostly); 524 union { 525 union virtchnl2_rx_desc *rx; 526 struct virtchnl2_singleq_rx_buf_desc *single_buf; 527 528 void *desc_ring; 529 }; 530 union { 531 struct { 532 struct idpf_bufq_set *bufq_sets; 533 struct napi_struct *napi; 534 }; 535 struct { 536 struct libeth_fqe *rx_buf; 537 struct page_pool *pp; 538 }; 539 }; 540 struct net_device *netdev; 541 void __iomem *tail; 542 543 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 544 u16 idx; 545 u16 desc_count; 546 547 u32 rxdids; 548 const struct libeth_rx_pt *rx_ptype_lkup; 549 __cacheline_group_end_aligned(read_mostly); 550 551 __cacheline_group_begin_aligned(read_write); 552 u16 next_to_use; 553 u16 next_to_clean; 554 u16 next_to_alloc; 555 556 struct sk_buff *skb; 557 u32 truesize; 558 559 struct u64_stats_sync stats_sync; 560 struct idpf_rx_queue_stats q_stats; 561 __cacheline_group_end_aligned(read_write); 562 563 __cacheline_group_begin_aligned(cold); 564 u32 q_id; 565 u32 size; 566 dma_addr_t dma; 567 568 struct idpf_q_vector *q_vector; 569 570 u16 rx_buffer_low_watermark; 571 u16 rx_hbuf_size; 572 u16 rx_buf_size; 573 u16 rx_max_pkt_size; 574 __cacheline_group_end_aligned(cold); 575 }; 576 libeth_cacheline_set_assert(struct idpf_rx_queue, 64, 577 80 + sizeof(struct u64_stats_sync), 578 32); 579 580 /** 581 * struct idpf_tx_queue - software structure representing a transmit queue 582 * @base_tx: base Tx descriptor array 583 * @base_ctx: base Tx context descriptor array 584 * @flex_tx: flex Tx descriptor array 585 * @flex_ctx: flex Tx context descriptor array 586 * @desc_ring: virtual descriptor ring address 587 * @tx_buf: See struct idpf_tx_buf 588 * @txq_grp: See struct idpf_txq_group 589 * @dev: Device back pointer for DMA mapping 590 * @tail: Tail offset. Used for both queue models single and split 591 * @flags: See enum idpf_queue_flags_t 592 * @idx: For TX queue, it is used as index to map between TX queue group and 593 * hot path TX pointers stored in vport. Used in both singleq/splitq. 594 * @desc_count: Number of descriptors 595 * @tx_min_pkt_len: Min supported packet length 596 * @compl_tag_gen_s: Completion tag generation bit 597 * The format of the completion tag will change based on the TXQ 598 * descriptor ring size so that we can maintain roughly the same level 599 * of "uniqueness" across all descriptor sizes. For example, if the 600 * TXQ descriptor ring size is 64 (the minimum size supported), the 601 * completion tag will be formatted as below: 602 * 15 6 5 0 603 * -------------------------------- 604 * | GEN=0-1023 |IDX = 0-63| 605 * -------------------------------- 606 * 607 * This gives us 64*1024 = 65536 possible unique values. Similarly, if 608 * the TXQ descriptor ring size is 8160 (the maximum size supported), 609 * the completion tag will be formatted as below: 610 * 15 13 12 0 611 * -------------------------------- 612 * |GEN | IDX = 0-8159 | 613 * -------------------------------- 614 * 615 * This gives us 8*8160 = 65280 possible unique values. 616 * @netdev: &net_device corresponding to this queue 617 * @next_to_use: Next descriptor to use 618 * @next_to_clean: Next descriptor to clean 619 * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on 620 * the TX completion queue, it can be for any TXQ associated 621 * with that completion queue. This means we can clean up to 622 * N TXQs during a single call to clean the completion queue. 623 * cleaned_bytes|pkts tracks the clean stats per TXQ during 624 * that single call to clean the completion queue. By doing so, 625 * we can update BQL with aggregate cleaned stats for each TXQ 626 * only once at the end of the cleaning routine. 627 * @clean_budget: singleq only, queue cleaning budget 628 * @cleaned_pkts: Number of packets cleaned for the above said case 629 * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather 630 * @stash: Tx buffer stash for Flow-based scheduling mode 631 * @compl_tag_bufid_m: Completion tag buffer id mask 632 * @compl_tag_cur_gen: Used to keep track of current completion tag generation 633 * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset 634 * @stats_sync: See struct u64_stats_sync 635 * @q_stats: See union idpf_tx_queue_stats 636 * @q_id: Queue id 637 * @size: Length of descriptor ring in bytes 638 * @dma: Physical address of ring 639 * @q_vector: Backreference to associated vector 640 */ 641 struct idpf_tx_queue { 642 __cacheline_group_begin_aligned(read_mostly); 643 union { 644 struct idpf_base_tx_desc *base_tx; 645 struct idpf_base_tx_ctx_desc *base_ctx; 646 union idpf_tx_flex_desc *flex_tx; 647 struct idpf_flex_tx_ctx_desc *flex_ctx; 648 649 void *desc_ring; 650 }; 651 struct