xref: /linux/drivers/net/ethernet/intel/idpf/idpf_txrx.h (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6 
7 #include <linux/dim.h>
8 
9 #include <net/libeth/cache.h>
10 #include <net/tcp.h>
11 #include <net/netdev_queues.h>
12 
13 #include "idpf_lan_txrx.h"
14 #include "virtchnl2_lan_desc.h"
15 
16 #define IDPF_LARGE_MAX_Q			256
17 #define IDPF_MAX_Q				16
18 #define IDPF_MIN_Q				2
19 /* Mailbox Queue */
20 #define IDPF_MAX_MBXQ				1
21 
22 #define IDPF_MIN_TXQ_DESC			64
23 #define IDPF_MIN_RXQ_DESC			64
24 #define IDPF_MIN_TXQ_COMPLQ_DESC		256
25 #define IDPF_MAX_QIDS				256
26 
27 /* Number of descriptors in a queue should be a multiple of 32. RX queue
28  * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
29  * to achieve BufQ descriptors aligned to 32
30  */
31 #define IDPF_REQ_DESC_MULTIPLE			32
32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
35 
36 #define IDPF_MAX_DESCS				8160
37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
39 #define MIN_SUPPORT_TXDID (\
40 	VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
41 	VIRTCHNL2_TXDID_FLEX_TSO_CTX)
42 
43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS		1
44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS		1
45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP		4
46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP		4
47 
48 #define IDPF_COMPLQ_PER_GROUP			1
49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP		1
50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP		2
51 #define IDPF_BUFQ2_ENA				1
52 #define IDPF_NUMQ_PER_CHUNK			1
53 
54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP		1
55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP		1
56 
57 /* Default vector sharing */
58 #define IDPF_MBX_Q_VEC		1
59 #define IDPF_MIN_Q_VEC		1
60 
61 #define IDPF_DFLT_TX_Q_DESC_COUNT		512
62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT		512
63 #define IDPF_DFLT_RX_Q_DESC_COUNT		512
64 
65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
66  * given RX completion queue has descriptors. This includes _ALL_ buffer
67  * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
68  * you have a total of 1024 buffers so your RX queue _must_ have at least that
69  * many descriptors. This macro divides a given number of RX descriptors by
70  * number of buffer queues to calculate how many descriptors each buffer queue
71  * can have without overrunning the RX queue.
72  *
73  * If you give hardware more buffers than completion descriptors what will
74  * happen is that if hardware gets a chance to post more than ring wrap of
75  * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
76  * in the descriptor will be wrong. Any overwritten descriptors' buffers will
77  * be gone forever and SW has no reasonable way to tell that this has happened.
78  * From SW perspective, when we finally get an interrupt, it looks like we're
79  * still waiting for descriptor to be done, stalling forever.
80  */
81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ)	((RXD) / (NUM_BUFQ))
82 
83 #define IDPF_RX_BUFQ_WORKING_SET(rxq)		((rxq)->desc_count - 1)
84 
85 #define IDPF_RX_BUMP_NTC(rxq, ntc)				\
86 do {								\
87 	if (unlikely(++(ntc) == (rxq)->desc_count)) {		\
88 		ntc = 0;					\
89 		idpf_queue_change(GEN_CHK, rxq);		\
90 	}							\
91 } while (0)
92 
93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx)			\
94 do {								\
95 	if (unlikely(++(idx) == (q)->desc_count))		\
96 		idx = 0;					\
97 } while (0)
98 
99 #define IDPF_RX_BUF_STRIDE			32
100 #define IDPF_RX_BUF_POST_STRIDE			16
101 #define IDPF_LOW_WATERMARK			64
102 
103 #define IDPF_TX_TSO_MIN_MSS			88
104 
105 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
106  * only relevant in flow scheduling mode
107  */
108 #define IDPF_TX_SPLITQ_RE_MIN_GAP	64
109 
110 #define IDPF_RX_BI_GEN_M		BIT(16)
111 #define IDPF_RX_BI_BUFID_M		GENMASK(15, 0)
112 
113 #define IDPF_RXD_EOF_SPLITQ		VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
114 #define IDPF_RXD_EOF_SINGLEQ		VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
115 
116 #define IDPF_DESC_UNUSED(txq)     \
117 	((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
118 	(txq)->next_to_clean - (txq)->next_to_use - 1)
119 
120 #define IDPF_TX_BUF_RSV_UNUSED(txq)	((txq)->stash->buf_stack.top)
121 #define IDPF_TX_BUF_RSV_LOW(txq)	(IDPF_TX_BUF_RSV_UNUSED(txq) < \
122 					 (txq)->desc_count >> 2)
123 
124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq)	((txcq)->desc_count >> 1)
125 /* Determine the absolute number of completions pending, i.e. the number of
126  * completions that are expected to arrive on the TX completion queue.
