1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #ifndef _IDPF_TXRX_H_ 5 #define _IDPF_TXRX_H_ 6 7 #include <linux/dim.h> 8 9 #include <net/libeth/cache.h> 10 #include <net/tcp.h> 11 #include <net/netdev_queues.h> 12 13 #include "idpf_lan_txrx.h" 14 #include "virtchnl2_lan_desc.h" 15 16 #define IDPF_LARGE_MAX_Q 256 17 #define IDPF_MAX_Q 16 18 #define IDPF_MIN_Q 2 19 /* Mailbox Queue */ 20 #define IDPF_MAX_MBXQ 1 21 22 #define IDPF_MIN_TXQ_DESC 64 23 #define IDPF_MIN_RXQ_DESC 64 24 #define IDPF_MIN_TXQ_COMPLQ_DESC 256 25 #define IDPF_MAX_QIDS 256 26 27 /* Number of descriptors in a queue should be a multiple of 32. RX queue 28 * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE 29 * to achieve BufQ descriptors aligned to 32 30 */ 31 #define IDPF_REQ_DESC_MULTIPLE 32 32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32) 33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6) 34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2) 35 36 #define IDPF_MAX_DESCS 8160 37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE) 38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE) 39 #define MIN_SUPPORT_TXDID (\ 40 VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\ 41 VIRTCHNL2_TXDID_FLEX_TSO_CTX) 42 43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1 44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1 45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4 46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4 47 48 #define IDPF_COMPLQ_PER_GROUP 1 49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1 50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2 51 #define IDPF_BUFQ2_ENA 1 52 #define IDPF_NUMQ_PER_CHUNK 1 53 54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1 55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1 56 57 /* Default vector sharing */ 58 #define IDPF_MBX_Q_VEC 1 59 #define IDPF_MIN_Q_VEC 1 60 61 #define IDPF_DFLT_TX_Q_DESC_COUNT 512 62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512 63 #define IDPF_DFLT_RX_Q_DESC_COUNT 512 64 65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a 66 * given RX completion queue has descriptors. This includes _ALL_ buffer 67 * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers, 68 * you have a total of 1024 buffers so your RX queue _must_ have at least that 69 * many descriptors. This macro divides a given number of RX descriptors by 70 * number of buffer queues to calculate how many descriptors each buffer queue 71 * can have without overrunning the RX queue. 72 * 73 * If you give hardware more buffers than completion descriptors what will 74 * happen is that if hardware gets a chance to post more than ring wrap of 75 * descriptors before SW gets an interrupt and overwrites SW head, the gen bit 76 * in the descriptor will be wrong. Any overwritten descriptors' buffers will 77 * be gone forever and SW has no reasonable way to tell that this has happened. 78 * From SW perspective, when we finally get an interrupt, it looks like we're 79 * still waiting for descriptor to be done, stalling forever. 80 */ 81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ)) 82 83 #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1) 84 85 #define IDPF_RX_BUMP_NTC(rxq, ntc) \ 86 do { \ 87 if (unlikely(++(ntc) == (rxq)->desc_count)) { \ 88 ntc = 0; \ 89 idpf_queue_change(GEN_CHK, rxq); \ 90 } \ 91 } while (0) 92 93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \ 94 do { \ 95 if (unlikely(++(idx) == (q)->desc_count)) \ 96 idx = 0; \ 97 } while (0) 98 99 #define IDPF_RX_BUF_STRIDE 32 100 #define IDPF_RX_BUF_POST_STRIDE 16 101 #define IDPF_LOW_WATERMARK 64 102 103 #define IDPF_TX_TSO_MIN_MSS 88 104 105 /* Minimum number of descriptors between 2 descriptors with the RE bit set; 106 * only relevant in flow scheduling mode 107 */ 108 #define IDPF_TX_SPLITQ_RE_MIN_GAP 64 109 110 #define IDPF_RX_BI_GEN_M BIT(16) 111 #define IDPF_RX_BI_BUFID_M GENMASK(15, 0) 112 113 #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M 114 #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M 115 116 #define IDPF_DESC_UNUSED(txq) \ 117 ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ 118 (txq)->next_to_clean - (txq)->next_to_use - 1) 119 120 #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top) 121 #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ 122 (txq)->desc_count >> 2) 123 124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) 125 /* Determine the absolute number of completions pending, i.e. the number of 126 * completions that are expected to arrive on the TX completion queue. 