xref: /linux/drivers/net/ethernet/intel/idpf/idpf_singleq_txrx.c (revision b4ada0618eed0fbd1b1630f73deb048c592b06a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include <net/libeth/rx.h>
5 #include <net/libeth/tx.h>
6 
7 #include "idpf.h"
8 
9 /**
10  * idpf_tx_singleq_csum - Enable tx checksum offloads
11  * @skb: pointer to skb
12  * @off: pointer to struct that holds offload parameters
13  *
14  * Returns 0 or error (negative) if checksum offload cannot be executed, 1
15  * otherwise.
16  */
17 static int idpf_tx_singleq_csum(struct sk_buff *skb,
18 				struct idpf_tx_offload_params *off)
19 {
20 	u32 l4_len, l3_len, l2_len;
21 	union {
22 		struct iphdr *v4;
23 		struct ipv6hdr *v6;
24 		unsigned char *hdr;
25 	} ip;
26 	union {
27 		struct tcphdr *tcp;
28 		unsigned char *hdr;
29 	} l4;
30 	u32 offset, cmd = 0;
31 	u8 l4_proto = 0;
32 	__be16 frag_off;
33 	bool is_tso;
34 
35 	if (skb->ip_summed != CHECKSUM_PARTIAL)
36 		return 0;
37 
38 	ip.hdr = skb_network_header(skb);
39 	l4.hdr = skb_transport_header(skb);
40 
41 	/* compute outer L2 header size */
42 	l2_len = ip.hdr - skb->data;
43 	offset = FIELD_PREP(0x3F << IDPF_TX_DESC_LEN_MACLEN_S, l2_len / 2);
44 	is_tso = !!(off->tx_flags & IDPF_TX_FLAGS_TSO);
45 	if (skb->encapsulation) {
46 		u32 tunnel = 0;
47 
48 		/* define outer network header type */
49 		if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
50 			/* The stack computes the IP header already, the only
51 			 * time we need the hardware to recompute it is in the
52 			 * case of TSO.
53 			 */
54 			tunnel |= is_tso ?
55 				  IDPF_TX_CTX_EXT_IP_IPV4 :
56 				  IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
57 
58 			l4_proto = ip.v4->protocol;
59 		} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
60 			tunnel |= IDPF_TX_CTX_EXT_IP_IPV6;
61 
62 			l4_proto = ip.v6->nexthdr;
63 			if (ipv6_ext_hdr(l4_proto))
64 				ipv6_skip_exthdr(skb, skb_network_offset(skb) +
65 						 sizeof(*ip.v6),
66 						 &l4_proto, &frag_off);
67 		}
68 
69 		/* define outer transport */
70 		switch (l4_proto) {
71 		case IPPROTO_UDP:
72 			tunnel |= IDPF_TXD_CTX_UDP_TUNNELING;
73 			break;
74 		case IPPROTO_GRE:
75 			tunnel |= IDPF_TXD_CTX_GRE_TUNNELING;
76 			break;
77 		case IPPROTO_IPIP:
78 		case IPPROTO_IPV6:
79 			l4.hdr = skb_inner_network_header(skb);
80 			break;
81 		default:
82 			if (is_tso)
83 				return -1;
84 
85 			skb_checksum_help(skb);
86 
87 			return 0;
88 		}
89 		off->tx_flags |= IDPF_TX_FLAGS_TUNNEL;
90 
91 		/* compute outer L3 header size */
92 		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_EXT_IPLEN_M,
93 				     (l4.hdr - ip.hdr) / 4);
94 
95 		/* switch IP header pointer from outer to inner header */
96 		ip.hdr = skb_inner_network_header(skb);
97 
98 		/* compute tunnel header size */
99 		tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_NATLEN_M,
100 				     (ip.hdr - l4.hdr) / 2);
101 
102 		/* indicate if we need to offload outer UDP header */
103 		if (is_tso &&
104 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
105 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
106 			tunnel |= IDPF_TXD_CTX_QW0_TUNN_L4T_CS_M;
107 
108 		/* record tunnel offload values */
109 		off->cd_tunneling |= tunnel;
110 
111 		/* switch L4 header pointer from outer to inner */
112 		l4.hdr = skb_inner_transport_header(skb);
113 		l4_proto = 0;
114 
115 		/* reset type as we transition from outer to inner headers */
116 		off->tx_flags &= ~(IDPF_TX_FLAGS_IPV4 | IDPF_TX_FLAGS_IPV6);
117 		if (ip.v4->version == 4)
118 			off->tx_flags |= IDPF_TX_FLAGS_IPV4;
119 		if (ip.v6->version == 6)
120 			off->tx_flags |= IDPF_TX_FLAGS_IPV6;
121 	}
122 
123 	/* Enable IP checksum offloads */
124 	if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
125 		l4_proto = ip.v4->protocol;
126 		/* See comment above regarding need for HW to recompute IP
127 		 * header checksum in the case of TSO.