127  */
128 #define IDPF_TX_COMPLQ_PENDING(txq)	\
129 	(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
130 	0 : U32_MAX) + \
131 	(txq)->num_completions_pending - (txq)->complq->num_completions)
132 
133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH	16
134 /* Adjust the generation for the completion tag and wrap if necessary */
135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
136 	((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
137 	0 : (txq)->compl_tag_cur_gen)
138 
139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
140 
141 #define IDPF_TX_FLAGS_TSO		BIT(0)
142 #define IDPF_TX_FLAGS_IPV4		BIT(1)
143 #define IDPF_TX_FLAGS_IPV6		BIT(2)
144 #define IDPF_TX_FLAGS_TUNNEL		BIT(3)
145 
146 union idpf_tx_flex_desc {
147 	struct idpf_flex_tx_desc q; /* queue based scheduling */
148 	struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
149 };
150 
151 #define idpf_tx_buf libeth_sqe
152 
153 /**
154  * struct idpf_buf_lifo - LIFO for managing OOO completions
155  * @top: Used to know how many buffers are left
156  * @size: Total size of LIFO
157  * @bufs: Backing array
158  */
159 struct idpf_buf_lifo {
160 	u16 top;
161 	u16 size;
162 	struct idpf_tx_stash **bufs;
163 };
164 
165 /**
166  * struct idpf_tx_offload_params - Offload parameters for a given packet
167  * @tx_flags: Feature flags enabled for this packet
168  * @hdr_offsets: Offset parameter for single queue model
169  * @cd_tunneling: Type of tunneling enabled for single queue model
170  * @tso_len: Total length of payload to segment
171  * @mss: Segment size
172  * @tso_segs: Number of segments to be sent
173  * @tso_hdr_len: Length of headers to be duplicated
174  * @td_cmd: Command field to be inserted into descriptor
175  */
176 struct idpf_tx_offload_params {
177 	u32 tx_flags;
178 
179 	u32 hdr_offsets;
180 	u32 cd_tunneling;
181 
182 	u32 tso_len;
183 	u16 mss;
184 	u16 tso_segs;
185 	u16 tso_hdr_len;
186 
187 	u16 td_cmd;
188 };
189 
190 /**
191  * struct idpf_tx_splitq_params
192  * @dtype: General descriptor info
193  * @eop_cmd: Type of EOP
194  * @compl_tag: Associated tag for completion
195  * @td_tag: Descriptor tunneling tag
196  * @offload: Offload parameters
197  */
198 struct idpf_tx_splitq_params {
199 	enum idpf_tx_desc_dtype_value dtype;
200 	u16 eop_cmd;
201 	union {
202 		u16 compl_tag;
203 		u16 td_tag;
204 	};
205 
206 	struct idpf_tx_offload_params offload;
207 };
208 
209 enum idpf_tx_ctx_desc_eipt_offload {
210 	IDPF_TX_CTX_EXT_IP_NONE         = 0x0,
211 	IDPF_TX_CTX_EXT_IP_IPV6         = 0x1,
212 	IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
213 	IDPF_TX_CTX_EXT_IP_IPV4         = 0x3
214 };
215 
216 /* Checksum offload bits decoded from the receive descriptor. */
217 struct idpf_rx_csum_decoded {
218 	u32 l3l4p : 1;
219 	u32 ipe : 1;
220 	u32 eipe : 1;
221 	u32 eudpe : 1;
222 	u32 ipv6exadd : 1;
223 	u32 l4e : 1;
224 	u32 pprs : 1;
225 	u32 nat : 1;
226 	u32 raw_csum_inv : 1;
227 	u32 raw_csum : 16;
228 };
229 
230 struct idpf_rx_extracted {
231 	unsigned int size;
232 	u16 rx_ptype;
233 };
234 
235 #define IDPF_TX_COMPLQ_CLEAN_BUDGET	256
236 #define IDPF_TX_MIN_PKT_LEN		17
237 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR	1
238 #define IDPF_TX_DESCS_PER_CACHE_LINE	(L1_CACHE_BYTES / \
239 					 sizeof(struct idpf_flex_tx_desc))
240 #define IDPF_TX_DESCS_FOR_CTX		1
241 /* TX descriptors needed, worst case */
242 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
243 			     IDPF_TX_DESCS_PER_CACHE_LINE + \
244 			     IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
245 
246 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
247  * In order to align with the read requests we will align the value to
248  * the nearest 4K which represents our maximum read request size.