libeth_sqe *tx_buf; 652 struct idpf_txq_group *txq_grp; 653 struct device *dev; 654 void __iomem *tail; 655 656 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 657 u16 idx; 658 u16 desc_count; 659 660 u16 tx_min_pkt_len; 661 u16 compl_tag_gen_s; 662 663 struct net_device *netdev; 664 __cacheline_group_end_aligned(read_mostly); 665 666 __cacheline_group_begin_aligned(read_write); 667 u16 next_to_use; 668 u16 next_to_clean; 669 670 union { 671 u32 cleaned_bytes; 672 u32 clean_budget; 673 }; 674 u16 cleaned_pkts; 675 676 u16 tx_max_bufs; 677 struct idpf_txq_stash *stash; 678 679 u16 compl_tag_bufid_m; 680 u16 compl_tag_cur_gen; 681 u16 compl_tag_gen_max; 682 683 struct u64_stats_sync stats_sync; 684 struct idpf_tx_queue_stats q_stats; 685 __cacheline_group_end_aligned(read_write); 686 687 __cacheline_group_begin_aligned(cold); 688 u32 q_id; 689 u32 size; 690 dma_addr_t dma; 691 692 struct idpf_q_vector *q_vector; 693 __cacheline_group_end_aligned(cold); 694 }; 695 libeth_cacheline_set_assert(struct idpf_tx_queue, 64, 696 88 + sizeof(struct u64_stats_sync), 697 24); 698 699 /** 700 * struct idpf_buf_queue - software structure representing a buffer queue 701 * @split_buf: buffer descriptor array 702 * @hdr_buf: &libeth_fqe for header buffers 703 * @hdr_pp: &page_pool for header buffers 704 * @buf: &libeth_fqe for data buffers 705 * @pp: &page_pool for data buffers 706 * @tail: Tail offset 707 * @flags: See enum idpf_queue_flags_t 708 * @desc_count: Number of descriptors 709 * @next_to_use: Next descriptor to use 710 * @next_to_clean: Next descriptor to clean 711 * @next_to_alloc: RX buffer to allocate at 712 * @hdr_truesize: truesize for buffer headers 713 * @truesize: truesize for data buffers 714 * @q_id: Queue id 715 * @size: Length of descriptor ring in bytes 716 * @dma: Physical address of ring 717 * @q_vector: Backreference to associated vector 718 * @rx_buffer_low_watermark: RX buffer low watermark 719 * @rx_hbuf_size: Header buffer size 720 * @rx_buf_size: Buffer size 721 */ 722 struct idpf_buf_queue { 723 __cacheline_group_begin_aligned(read_mostly); 724 struct virtchnl2_splitq_rx_buf_desc *split_buf; 725 struct libeth_fqe *hdr_buf; 726 struct page_pool *hdr_pp; 727 struct libeth_fqe *buf; 728 struct page_pool *pp; 729 void __iomem *tail; 730 731 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 732 u32 desc_count; 733 __cacheline_group_end_aligned(read_mostly); 734 735 __cacheline_group_begin_aligned(read_write); 736 u32 next_to_use; 737 u32 next_to_clean; 738 u32 next_to_alloc; 739 740 u32 hdr_truesize; 741 u32 truesize; 742 __cacheline_group_end_aligned(read_write); 743 744 __cacheline_group_begin_aligned(cold); 745 u32 q_id; 746 u32 size; 747 dma_addr_t dma; 748 749 struct idpf_q_vector *q_vector; 750 751 u16 rx_buffer_low_watermark; 752 u16 rx_hbuf_size; 753 u16 rx_buf_size; 754 __cacheline_group_end_aligned(cold); 755 }; 756 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32); 757 758 /** 759 * struct idpf_compl_queue - software structure representing a completion queue 760 * @comp: completion descriptor array 761 * @txq_grp: See struct idpf_txq_group 762 * @flags: See enum idpf_queue_flags_t 763 * @desc_count: Number of descriptors 764 * @clean_budget: queue cleaning budget 765 * @netdev: &net_device corresponding to this queue 766 * @next_to_use: Next descriptor to use. Relevant in both split & single txq 767 * and bufq. 768 * @next_to_clean: Next descriptor to clean 769 * @num_completions: Only relevant for TX completion queue. It tracks the 770 * number of completions received to compare against the 771 * number of completions pending, as accumulated by the 772 * TX queues. 773 * @q_id: Queue id 774 * @size: Length of descriptor ring in bytes 775 * @dma: Physical address of ring 776 * @q_vector: Backreference to associated vector 777 */ 778 struct idpf_compl_queue { 779 __cacheline_group_begin_aligned(read_mostly); 780 struct idpf_splitq_tx_compl_desc *comp; 781 struct idpf_txq_group *txq_grp; 782 783 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 784 u32 desc_count; 785 786 u32 clean_budget; 787 struct net_device *netdev; 788 __cacheline_group_end_aligned(read_mostly); 789 790 __cacheline_group_begin_aligned(read_write); 791 u32 next_to_use; 792 u32 next_to_clean; 793 794 aligned_u64 num_completions; 795 __cacheline_group_end_aligned(read_write); 796 797 __cacheline_group_begin_aligned(cold); 798 u32 q_id; 799 u32 size; 800 dma_addr_t dma; 801 802 struct idpf_q_vector *q_vector; 803 __cacheline_group_end_aligned(cold); 804 }; 805 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24); 806 807 /** 808 * struct idpf_sw_queue 809 * @ring: Pointer to the ring 810 * @flags: See enum idpf_queue_flags_t 811 * @desc_count: Descriptor count 812 * @next_to_use: Buffer to allocate at 813 * @next_to_clean: Next descriptor to clean 814 * 815 * Software queues are used in splitq mode to manage buffers between rxq 816 * producer and the bufq consumer. These are required in order to maintain a 817 * lockless buffer management system and are strictly software only constructs. 