128 		 */
129 		if (is_tso)
130 			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4_CSUM;
131 		else
132 			cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4;
133 
134 	} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
135 		cmd |= IDPF_TX_DESC_CMD_IIPT_IPV6;
136 		l4_proto = ip.v6->nexthdr;
137 		if (ipv6_ext_hdr(l4_proto))
138 			ipv6_skip_exthdr(skb, skb_network_offset(skb) +
139 					 sizeof(*ip.v6), &l4_proto,
140 					 &frag_off);
141 	} else {
142 		return -1;
143 	}
144 
145 	/* compute inner L3 header size */
146 	l3_len = l4.hdr - ip.hdr;
147 	offset |= (l3_len / 4) << IDPF_TX_DESC_LEN_IPLEN_S;
148 
149 	/* Enable L4 checksum offloads */
150 	switch (l4_proto) {
151 	case IPPROTO_TCP:
152 		/* enable checksum offloads */
153 		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_TCP;
154 		l4_len = l4.tcp->doff;
155 		break;
156 	case IPPROTO_UDP:
157 		/* enable UDP checksum offload */
158 		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_UDP;
159 		l4_len = sizeof(struct udphdr) >> 2;
160 		break;
161 	case IPPROTO_SCTP:
162 		/* enable SCTP checksum offload */
163 		cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_SCTP;
164 		l4_len = sizeof(struct sctphdr) >> 2;
165 		break;
166 	default:
167 		if (is_tso)
168 			return -1;
169 
170 		skb_checksum_help(skb);
171 
172 		return 0;
173 	}
174 
175 	offset |= l4_len << IDPF_TX_DESC_LEN_L4_LEN_S;
176 	off->td_cmd |= cmd;
177 	off->hdr_offsets |= offset;
178 
179 	return 1;
180 }
181 
182 /**
183  * idpf_tx_singleq_dma_map_error - handle TX DMA map errors
184  * @txq: queue to send buffer on
185  * @skb: send buffer
186  * @first: original first buffer info buffer for packet
187  * @idx: starting point on ring to unwind
188  */
189 static void idpf_tx_singleq_dma_map_error(struct idpf_tx_queue *txq,
190 					  struct sk_buff *skb,
191 					  struct idpf_tx_buf *first, u16 idx)
192 {
193 	struct libeth_sq_napi_stats ss = { };
194 	struct libeth_cq_pp cp = {
195 		.dev	= txq->dev,
196 		.ss	= &ss,
197 	};
198 
199 	u64_stats_update_begin(&txq->stats_sync);
200 	u64_stats_inc(&txq->q_stats.dma_map_errs);
201 	u64_stats_update_end(&txq->stats_sync);
202 
203 	/* clear dma mappings for failed tx_buf map */
204 	for (;;) {
205 		struct idpf_tx_buf *tx_buf;
206 
207 		tx_buf = &txq->tx_buf[idx];
208 		libeth_tx_complete(tx_buf, &cp);
209 		if (tx_buf == first)
210 			break;
211 		if (idx == 0)
212 			idx = txq->desc_count;
213 		idx--;
214 	}
215 
216 	if (skb_is_gso(skb)) {
217 		union idpf_tx_flex_desc *tx_desc;
218 
219 		/* If we failed a DMA mapping for a TSO packet, we will have
220 		 * used one additional descriptor for a context
221 		 * descriptor. Reset that here.
222 		 */
223 		tx_desc = &txq->flex_tx[idx];
224 		memset(tx_desc, 0, sizeof(*tx_desc));
225 		if (idx == 0)
226 			idx = txq->desc_count;
227 		idx--;
228 	}
229 
230 	/* Update tail in case netdev_xmit_more was previously true */
231 	idpf_tx_buf_hw_update(txq, idx, false);
232 }
233 
234 /**
235  * idpf_tx_singleq_map - Build the Tx base descriptor
236  * @tx_q: queue to send buffer on
237  * @first: first buffer info buffer to use
238  * @offloads: pointer to struct that holds offload parameters
239  *
240  * This function loops over the skb data pointed to by *first
241  * and gets a physical address for each memory location and programs
242  * it and the length into the transmit base mode descriptor.
243  */
244 static void idpf_tx_singleq_map(struct idpf_tx_queue *tx_q,
245 				struct idpf_tx_buf *first,
246 				struct idpf_tx_offload_params *offloads)
247 {
248 	u32 offsets = offloads->hdr_offsets;
249 	struct idpf_tx_buf *tx_buf = first;
250 	struct idpf_base_tx_desc *tx_desc;
251 	struct sk_buff *skb = first->skb;
252 	u64 td_cmd = offloads->td_cmd;
253 	unsigned int data_len, size;
254 	u16 i = tx_q->next_to_use;
255 	struct netdev_queue *nq;
256 	skb_frag_t *frag;
257 	dma_addr_t dma;
258 	u64 td_tag = 0;
259 
260 	data_len = skb->data_len;
261 	size = skb_headlen(skb);
262 
263 	tx_desc = &tx_q->base_tx[i];
264 
265 	dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
266 
267 	/* write each descriptor with CRC bit */
268 	if (idpf_queue_has(CRC_EN, tx_q))
269 		td_cmd |= IDPF_TX_DESC_CMD_ICRC;
270 
271 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
272 		unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
273 
274 		if (unlikely(dma_mapping_error(tx_q->dev, dma)))
275 			return idpf_tx_singleq_dma_map_error(tx_q, skb,
276 							     first, i);
277 
278 		/* record length, and DMA address */
279 		dma_unmap_len_set(tx_buf, len, size);
280 		dma_unmap_addr_set(tx_buf, dma, dma);
281 		tx_buf->type = LIBETH_SQE_FRAG;
282 
283 		/* align size to end of page */
284 		max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
285 		tx_desc->buf_addr = cpu_to_le64(dma);
286 
287 		/* account for data chunks larger than the hardware
