xref: /linux/drivers/net/ethernet/intel/idpf/idpf_txrx.h (revision 42d37fc0c819b81f6f6afd108b55d04ba9d32d0f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6 
7 #include <linux/dim.h>
8 
9 #include <net/libeth/cache.h>
10 #include <net/tcp.h>
11 #include <net/netdev_queues.h>
12 
13 #include "idpf_lan_txrx.h"
14 #include "virtchnl2_lan_desc.h"
15 
16 #define IDPF_LARGE_MAX_Q			256
17 #define IDPF_MAX_Q				16
18 #define IDPF_MIN_Q				2
19 /* Mailbox Queue */
20 #define IDPF_MAX_MBXQ				1
21 
22 #define IDPF_MIN_TXQ_DESC			64
23 #define IDPF_MIN_RXQ_DESC			64
24 #define IDPF_MIN_TXQ_COMPLQ_DESC		256
25 #define IDPF_MAX_QIDS				256
26 
27 /* Number of descriptors in a queue should be a multiple of 32. RX queue
28  * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
29  * to achieve BufQ descriptors aligned to 32
30  */
31 #define IDPF_REQ_DESC_MULTIPLE			32
32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
35 
36 #define IDPF_MAX_DESCS				8160
37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
39 #define MIN_SUPPORT_TXDID (\
40 	VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
41 	VIRTCHNL2_TXDID_FLEX_TSO_CTX)
42 
43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS		1
44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS		1
45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP		4
46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP		4
47 
48 #define IDPF_COMPLQ_PER_GROUP			1
49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP		1
50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP		2
51 #define IDPF_BUFQ2_ENA				1
52 #define IDPF_NUMQ_PER_CHUNK			1
53 
54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP		1
55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP		1
56 
57 /* Default vector sharing */
58 #define IDPF_MBX_Q_VEC		1
59 #define IDPF_MIN_Q_VEC		1
60 
61 #define IDPF_DFLT_TX_Q_DESC_COUNT		512
62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT		512
63 #define IDPF_DFLT_RX_Q_DESC_COUNT		512
64 
65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
66  * given RX completion queue has descriptors. This includes _ALL_ buffer
67  * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
68  * you have a total of 1024 buffers so your RX queue _must_ have at least that
69  * many descriptors. This macro divides a given number of RX descriptors by
70  * number of buffer queues to calculate how many descriptors each buffer queue
71  * can have without overrunning the RX queue.
72  *
73  * If you give hardware more buffers than completion descriptors what will
74  * happen is that if hardware gets a chance to post more than ring wrap of
75  * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
76  * in the descriptor will be wrong. Any overwritten descriptors' buffers will
77  * be gone forever and SW has no reasonable way to tell that this has happened.
78  * From SW perspective, when we finally get an interrupt, it looks like we're
79  * still waiting for descriptor to be done, stalling forever.
80  */
81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ)	((RXD) / (NUM_BUFQ))
82 
83 #define IDPF_RX_BUFQ_WORKING_SET(rxq)		((rxq)->desc_count - 1)
84 
85 #define IDPF_RX_BUMP_NTC(rxq, ntc)				\
86 do {								\
87 	if (unlikely(++(ntc) == (rxq)->desc_count)) {		\
88 		ntc = 0;					\
89 		idpf_queue_change(GEN_CHK, rxq);		\
90 	}							\
91 } while (0)
92 
93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx)			\
94 do {								\
95 	if (unlikely(++(idx) == (q)->desc_count))		\
96 		idx = 0;					\
97 } while (0)
98 
99 #define IDPF_RX_BUF_STRIDE			32
100 #define IDPF_RX_BUF_POST_STRIDE			16
101 #define IDPF_LOW_WATERMARK			64
102 
103 #define IDPF_TX_TSO_MIN_MSS			88
104 
105 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
106  * only relevant in flow scheduling mode
107  */
108 #define IDPF_TX_SPLITQ_RE_MIN_GAP	64
109 
110 #define IDPF_RX_BI_GEN_M		BIT(16)
111 #define IDPF_RX_BI_BUFID_M		GENMASK(15, 0)
112 
113 #define IDPF_RXD_EOF_SPLITQ		VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
114 #define IDPF_RXD_EOF_SINGLEQ		VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
115 
116 #define IDPF_DESC_UNUSED(txq)     \
117 	((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
118 	(txq)->next_to_clean - (txq)->next_to_use - 1)
119 
120 #define IDPF_TX_BUF_RSV_UNUSED(txq)	((txq)->stash->buf_stack.top)
121 #define IDPF_TX_BUF_RSV_LOW(txq)	(IDPF_TX_BUF_RSV_UNUSED(txq) < \
122 					 (txq)->desc_count >> 2)
123 
124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq)	((txcq)->desc_count >> 1)
125 /* Determine the absolute number of completions pending, i.e. the number of
126  * completions that are expected to arrive on the TX completion queue.