249  */
250 #define IDPF_TX_MAX_READ_REQ_SIZE	SZ_4K
251 #define IDPF_TX_MAX_DESC_DATA		(SZ_16K - 1)
252 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
253 	ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
254 
255 #define idpf_rx_buf libeth_fqe
256 
257 #define IDPF_RX_MAX_PTYPE_PROTO_IDS    32
258 #define IDPF_RX_MAX_PTYPE_SZ	(sizeof(struct virtchnl2_ptype) + \
259 				 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
260 #define IDPF_RX_PTYPE_HDR_SZ	sizeof(struct virtchnl2_get_ptype_info)
261 #define IDPF_RX_MAX_PTYPES_PER_BUF	\
262 	DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
263 			   IDPF_RX_MAX_PTYPE_SZ)
264 
265 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
266 
267 #define IDPF_TUN_IP_GRE (\
268 	IDPF_PTYPE_TUNNEL_IP |\
269 	IDPF_PTYPE_TUNNEL_IP_GRENAT)
270 
271 #define IDPF_TUN_IP_GRE_MAC (\
272 	IDPF_TUN_IP_GRE |\
273 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
274 
275 #define IDPF_RX_MAX_PTYPE	1024
276 #define IDPF_RX_MAX_BASE_PTYPE	256
277 #define IDPF_INVALID_PTYPE_ID	0xFFFF
278 
279 enum idpf_tunnel_state {
280 	IDPF_PTYPE_TUNNEL_IP                    = BIT(0),
281 	IDPF_PTYPE_TUNNEL_IP_GRENAT             = BIT(1),
282 	IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC         = BIT(2),
283 };
284 
285 struct idpf_ptype_state {
286 	bool outer_ip:1;
287 	bool outer_frag:1;
288 	u8 tunnel_state:6;
289 };
290 
291 /**
292  * enum idpf_queue_flags_t
293  * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
294  *		      identify new descriptor writebacks on the ring. HW sets
295  *		      the gen bit to 1 on the first writeback of any given
296  *		      descriptor. After the ring wraps, HW sets the gen bit of
297  *		      those descriptors to 0, and continues flipping
298  *		      0->1 or 1->0 on each ring wrap. SW maintains its own
299  *		      gen bit to know what value will indicate writebacks on
300  *		      the next pass around the ring. E.g. it is initialized
301  *		      to 1 and knows that reading a gen bit of 1 in any
302  *		      descriptor on the initial pass of the ring indicates a
303  *		      writeback. It also flips on every ring wrap.
304  * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
305  *			  bit and Q_RFL_GEN is the SW bit.
306  * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
307  * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
308  * @__IDPF_Q_POLL_MODE: Enable poll mode
309  * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
310  * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
311  * @__IDPF_Q_FLAGS_NBITS: Must be last
312  */
313 enum idpf_queue_flags_t {
314 	__IDPF_Q_GEN_CHK,
315 	__IDPF_Q_RFL_GEN_CHK,
316 	__IDPF_Q_FLOW_SCH_EN,
317 	__IDPF_Q_SW_MARKER,
318 	__IDPF_Q_POLL_MODE,
319 	__IDPF_Q_CRC_EN,
320 	__IDPF_Q_HSPLIT_EN,
321 
322 	__IDPF_Q_FLAGS_NBITS,
323 };
324 
325 #define idpf_queue_set(f, q)		__set_bit(__IDPF_Q_##f, (q)->flags)
326 #define idpf_queue_clear(f, q)		__clear_bit(__IDPF_Q_##f, (q)->flags)
327 #define idpf_queue_change(f, q)		__change_bit(__IDPF_Q_##f, (q)->flags)
328 #define idpf_queue_has(f, q)		test_bit(__IDPF_Q_##f, (q)->flags)
329 
330 #define idpf_queue_has_clear(f, q)			\
331 	__test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
332 #define idpf_queue_assign(f, q, v)			\
333 	__assign_bit(__IDPF_Q_##f, (q)->flags, v)
334 
335 /**
336  * struct idpf_vec_regs
337  * @dyn_ctl_reg: Dynamic control interrupt register offset
338  * @itrn_reg: Interrupt Throttling Rate register offset
339  * @itrn_index_spacing: Register spacing between ITR registers of the same
340  *			vector
341  */
342 struct idpf_vec_regs {
343 	u32 dyn_ctl_reg;
344 	u32 itrn_reg;
345 	u32 itrn_index_spacing;
346 };
347 
348 /**
349  * struct idpf_intr_reg
350  * @dyn_ctl: Dynamic control interrupt register
351  * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
352  * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask
353  * @dyn_ctl_itridx_s: Register bit offset for ITR index
354  * @dyn_ctl_itridx_m: Mask for ITR index
355  * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
356  * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature
357  * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index
358  * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable
359  * @rx_itr: RX ITR register
360  * @tx_itr: TX ITR register
361  * @icr_ena: Interrupt cause register offset
362  * @icr_ena_ctlq_m: Mask for ICR
363  */
364 struct idpf_intr_reg {
365 	void __iomem *dyn_ctl;
366 	u32 dyn_ctl_intena_m;
367 	u32 dyn_ctl_intena_msk_m;
368 	u32 dyn_ctl_itridx_s;
369 	u32 dyn_ctl_itridx_m;