288 		 * can handle
289 		 */
290 		while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
291 			tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd,
292 								  offsets,
293 								  max_data,
294 								  td_tag);
295 			if (unlikely(++i == tx_q->desc_count)) {
296 				tx_buf = &tx_q->tx_buf[0];
297 				tx_desc = &tx_q->base_tx[0];
298 				i = 0;
299 			} else {
300 				tx_buf++;
301 				tx_desc++;
302 			}
303 
304 			tx_buf->type = LIBETH_SQE_EMPTY;
305 
306 			dma += max_data;
307 			size -= max_data;
308 
309 			max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
310 			tx_desc->buf_addr = cpu_to_le64(dma);
311 		}
312 
313 		if (!data_len)
314 			break;
315 
316 		tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
317 							  size, td_tag);
318 
319 		if (unlikely(++i == tx_q->desc_count)) {
320 			tx_buf = &tx_q->tx_buf[0];
321 			tx_desc = &tx_q->base_tx[0];
322 			i = 0;
323 		} else {
324 			tx_buf++;
325 			tx_desc++;
326 		}
327 
328 		size = skb_frag_size(frag);
329 		data_len -= size;
330 
331 		dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
332 				       DMA_TO_DEVICE);
333 	}
334 
335 	skb_tx_timestamp(first->skb);
336 
337 	/* write last descriptor with RS and EOP bits */
338 	td_cmd |= (u64)(IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS);
339 
340 	tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
341 						  size, td_tag);
342 
343 	first->type = LIBETH_SQE_SKB;
344 	first->rs_idx = i;
345 
346 	IDPF_SINGLEQ_BUMP_RING_IDX(tx_q, i);
347 
348 	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
349 	netdev_tx_sent_queue(nq, first->bytes);
350 
351 	idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
352 }
353 
354 /**
355  * idpf_tx_singleq_get_ctx_desc - grab next desc and update buffer ring
356  * @txq: queue to put context descriptor on
357  *
358  * Since the TX buffer rings mimics the descriptor ring, update the tx buffer
359  * ring entry to reflect that this index is a context descriptor
360  */
361 static struct idpf_base_tx_ctx_desc *
362 idpf_tx_singleq_get_ctx_desc(struct idpf_tx_queue *txq)
363 {
364 	struct idpf_base_tx_ctx_desc *ctx_desc;
365 	int ntu = txq->next_to_use;
366 
367 	txq->tx_buf[ntu].type = LIBETH_SQE_CTX;
368 
369 	ctx_desc = &txq->base_ctx[ntu];
370 
371 	IDPF_SINGLEQ_BUMP_RING_IDX(txq, ntu);
372 	txq->next_to_use = ntu;
373 
374 	return ctx_desc;
375 }
376 
377 /**
378  * idpf_tx_singleq_build_ctx_desc - populate context descriptor
379  * @txq: queue to send buffer on
380  * @offload: offload parameter structure
381  **/
382 static void idpf_tx_singleq_build_ctx_desc(struct idpf_tx_queue *txq,
383 					   struct idpf_tx_offload_params *offload)
384 {
385 	struct idpf_base_tx_ctx_desc *desc = idpf_tx_singleq_get_ctx_desc(txq);
386 	u64 qw1 = (u64)IDPF_TX_DESC_DTYPE_CTX;
387 
388 	if (offload->tso_segs) {
389 		qw1 |= IDPF_TX_CTX_DESC_TSO << IDPF_TXD_CTX_QW1_CMD_S;
390 		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_TSO_LEN_M,
391 				  offload->tso_len);
392 		qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_MSS_M, offload->mss);
393 
394 		u64_stats_update_begin(&txq->stats_sync);
395 		u64_stats_inc(&txq->q_stats.lso_pkts);
396 		u64_stats_update_end(&txq->stats_sync);
397 	}
398 
399 	desc->qw0.tunneling_params = cpu_to_le32(offload->cd_tunneling);
400 
401 	desc->qw0.l2tag2 = 0;
402 	desc->qw0.rsvd1 = 0;
403 	desc->qw1 = cpu_to_le64(qw1);
404 }
405 
406 /**
407  * idpf_tx_singleq_frame - Sends buffer on Tx ring using base descriptors
408  * @skb: send buffer
409  * @tx_q: queue to send buffer on
410  *
411  * Returns NETDEV_TX_OK if sent, else an error code
412  */
413 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
414 				  struct idpf_tx_queue *tx_q)
415 {
416 	struct idpf_tx_offload_params offload = { };
417 	struct idpf_tx_buf *first;
418 	u32 count, buf_count = 1;
419 	int csum, tso, needed;
420 	__be16 protocol;
421 
422 	count = idpf_tx_res_count_required(tx_q, skb, &buf_count);
423 	if (unlikely(!count))
424 		return idpf_tx_drop_skb(tx_q, skb);
425 
426 	needed = count + IDPF_TX_DESCS_PER_CACHE_LINE + IDPF_TX_DESCS_FOR_CTX;
427 	if (!netif_subqueue_maybe_stop(tx_q->netdev, tx_q->idx,
428 				       IDPF_DESC_UNUSED(tx_q),
429 				       needed, needed)) {
430 		idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
431 
432 		u64_stats_update_begin(&tx_q->stats_sync);
433 		u64_stats_inc(&tx_q->q_stats.q_busy);
434 		u64_stats_update_end(&tx_q->stats_sync);
435 
436 		return NETDEV_TX_BUSY;
437 	}
438 
439 	protocol = vlan_get_protocol(skb);
440 	if (protocol == htons(ETH_P_IP))
441 		offload.tx_flags |= IDPF_TX_FLAGS_IPV4;
442 	else if (protocol == htons(ETH_P_IPV6))
443 		offload.tx_flags |= IDPF_TX_FLAGS_IPV6;
444 
445 	tso = idpf_tso(skb, &offload);
446 	if (tso < 0)
447 		goto out_drop;
448 
449 	csum = idpf_tx_singleq_csum(skb, &offload);
450 	if (csum < 0)