127  */
128 #define IDPF_TX_COMPLQ_PENDING(txq)	\
129 	(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
130 	0 : U64_MAX) + \
131 	(txq)->num_completions_pending - (txq)->complq->num_completions)
132 
133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH	16
134 #define IDPF_SPLITQ_TX_INVAL_COMPL_TAG	-1
135 /* Adjust the generation for the completion tag and wrap if necessary */
136 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
137 	((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
138 	0 : (txq)->compl_tag_cur_gen)
139 
140 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
141 
142 #define IDPF_TX_FLAGS_TSO		BIT(0)
143 #define IDPF_TX_FLAGS_IPV4		BIT(1)
144 #define IDPF_TX_FLAGS_IPV6		BIT(2)
145 #define IDPF_TX_FLAGS_TUNNEL		BIT(3)
146 
147 union idpf_tx_flex_desc {
148 	struct idpf_flex_tx_desc q; /* queue based scheduling */
149 	struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
150 };
151 
152 /**
153  * struct idpf_tx_buf
154  * @next_to_watch: Next descriptor to clean
155  * @skb: Pointer to the skb
156  * @dma: DMA address
157  * @len: DMA length
158  * @bytecount: Number of bytes
159  * @gso_segs: Number of GSO segments
160  * @compl_tag: Splitq only, unique identifier for a buffer. Used to compare
161  *	       with completion tag returned in buffer completion event.
162  *	       Because the completion tag is expected to be the same in all
163  *	       data descriptors for a given packet, and a single packet can
164  *	       span multiple buffers, we need this field to track all
165  *	       buffers associated with this completion tag independently of
166  *	       the buf_id. The tag consists of a N bit buf_id and M upper
167  *	       order "generation bits". See compl_tag_bufid_m and
168  *	       compl_tag_gen_s in struct idpf_queue. We'll use a value of -1
169  *	       to indicate the tag is not valid.
170  * @ctx_entry: Singleq only. Used to indicate the corresponding entry
171  *	       in the descriptor ring was used for a context descriptor and
172  *	       this buffer entry should be skipped.
173  */
174 struct idpf_tx_buf {
175 	void *next_to_watch;
176 	struct sk_buff *skb;
177 	DEFINE_DMA_UNMAP_ADDR(dma);
178 	DEFINE_DMA_UNMAP_LEN(len);
179 	unsigned int bytecount;
180 	unsigned short gso_segs;
181 
182 	union {
183 		int compl_tag;
184 
185 		bool ctx_entry;
186 	};
187 };
188 
189 struct idpf_tx_stash {
190 	struct hlist_node hlist;
191 	struct idpf_tx_buf buf;
192 };
193 
194 /**
195  * struct idpf_buf_lifo - LIFO for managing OOO completions
196  * @top: Used to know how many buffers are left
197  * @size: Total size of LIFO
198  * @bufs: Backing array
199  */
200 struct idpf_buf_lifo {
201 	u16 top;
202 	u16 size;
203 	struct idpf_tx_stash **bufs;
204 };
205 
206 /**
207  * struct idpf_tx_offload_params - Offload parameters for a given packet
208  * @tx_flags: Feature flags enabled for this packet
209  * @hdr_offsets: Offset parameter for single queue model
210  * @cd_tunneling: Type of tunneling enabled for single queue model
211  * @tso_len: Total length of payload to segment
212  * @mss: Segment size
213  * @tso_segs: Number of segments to be sent
214  * @tso_hdr_len: Length of headers to be duplicated
215  * @td_cmd: Command field to be inserted into descriptor
216  */
217 struct idpf_tx_offload_params {
218 	u32 tx_flags;
219 
220 	u32 hdr_offsets;
221 	u32 cd_tunneling;
222 
223 	u32 tso_len;
224 	u16 mss;
225 	u16 tso_segs;
226 	u16 tso_hdr_len;
227 
228 	u16 td_cmd;
229 };
230 
231 /**
232  * struct idpf_tx_splitq_params
233  * @dtype: General descriptor info
234  * @eop_cmd: Type of EOP
235  * @compl_tag: Associated tag for completion
236  * @td_tag: Descriptor tunneling tag
237  * @offload: Offload parameters
238  */
239 struct idpf_tx_splitq_params {
240 	enum idpf_tx_desc_dtype_value dtype;
241 	u16 eop_cmd;
242 	union {
243 		u16 compl_tag;
244 		u16 td_tag;
245 	};
246 
247 	struct idpf_tx_offload_params offload;
248 };
249 
250 enum idpf_tx_ctx_desc_eipt_offload {
251 	IDPF_TX_CTX_EXT_IP_NONE         = 0x0,
252 	IDPF_TX_CTX_EXT_IP_IPV6         = 0x1,
253 	IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
254 	IDPF_TX_CTX_EXT_IP_IPV4         = 0x3
255 };
256 
257 /* Checksum offload bits decoded from the receive descriptor. */
258 struct idpf_rx_csum_decoded {
259 	u32 l3l4p : 1;
260 	u32 ipe : 1;
261 	u32 eipe : 1;
262 	u32 eudpe : 1;
263 	u32 ipv6exadd : 1;
264 	u32 l4e : 1;
265 	u32 pprs : 1;
266 	u32 nat : 1;
267 	u32 raw_csum_inv : 1;
268 	u32 raw_csum : 16;
269 };
270 
271 struct idpf_rx_extracted {
272 	unsigned int size;
273 	u16 rx_ptype;
274 };
275 
276 #define IDPF_TX_COMPLQ_CLEAN_BUDGET	256
277 #define IDPF_TX_MIN_PKT_LEN		17
278 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR	1
279 #define IDPF_TX_DESCS_PER_CACHE_LINE	(L1_CACHE_BYTES / \
280 					 sizeof(struct idpf_flex_tx_desc))
281 #define IDPF_TX_DESCS_FOR_CTX		1
282 /* TX descriptors needed, worst case */
283 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
284 			     IDPF_TX_DESCS_PER_CACHE_LINE + \
285 			     IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
286 
287 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
288  * In order to align with the read requests we will align the value to
289  * the nearest 4K which represents our maximum read request size.