127 */ 128 #define IDPF_TX_COMPLQ_PENDING(txq) \ 129 (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ 130 0 : U32_MAX) + \ 131 (txq)->num_completions_pending - (txq)->complq->num_completions) 132 133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 134 /* Adjust the generation for the completion tag and wrap if necessary */ 135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ 136 ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ 137 0 : (txq)->compl_tag_cur_gen) 138 139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) 140 141 #define IDPF_TX_FLAGS_TSO BIT(0) 142 #define IDPF_TX_FLAGS_IPV4 BIT(1) 143 #define IDPF_TX_FLAGS_IPV6 BIT(2) 144 #define IDPF_TX_FLAGS_TUNNEL BIT(3) 145 146 union idpf_tx_flex_desc { 147 struct idpf_flex_tx_desc q; /* queue based scheduling */ 148 struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ 149 }; 150 151 #define idpf_tx_buf libeth_sqe 152 153 /** 154 * struct idpf_buf_lifo - LIFO for managing OOO completions 155 * @top: Used to know how many buffers are left 156 * @size: Total size of LIFO 157 * @bufs: Backing array 158 */ 159 struct idpf_buf_lifo { 160 u16 top; 161 u16 size; 162 struct idpf_tx_stash **bufs; 163 }; 164 165 /** 166 * struct idpf_tx_offload_params - Offload parameters for a given packet 167 * @tx_flags: Feature flags enabled for this packet 168 * @hdr_offsets: Offset parameter for single queue model 169 * @cd_tunneling: Type of tunneling enabled for single queue model 170 * @tso_len: Total length of payload to segment 171 * @mss: Segment size 172 * @tso_segs: Number of segments to be sent 173 * @tso_hdr_len: Length of headers to be duplicated 174 * @td_cmd: Command field to be inserted into descriptor 175 */ 176 struct idpf_tx_offload_params { 177 u32 tx_flags; 178 179 u32 hdr_offsets; 180 u32 cd_tunneling; 181 182 u32 tso_len; 183 u16 mss; 184 u16 tso_segs; 185 u16 tso_hdr_len; 186 187 u16 td_cmd; 188 }; 189 190 /** 191 * struct idpf_tx_splitq_params 192 * @dtype: General descriptor info 193 * @eop_cmd: Type of EOP 194 * @compl_tag: Associated tag for completion 195 * @td_tag: Descriptor tunneling tag 196 * @offload: Offload parameters 197 */ 198 struct idpf_tx_splitq_params { 199 enum idpf_tx_desc_dtype_value dtype; 200 u16 eop_cmd; 201 union { 202 u16 compl_tag; 203 u16 td_tag; 204 }; 205 206 struct idpf_tx_offload_params offload; 207 }; 208 209 enum idpf_tx_ctx_desc_eipt_offload { 210 IDPF_TX_CTX_EXT_IP_NONE = 0x0, 211 IDPF_TX_CTX_EXT_IP_IPV6 = 0x1, 212 IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2, 213 IDPF_TX_CTX_EXT_IP_IPV4 = 0x3 214 }; 215 216 /* Checksum offload bits decoded from the receive descriptor. */ 217 struct idpf_rx_csum_decoded { 218 u32 l3l4p : 1; 219 u32 ipe : 1; 220 u32 eipe : 1; 221 u32 eudpe : 1; 222 u32 ipv6exadd : 1; 223 u32 l4e : 1; 224 u32 pprs : 1; 225 u32 nat : 1; 226 u32 raw_csum_inv : 1; 227 u32 raw_csum : 16; 228 }; 229 230 struct idpf_rx_extracted { 231 unsigned int size; 232 u16 rx_ptype; 233 }; 234 235 #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256 236 #define IDPF_TX_MIN_PKT_LEN 17 237 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 238 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ 239 sizeof(struct idpf_flex_tx_desc)) 240 #define IDPF_TX_DESCS_FOR_CTX 1 241 /* TX descriptors needed, worst case */ 242 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ 243 IDPF_TX_DESCS_PER_CACHE_LINE + \ 244 IDPF_TX_DESCS_FOR_SKB_DATA_PTR) 245 246 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 247 * In order to align with the read requests we will align the value to 248 * the nearest 4K which represents our maximum read request size. 249 */ 250 #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K 251 #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) 252 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \ 253 ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) 254 255 #define idpf_rx_buf libeth_fqe 256 257 #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32 258 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \ 259 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS)) 260 #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info) 261 #define IDPF_RX_MAX_PTYPES_PER_BUF \ 262 DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \ 263 IDPF_RX_MAX_PTYPE_SZ) 264 265 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count) 266 267 #define IDPF_TUN_IP_GRE (\ 268 IDPF_PTYPE_TUNNEL_IP |\ 269 IDPF_PTYPE_TUNNEL_IP_GRENAT) 270 271 #define IDPF_TUN_IP_GRE_MAC (\ 272 IDPF_TUN_IP_GRE |\ 273 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC) 274 275 #define