451 		goto out_drop;
452 
453 	if (tso || offload.cd_tunneling)
454 		idpf_tx_singleq_build_ctx_desc(tx_q, &offload);
455 
456 	/* record the location of the first descriptor for this packet */
457 	first = &tx_q->tx_buf[tx_q->next_to_use];
458 	first->skb = skb;
459 
460 	if (tso) {
461 		first->packets = offload.tso_segs;
462 		first->bytes = skb->len + ((first->packets - 1) * offload.tso_hdr_len);
463 	} else {
464 		first->bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
465 		first->packets = 1;
466 	}
467 	idpf_tx_singleq_map(tx_q, first, &offload);
468 
469 	return NETDEV_TX_OK;
470 
471 out_drop:
472 	return idpf_tx_drop_skb(tx_q, skb);
473 }
474 
475 /**
476  * idpf_tx_singleq_clean - Reclaim resources from queue
477  * @tx_q: Tx queue to clean
478  * @napi_budget: Used to determine if we are in netpoll
479  * @cleaned: returns number of packets cleaned
480  *
481  */
482 static bool idpf_tx_singleq_clean(struct idpf_tx_queue *tx_q, int napi_budget,
483 				  int *cleaned)
484 {
485 	struct libeth_sq_napi_stats ss = { };
486 	struct idpf_base_tx_desc *tx_desc;
487 	u32 budget = tx_q->clean_budget;
488 	s16 ntc = tx_q->next_to_clean;
489 	struct libeth_cq_pp cp = {
490 		.dev	= tx_q->dev,
491 		.ss	= &ss,
492 		.napi	= napi_budget,
493 	};
494 	struct idpf_netdev_priv *np;
495 	struct idpf_tx_buf *tx_buf;
496 	struct netdev_queue *nq;
497 	bool dont_wake;
498 
499 	tx_desc = &tx_q->base_tx[ntc];
500 	tx_buf = &tx_q->tx_buf[ntc];
501 	ntc -= tx_q->desc_count;
502 
503 	do {
504 		struct idpf_base_tx_desc *eop_desc;
505 
506 		/* If this entry in the ring was used as a context descriptor,
507 		 * it's corresponding entry in the buffer ring will indicate as
508 		 * such. We can skip this descriptor since there is no buffer
509 		 * to clean.
510 		 */
511 		if (unlikely(tx_buf->type <= LIBETH_SQE_CTX)) {
512 			tx_buf->type = LIBETH_SQE_EMPTY;
513 			goto fetch_next_txq_desc;
514 		}
515 
516 		if (unlikely(tx_buf->type != LIBETH_SQE_SKB))
517 			break;
518 
519 		/* prevent any other reads prior to type */
520 		smp_rmb();
521 
522 		eop_desc = &tx_q->base_tx[tx_buf->rs_idx];
523 
524 		/* if the descriptor isn't done, no work yet to do */
525 		if (!(eop_desc->qw1 &
526 		      cpu_to_le64(IDPF_TX_DESC_DTYPE_DESC_DONE)))
527 			break;
528 
529 		/* update the statistics for this packet */
530 		libeth_tx_complete(tx_buf, &cp);
531 
532 		/* unmap remaining buffers */
533 		while (tx_desc != eop_desc) {
534 			tx_buf++;
535 			tx_desc++;
536 			ntc++;
537 			if (unlikely(!ntc)) {
538 				ntc -= tx_q->desc_count;
539 				tx_buf = tx_q->tx_buf;
540 				tx_desc = &tx_q->base_tx[0];
541 			}
542 
543 			/* unmap any remaining paged data */
544 			libeth_tx_complete(tx_buf, &cp);
545 		}
546 
547 		/* update budget only if we did something */
548 		budget--;
549 
550 fetch_next_txq_desc:
551 		tx_buf++;
552 		tx_desc++;
553 		ntc++;
554 		if (unlikely(!ntc)) {
555 			ntc -= tx_q->desc_count;
556 			tx_buf = tx_q->tx_buf;
557 			tx_desc = &tx_q->base_tx[0];
558 		}
559 	} while (likely(budget));
560 
561 	ntc += tx_q->desc_count;
562 	tx_q->next_to_clean = ntc;
563 
564 	*cleaned += ss.packets;
565 
566 	u64_stats_update_begin(&tx_q->stats_sync);
567 	u64_stats_add(&tx_q->q_stats.packets, ss.packets);
568 	u64_stats_add(&tx_q->q_stats.bytes, ss.bytes);
569 	u64_stats_update_end(&tx_q->stats_sync);
570 
571 	np = netdev_priv(tx_q->netdev);
572 	nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
573 
574 	dont_wake = np->state != __IDPF_VPORT_UP ||
575 		    !netif_carrier_ok(tx_q->netdev);
576 	__netif_txq_completed_wake(nq, ss.packets, ss.bytes,
577 				   IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
578 				   dont_wake);
579 
580 	return !!budget;
581 }
582 
583 /**
584  * idpf_tx_singleq_clean_all - Clean all Tx queues
585  * @q_vec: queue vector
586  * @budget: Used to determine if we are in netpoll
587  * @cleaned: returns number of packets cleaned
588  *
589  * Returns false if clean is not complete else returns true
590  */
591 static bool idpf_tx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
592 				      int *cleaned)
593 {
594 	u16 num_txq = q_vec->num_txq;
595 	bool clean_complete = true;
596 	int i, budget_per_q;
597 
598 	budget_per_q = num_txq ? max(budget / num_txq, 1) : 0;
599 	for (i = 0; i < num_txq; i++) {
600 		struct idpf_tx_queue *q;
601 
602 		q = q_vec->tx[i];
603 		clean_complete &= idpf_tx_singleq_clean(q, budget_per_q,
604 							cleaned);
605 	}
606 
607 	return clean_complete;
608 }
609 
610 /**
611  * idpf_rx_singleq_test_staterr - tests bits in Rx descriptor
612  * status and error fields
613  * @rx_desc: pointer to receive descriptor (in le64 format)
614  * @stat_err_bits: value to mask
615  *
616  * This function does some fast chicanery in order to return the
617  * value of the mask which is really only used for boolean tests.