290  */
291 #define IDPF_TX_MAX_READ_REQ_SIZE	SZ_4K
292 #define IDPF_TX_MAX_DESC_DATA		(SZ_16K - 1)
293 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
294 	ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
295 
296 #define idpf_rx_buf libeth_fqe
297 
298 #define IDPF_RX_MAX_PTYPE_PROTO_IDS    32
299 #define IDPF_RX_MAX_PTYPE_SZ	(sizeof(struct virtchnl2_ptype) + \
300 				 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
301 #define IDPF_RX_PTYPE_HDR_SZ	sizeof(struct virtchnl2_get_ptype_info)
302 #define IDPF_RX_MAX_PTYPES_PER_BUF	\
303 	DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
304 			   IDPF_RX_MAX_PTYPE_SZ)
305 
306 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
307 
308 #define IDPF_TUN_IP_GRE (\
309 	IDPF_PTYPE_TUNNEL_IP |\
310 	IDPF_PTYPE_TUNNEL_IP_GRENAT)
311 
312 #define IDPF_TUN_IP_GRE_MAC (\
313 	IDPF_TUN_IP_GRE |\
314 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
315 
316 #define IDPF_RX_MAX_PTYPE	1024
317 #define IDPF_RX_MAX_BASE_PTYPE	256
318 #define IDPF_INVALID_PTYPE_ID	0xFFFF
319 
320 enum idpf_tunnel_state {
321 	IDPF_PTYPE_TUNNEL_IP                    = BIT(0),
322 	IDPF_PTYPE_TUNNEL_IP_GRENAT             = BIT(1),
323 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC         = BIT(2),
324 };
325 
326 struct idpf_ptype_state {
327 	bool outer_ip:1;
328 	bool outer_frag:1;
329 	u8 tunnel_state:6;
330 };
331 
332 /**
333  * enum idpf_queue_flags_t
334  * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
335  *		      identify new descriptor writebacks on the ring. HW sets
336  *		      the gen bit to 1 on the first writeback of any given
337  *		      descriptor. After the ring wraps, HW sets the gen bit of
338  *		      those descriptors to 0, and continues flipping
339  *		      0->1 or 1->0 on each ring wrap. SW maintains its own
340  *		      gen bit to know what value will indicate writebacks on
341  *		      the next pass around the ring. E.g. it is initialized
342  *		      to 1 and knows that reading a gen bit of 1 in any
343  *		      descriptor on the initial pass of the ring indicates a
344  *		      writeback. It also flips on every ring wrap.
345  * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
346  *			  bit and Q_RFL_GEN is the SW bit.
347  * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
348  * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
349  * @__IDPF_Q_POLL_MODE: Enable poll mode
350  * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
351  * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
352  * @__IDPF_Q_FLAGS_NBITS: Must be last
353  */
354 enum idpf_queue_flags_t {
355 	__IDPF_Q_GEN_CHK,
356 	__IDPF_Q_RFL_GEN_CHK,
357 	__IDPF_Q_FLOW_SCH_EN,
358 	__IDPF_Q_SW_MARKER,
359 	__IDPF_Q_POLL_MODE,
360 	__IDPF_Q_CRC_EN,
361 	__IDPF_Q_HSPLIT_EN,
362 
363 	__IDPF_Q_FLAGS_NBITS,
364 };
365 
366 #define idpf_queue_set(f, q)		__set_bit(__IDPF_Q_##f, (q)->flags)
367 #define idpf_queue_clear(f, q)		__clear_bit(__IDPF_Q_##f, (q)->flags)
368 #define idpf_queue_change(f, q)		__change_bit(__IDPF_Q_##f, (q)->flags)
369 #define idpf_queue_has(f, q)		test_bit(__IDPF_Q_##f, (q)->flags)
370 
371 #define idpf_queue_has_clear(f, q)			\
372 	__test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
373 #define idpf_queue_assign(f, q, v)			\
374 	__assign_bit(__IDPF_Q_##f, (q)->flags, v)
375 
376 /**
377  * struct idpf_vec_regs
378  * @dyn_ctl_reg: Dynamic control interrupt register offset
379  * @itrn_reg: Interrupt Throttling Rate register offset
380  * @itrn_index_spacing: Register spacing between ITR registers of the same
381  *			vector
382  */
383 struct idpf_vec_regs {
384 	u32 dyn_ctl_reg;
385 	u32 itrn_reg;
386 	u32 itrn_index_spacing;
387 };
388 
389 /**
390  * struct idpf_intr_reg
391  * @dyn_ctl: Dynamic control interrupt register
392  * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
393  * @dyn_ctl_itridx_s: Register bit offset for ITR index
394  * @dyn_ctl_itridx_m: Mask for ITR index
395  * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
396  * @rx_itr: RX ITR register
397  * @tx_itr: TX ITR register
398  * @icr_ena: Interrupt cause register offset
399  * @icr_ena_ctlq_m: Mask for ICR
400  */
401 struct idpf_intr_reg {
402 	void __iomem *dyn_ctl;
403 	u32 dyn_ctl_intena_m;
404 	u32 dyn_ctl_itridx_s;
405 	u32 dyn_ctl_itridx_m;
406 	u32 dyn_ctl_intrvl_s;