370 	u32 dyn_ctl_intrvl_s;
371 	u32 dyn_ctl_wb_on_itr_m;
372 	u32 dyn_ctl_sw_itridx_ena_m;
373 	u32 dyn_ctl_swint_trig_m;
374 	void __iomem *rx_itr;
375 	void __iomem *tx_itr;
376 	void __iomem *icr_ena;
377 	u32 icr_ena_ctlq_m;
378 };
379 
380 /**
381  * struct idpf_q_vector
382  * @vport: Vport back pointer
383  * @num_rxq: Number of RX queues
384  * @num_txq: Number of TX queues
385  * @num_bufq: Number of buffer queues
386  * @num_complq: number of completion queues
387  * @rx: Array of RX queues to service
388  * @tx: Array of TX queues to service
389  * @bufq: Array of buffer queues to service
390  * @complq: array of completion queues
391  * @intr_reg: See struct idpf_intr_reg
392  * @napi: napi handler
393  * @total_events: Number of interrupts processed
394  * @wb_on_itr: whether WB on ITR is enabled
395  * @tx_dim: Data for TX net_dim algorithm
396  * @tx_itr_value: TX interrupt throttling rate
397  * @tx_intr_mode: Dynamic ITR or not
398  * @tx_itr_idx: TX ITR index
399  * @rx_dim: Data for RX net_dim algorithm
400  * @rx_itr_value: RX interrupt throttling rate
401  * @rx_intr_mode: Dynamic ITR or not
402  * @rx_itr_idx: RX ITR index
403  * @v_idx: Vector index
404  * @affinity_mask: CPU affinity mask
405  */
406 struct idpf_q_vector {
407 	__cacheline_group_begin_aligned(read_mostly);
408 	struct idpf_vport *vport;
409 
410 	u16 num_rxq;
411 	u16 num_txq;
412 	u16 num_bufq;
413 	u16 num_complq;
414 	struct idpf_rx_queue **rx;
415 	struct idpf_tx_queue **tx;
416 	struct idpf_buf_queue **bufq;
417 	struct idpf_compl_queue **complq;
418 
419 	struct idpf_intr_reg intr_reg;
420 	__cacheline_group_end_aligned(read_mostly);
421 
422 	__cacheline_group_begin_aligned(read_write);
423 	struct napi_struct napi;
424 	u16 total_events;
425 	bool wb_on_itr;
426 
427 	struct dim tx_dim;
428 	u16 tx_itr_value;
429 	bool tx_intr_mode;
430 	u32 tx_itr_idx;
431 
432 	struct dim rx_dim;
433 	u16 rx_itr_value;
434 	bool rx_intr_mode;
435 	u32 rx_itr_idx;
436 	__cacheline_group_end_aligned(read_write);
437 
438 	__cacheline_group_begin_aligned(cold);
439 	u16 v_idx;
440 
441 	cpumask_var_t affinity_mask;
442 	__cacheline_group_end_aligned(cold);
443 };
444 libeth_cacheline_set_assert(struct idpf_q_vector, 120,
445 			    24 + sizeof(struct napi_struct) +
446 			    2 * sizeof(struct dim),
447 			    8 + sizeof(cpumask_var_t));
448 
449 struct idpf_rx_queue_stats {
450 	u64_stats_t packets;
451 	u64_stats_t bytes;
452 	u64_stats_t rsc_pkts;
453 	u64_stats_t hw_csum_err;
454 	u64_stats_t hsplit_pkts;
455 	u64_stats_t hsplit_buf_ovf;
456 	u64_stats_t bad_descs;
457 };
458 
459 struct idpf_tx_queue_stats {
460 	u64_stats_t packets;
461 	u64_stats_t bytes;
462 	u64_stats_t lso_pkts;
463 	u64_stats_t linearize;
464 	u64_stats_t q_busy;
465 	u64_stats_t skb_drops;
466 	u64_stats_t dma_map_errs;
467 };
468 
469 #define IDPF_ITR_DYNAMIC	1
470 #define IDPF_ITR_MAX		0x1FE0
471 #define IDPF_ITR_20K		0x0032
472 #define IDPF_ITR_GRAN_S		1	/* Assume ITR granularity is 2us */
473 #define IDPF_ITR_MASK		0x1FFE  /* ITR register value alignment mask */
474 #define ITR_REG_ALIGN(setting)	((setting) & IDPF_ITR_MASK)
475 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
476 #define IDPF_ITR_TX_DEF		IDPF_ITR_20K
477 #define IDPF_ITR_RX_DEF		IDPF_ITR_20K
478 /* Index used for 'SW ITR' update in DYN_CTL register */
479 #define IDPF_SW_ITR_UPDATE_IDX	2
480 /* Index used for 'No ITR' update in DYN_CTL register */
481 #define IDPF_NO_ITR_UPDATE_IDX	3
482 #define IDPF_ITR_IDX_SPACING(spacing, dflt)	(spacing ? spacing : dflt)
483 #define IDPF_DIM_DEFAULT_PROFILE_IX		1
484 
485 /**
486  * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
487  * @buf_stack: Stack of empty buffers to store buffer info for out of order
488  *	       buffer completions. See struct idpf_buf_lifo
489  * @sched_buf_hash: Hash table to store buffers
490  */
491 struct idpf_txq_stash {
492 	struct idpf_buf_lifo buf_stack;
493 	DECLARE_HASHTABLE(sched_buf_hash, 12);
494 } ____cacheline_aligned;
495 
496 /**
497  * struct idpf_rx_queue - software structure representing a receive queue
498  * @rx: universal receive descriptor array
499  * @single_buf: buffer descriptor array in singleq
500  * @desc_ring: virtual descriptor ring address
501  * @bufq_sets: Pointer to the array of buffer queues in splitq mode
502  * @napi: NAPI instance corresponding to this queue (splitq)
503  * @rx_buf: See struct &libeth_fqe
504  * @pp: Page pool pointer in singleq mode
505  * @netdev: &net_device corresponding to this queue
506  * @tail: Tail offset. Used for both queue models single and split.