IDPF_RX_MAX_PTYPE 1024 276 #define IDPF_RX_MAX_BASE_PTYPE 256 277 #define IDPF_INVALID_PTYPE_ID 0xFFFF 278 279 enum idpf_tunnel_state { 280 IDPF_PTYPE_TUNNEL_IP = BIT(0), 281 IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1), 282 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2), 283 }; 284 285 struct idpf_ptype_state { 286 bool outer_ip:1; 287 bool outer_frag:1; 288 u8 tunnel_state:6; 289 }; 290 291 /** 292 * enum idpf_queue_flags_t 293 * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to 294 * identify new descriptor writebacks on the ring. HW sets 295 * the gen bit to 1 on the first writeback of any given 296 * descriptor. After the ring wraps, HW sets the gen bit of 297 * those descriptors to 0, and continues flipping 298 * 0->1 or 1->0 on each ring wrap. SW maintains its own 299 * gen bit to know what value will indicate writebacks on 300 * the next pass around the ring. E.g. it is initialized 301 * to 1 and knows that reading a gen bit of 1 in any 302 * descriptor on the initial pass of the ring indicates a 303 * writeback. It also flips on every ring wrap. 304 * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW 305 * bit and Q_RFL_GEN is the SW bit. 306 * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling 307 * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions 308 * @__IDPF_Q_POLL_MODE: Enable poll mode 309 * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode 310 * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq) 311 * @__IDPF_Q_FLAGS_NBITS: Must be last 312 */ 313 enum idpf_queue_flags_t { 314 __IDPF_Q_GEN_CHK, 315 __IDPF_Q_RFL_GEN_CHK, 316 __IDPF_Q_FLOW_SCH_EN, 317 __IDPF_Q_SW_MARKER, 318 __IDPF_Q_POLL_MODE, 319 __IDPF_Q_CRC_EN, 320 __IDPF_Q_HSPLIT_EN, 321 322 __IDPF_Q_FLAGS_NBITS, 323 }; 324 325 #define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags) 326 #define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags) 327 #define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags) 328 #define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags) 329 330 #define idpf_queue_has_clear(f, q) \ 331 __test_and_clear_bit(__IDPF_Q_##f, (q)->flags) 332 #define idpf_queue_assign(f, q, v) \ 333 __assign_bit(__IDPF_Q_##f, (q)->flags, v) 334 335 /** 336 * struct idpf_vec_regs 337 * @dyn_ctl_reg: Dynamic control interrupt register offset 338 * @itrn_reg: Interrupt Throttling Rate register offset 339 * @itrn_index_spacing: Register spacing between ITR registers of the same 340 * vector 341 */ 342 struct idpf_vec_regs { 343 u32 dyn_ctl_reg; 344 u32 itrn_reg; 345 u32 itrn_index_spacing; 346 }; 347 348 /** 349 * struct idpf_intr_reg 350 * @dyn_ctl: Dynamic control interrupt register 351 * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable 352 * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask 353 * @dyn_ctl_itridx_s: Register bit offset for ITR index 354 * @dyn_ctl_itridx_m: Mask for ITR index 355 * @dyn_ctl_intrvl_s: Register bit offset for ITR interval 356 * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature 357 * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index 358 * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable 359 * @rx_itr: RX ITR register 360 * @tx_itr: TX ITR register 361 * @icr_ena: Interrupt cause register offset 362 * @icr_ena_ctlq_m: Mask for ICR 363 */ 364 struct idpf_intr_reg { 365 void __iomem *dyn_ctl; 366 u32 dyn_ctl_intena_m; 367 u32 dyn_ctl_intena_msk_m; 368 u32 dyn_ctl_itridx_s; 369 u32 dyn_ctl_itridx_m; 370 u32 dyn_ctl_intrvl_s; 371 u32 dyn_ctl_wb_on_itr_m; 372 u32 dyn_ctl_sw_itridx_ena_m; 373 u32 dyn_ctl_swint_trig_m; 374 void __iomem *rx_itr; 375 void __iomem *tx_itr; 376 void __iomem *icr_ena; 377 u32 icr_ena_ctlq_m; 378 }; 379 380 /** 381 * struct idpf_q_vector 382 * @vport: Vport back pointer 383 * @num_rxq: Number of RX queues 384 * @num_txq: Number of TX queues 385 * @num_bufq: Number of buffer queues 386 * @num_complq: number of completion queues 387 * @rx: Array of RX queues to service 388 * @tx: Array of TX queues to service 389 * @bufq: Array of buffer queues to service 390 * @complq: array of completion queues 391 * @intr_reg: See struct idpf_intr_reg 392 * @napi: napi handler 393 * @total_events: Number of interrupts processed 394 * @wb_on_itr: whether WB on ITR is enabled 395 * @tx_dim: Data for TX net_dim algorithm 396 * @tx_itr_value: TX interrupt throttling rate 397 * @tx_intr_mode: Dynamic ITR or not 398 * @tx_itr_idx: TX ITR index 399 * @rx_dim: Data for RX net_dim algorithm 400 * @rx_itr_value: RX interrupt throttling rate 401 * @rx_intr_mode: Dynamic ITR or not 