407 	void __iomem *rx_itr;
408 	void __iomem *tx_itr;
409 	void __iomem *icr_ena;
410 	u32 icr_ena_ctlq_m;
411 };
412 
413 /**
414  * struct idpf_q_vector
415  * @vport: Vport back pointer
416  * @num_rxq: Number of RX queues
417  * @num_txq: Number of TX queues
418  * @num_bufq: Number of buffer queues
419  * @num_complq: number of completion queues
420  * @rx: Array of RX queues to service
421  * @tx: Array of TX queues to service
422  * @bufq: Array of buffer queues to service
423  * @complq: array of completion queues
424  * @intr_reg: See struct idpf_intr_reg
425  * @napi: napi handler
426  * @total_events: Number of interrupts processed
427  * @tx_dim: Data for TX net_dim algorithm
428  * @tx_itr_value: TX interrupt throttling rate
429  * @tx_intr_mode: Dynamic ITR or not
430  * @tx_itr_idx: TX ITR index
431  * @rx_dim: Data for RX net_dim algorithm
432  * @rx_itr_value: RX interrupt throttling rate
433  * @rx_intr_mode: Dynamic ITR or not
434  * @rx_itr_idx: RX ITR index
435  * @v_idx: Vector index
436  * @affinity_mask: CPU affinity mask
437  */
438 struct idpf_q_vector {
439 	__cacheline_group_begin_aligned(read_mostly);
440 	struct idpf_vport *vport;
441 
442 	u16 num_rxq;
443 	u16 num_txq;
444 	u16 num_bufq;
445 	u16 num_complq;
446 	struct idpf_rx_queue **rx;
447 	struct idpf_tx_queue **tx;
448 	struct idpf_buf_queue **bufq;
449 	struct idpf_compl_queue **complq;
450 
451 	struct idpf_intr_reg intr_reg;
452 	__cacheline_group_end_aligned(read_mostly);
453 
454 	__cacheline_group_begin_aligned(read_write);
455 	struct napi_struct napi;
456 	u16 total_events;
457 
458 	struct dim tx_dim;
459 	u16 tx_itr_value;
460 	bool tx_intr_mode;
461 	u32 tx_itr_idx;
462 
463 	struct dim rx_dim;
464 	u16 rx_itr_value;
465 	bool rx_intr_mode;
466 	u32 rx_itr_idx;
467 	__cacheline_group_end_aligned(read_write);
468 
469 	__cacheline_group_begin_aligned(cold);
470 	u16 v_idx;
471 
472 	cpumask_var_t affinity_mask;
473 	__cacheline_group_end_aligned(cold);
474 };
475 libeth_cacheline_set_assert(struct idpf_q_vector, 104,
476 			    424 + 2 * sizeof(struct dim),
477 			    8 + sizeof(cpumask_var_t));
478 
479 struct idpf_rx_queue_stats {
480 	u64_stats_t packets;
481 	u64_stats_t bytes;
482 	u64_stats_t rsc_pkts;
483 	u64_stats_t hw_csum_err;
484 	u64_stats_t hsplit_pkts;
485 	u64_stats_t hsplit_buf_ovf;
486 	u64_stats_t bad_descs;
487 };
488 
489 struct idpf_tx_queue_stats {
490 	u64_stats_t packets;
491 	u64_stats_t bytes;
492 	u64_stats_t lso_pkts;
493 	u64_stats_t linearize;
494 	u64_stats_t q_busy;
495 	u64_stats_t skb_drops;
496 	u64_stats_t dma_map_errs;
497 };
498 
499 struct idpf_cleaned_stats {
500 	u32 packets;
501 	u32 bytes;
502 };
503 
504 #define IDPF_ITR_DYNAMIC	1
505 #define IDPF_ITR_MAX		0x1FE0
506 #define IDPF_ITR_20K		0x0032
507 #define IDPF_ITR_GRAN_S		1	/* Assume ITR granularity is 2us */
508 #define IDPF_ITR_MASK		0x1FFE  /* ITR register value alignment mask */
509 #define ITR_REG_ALIGN(setting)	((setting) & IDPF_ITR_MASK)
510 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
511 #define IDPF_ITR_TX_DEF		IDPF_ITR_20K
512 #define IDPF_ITR_RX_DEF		IDPF_ITR_20K
513 /* Index used for 'No ITR' update in DYN_CTL register */
514 #define IDPF_NO_ITR_UPDATE_IDX	3
515 #define IDPF_ITR_IDX_SPACING(spacing, dflt)	(spacing ? spacing : dflt)
516 #define IDPF_DIM_DEFAULT_PROFILE_IX		1
517 
518 /**
519  * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
520  * @buf_stack: Stack of empty buffers to store buffer info for out of order
521  *	       buffer completions. See struct idpf_buf_lifo
522  * @sched_buf_hash: Hash table to store buffers
523  */
524 struct idpf_txq_stash {
525 	struct idpf_buf_lifo buf_stack;
526 	DECLARE_HASHTABLE(sched_buf_hash, 12);
527 } ____cacheline_aligned;
528 
529 /**
530  * struct idpf_rx_queue - software structure representing a receive queue
531  * @rx: universal receive descriptor array
532  * @single_buf: buffer descriptor array in singleq
533  * @desc_ring: virtual descriptor ring address
534  * @bufq_sets: Pointer to the array of buffer queues in splitq mode
535  * @napi: NAPI instance corresponding to this queue (splitq)
536  * @rx_buf: See struct &libeth_fqe
537  * @pp: Page pool pointer in singleq mode
538  * @netdev: &net_device corresponding to this queue
539  * @tail: Tail offset. Used for both queue models single and split.