507  * @flags: See enum idpf_queue_flags_t
508  * @idx: For RX queue, it is used to index to total RX queue across groups and
509  *	 used for skb reporting.
510  * @desc_count: Number of descriptors
511  * @rxdids: Supported RX descriptor ids
512  * @rx_ptype_lkup: LUT of Rx ptypes
513  * @next_to_use: Next descriptor to use
514  * @next_to_clean: Next descriptor to clean
515  * @next_to_alloc: RX buffer to allocate at
516  * @skb: Pointer to the skb
517  * @truesize: data buffer truesize in singleq
518  * @stats_sync: See struct u64_stats_sync
519  * @q_stats: See union idpf_rx_queue_stats
520  * @q_id: Queue id
521  * @size: Length of descriptor ring in bytes
522  * @dma: Physical address of ring
523  * @q_vector: Backreference to associated vector
524  * @rx_buffer_low_watermark: RX buffer low watermark
525  * @rx_hbuf_size: Header buffer size
526  * @rx_buf_size: Buffer size
527  * @rx_max_pkt_size: RX max packet size
528  */
529 struct idpf_rx_queue {
530 	__cacheline_group_begin_aligned(read_mostly);
531 	union {
532 		union virtchnl2_rx_desc *rx;
533 		struct virtchnl2_singleq_rx_buf_desc *single_buf;
534 
535 		void *desc_ring;
536 	};
537 	union {
538 		struct {
539 			struct idpf_bufq_set *bufq_sets;
540 			struct napi_struct *napi;
541 		};
542 		struct {
543 			struct libeth_fqe *rx_buf;
544 			struct page_pool *pp;
545 		};
546 	};
547 	struct net_device *netdev;
548 	void __iomem *tail;
549 
550 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
551 	u16 idx;
552 	u16 desc_count;
553 
554 	u32 rxdids;
555 	const struct libeth_rx_pt *rx_ptype_lkup;
556 	__cacheline_group_end_aligned(read_mostly);
557 
558 	__cacheline_group_begin_aligned(read_write);
559 	u16 next_to_use;
560 	u16 next_to_clean;
561 	u16 next_to_alloc;
562 
563 	struct sk_buff *skb;
564 	u32 truesize;
565 
566 	struct u64_stats_sync stats_sync;
567 	struct idpf_rx_queue_stats q_stats;
568 	__cacheline_group_end_aligned(read_write);
569 
570 	__cacheline_group_begin_aligned(cold);
571 	u32 q_id;
572 	u32 size;
573 	dma_addr_t dma;
574 
575 	struct idpf_q_vector *q_vector;
576 
577 	u16 rx_buffer_low_watermark;
578 	u16 rx_hbuf_size;
579 	u16 rx_buf_size;
580 	u16 rx_max_pkt_size;
581 	__cacheline_group_end_aligned(cold);
582 };
583 libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
584 			    80 + sizeof(struct u64_stats_sync),
585 			    32);
586 
587 /**
588  * struct idpf_tx_queue - software structure representing a transmit queue
589  * @base_tx: base Tx descriptor array
590  * @base_ctx: base Tx context descriptor array
591  * @flex_tx: flex Tx descriptor array
592  * @flex_ctx: flex Tx context descriptor array
593  * @desc_ring: virtual descriptor ring address
594  * @tx_buf: See struct idpf_tx_buf
595  * @txq_grp: See struct idpf_txq_group
596  * @dev: Device back pointer for DMA mapping
597  * @tail: Tail offset. Used for both queue models single and split
598  * @flags: See enum idpf_queue_flags_t
599  * @idx: For TX queue, it is used as index to map between TX queue group and
600  *	 hot path TX pointers stored in vport. Used in both singleq/splitq.
601  * @desc_count: Number of descriptors
602  * @tx_min_pkt_len: Min supported packet length
603  * @compl_tag_gen_s: Completion tag generation bit
604  *	The format of the completion tag will change based on the TXQ
605  *	descriptor ring size so that we can maintain roughly the same level
606  *	of "uniqueness" across all descriptor sizes. For example, if the
607  *	TXQ descriptor ring size is 64 (the minimum size supported), the
608  *	completion tag will be formatted as below:
609  *	15                 6 5         0
610  *	--------------------------------
611  *	|    GEN=0-1023     |IDX = 0-63|
612  *	--------------------------------
613  *
614  *	This gives us 64*1024 = 65536 possible unique values. Similarly, if
615  *	the TXQ descriptor ring size is 8160 (the maximum size supported),
616  *	the completion tag will be formatted as below:
617  *	15 13 12                       0
618  *	--------------------------------
619  *	|GEN |       IDX = 0-8159      |
620  *	--------------------------------
621  *
622  *	This gives us 8*8160 = 65280 possible unique values.
623  * @netdev: &net_device corresponding to this queue
624  * @next_to_use: Next descriptor to use
625  * @next_to_clean: Next descriptor to clean
626  * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
627  *		   the TX completion queue, it can be for any TXQ associated
628  *		   with that completion queue. This means we can clean up to
629  *		   N TXQs during a single call to clean the completion queue.