402 * @rx_itr_idx: RX ITR index 403 * @v_idx: Vector index 404 * @affinity_mask: CPU affinity mask 405 */ 406 struct idpf_q_vector { 407 __cacheline_group_begin_aligned(read_mostly); 408 struct idpf_vport *vport; 409 410 u16 num_rxq; 411 u16 num_txq; 412 u16 num_bufq; 413 u16 num_complq; 414 struct idpf_rx_queue **rx; 415 struct idpf_tx_queue **tx; 416 struct idpf_buf_queue **bufq; 417 struct idpf_compl_queue **complq; 418 419 struct idpf_intr_reg intr_reg; 420 __cacheline_group_end_aligned(read_mostly); 421 422 __cacheline_group_begin_aligned(read_write); 423 struct napi_struct napi; 424 u16 total_events; 425 bool wb_on_itr; 426 427 struct dim tx_dim; 428 u16 tx_itr_value; 429 bool tx_intr_mode; 430 u32 tx_itr_idx; 431 432 struct dim rx_dim; 433 u16 rx_itr_value; 434 bool rx_intr_mode; 435 u32 rx_itr_idx; 436 __cacheline_group_end_aligned(read_write); 437 438 __cacheline_group_begin_aligned(cold); 439 u16 v_idx; 440 441 cpumask_var_t affinity_mask; 442 __cacheline_group_end_aligned(cold); 443 }; 444 libeth_cacheline_set_assert(struct idpf_q_vector, 120, 445 24 + sizeof(struct napi_struct) + 446 2 * sizeof(struct dim), 447 8 + sizeof(cpumask_var_t)); 448 449 struct idpf_rx_queue_stats { 450 u64_stats_t packets; 451 u64_stats_t bytes; 452 u64_stats_t rsc_pkts; 453 u64_stats_t hw_csum_err; 454 u64_stats_t hsplit_pkts; 455 u64_stats_t hsplit_buf_ovf; 456 u64_stats_t bad_descs; 457 }; 458 459 struct idpf_tx_queue_stats { 460 u64_stats_t packets; 461 u64_stats_t bytes; 462 u64_stats_t lso_pkts; 463 u64_stats_t linearize; 464 u64_stats_t q_busy; 465 u64_stats_t skb_drops; 466 u64_stats_t dma_map_errs; 467 }; 468 469 #define IDPF_ITR_DYNAMIC 1 470 #define IDPF_ITR_MAX 0x1FE0 471 #define IDPF_ITR_20K 0x0032 472 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ 473 #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 474 #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK) 475 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode) 476 #define IDPF_ITR_TX_DEF IDPF_ITR_20K 477 #define IDPF_ITR_RX_DEF IDPF_ITR_20K 478 /* Index used for 'SW ITR' update in DYN_CTL register */ 479 #define IDPF_SW_ITR_UPDATE_IDX 2 480 /* Index used for 'No ITR' update in DYN_CTL register */ 481 #define IDPF_NO_ITR_UPDATE_IDX 3 482 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt) 483 #define IDPF_DIM_DEFAULT_PROFILE_IX 1 484 485 /** 486 * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode 487 * @buf_stack: Stack of empty buffers to store buffer info for out of order 488 * buffer completions. See struct idpf_buf_lifo 489 * @sched_buf_hash: Hash table to store buffers 490 */ 491 struct idpf_txq_stash { 492 struct idpf_buf_lifo buf_stack; 493 DECLARE_HASHTABLE(sched_buf_hash, 12); 494 } ____cacheline_aligned; 495 496 /** 497 * struct idpf_rx_queue - software structure representing a receive queue 498 * @rx: universal receive descriptor array 499 * @single_buf: buffer descriptor array in singleq 500 * @desc_ring: virtual descriptor ring address 501 * @bufq_sets: Pointer to the array of buffer queues in splitq mode 502 * @napi: NAPI instance corresponding to this queue (splitq) 503 * @rx_buf: See struct &libeth_fqe 504 * @pp: Page pool pointer in singleq mode 505 * @netdev: &net_device corresponding to this queue 506 * @tail: Tail offset. Used for both queue models single and split. 507 * @flags: See enum idpf_queue_flags_t 508 * @idx: For RX queue, it is used to index to total RX queue across groups and 509 * used for skb reporting. 510 * @desc_count: Number of descriptors 511 * @rxdids: Supported RX descriptor ids 512 * @rx_ptype_lkup: LUT of Rx ptypes 513 * @next_to_use: Next descriptor to use 514 * @next_to_clean: Next descriptor to clean 515 * @next_to_alloc: RX buffer to allocate at 516 * @skb: Pointer to the skb 517 * @truesize: data buffer truesize in singleq 518 * @stats_sync: See struct u64_stats_sync 519 * @q_stats: See union idpf_rx_queue_stats 520 * @q_id: Queue id 521 * @size: Length of descriptor ring in bytes 522 * @dma: Physical address of ring 523 * @q_vector: Backreference to associated vector 524 * @rx_buffer_low_watermark: RX buffer low watermark 525 * @rx_hbuf_size: Header buffer size 526 * @rx_buf_size: Buffer size 527 * @rx_max_pkt_size: RX max packet size 528 */ 529 struct idpf_rx_queue { 530 __cacheline_group_begin_aligned(read_mostly); 531 union { 532 union virtchnl2_rx_desc *rx; 533 struct virtchnl2_singleq_rx_buf_desc *single_buf; 534 535 void *desc_ring; 536 }; 537 union { 538 struct { 539 struct idpf_bufq_set *bufq_sets; 540 struct napi_struct *napi; 541 }; 542 struct { 543 struct