540  * @flags: See enum idpf_queue_flags_t
541  * @idx: For RX queue, it is used to index to total RX queue across groups and
542  *	 used for skb reporting.
543  * @desc_count: Number of descriptors
544  * @rxdids: Supported RX descriptor ids
545  * @rx_ptype_lkup: LUT of Rx ptypes
546  * @next_to_use: Next descriptor to use
547  * @next_to_clean: Next descriptor to clean
548  * @next_to_alloc: RX buffer to allocate at
549  * @skb: Pointer to the skb
550  * @truesize: data buffer truesize in singleq
551  * @stats_sync: See struct u64_stats_sync
552  * @q_stats: See union idpf_rx_queue_stats
553  * @q_id: Queue id
554  * @size: Length of descriptor ring in bytes
555  * @dma: Physical address of ring
556  * @q_vector: Backreference to associated vector
557  * @rx_buffer_low_watermark: RX buffer low watermark
558  * @rx_hbuf_size: Header buffer size
559  * @rx_buf_size: Buffer size
560  * @rx_max_pkt_size: RX max packet size
561  */
562 struct idpf_rx_queue {
563 	__cacheline_group_begin_aligned(read_mostly);
564 	union {
565 		union virtchnl2_rx_desc *rx;
566 		struct virtchnl2_singleq_rx_buf_desc *single_buf;
567 
568 		void *desc_ring;
569 	};
570 	union {
571 		struct {
572 			struct idpf_bufq_set *bufq_sets;
573 			struct napi_struct *napi;
574 		};
575 		struct {
576 			struct libeth_fqe *rx_buf;
577 			struct page_pool *pp;
578 		};
579 	};
580 	struct net_device *netdev;
581 	void __iomem *tail;
582 
583 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
584 	u16 idx;
585 	u16 desc_count;
586 
587 	u32 rxdids;
588 	const struct libeth_rx_pt *rx_ptype_lkup;
589 	__cacheline_group_end_aligned(read_mostly);
590 
591 	__cacheline_group_begin_aligned(read_write);
592 	u16 next_to_use;
593 	u16 next_to_clean;
594 	u16 next_to_alloc;
595 
596 	struct sk_buff *skb;
597 	u32 truesize;
598 
599 	struct u64_stats_sync stats_sync;
600 	struct idpf_rx_queue_stats q_stats;
601 	__cacheline_group_end_aligned(read_write);
602 
603 	__cacheline_group_begin_aligned(cold);
604 	u32 q_id;
605 	u32 size;
606 	dma_addr_t dma;
607 
608 	struct idpf_q_vector *q_vector;
609 
610 	u16 rx_buffer_low_watermark;
611 	u16 rx_hbuf_size;
612 	u16 rx_buf_size;
613 	u16 rx_max_pkt_size;
614 	__cacheline_group_end_aligned(cold);
615 };
616 libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
617 			    80 + sizeof(struct u64_stats_sync),
618 			    32);
619 
620 /**
621  * struct idpf_tx_queue - software structure representing a transmit queue
622  * @base_tx: base Tx descriptor array
623  * @base_ctx: base Tx context descriptor array
624  * @flex_tx: flex Tx descriptor array
625  * @flex_ctx: flex Tx context descriptor array
626  * @desc_ring: virtual descriptor ring address
627  * @tx_buf: See struct idpf_tx_buf
628  * @txq_grp: See struct idpf_txq_group
629  * @dev: Device back pointer for DMA mapping
630  * @tail: Tail offset. Used for both queue models single and split
631  * @flags: See enum idpf_queue_flags_t
632  * @idx: For TX queue, it is used as index to map between TX queue group and
633  *	 hot path TX pointers stored in vport. Used in both singleq/splitq.
634  * @desc_count: Number of descriptors
635  * @tx_min_pkt_len: Min supported packet length
636  * @compl_tag_gen_s: Completion tag generation bit
637  *	The format of the completion tag will change based on the TXQ
638  *	descriptor ring size so that we can maintain roughly the same level
639  *	of "uniqueness" across all descriptor sizes. For example, if the
640  *	TXQ descriptor ring size is 64 (the minimum size supported), the
641  *	completion tag will be formatted as below:
642  *	15                 6 5         0
643  *	--------------------------------
644  *	|    GEN=0-1023     |IDX = 0-63|
645  *	--------------------------------
646  *
647  *	This gives us 64*1024 = 65536 possible unique values. Similarly, if
648  *	the TXQ descriptor ring size is 8160 (the maximum size supported),
649  *	the completion tag will be formatted as below:
650  *	15 13 12                       0
651  *	--------------------------------
652  *	|GEN |       IDX = 0-8159      |
653  *	--------------------------------
654  *
655  *	This gives us 8*8160 = 65280 possible unique values.