618  * The status_error_ptype_len doesn't need to be shifted because it begins
619  * at offset zero.
620  */
621 static bool idpf_rx_singleq_test_staterr(const union virtchnl2_rx_desc *rx_desc,
622 					 const u64 stat_err_bits)
623 {
624 	return !!(rx_desc->base_wb.qword1.status_error_ptype_len &
625 		  cpu_to_le64(stat_err_bits));
626 }
627 
628 /**
629  * idpf_rx_singleq_is_non_eop - process handling of non-EOP buffers
630  * @rx_desc: Rx descriptor for current buffer
631  */
632 static bool idpf_rx_singleq_is_non_eop(const union virtchnl2_rx_desc *rx_desc)
633 {
634 	/* if we are the last buffer then there is nothing else to do */
635 	if (likely(idpf_rx_singleq_test_staterr(rx_desc, IDPF_RXD_EOF_SINGLEQ)))
636 		return false;
637 
638 	return true;
639 }
640 
641 /**
642  * idpf_rx_singleq_csum - Indicate in skb if checksum is good
643  * @rxq: Rx ring being processed
644  * @skb: skb currently being received and modified
645  * @csum_bits: checksum bits from descriptor
646  * @decoded: the packet type decoded by hardware
647  *
648  * skb->protocol must be set before this function is called
649  */
650 static void idpf_rx_singleq_csum(struct idpf_rx_queue *rxq,
651 				 struct sk_buff *skb,
652 				 struct libeth_rx_csum csum_bits,
653 				 struct libeth_rx_pt decoded)
654 {
655 	bool ipv4, ipv6;
656 
657 	/* check if Rx checksum is enabled */
658 	if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
659 		return;
660 
661 	/* check if HW has decoded the packet and checksum */
662 	if (unlikely(!csum_bits.l3l4p))
663 		return;
664 
665 	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
666 	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
667 
668 	/* Check if there were any checksum errors */
669 	if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
670 		goto checksum_fail;
671 
672 	/* Device could not do any checksum offload for certain extension
673 	 * headers as indicated by setting IPV6EXADD bit
674 	 */
675 	if (unlikely(ipv6 && csum_bits.ipv6exadd))
676 		return;
677 
678 	/* check for L4 errors and handle packets that were not able to be
679 	 * checksummed due to arrival speed
680 	 */
681 	if (unlikely(csum_bits.l4e))
682 		goto checksum_fail;
683 
684 	if (unlikely(csum_bits.nat && csum_bits.eudpe))
685 		goto checksum_fail;
686 
687 	/* Handle packets that were not able to be checksummed due to arrival
688 	 * speed, in this case the stack can compute the csum.
689 	 */
690 	if (unlikely(csum_bits.pprs))
691 		return;
692 
693 	/* If there is an outer header present that might contain a checksum
694 	 * we need to bump the checksum level by 1 to reflect the fact that
695 	 * we are indicating we validated the inner checksum.
696 	 */
697 	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
698 		skb->csum_level = 1;
699 
700 	skb->ip_summed = CHECKSUM_UNNECESSARY;
701 	return;
702 
703 checksum_fail:
704 	u64_stats_update_begin(&rxq->stats_sync);
705 	u64_stats_inc(&rxq->q_stats.hw_csum_err);
706 	u64_stats_update_end(&rxq->stats_sync);
707 }
708 
709 /**
710  * idpf_rx_singleq_base_csum - Indicate in skb if hw indicated a good cksum
711  * @rx_desc: the receive descriptor
712  *
713  * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
714  * descriptor writeback format.
715  *
716  * Return: parsed checksum status.