libeth_fqe *rx_buf; 544 struct page_pool *pp; 545 }; 546 }; 547 struct net_device *netdev; 548 void __iomem *tail; 549 550 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 551 u16 idx; 552 u16 desc_count; 553 554 u32 rxdids; 555 const struct libeth_rx_pt *rx_ptype_lkup; 556 __cacheline_group_end_aligned(read_mostly); 557 558 __cacheline_group_begin_aligned(read_write); 559 u16 next_to_use; 560 u16 next_to_clean; 561 u16 next_to_alloc; 562 563 struct sk_buff *skb; 564 u32 truesize; 565 566 struct u64_stats_sync stats_sync; 567 struct idpf_rx_queue_stats q_stats; 568 __cacheline_group_end_aligned(read_write); 569 570 __cacheline_group_begin_aligned(cold); 571 u32 q_id; 572 u32 size; 573 dma_addr_t dma; 574 575 struct idpf_q_vector *q_vector; 576 577 u16 rx_buffer_low_watermark; 578 u16 rx_hbuf_size; 579 u16 rx_buf_size; 580 u16 rx_max_pkt_size; 581 __cacheline_group_end_aligned(cold); 582 }; 583 libeth_cacheline_set_assert(struct idpf_rx_queue, 64, 584 80 + sizeof(struct u64_stats_sync), 585 32); 586 587 /** 588 * struct idpf_tx_queue - software structure representing a transmit queue 589 * @base_tx: base Tx descriptor array 590 * @base_ctx: base Tx context descriptor array 591 * @flex_tx: flex Tx descriptor array 592 * @flex_ctx: flex Tx context descriptor array 593 * @desc_ring: virtual descriptor ring address 594 * @tx_buf: See struct idpf_tx_buf 595 * @txq_grp: See struct idpf_txq_group 596 * @dev: Device back pointer for DMA mapping 597 * @tail: Tail offset. Used for both queue models single and split 598 * @flags: See enum idpf_queue_flags_t 599 * @idx: For TX queue, it is used as index to map between TX queue group and 600 * hot path TX pointers stored in vport. Used in both singleq/splitq. 601 * @desc_count: Number of descriptors 602 * @tx_min_pkt_len: Min supported packet length 603 * @compl_tag_gen_s: Completion tag generation bit 604 * The format of the completion tag will change based on the TXQ 605 * descriptor ring size so that we can maintain roughly the same level 606 * of "uniqueness" across all descriptor sizes. For example, if the 607 * TXQ descriptor ring size is 64 (the minimum size supported), the 608 * completion tag will be formatted as below: 609 * 15 6 5 0 610 * -------------------------------- 611 * | GEN=0-1023 |IDX = 0-63| 612 * -------------------------------- 613 * 614 * This gives us 64*1024 = 65536 possible unique values. Similarly, if 615 * the TXQ descriptor ring size is 8160 (the maximum size supported), 616 * the completion tag will be formatted as below: 617 * 15 13 12 0 618 * -------------------------------- 619 * |GEN | IDX = 0-8159 | 620 * -------------------------------- 621 * 622 * This gives us 8*8160 = 65280 possible unique values. 623 * @netdev: &net_device corresponding to this queue 624 * @next_to_use: Next descriptor to use 625 * @next_to_clean: Next descriptor to clean 626 * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on 627 * the TX completion queue, it can be for any TXQ associated 628 * with that completion queue. This means we can clean up to 629 * N TXQs during a single call to clean the completion queue. 630 * cleaned_bytes|pkts tracks the clean stats per TXQ during 631 * that single call to clean the completion queue. By doing so, 632 * we can update BQL with aggregate cleaned stats for each TXQ 633 * only once at the end of the cleaning routine. 634 * @clean_budget: singleq only, queue cleaning budget 635 * @cleaned_pkts: Number of packets cleaned for the above said case 636 * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather 637 * @stash: Tx buffer stash for Flow-based scheduling mode 638 * @compl_tag_bufid_m: Completion tag buffer id mask 639 * @compl_tag_cur_gen: Used to keep track of current completion tag generation 640 * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset 641 * @stats_sync: See struct u64_stats_sync 642 * @q_stats: See union idpf_tx_queue_stats 643 * @q_id: Queue id 644 * @size: Length of descriptor ring in bytes 645 * @dma: Physical address of ring 646 * @q_vector: Backreference to associated vector 647 */ 648 struct idpf_tx_queue { 649 __cacheline_group_begin_aligned(read_mostly); 650 union { 651 struct idpf_base_tx_desc *base_tx; 652 struct idpf_base_tx_ctx_desc *base_ctx; 653 union idpf_tx_flex_desc *flex_tx; 654 struct idpf_flex_tx_ctx_desc *flex_ctx; 655 656 void *desc_ring; 657 }; 658 struct libeth_sqe *tx_buf; 659 struct idpf_txq_group *txq_grp; 660 struct device *dev; 661 void __iomem *tail; 662 663 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 664 u16 idx; 665 u16 desc_count; 