656  * @netdev: &net_device corresponding to this queue
657  * @next_to_use: Next descriptor to use
658  * @next_to_clean: Next descriptor to clean
659  * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
660  *		   the TX completion queue, it can be for any TXQ associated
661  *		   with that completion queue. This means we can clean up to
662  *		   N TXQs during a single call to clean the completion queue.
663  *		   cleaned_bytes|pkts tracks the clean stats per TXQ during
664  *		   that single call to clean the completion queue. By doing so,
665  *		   we can update BQL with aggregate cleaned stats for each TXQ
666  *		   only once at the end of the cleaning routine.
667  * @clean_budget: singleq only, queue cleaning budget
668  * @cleaned_pkts: Number of packets cleaned for the above said case
669  * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
670  * @stash: Tx buffer stash for Flow-based scheduling mode
671  * @compl_tag_bufid_m: Completion tag buffer id mask
672  * @compl_tag_cur_gen: Used to keep track of current completion tag generation
673  * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
674  * @stats_sync: See struct u64_stats_sync
675  * @q_stats: See union idpf_tx_queue_stats
676  * @q_id: Queue id
677  * @size: Length of descriptor ring in bytes
678  * @dma: Physical address of ring
679  * @q_vector: Backreference to associated vector
680  */
681 struct idpf_tx_queue {
682 	__cacheline_group_begin_aligned(read_mostly);
683 	union {
684 		struct idpf_base_tx_desc *base_tx;
685 		struct idpf_base_tx_ctx_desc *base_ctx;
686 		union idpf_tx_flex_desc *flex_tx;
687 		struct idpf_flex_tx_ctx_desc *flex_ctx;
688 
689 		void *desc_ring;
690 	};
691 	struct idpf_tx_buf *tx_buf;
692 	struct idpf_txq_group *txq_grp;
693 	struct device *dev;
694 	void __iomem *tail;
695 
696 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
697 	u16 idx;
698 	u16 desc_count;
699 
700 	u16 tx_min_pkt_len;
701 	u16 compl_tag_gen_s;
702 
703 	struct net_device *netdev;
704 	__cacheline_group_end_aligned(read_mostly);
705 
706 	__cacheline_group_begin_aligned(read_write);
707 	u16 next_to_use;
708 	u16 next_to_clean;
709 
710 	union {
711 		u32 cleaned_bytes;
712 		u32 clean_budget;
713 	};
714 	u16 cleaned_pkts;
715 
716 	u16 tx_max_bufs;
717 	struct idpf_txq_stash *stash;
718 
719 	u16 compl_tag_bufid_m;
720 	u16 compl_tag_cur_gen;
721 	u16 compl_tag_gen_max;
722 
723 	struct u64_stats_sync stats_sync;
724 	struct idpf_tx_queue_stats q_stats;
725 	__cacheline_group_end_aligned(read_write);
726 
727 	__cacheline_group_begin_aligned(cold);
728 	u32 q_id;
729 	u32 size;
730 	dma_addr_t dma;
731 
732 	struct idpf_q_vector *q_vector;
733 	__cacheline_group_end_aligned(cold);
734 };
735 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
736 			    88 + sizeof(struct u64_stats_sync),
737 			    24);
738 
739 /**
740  * struct idpf_buf_queue - software structure representing a buffer queue
741  * @split_buf: buffer descriptor array
742  * @hdr_buf: &libeth_fqe for header buffers
743  * @hdr_pp: &page_pool for header buffers
744  * @buf: &libeth_fqe for data buffers
745  * @pp: &page_pool for data buffers
746  * @tail: Tail offset
747  * @flags: See enum idpf_queue_flags_t
748  * @desc_count: Number of descriptors
749  * @next_to_use: Next descriptor to use
750  * @next_to_clean: Next descriptor to clean
751  * @next_to_alloc: RX buffer to allocate at
752  * @hdr_truesize: truesize for buffer headers
753  * @truesize: truesize for data buffers
754  * @q_id: Queue id
755  * @size: Length of descriptor ring in bytes
756  * @dma: Physical address of ring
757  * @q_vector: Backreference to associated vector
758  * @rx_buffer_low_watermark: RX buffer low watermark
759  * @rx_hbuf_size: Header buffer size
760  * @rx_buf_size: Buffer size
761  */
762 struct idpf_buf_queue {
763 	__cacheline_group_begin_aligned(read_mostly);
764 	struct virtchnl2_splitq_rx_buf_desc *split_buf;
765 	struct libeth_fqe *hdr_buf;
766 	struct page_pool *hdr_pp;
767 	struct libeth_fqe *buf;
768 	struct page_pool *pp;
769 	void __iomem *tail;
770 
771 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
772 	u32 desc_count;
773 	__cacheline_group_end_aligned(read_mostly);
774 
775 	__cacheline_group_begin_aligned(read_write);
776 	u32 next_to_use;
777 	u32 next_to_clean;
778 	u32 next_to_alloc;
779 
780 	u32 hdr_truesize;
781 	u32 truesize;
782 	__cacheline_group_end_aligned(read_write);
783 
784 	__cacheline_group_begin_aligned(cold);
785 	u32 q_id;
786 	u32 size;
787 	dma_addr_t dma;
788 
789 	struct idpf_q_vector *q_vector;
790 
791 	u16 rx_buffer_low_watermark;
792 	u16 rx_hbuf_size;
793 	u16 rx_buf_size;
794 	__cacheline_group_end_aligned(cold);
795 };
796 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
797 
798 /**
799  * struct idpf_compl_queue - software structure representing a completion queue
800  * @comp: completion descriptor array
801  * @txq_grp: See struct idpf_txq_group
802  * @flags: See enum idpf_queue_flags_t
803  * @desc_count: Number of descriptors
804  * @clean_budget: queue cleaning budget
805  * @netdev: &net_device corresponding to this queue
806  * @next_to_use: Next descriptor to use. Relevant in both split & single txq
807  *		 and bufq.