717  **/
718 static struct libeth_rx_csum
719 idpf_rx_singleq_base_csum(const union virtchnl2_rx_desc *rx_desc)
720 {
721 	struct libeth_rx_csum csum_bits = { };
722 	u32 rx_error, rx_status;
723 	u64 qword;
724 
725 	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
726 
727 	rx_status = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_STATUS_M, qword);
728 	rx_error = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, qword);
729 
730 	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_IPE_M, rx_error);
731 	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_EIPE_M,
732 				   rx_error);
733 	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_L4E_M, rx_error);
734 	csum_bits.pprs = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_PPRS_M,
735 				   rx_error);
736 	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_L3L4P_M,
737 				    rx_status);
738 	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_IPV6EXADD_M,
739 					rx_status);
740 
741 	return csum_bits;
742 }
743 
744 /**
745  * idpf_rx_singleq_flex_csum - Indicate in skb if hw indicated a good cksum
746  * @rx_desc: the receive descriptor
747  *
748  * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
749  * descriptor writeback format.
750  *
751  * Return: parsed checksum status.
752  **/
753 static struct libeth_rx_csum
754 idpf_rx_singleq_flex_csum(const union virtchnl2_rx_desc *rx_desc)
755 {
756 	struct libeth_rx_csum csum_bits = { };
757 	u16 rx_status0, rx_status1;
758 
759 	rx_status0 = le16_to_cpu(rx_desc->flex_nic_wb.status_error0);
760 	rx_status1 = le16_to_cpu(rx_desc->flex_nic_wb.status_error1);
761 
762 	csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_M,
763 				  rx_status0);
764 	csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_M,
765 				   rx_status0);
766 	csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_M,
767 				  rx_status0);
768 	csum_bits.eudpe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_M,
769 				    rx_status0);
770 	csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_L3L4P_M,
771 				    rx_status0);
772 	csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_IPV6EXADD_M,
773 					rx_status0);
774 	csum_bits.nat = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS1_NAT_M,
775 				  rx_status1);
776 
777 	return csum_bits;
778 }
779 
780 /**
781  * idpf_rx_singleq_base_hash - set the hash value in the skb
782  * @rx_q: Rx completion queue
783  * @skb: skb currently being received and modified
784  * @rx_desc: specific descriptor
785  * @decoded: Decoded Rx packet type related fields
786  *
787  * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
788  * descriptor writeback format.
789  **/
790 static void idpf_rx_singleq_base_hash(struct idpf_rx_queue *rx_q,
791 				      struct sk_buff *skb,
792 				      const union virtchnl2_rx_desc *rx_desc,
793 				      struct libeth_rx_pt decoded)
794 {
795 	u64 mask, qw1;
796 
797 	if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
798 		return;
799 
800 	mask = VIRTCHNL2_RX_BASE_DESC_FLTSTAT_RSS_HASH_M;
801 	qw1 = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
802 
803 	if (FIELD_GET(mask, qw1) == mask) {
804 		u32 hash = le32_to_cpu(rx_desc->base_wb.qword0.hi_dword.rss);
805 
806 		libeth_rx_pt_set_hash(skb, hash, decoded);
807 	}
808 }
809 
810 /**
811  * idpf_rx_singleq_flex_hash - set the hash value in the skb
812  * @rx_q: Rx completion queue
813  * @skb: skb currently being received and modified
814  * @rx_desc: specific descriptor
815  * @decoded: Decoded Rx packet type related fields
816  *
817  * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
818  * descriptor writeback format.
819  **/
820 static void idpf_rx_singleq_flex_hash(struct idpf_rx_queue *rx_q,
821 				      struct sk_buff *skb,
822 				      const union virtchnl2_rx_desc *rx_desc,
823 				      struct libeth_rx_pt decoded)
824 {
825 	if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
826 		return;
827 
828 	if (FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_RSS_VALID_M,
829 		      le16_to_cpu(rx_desc->flex_nic_wb.status_error0))) {
830 		u32 hash = le32_to_cpu(rx_desc->flex_nic_wb.rss_hash);
831 
832 		libeth_rx_pt_set_hash(skb, hash, decoded);
833 	}
834 }
835 
836 /**
837  * idpf_rx_singleq_process_skb_fields - Populate skb header fields from Rx
838  * descriptor
839  * @rx_q: Rx ring being processed
840  * @skb: pointer to current skb being populated
841  * @rx_desc: descriptor for skb
842  * @ptype: packet type
843  *
844  * This function checks the ring, descriptor, and packet information in
845  * order to populate the hash, checksum, VLAN, protocol, and
846  * other fields within the skb.