666 667 u16 tx_min_pkt_len; 668 u16 compl_tag_gen_s; 669 670 struct net_device *netdev; 671 __cacheline_group_end_aligned(read_mostly); 672 673 __cacheline_group_begin_aligned(read_write); 674 u16 next_to_use; 675 u16 next_to_clean; 676 677 union { 678 u32 cleaned_bytes; 679 u32 clean_budget; 680 }; 681 u16 cleaned_pkts; 682 683 u16 tx_max_bufs; 684 struct idpf_txq_stash *stash; 685 686 u16 compl_tag_bufid_m; 687 u16 compl_tag_cur_gen; 688 u16 compl_tag_gen_max; 689 690 struct u64_stats_sync stats_sync; 691 struct idpf_tx_queue_stats q_stats; 692 __cacheline_group_end_aligned(read_write); 693 694 __cacheline_group_begin_aligned(cold); 695 u32 q_id; 696 u32 size; 697 dma_addr_t dma; 698 699 struct idpf_q_vector *q_vector; 700 __cacheline_group_end_aligned(cold); 701 }; 702 libeth_cacheline_set_assert(struct idpf_tx_queue, 64, 703 88 + sizeof(struct u64_stats_sync), 704 24); 705 706 /** 707 * struct idpf_buf_queue - software structure representing a buffer queue 708 * @split_buf: buffer descriptor array 709 * @hdr_buf: &libeth_fqe for header buffers 710 * @hdr_pp: &page_pool for header buffers 711 * @buf: &libeth_fqe for data buffers 712 * @pp: &page_pool for data buffers 713 * @tail: Tail offset 714 * @flags: See enum idpf_queue_flags_t 715 * @desc_count: Number of descriptors 716 * @next_to_use: Next descriptor to use 717 * @next_to_clean: Next descriptor to clean 718 * @next_to_alloc: RX buffer to allocate at 719 * @hdr_truesize: truesize for buffer headers 720 * @truesize: truesize for data buffers 721 * @q_id: Queue id 722 * @size: Length of descriptor ring in bytes 723 * @dma: Physical address of ring 724 * @q_vector: Backreference to associated vector 725 * @rx_buffer_low_watermark: RX buffer low watermark 726 * @rx_hbuf_size: Header buffer size 727 * @rx_buf_size: Buffer size 728 */ 729 struct idpf_buf_queue { 730 __cacheline_group_begin_aligned(read_mostly); 731 struct virtchnl2_splitq_rx_buf_desc *split_buf; 732 struct libeth_fqe *hdr_buf; 733 struct page_pool *hdr_pp; 734 struct libeth_fqe *buf; 735 struct page_pool *pp; 736 void __iomem *tail; 737 738 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 739 u32 desc_count; 740 __cacheline_group_end_aligned(read_mostly); 741 742 __cacheline_group_begin_aligned(read_write); 743 u32 next_to_use; 744 u32 next_to_clean; 745 u32 next_to_alloc; 746 747 u32 hdr_truesize; 748 u32 truesize; 749 __cacheline_group_end_aligned(read_write); 750 751 __cacheline_group_begin_aligned(cold); 752 u32 q_id; 753 u32 size; 754 dma_addr_t dma; 755 756 struct idpf_q_vector *q_vector; 757 758 u16 rx_buffer_low_watermark; 759 u16 rx_hbuf_size; 760 u16 rx_buf_size; 761 __cacheline_group_end_aligned(cold); 762 }; 763 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32); 764 765 /** 766 * struct idpf_compl_queue - software structure representing a completion queue 767 * @comp: completion descriptor array 768 * @txq_grp: See struct idpf_txq_group 769 * @flags: See enum idpf_queue_flags_t 770 * @desc_count: Number of descriptors 771 * @clean_budget: queue cleaning budget 772 * @netdev: &net_device corresponding to this queue 773 * @next_to_use: Next descriptor to use. Relevant in both split & single txq 774 * and bufq. 775 * @next_to_clean: Next descriptor to clean 776 * @num_completions: Only relevant for TX completion queue. It tracks the 777 * number of completions received to compare against the 778 * number of completions pending, as accumulated by the 779 * TX queues. 780 * @q_id: Queue id 781 * @size: Length of descriptor ring in bytes 782 * @dma: Physical address of ring 783 * @q_vector: Backreference to associated vector 784 */ 785 struct idpf_compl_queue { 786 __cacheline_group_begin_aligned(read_mostly); 787 struct idpf_splitq_tx_compl_desc *comp; 788 struct idpf_txq_group *txq_grp; 789 790 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 791 u32 desc_count; 792 793 u32 clean_budget; 794 struct net_device *netdev; 795 __cacheline_group_end_aligned(read_mostly); 796 797 __cacheline_group_begin_aligned(read_write); 798 u32 next_to_use; 799 u32 next_to_clean; 800 801 aligned_u64 num_completions; 802 __cacheline_group_end_aligned(read_write); 803 804 __cacheline_group_begin_aligned(cold); 805 u32 q_id; 806 u32 size; 807 dma_addr_t dma; 808 809 struct idpf_q_vector *q_vector; 810 __cacheline_group_end_aligned(cold); 811 }; 812 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24); 813 814 /** 815 * struct idpf_sw_queue 816 * @ring: Pointer to the ring 817 * @flags: See enum idpf_queue_flags_t 818 * @desc_count: Descriptor count 819 * @next_to_use: Buffer to allocate at 820 * @next_to_clean: Next descriptor to clean 821 * 822 * Software queues are used in splitq mode to manage buffers between rxq 823 * producer and the bufq consumer. These are required in order to maintain a 824 * lockless buffer management system and are strictly software only constructs. 