630  *		   cleaned_bytes|pkts tracks the clean stats per TXQ during
631  *		   that single call to clean the completion queue. By doing so,
632  *		   we can update BQL with aggregate cleaned stats for each TXQ
633  *		   only once at the end of the cleaning routine.
634  * @clean_budget: singleq only, queue cleaning budget
635  * @cleaned_pkts: Number of packets cleaned for the above said case
636  * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
637  * @stash: Tx buffer stash for Flow-based scheduling mode
638  * @compl_tag_bufid_m: Completion tag buffer id mask
639  * @compl_tag_cur_gen: Used to keep track of current completion tag generation
640  * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
641  * @stats_sync: See struct u64_stats_sync
642  * @q_stats: See union idpf_tx_queue_stats
643  * @q_id: Queue id
644  * @size: Length of descriptor ring in bytes
645  * @dma: Physical address of ring
646  * @q_vector: Backreference to associated vector
647  */
648 struct idpf_tx_queue {
649 	__cacheline_group_begin_aligned(read_mostly);
650 	union {
651 		struct idpf_base_tx_desc *base_tx;
652 		struct idpf_base_tx_ctx_desc *base_ctx;
653 		union idpf_tx_flex_desc *flex_tx;
654 		struct idpf_flex_tx_ctx_desc *flex_ctx;
655 
656 		void *desc_ring;
657 	};
658 	struct libeth_sqe *tx_buf;
659 	struct idpf_txq_group *txq_grp;
660 	struct device *dev;
661 	void __iomem *tail;
662 
663 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
664 	u16 idx;
665 	u16 desc_count;
666 
667 	u16 tx_min_pkt_len;
668 	u16 compl_tag_gen_s;
669 
670 	struct net_device *netdev;
671 	__cacheline_group_end_aligned(read_mostly);
672 
673 	__cacheline_group_begin_aligned(read_write);
674 	u16 next_to_use;
675 	u16 next_to_clean;
676 
677 	union {
678 		u32 cleaned_bytes;
679 		u32 clean_budget;
680 	};
681 	u16 cleaned_pkts;
682 
683 	u16 tx_max_bufs;
684 	struct idpf_txq_stash *stash;
685 
686 	u16 compl_tag_bufid_m;
687 	u16 compl_tag_cur_gen;
688 	u16 compl_tag_gen_max;
689 
690 	struct u64_stats_sync stats_sync;
691 	struct idpf_tx_queue_stats q_stats;
692 	__cacheline_group_end_aligned(read_write);
693 
694 	__cacheline_group_begin_aligned(cold);
695 	u32 q_id;
696 	u32 size;
697 	dma_addr_t dma;
698 
699 	struct idpf_q_vector *q_vector;
700 	__cacheline_group_end_aligned(cold);
701 };
702 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
703 			    88 + sizeof(struct u64_stats_sync),
704 			    24);
705 
706 /**
707  * struct idpf_buf_queue - software structure representing a buffer queue
708  * @split_buf: buffer descriptor array
709  * @hdr_buf: &libeth_fqe for header buffers
710  * @hdr_pp: &page_pool for header buffers
711  * @buf: &libeth_fqe for data buffers
712  * @pp: &page_pool for data buffers
713  * @tail: Tail offset
714  * @flags: See enum idpf_queue_flags_t
715  * @desc_count: Number of descriptors
716  * @next_to_use: Next descriptor to use
717  * @next_to_clean: Next descriptor to clean
718  * @next_to_alloc: RX buffer to allocate at
719  * @hdr_truesize: truesize for buffer headers
720  * @truesize: truesize for data buffers
721  * @q_id: Queue id
722  * @size: Length of descriptor ring in bytes
723  * @dma: Physical address of ring
724  * @q_vector: Backreference to associated vector
725  * @rx_buffer_low_watermark: RX buffer low watermark
726  * @rx_hbuf_size: Header buffer size
727  * @rx_buf_size: Buffer size
728  */
729 struct idpf_buf_queue {
730 	__cacheline_group_begin_aligned(read_mostly);
731 	struct virtchnl2_splitq_rx_buf_desc *split_buf;
732 	struct libeth_fqe *hdr_buf;
733 	struct page_pool *hdr_pp;
734 	struct libeth_fqe *buf;
735 	struct page_pool *pp;
736 	void __iomem *tail;
737 
738 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
739 	u32 desc_count;
740 	__cacheline_group_end_aligned(read_mostly);
741 
742 	__cacheline_group_begin_aligned(read_write);
743 	u32 next_to_use;
744 	u32 next_to_clean;
745 	u32 next_to_alloc;
746 
747 	u32 hdr_truesize;
748 	u32 truesize;
749 	__cacheline_group_end_aligned(read_write);
750 
751 	__cacheline_group_begin_aligned(cold);
752 	u32 q_id;
753 	u32 size;
754 	dma_addr_t dma;
755 
756 	struct idpf_q_vector *q_vector;
757 
758 	u16 rx_buffer_low_watermark;
759 	u16 rx_hbuf_size;
760 	u16 rx_buf_size;
761 	__cacheline_group_end_aligned(cold);
762 };
763 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
764 
765 /**
766  * struct idpf_compl_queue - software structure representing a completion queue
767  * @comp: completion descriptor array
768  * @txq_grp: See struct idpf_txq_group
769  * @flags: See enum idpf_queue_flags_t
770  * @desc_count: Number of descriptors
771  * @clean_budget: queue cleaning budget
772  * @netdev: &net_device corresponding to this queue
773  * @next_to_use: Next descriptor to use. Relevant in both split & single txq
774  *		 and bufq.