847  */
848 static void
849 idpf_rx_singleq_process_skb_fields(struct idpf_rx_queue *rx_q,
850 				   struct sk_buff *skb,
851 				   const union virtchnl2_rx_desc *rx_desc,
852 				   u16 ptype)
853 {
854 	struct libeth_rx_pt decoded = rx_q->rx_ptype_lkup[ptype];
855 	struct libeth_rx_csum csum_bits;
856 
857 	/* modifies the skb - consumes the enet header */
858 	skb->protocol = eth_type_trans(skb, rx_q->netdev);
859 
860 	/* Check if we're using base mode descriptor IDs */
861 	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M) {
862 		idpf_rx_singleq_base_hash(rx_q, skb, rx_desc, decoded);
863 		csum_bits = idpf_rx_singleq_base_csum(rx_desc);
864 	} else {
865 		idpf_rx_singleq_flex_hash(rx_q, skb, rx_desc, decoded);
866 		csum_bits = idpf_rx_singleq_flex_csum(rx_desc);
867 	}
868 
869 	idpf_rx_singleq_csum(rx_q, skb, csum_bits, decoded);
870 	skb_record_rx_queue(skb, rx_q->idx);
871 }
872 
873 /**
874  * idpf_rx_buf_hw_update - Store the new tail and head values
875  * @rxq: queue to bump
876  * @val: new head index
877  */
878 static void idpf_rx_buf_hw_update(struct idpf_rx_queue *rxq, u32 val)
879 {
880 	rxq->next_to_use = val;
881 
882 	if (unlikely(!rxq->tail))
883 		return;
884 
885 	/* writel has an implicit memory barrier */
886 	writel(val, rxq->tail);
887 }
888 
889 /**
890  * idpf_rx_singleq_buf_hw_alloc_all - Replace used receive buffers
891  * @rx_q: queue for which the hw buffers are allocated
892  * @cleaned_count: number of buffers to replace
893  *
894  * Returns false if all allocations were successful, true if any fail
895  */
896 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rx_q,
897 				      u16 cleaned_count)
898 {
899 	struct virtchnl2_singleq_rx_buf_desc *desc;
900 	const struct libeth_fq_fp fq = {
901 		.pp		= rx_q->pp,
902 		.fqes		= rx_q->rx_buf,
903 		.truesize	= rx_q->truesize,
904 		.count		= rx_q->desc_count,
905 	};
906 	u16 nta = rx_q->next_to_alloc;
907 
908 	if (!cleaned_count)
909 		return false;
910 
911 	desc = &rx_q->single_buf[nta];
912 
913 	do {
914 		dma_addr_t addr;
915 
916 		addr = libeth_rx_alloc(&fq, nta);
917 		if (addr == DMA_MAPPING_ERROR)
918 			break;
919 
920 		/* Refresh the desc even if buffer_addrs didn't change
921 		 * because each write-back erases this info.
922 		 */
923 		desc->pkt_addr = cpu_to_le64(addr);
924 		desc->hdr_addr = 0;
925 		desc++;
926 
927 		nta++;
928 		if (unlikely(nta == rx_q->desc_count)) {
929 			desc = &rx_q->single_buf[0];
930 			nta = 0;
931 		}
932 
933 		cleaned_count--;
934 	} while (cleaned_count);
935 
936 	if (rx_q->next_to_alloc != nta) {
937 		idpf_rx_buf_hw_update(rx_q, nta);
938 		rx_q->next_to_alloc = nta;
939 	}
940 
941 	return !!cleaned_count;
942 }
943 
944 /**
945  * idpf_rx_singleq_extract_base_fields - Extract fields from the Rx descriptor
946  * @rx_desc: the descriptor to process
947  * @fields: storage for extracted values
948  *
949  * Decode the Rx descriptor and extract relevant information including the
950  * size and Rx packet type.
951  *
952  * This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
953  * descriptor writeback format.
954  */
955 static void
956 idpf_rx_singleq_extract_base_fields(const union virtchnl2_rx_desc *rx_desc,
957 				    struct libeth_rqe_info *fields)
958 {
959 	u64 qword;
960 
961 	qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
962 
963 	fields->len = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_LEN_PBUF_M, qword);
964 	fields->ptype = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_PTYPE_M, qword);
965 }
966 
967 /**
968  * idpf_rx_singleq_extract_flex_fields - Extract fields from the Rx descriptor
969  * @rx_desc: the descriptor to process
970  * @fields: storage for extracted values
971  *
972  * Decode the Rx descriptor and extract relevant information including the
973  * size and Rx packet type.
974  *
975  * This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
976  * descriptor writeback format.
977  */
978 static void
979 idpf_rx_singleq_extract_flex_fields(const union virtchnl2_rx_desc *rx_desc,
980 				    struct libeth_rqe_info *fields)
981 {
982 	fields->len = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PKT_LEN_M,
983 				le16_to_cpu(rx_desc->flex_nic_wb.pkt_len));
984 	fields->ptype = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M,
985 				  le16_to_cpu(rx_desc->flex_nic_wb.ptype_flex_flags0));
986 }
987 
988 /**
989  * idpf_rx_singleq_extract_fields - Extract fields from the Rx descriptor
990  * @rx_q: Rx descriptor queue
991  * @rx_desc: the descriptor to process
992  * @fields: storage for extracted values
993  *
994  */
995 static void
996 idpf_rx_singleq_extract_fields(const struct idpf_rx_queue *rx_q,
997 			       const union virtchnl2_rx_desc *rx_desc,
998 			       struct libeth_rqe_info *fields)
999 {
1000 	if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M)
1001 		idpf_rx_singleq_extract_base_fields(rx_desc, fields);
1002 	else
1003 		idpf_rx_singleq_extract_flex_fields(rx_desc, fields);
1004 }
1005 
1006 /**