825 */ 826 struct idpf_sw_queue { 827 __cacheline_group_begin_aligned(read_mostly); 828 u32 *ring; 829 830 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); 831 u32 desc_count; 832 __cacheline_group_end_aligned(read_mostly); 833 834 __cacheline_group_begin_aligned(read_write); 835 u32 next_to_use; 836 u32 next_to_clean; 837 __cacheline_group_end_aligned(read_write); 838 }; 839 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24); 840 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8); 841 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8); 842 843 /** 844 * struct idpf_rxq_set 845 * @rxq: RX queue 846 * @refillq: pointers to refill queues 847 * 848 * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs. 849 * Each rxq needs a refillq to return used buffers back to the respective bufq. 850 * Bufqs then clean these refillqs for buffers to give to hardware. 851 */ 852 struct idpf_rxq_set { 853 struct idpf_rx_queue rxq; 854 struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP]; 855 }; 856 857 /** 858 * struct idpf_bufq_set 859 * @bufq: Buffer queue 860 * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets 861 * in idpf_rxq_group. 862 * @refillqs: Pointer to refill queues array. 863 * 864 * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs. 865 * In this bufq_set, there will be one refillq for each rxq in this rxq_group. 866 * Used buffers received by rxqs will be put on refillqs which bufqs will 867 * clean to return new buffers back to hardware. 868 * 869 * Buffers needed by some number of rxqs associated in this rxq_group are 870 * managed by at most two bufqs (depending on performance configuration). 871 */ 872 struct idpf_bufq_set { 873 struct idpf_buf_queue bufq; 874 int num_refillqs; 875 struct idpf_sw_queue *refillqs; 876 }; 877 878 /** 879 * struct idpf_rxq_group 880 * @vport: Vport back pointer 881 * @singleq: Struct with single queue related members 882 * @singleq.num_rxq: Number of RX queues associated 883 * @singleq.rxqs: Array of RX queue pointers 884 * @splitq: Struct with split queue related members 885 * @splitq.num_rxq_sets: Number of RX queue sets 886 * @splitq.rxq_sets: Array of RX queue sets 887 * @splitq.bufq_sets: Buffer queue set pointer 888 * 889 * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a 890 * rxq_group contains all the rxqs, bufqs and refillqs needed to 891 * manage buffers in splitq mode. 892 */ 893 struct idpf_rxq_group { 894 struct idpf_vport *vport; 895 896 union { 897 struct { 898 u16 num_rxq; 899 struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q]; 900 } singleq; 901 struct { 902 u16 num_rxq_sets; 903 struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q]; 904 struct idpf_bufq_set *bufq_sets; 905 } splitq; 906 }; 907 }; 908 909 /** 910 * struct idpf_txq_group 911 * @vport: Vport back pointer 912 * @num_txq: Number of TX queues associated 913 * @txqs: Array of TX queue pointers 914 * @stashes: array of OOO stashes for the queues 915 * @complq: Associated completion queue pointer, split queue only 916 * @num_completions_pending: Total number of completions pending for the 917 * completion queue, acculumated for all TX queues 918 * associated with that completion queue. 919 * 920 * Between singleq and splitq, a txq_group is largely the same except for the 921 * complq. In splitq a single complq is responsible for handling completions 922 * for some number of txqs associated in this txq_group. 923 */ 924 struct idpf_txq_group { 925 struct idpf_vport *vport; 926 927 u16 num_txq; 928 struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q]; 929 struct idpf_txq_stash *stashes; 930 931 struct idpf_compl_queue *complq; 932 933 aligned_u64 num_completions_pending; 934 }; 935 936 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector) 937 { 938 u32 cpu; 939 940 if (!q_vector) 941 return NUMA_NO_NODE; 942 943 cpu = cpumask_first(q_vector->affinity_mask); 944 945 return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE; 946 } 947 948 /** 949 * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag 950 * @size: transmit request size in bytes 951 * 952 * In the case where a large frag (>= 16K) needs to be split across multiple 953 * descriptors, we need to assume that we can have no more than 12K of data 954 * per descriptor due to hardware alignment restrictions (4K alignment). 