775  * @next_to_clean: Next descriptor to clean
776  * @num_completions: Only relevant for TX completion queue. It tracks the
777  *		     number of completions received to compare against the
778  *		     number of completions pending, as accumulated by the
779  *		     TX queues.
780  * @q_id: Queue id
781  * @size: Length of descriptor ring in bytes
782  * @dma: Physical address of ring
783  * @q_vector: Backreference to associated vector
784  */
785 struct idpf_compl_queue {
786 	__cacheline_group_begin_aligned(read_mostly);
787 	struct idpf_splitq_tx_compl_desc *comp;
788 	struct idpf_txq_group *txq_grp;
789 
790 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
791 	u32 desc_count;
792 
793 	u32 clean_budget;
794 	struct net_device *netdev;
795 	__cacheline_group_end_aligned(read_mostly);
796 
797 	__cacheline_group_begin_aligned(read_write);
798 	u32 next_to_use;
799 	u32 next_to_clean;
800 
801 	aligned_u64 num_completions;
802 	__cacheline_group_end_aligned(read_write);
803 
804 	__cacheline_group_begin_aligned(cold);
805 	u32 q_id;
806 	u32 size;
807 	dma_addr_t dma;
808 
809 	struct idpf_q_vector *q_vector;
810 	__cacheline_group_end_aligned(cold);
811 };
812 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
813 
814 /**
815  * struct idpf_sw_queue
816  * @ring: Pointer to the ring
817  * @flags: See enum idpf_queue_flags_t
818  * @desc_count: Descriptor count
819  * @next_to_use: Buffer to allocate at
820  * @next_to_clean: Next descriptor to clean
821  *
822  * Software queues are used in splitq mode to manage buffers between rxq
823  * producer and the bufq consumer.  These are required in order to maintain a
824  * lockless buffer management system and are strictly software only constructs.
825  */
826 struct idpf_sw_queue {
827 	__cacheline_group_begin_aligned(read_mostly);
828 	u32 *ring;
829 
830 	DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
831 	u32 desc_count;
832 	__cacheline_group_end_aligned(read_mostly);
833 
834 	__cacheline_group_begin_aligned(read_write);
835 	u32 next_to_use;
836 	u32 next_to_clean;
837 	__cacheline_group_end_aligned(read_write);
838 };
839 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
840 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
841 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
842 
843 /**
844  * struct idpf_rxq_set
845  * @rxq: RX queue
846  * @refillq: pointers to refill queues
847  *
848  * Splitq only.  idpf_rxq_set associates an rxq with at an array of refillqs.
849  * Each rxq needs a refillq to return used buffers back to the respective bufq.
850  * Bufqs then clean these refillqs for buffers to give to hardware.
851  */
852 struct idpf_rxq_set {
853 	struct idpf_rx_queue rxq;
854 	struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
855 };
856 
857 /**
858  * struct idpf_bufq_set
859  * @bufq: Buffer queue
860  * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
861  *		  in idpf_rxq_group.
862  * @refillqs: Pointer to refill queues array.
863  *
864  * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
865  * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
866  * Used buffers received by rxqs will be put on refillqs which bufqs will
867  * clean to return new buffers back to hardware.
868  *
869  * Buffers needed by some number of rxqs associated in this rxq_group are
870  * managed by at most two bufqs (depending on performance configuration).
871  */
872 struct idpf_bufq_set {
873 	struct idpf_buf_queue bufq;
874 	int num_refillqs;
875 	struct idpf_sw_queue *refillqs;
876 };
877 
878 /**
879  * struct idpf_rxq_group
880  * @vport: Vport back pointer
881  * @singleq: Struct with single queue related members
882  * @singleq.num_rxq: Number of RX queues associated
883  * @singleq.rxqs: Array of RX queue pointers
884  * @splitq: Struct with split queue related members
885  * @splitq.num_rxq_sets: Number of RX queue sets
886  * @splitq.rxq_sets: Array of RX queue sets
887  * @splitq.bufq_sets: Buffer queue set pointer
888  *
889  * In singleq mode, an rxq_group is simply an array of rxqs.  In splitq, a
890  * rxq_group contains all the rxqs, bufqs and refillqs needed to
891  * manage buffers in splitq mode.
892  */
893 struct idpf_rxq_group {
894 	struct idpf_vport *vport;
895 
896 	union {
897 		struct {
898 			u16 num_rxq;
899 			struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
900 		} singleq;
901 		struct {
902 			u16 num_rxq_sets;
903 			struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
904 			struct idpf_bufq_set *bufq_sets;
905 		} splitq;
906 	};
907 };
908 
909 /**
910  * struct idpf_txq_group
911  * @vport: Vport back pointer
912  * @num_txq: Number of TX queues associated
913  * @txqs: Array of TX queue pointers
914  * @stashes: array of OOO stashes for the queues
915  * @complq: Associated completion queue pointer, split queue only
916  * @num_completions_pending: Total number of completions pending for the
917  *			     completion queue, acculumated for all TX queues
918  *			     associated with that completion queue.