808  * @next_to_clean: Next descriptor to clean
809  * @num_completions: Only relevant for TX completion queue. It tracks the
810  *		     number of completions received to compare against the
811  *		     number of completions pending, as accumulated by the
812  *		     TX queues.
813  * @q_id: Queue id
814  * @size: Length of descriptor ring in bytes
815  * @dma: Physical address of ring
816  * @q_vector: Backreference to associated vector
817  */
818 struct idpf_compl_queue {
819 	__cacheline_group_begin_aligned(read_mostly);
820 	struct idpf_splitq_tx_compl_desc *comp;
821 	struct idpf_txq_group *txq_grp;
822 
823 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
824 	u32 desc_count;
825 
826 	u32 clean_budget;
827 	struct net_device *netdev;
828 	__cacheline_group_end_aligned(read_mostly);
829 
830 	__cacheline_group_begin_aligned(read_write);
831 	u32 next_to_use;
832 	u32 next_to_clean;
833 
834 	u32 num_completions;
835 	__cacheline_group_end_aligned(read_write);
836 
837 	__cacheline_group_begin_aligned(cold);
838 	u32 q_id;
839 	u32 size;
840 	dma_addr_t dma;
841 
842 	struct idpf_q_vector *q_vector;
843 	__cacheline_group_end_aligned(cold);
844 };
845 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
846 
847 /**
848  * struct idpf_sw_queue
849  * @ring: Pointer to the ring
850  * @flags: See enum idpf_queue_flags_t
851  * @desc_count: Descriptor count
852  * @next_to_use: Buffer to allocate at
853  * @next_to_clean: Next descriptor to clean
854  *
855  * Software queues are used in splitq mode to manage buffers between rxq
856  * producer and the bufq consumer.  These are required in order to maintain a
857  * lockless buffer management system and are strictly software only constructs.
858  */
859 struct idpf_sw_queue {
860 	__cacheline_group_begin_aligned(read_mostly);
861 	u32 *ring;
862 
863 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
864 	u32 desc_count;
865 	__cacheline_group_end_aligned(read_mostly);
866 
867 	__cacheline_group_begin_aligned(read_write);
868 	u32 next_to_use;
869 	u32 next_to_clean;
870 	__cacheline_group_end_aligned(read_write);
871 };
872 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
873 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
874 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
875 
876 /**
877  * struct idpf_rxq_set
878  * @rxq: RX queue
879  * @refillq: pointers to refill queues
880  *
881  * Splitq only.  idpf_rxq_set associates an rxq with at an array of refillqs.
882  * Each rxq needs a refillq to return used buffers back to the respective bufq.
883  * Bufqs then clean these refillqs for buffers to give to hardware.
884  */
885 struct idpf_rxq_set {
886 	struct idpf_rx_queue rxq;
887 	struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
888 };
889 
890 /**
891  * struct idpf_bufq_set
892  * @bufq: Buffer queue
893  * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
894  *		  in idpf_rxq_group.
895  * @refillqs: Pointer to refill queues array.
896  *
897  * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
898  * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
899  * Used buffers received by rxqs will be put on refillqs which bufqs will
900  * clean to return new buffers back to hardware.
901  *
902  * Buffers needed by some number of rxqs associated in this rxq_group are
903  * managed by at most two bufqs (depending on performance configuration).
904  */
905 struct idpf_bufq_set {
906 	struct idpf_buf_queue bufq;
907 	int num_refillqs;
908 	struct idpf_sw_queue *refillqs;
909 };
910 
911 /**
912  * struct idpf_rxq_group
913  * @vport: Vport back pointer
914  * @singleq: Struct with single queue related members
915  * @singleq.num_rxq: Number of RX queues associated
916  * @singleq.rxqs: Array of RX queue pointers
917  * @splitq: Struct with split queue related members
918  * @splitq.num_rxq_sets: Number of RX queue sets
919  * @splitq.rxq_sets: Array of RX queue sets
920  * @splitq.bufq_sets: Buffer queue set pointer
921  *
922  * In singleq mode, an rxq_group is simply an array of rxqs.  In splitq, a
923  * rxq_group contains all the rxqs, bufqs and refillqs needed to
924  * manage buffers in splitq mode.