818 */ 819 struct idpf_sw_queue { 820 __cacheline_group_begin_aligned(read_mostly); 821 u32 *ring; 822 823 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 824 u32 desc_count; 825 __cacheline_group_end_aligned(read_mostly); 826 827 __cacheline_group_begin_aligned(read_write); 828 u32 next_to_use; 829 u32 next_to_clean; 830 __cacheline_group_end_aligned(read_write); 831 }; 832 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24); 833 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8); 834 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8); 835 836 /** 837 * struct idpf_rxq_set 838 * @rxq: RX queue 839 * @refillq: pointers to refill queues 840 * 841 * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs. 842 * Each rxq needs a refillq to return used buffers back to the respective bufq. 843 * Bufqs then clean these refillqs for buffers to give to hardware. 844 */ 845 struct idpf_rxq_set { 846 struct idpf_rx_queue rxq; 847 struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP]; 848 }; 849 850 /** 851 * struct idpf_bufq_set 852 * @bufq: Buffer queue 853 * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets 854 * in idpf_rxq_group. 855 * @refillqs: Pointer to refill queues array. 856 * 857 * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs. 858 * In this bufq_set, there will be one refillq for each rxq in this rxq_group. 859 * Used buffers received by rxqs will be put on refillqs which bufqs will 860 * clean to return new buffers back to hardware. 861 * 862 * Buffers needed by some number of rxqs associated in this rxq_group are 863 * managed by at most two bufqs (depending on performance configuration). 864 */ 865 struct idpf_bufq_set { 866 struct idpf_buf_queue bufq; 867 int num_refillqs; 868 struct idpf_sw_queue *refillqs; 869 }; 870 871 /** 872 * struct idpf_rxq_group 873 * @vport: Vport back pointer 874 * @singleq: Struct with single queue related members 875 * @singleq.num_rxq: Number of RX queues associated 876 * @singleq.rxqs: Array of RX queue pointers 877 * @splitq: Struct with split queue related members 878 * @splitq.num_rxq_sets: Number of RX queue sets 879 * @splitq.rxq_sets: Array of RX queue sets 880 * @splitq.bufq_sets: Buffer queue set pointer 881 * 882 * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a 883 * rxq_group contains all the rxqs, bufqs and refillqs needed to 884 * manage buffers in splitq mode. 885 */ 886 struct idpf_rxq_group { 887 struct idpf_vport *vport; 888 889 union { 890 struct { 891 u16 num_rxq; 892 struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q]; 893 } singleq; 894 struct { 895 u16 num_rxq_sets; 896 struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q]; 897 struct idpf_bufq_set *bufq_sets; 898 } splitq; 899 }; 900 }; 901 902 /** 903 * struct idpf_txq_group 904 * @vport: Vport back pointer 905 * @num_txq: Number of TX queues associated 906 * @txqs: Array of TX queue pointers 907 * @stashes: array of OOO stashes for the queues 908 * @complq: Associated completion queue pointer, split queue only 909 * @num_completions_pending: Total number of completions pending for the 910 * completion queue, acculumated for all TX queues 911 * associated with that completion queue. 912 * 913 * Between singleq and splitq, a txq_group is largely the same except for the 914 * complq. In splitq a single complq is responsible for handling completions 915 * for some number of txqs associated in this txq_group. 916 */ 917 struct idpf_txq_group { 918 struct idpf_vport *vport; 919 920 u16 num_txq; 921 struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q]; 922 struct idpf_txq_stash *stashes; 923 924 struct idpf_compl_queue *complq; 925 926 aligned_u64 num_completions_pending; 927 }; 928 929 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector) 930 { 931 u32 cpu; 932 933 if (!q_vector) 934 return NUMA_NO_NODE; 935 936 cpu = cpumask_first(q_vector->affinity_mask); 937 938 return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE; 939 } 940 941 /** 942 * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag 943 * @size: transmit request size in bytes 944 * 945 * In the case where a large frag (>= 16K) needs to be split across multiple 946 * descriptors, we need to assume that we can have no more than 12K of data 947 * per descriptor due to hardware alignment restrictions (4K alignment). 