919  *
920  * Between singleq and splitq, a txq_group is largely the same except for the
921  * complq. In splitq a single complq is responsible for handling completions
922  * for some number of txqs associated in this txq_group.
923  */
924 struct idpf_txq_group {
925 	struct idpf_vport *vport;
926 
927 	u16 num_txq;
928 	struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
929 	struct idpf_txq_stash *stashes;
930 
931 	struct idpf_compl_queue *complq;
932 
933 	aligned_u64 num_completions_pending;
934 };
935 
936 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
937 {
938 	u32 cpu;
939 
940 	if (!q_vector)
941 		return NUMA_NO_NODE;
942 
943 	cpu = cpumask_first(q_vector->affinity_mask);
944 
945 	return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
946 }
947 
948 /**
949  * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
950  * @size: transmit request size in bytes
951  *
952  * In the case where a large frag (>= 16K) needs to be split across multiple
953  * descriptors, we need to assume that we can have no more than 12K of data
954  * per descriptor due to hardware alignment restrictions (4K alignment).
955  */
956 static inline u32 idpf_size_to_txd_count(unsigned int size)
957 {
958 	return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
959 }
960 
961 /**
962  * idpf_tx_singleq_build_ctob - populate command tag offset and size
963  * @td_cmd: Command to be filled in desc
964  * @td_offset: Offset to be filled in desc
965  * @size: Size of the buffer
966  * @td_tag: td tag to be filled
967  *
968  * Returns the 64 bit value populated with the input parameters
969  */
970 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
971 						unsigned int size, u64 td_tag)
972 {
973 	return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
974 			   (td_cmd << IDPF_TXD_QW1_CMD_S) |
975 			   (td_offset << IDPF_TXD_QW1_OFFSET_S) |
976 			   ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
977 			   (td_tag << IDPF_TXD_QW1_L2TAG1_S));
978 }
979 
980 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
981 			      struct idpf_tx_splitq_params *params,
982 			      u16 td_cmd, u16 size);
983 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
984 				    struct idpf_tx_splitq_params *params,
985 				    u16 td_cmd, u16 size);
986 /**
987  * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
988  * @desc: descriptor to populate
989  * @params: pointer to tx params struct
990  * @td_cmd: command to be filled in desc
991  * @size: size of buffer
992  */
993 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
994 					     struct idpf_tx_splitq_params *params,
995 					     u16 td_cmd, u16 size)
996 {
997 	if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
998 		idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
999 	else
1000 		idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
1001 }
1002 
1003 /**
1004  * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts
1005  * @q_vector: pointer to queue vector struct
1006  */
1007 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector)
1008 {
1009 	struct idpf_intr_reg *reg;
1010 
1011 	if (q_vector->wb_on_itr)
1012 		return;
1013 
1014 	q_vector->wb_on_itr = true;
1015 	reg = &q_vector->intr_reg;
1016 
1017 	writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m |
1018 	       (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s),
1019 	       reg->dyn_ctl);
1020 }
1021 
1022 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1023 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1024 			    struct virtchnl2_create_vport *vport_msg);
1025 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
1026 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1027 			     struct virtchnl2_create_vport *vport_msg,
1028 			     struct idpf_vport_max_q *max_q);
1029 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
1030 int idpf_vport_queues_alloc(struct idpf_vport *vport);
1031 void idpf_vport_queues_rel(struct idpf_vport *vport);
1032 void idpf_vport_intr_rel(struct idpf_vport *vport);
1033 int idpf_vport_intr_alloc(struct idpf_vport *vport);
1034 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1035 void idpf_vport_intr_deinit(struct idpf_vport *vport);
1036 int idpf_vport_intr_init(struct idpf_vport *vport);
1037 void idpf_vport_intr_ena(struct idpf_vport *vport);
1038 int idpf_config_rss(struct idpf_vport *vport);
1039 int idpf_init_rss(struct idpf_vport *vport);
1040 void idpf_deinit_rss(struct idpf_vport *vport);
1041 int idpf_rx_bufs_init_all(struct idpf_vport *vport);
1042 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
1043 		      unsigned int size);
1044 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
1045 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1046 			   bool xmit_more);
1047 unsigned int idpf_size_to_txd_count(unsigned int size);
1048 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1049 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
1050 			   struct idpf_tx_buf *first, u16 ring_idx);
1051 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
1052 					 struct sk_buff *skb);
1053 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1054 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1055 				  struct idpf_tx_queue *tx_q);
1056 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1057 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1058 				      u16 cleaned_count);
1059 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1060 
1061 static inline bool idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q,
1062 					     u32 needed)
1063 {
1064 	return !netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx,
1065 					  IDPF_DESC_UNUSED(tx_q),
1066 					  needed, needed);
1067 }
1068 
1069 #endif /* !_IDPF_TXRX_H_ */
1070