925  */
926 struct idpf_rxq_group {
927 	struct idpf_vport *vport;
928 
929 	union {
930 		struct {
931 			u16 num_rxq;
932 			struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
933 		} singleq;
934 		struct {
935 			u16 num_rxq_sets;
936 			struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
937 			struct idpf_bufq_set *bufq_sets;
938 		} splitq;
939 	};
940 };
941 
942 /**
943  * struct idpf_txq_group
944  * @vport: Vport back pointer
945  * @num_txq: Number of TX queues associated
946  * @txqs: Array of TX queue pointers
947  * @stashes: array of OOO stashes for the queues
948  * @complq: Associated completion queue pointer, split queue only
949  * @num_completions_pending: Total number of completions pending for the
950  *			     completion queue, acculumated for all TX queues
951  *			     associated with that completion queue.
952  *
953  * Between singleq and splitq, a txq_group is largely the same except for the
954  * complq. In splitq a single complq is responsible for handling completions
955  * for some number of txqs associated in this txq_group.
956  */
957 struct idpf_txq_group {
958 	struct idpf_vport *vport;
959 
960 	u16 num_txq;
961 	struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
962 	struct idpf_txq_stash *stashes;
963 
964 	struct idpf_compl_queue *complq;
965 
966 	u32 num_completions_pending;
967 };
968 
969 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
970 {
971 	u32 cpu;
972 
973 	if (!q_vector)
974 		return NUMA_NO_NODE;
975 
976 	cpu = cpumask_first(q_vector->affinity_mask);
977 
978 	return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
979 }
980 
981 /**
982  * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
983  * @size: transmit request size in bytes
984  *
985  * In the case where a large frag (>= 16K) needs to be split across multiple
986  * descriptors, we need to assume that we can have no more than 12K of data
987  * per descriptor due to hardware alignment restrictions (4K alignment).
988  */
989 static inline u32 idpf_size_to_txd_count(unsigned int size)
990 {
991 	return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
992 }
993 
994 /**
995  * idpf_tx_singleq_build_ctob - populate command tag offset and size
996  * @td_cmd: Command to be filled in desc
997  * @td_offset: Offset to be filled in desc
998  * @size: Size of the buffer
999  * @td_tag: td tag to be filled
1000  *
1001  * Returns the 64 bit value populated with the input parameters
1002  */
1003 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
1004 						unsigned int size, u64 td_tag)
1005 {
1006 	return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
1007 			   (td_cmd << IDPF_TXD_QW1_CMD_S) |
1008 			   (td_offset << IDPF_TXD_QW1_OFFSET_S) |
1009 			   ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
1010 			   (td_tag << IDPF_TXD_QW1_L2TAG1_S));
1011 }
1012 
1013 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
1014 			      struct idpf_tx_splitq_params *params,
1015 			      u16 td_cmd, u16 size);
1016 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
1017 				    struct idpf_tx_splitq_params *params,
1018 				    u16 td_cmd, u16 size);
1019 /**
1020  * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
1021  * @desc: descriptor to populate
1022  * @params: pointer to tx params struct
1023  * @td_cmd: command to be filled in desc
1024  * @size: size of buffer
1025  */
1026 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
1027 					     struct idpf_tx_splitq_params *params,
1028 					     u16 td_cmd, u16 size)
1029 {
1030 	if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
1031 		idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
1032 	else
1033 		idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
1034 }
1035 
1036 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1037 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1038 			    struct virtchnl2_create_vport *vport_msg);
1039 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
1040 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1041 			     struct virtchnl2_create_vport *vport_msg,
1042 			     struct idpf_vport_max_q *max_q);
1043 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
1044 int idpf_vport_queues_alloc(struct idpf_vport *vport);
1045 void idpf_vport_queues_rel(struct idpf_vport *vport);
1046 void idpf_vport_intr_rel(struct idpf_vport *vport);
1047 int idpf_vport_intr_alloc(struct idpf_vport *vport);
1048 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1049 void idpf_vport_intr_deinit(struct idpf_vport *vport);
1050 int idpf_vport_intr_init(struct idpf_vport *vport);
1051 void idpf_vport_intr_ena(struct idpf_vport *vport);
1052 int idpf_config_rss(struct idpf_vport *vport);
1053 int idpf_init_rss(struct idpf_vport *vport);
1054 void idpf_deinit_rss(struct idpf_vport *vport);
1055 int idpf_rx_bufs_init_all(struct idpf_vport *vport);
1056 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
1057 		      unsigned int size);
1058 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
1059 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1060 			   bool xmit_more);
1061 unsigned int idpf_size_to_txd_count(unsigned int size);
1062 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1063 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
1064 			   struct idpf_tx_buf *first, u16 ring_idx);
1065 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
1066 					 struct sk_buff *skb);
1067 int idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, unsigned int size);
1068 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1069 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1070 				  struct idpf_tx_queue *tx_q);
1071 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1072 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1073 				      u16 cleaned_count);
1074 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1075 
1076 #endif /* !_IDPF_TXRX_H_ */
1077