948 */ 949 static inline u32 idpf_size_to_txd_count(unsigned int size) 950 { 951 return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); 952 } 953 954 /** 955 * idpf_tx_singleq_build_ctob - populate command tag offset and size 956 * @td_cmd: Command to be filled in desc 957 * @td_offset: Offset to be filled in desc 958 * @size: Size of the buffer 959 * @td_tag: td tag to be filled 960 * 961 * Returns the 64 bit value populated with the input parameters 962 */ 963 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset, 964 unsigned int size, u64 td_tag) 965 { 966 return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA | 967 (td_cmd << IDPF_TXD_QW1_CMD_S) | 968 (td_offset << IDPF_TXD_QW1_OFFSET_S) | 969 ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) | 970 (td_tag << IDPF_TXD_QW1_L2TAG1_S)); 971 } 972 973 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, 974 struct idpf_tx_splitq_params *params, 975 u16 td_cmd, u16 size); 976 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, 977 struct idpf_tx_splitq_params *params, 978 u16 td_cmd, u16 size); 979 /** 980 * idpf_tx_splitq_build_desc - determine which type of data descriptor to build 981 * @desc: descriptor to populate 982 * @params: pointer to tx params struct 983 * @td_cmd: command to be filled in desc 984 * @size: size of buffer 985 */ 986 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, 987 struct idpf_tx_splitq_params *params, 988 u16 td_cmd, u16 size) 989 { 990 if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) 991 idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); 992 else 993 idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); 994 } 995 996 /** 997 * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts 998 * @q_vector: pointer to queue vector struct 999 */ 1000 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector) 1001 { 1002 struct idpf_intr_reg *reg; 1003 1004 if (q_vector->wb_on_itr) 1005 return; 1006 1007 q_vector->wb_on_itr = true; 1008 reg = &q_vector->intr_reg; 1009 1010 writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m | 1011 (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s), 1012 reg->dyn_ctl); 1013 } 1014 1015 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget); 1016 void idpf_vport_init_num_qs(struct idpf_vport *vport, 1017 struct virtchnl2_create_vport *vport_msg); 1018 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport); 1019 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index, 1020 struct virtchnl2_create_vport *vport_msg, 1021 struct idpf_vport_max_q *max_q); 1022 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport); 1023 int idpf_vport_queues_alloc(struct idpf_vport *vport); 1024 void idpf_vport_queues_rel(struct idpf_vport *vport); 1025 void idpf_vport_intr_rel(struct idpf_vport *vport); 1026 int idpf_vport_intr_alloc(struct idpf_vport *vport); 1027 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector); 1028 void idpf_vport_intr_deinit(struct idpf_vport *vport); 1029 int idpf_vport_intr_init(struct idpf_vport *vport); 1030 void idpf_vport_intr_ena(struct idpf_vport *vport); 1031 int idpf_config_rss(struct idpf_vport *vport); 1032 int idpf_init_rss(struct idpf_vport *vport); 1033 void idpf_deinit_rss(struct idpf_vport *vport); 1034 int idpf_rx_bufs_init_all(struct idpf_vport *vport); 1035 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, 1036 unsigned int size); 1037 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size); 1038 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val, 1039 bool xmit_more); 1040 unsigned int idpf_size_to_txd_count(unsigned int size); 1041 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb); 1042 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb, 1043 struct idpf_tx_buf *first, u16 ring_idx); 1044 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq, 1045 struct sk_buff *skb); 1046 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue); 1047 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb, 1048 struct idpf_tx_queue *tx_q); 1049 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev); 1050 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq, 1051 u16 cleaned_count); 1052 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off); 1053 1054 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, 1055 u32 needed) 1056 { 1057 return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx, 1058 IDPF_DESC_UNUSED(tx_q), 1059 needed, needed); 1060 } 1061 1062 #endif /* !_IDPF_TXRX_H_ */ 1063