955 */ 956 static inline u32 idpf_size_to_txd_count(unsigned int size) 957 { 958 return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); 959 } 960 961 /** 962 * idpf_tx_singleq_build_ctob - populate command tag offset and size 963 * @td_cmd: Command to be filled in desc 964 * @td_offset: Offset to be filled in desc 965 * @size: Size of the buffer 966 * @td_tag: td tag to be filled 967 * 968 * Returns the 64 bit value populated with the input parameters 969 */ 970 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset, 971 unsigned int size, u64 td_tag) 972 { 973 return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA | 974 (td_cmd << IDPF_TXD_QW1_CMD_S) | 975 (td_offset << IDPF_TXD_QW1_OFFSET_S) | 976 ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) | 977 (td_tag << IDPF_TXD_QW1_L2TAG1_S)); 978 } 979 980 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, 981 struct idpf_tx_splitq_params *params, 982 u16 td_cmd, u16 size); 983 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, 984 struct idpf_tx_splitq_params *params, 985 u16 td_cmd, u16 size); 986 /** 987 * idpf_tx_splitq_build_desc - determine which type of data descriptor to build 988 * @desc: descriptor to populate 989 * @params: pointer to tx params struct 990 * @td_cmd: command to be filled in desc 991 * @size: size of buffer 992 */ 993 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, 994 struct idpf_tx_splitq_params *params, 995 u16 td_cmd, u16 size) 996 { 997 if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) 998 idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); 999 else 1000 idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); 1001 } 1002 1003 /** 1004 * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts 1005 * @q_vector: pointer to queue vector struct 1006 */ 1007 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector) 1008 { 1009 struct idpf_intr_reg *reg; 1010 1011 if (q_vector->wb_on_itr) 1012 return; 1013 1014 q_vector->wb_on_itr = true; 1015 reg = &q_vector->intr_reg; 1016 1017 writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m | 1018 (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s), 1019 reg->dyn_ctl); 1020 } 1021 1022 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget); 1023 void idpf_vport_init_num_qs(struct idpf_vport *vport, 1024 struct virtchnl2_create_vport *vport_msg); 1025 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport); 1026 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index, 1027 struct virtchnl2_create_vport *vport_msg, 1028 struct idpf_vport_max_q *max_q); 1029 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport); 1030 int idpf_vport_queues_alloc(struct idpf_vport *vport); 1031 void idpf_vport_queues_rel(struct idpf_vport *vport); 1032 void idpf_vport_intr_rel(struct idpf_vport *vport); 1033 int idpf_vport_intr_alloc(struct idpf_vport *vport); 1034 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector); 1035 void idpf_vport_intr_deinit(struct idpf_vport *vport); 1036 int idpf_vport_intr_init(struct idpf_vport *vport); 1037 void idpf_vport_intr_ena(struct idpf_vport *vport); 1038 int idpf_config_rss(struct idpf_vport *vport); 1039 int idpf_init_rss(struct idpf_vport *vport); 1040 void idpf_deinit_rss(struct idpf_vport *vport); 1041 int idpf_rx_bufs_init_all(struct idpf_vport *vport); 1042 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, 1043 unsigned int size); 1044 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size); 1045 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val, 1046 bool xmit_more); 1047 unsigned int idpf_size_to_txd_count(unsigned int size); 1048 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb); 1049 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb, 1050 struct idpf_tx_buf *first, u16 ring_idx); 1051 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq, 1052 struct sk_buff *skb); 1053 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue); 1054 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb, 1055 struct idpf_tx_queue *tx_q); 1056 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev); 1057 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq, 1058 u16 cleaned_count); 1059 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off); 1060 1061 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, 1062 u32 needed) 1063 { 1064 return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx, 1065 IDPF_DESC_UNUSED(tx_q), 1066 needed, needed); 1067 } 1068 1069 #endif /* !_IDPF_TXRX_H_ */ 1070