1007  * idpf_rx_singleq_clean - Reclaim resources after receive completes
1008  * @rx_q: rx queue to clean
1009  * @budget: Total limit on number of packets to process
1010  *
1011  * Returns true if there's any budget left (e.g. the clean is finished)
1012  */
1013 static int idpf_rx_singleq_clean(struct idpf_rx_queue *rx_q, int budget)
1014 {
1015 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1016 	struct sk_buff *skb = rx_q->skb;
1017 	u16 ntc = rx_q->next_to_clean;
1018 	u16 cleaned_count = 0;
1019 	bool failure = false;
1020 
1021 	/* Process Rx packets bounded by budget */
1022 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1023 		struct libeth_rqe_info fields = { };
1024 		union virtchnl2_rx_desc *rx_desc;
1025 		struct idpf_rx_buf *rx_buf;
1026 
1027 		/* get the Rx desc from Rx queue based on 'next_to_clean' */
1028 		rx_desc = &rx_q->rx[ntc];
1029 
1030 		/* status_error_ptype_len will always be zero for unused
1031 		 * descriptors because it's cleared in cleanup, and overlaps
1032 		 * with hdr_addr which is always zero because packet split
1033 		 * isn't used, if the hardware wrote DD then the length will be
1034 		 * non-zero
1035 		 */
1036 #define IDPF_RXD_DD VIRTCHNL2_RX_BASE_DESC_STATUS_DD_M
1037 		if (!idpf_rx_singleq_test_staterr(rx_desc,
1038 						  IDPF_RXD_DD))
1039 			break;
1040 
1041 		/* This memory barrier is needed to keep us from reading
1042 		 * any other fields out of the rx_desc
1043 		 */
1044 		dma_rmb();
1045 
1046 		idpf_rx_singleq_extract_fields(rx_q, rx_desc, &fields);
1047 
1048 		rx_buf = &rx_q->rx_buf[ntc];
1049 		if (!libeth_rx_sync_for_cpu(rx_buf, fields.len))
1050 			goto skip_data;
1051 
1052 		if (skb)
1053 			idpf_rx_add_frag(rx_buf, skb, fields.len);
1054 		else
1055 			skb = idpf_rx_build_skb(rx_buf, fields.len);
1056 
1057 		/* exit if we failed to retrieve a buffer */
1058 		if (!skb)
1059 			break;
1060 
1061 skip_data:
1062 		rx_buf->netmem = 0;
1063 
1064 		IDPF_SINGLEQ_BUMP_RING_IDX(rx_q, ntc);
1065 		cleaned_count++;
1066 
1067 		/* skip if it is non EOP desc */
1068 		if (idpf_rx_singleq_is_non_eop(rx_desc) || unlikely(!skb))
1069 			continue;
1070 
1071 #define IDPF_RXD_ERR_S FIELD_PREP(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, \
1072 				  VIRTCHNL2_RX_BASE_DESC_ERROR_RXE_M)
1073 		if (unlikely(idpf_rx_singleq_test_staterr(rx_desc,
1074 							  IDPF_RXD_ERR_S))) {
1075 			dev_kfree_skb_any(skb);
1076 			skb = NULL;
1077 			continue;
1078 		}
1079 
1080 		/* pad skb if needed (to make valid ethernet frame) */
1081 		if (eth_skb_pad(skb)) {
1082 			skb = NULL;
1083 			continue;
1084 		}
1085 
1086 		/* probably a little skewed due to removing CRC */
1087 		total_rx_bytes += skb->len;
1088 
1089 		/* protocol */
1090 		idpf_rx_singleq_process_skb_fields(rx_q, skb, rx_desc,
1091 						   fields.ptype);
1092 
1093 		/* send completed skb up the stack */
1094 		napi_gro_receive(rx_q->pp->p.napi, skb);
1095 		skb = NULL;
1096 
1097 		/* update budget accounting */
1098 		total_rx_pkts++;
1099 	}
1100 
1101 	rx_q->skb = skb;
1102 
1103 	rx_q->next_to_clean = ntc;
1104 
1105 	page_pool_nid_changed(rx_q->pp, numa_mem_id());
1106 	if (cleaned_count)
1107 		failure = idpf_rx_singleq_buf_hw_alloc_all(rx_q, cleaned_count);
1108 
1109 	u64_stats_update_begin(&rx_q->stats_sync);
1110 	u64_stats_add(&rx_q->q_stats.packets, total_rx_pkts);
1111 	u64_stats_add(&rx_q->q_stats.bytes, total_rx_bytes);
1112 	u64_stats_update_end(&rx_q->stats_sync);
1113 
1114 	/* guarantee a trip back through this routine if there was a failure */
1115 	return failure ? budget : (int)total_rx_pkts;
1116 }
1117 
1118 /**
1119  * idpf_rx_singleq_clean_all - Clean all Rx queues
1120  * @q_vec: queue vector
1121  * @budget: Used to determine if we are in netpoll
1122  * @cleaned: returns number of packets cleaned
1123  *
1124  * Returns false if clean is not complete else returns true
1125  */
1126 static bool idpf_rx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
1127 				      int *cleaned)
1128 {
1129 	u16 num_rxq = q_vec->num_rxq;
1130 	bool clean_complete = true;
1131 	int budget_per_q, i;
1132 
1133 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1134 	 * allow the budget to go below 1 because that would exit polling early.
1135 	 */
1136 	budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
1137 	for (i = 0; i < num_rxq; i++) {
1138 		struct idpf_rx_queue *rxq = q_vec->rx[i];
1139 		int pkts_cleaned_per_q;
1140 
1141 		pkts_cleaned_per_q = idpf_rx_singleq_clean(rxq, budget_per_q);
1142 
1143 		/* if we clean as many as budgeted, we must not be done */
1144 		if (pkts_cleaned_per_q >= budget_per_q)
1145 			clean_complete = false;
1146 		*cleaned += pkts_cleaned_per_q;
1147 	}
1148 
1149 	return clean_complete;
1150 }
1151 
1152 /**
1153  * idpf_vport_singleq_napi_poll - NAPI handler
1154  * @napi: struct from which you get q_vector
1155  * @budget: budget provided by stack
1156  */
1157 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget)
1158 {
1159 	struct idpf_q_vector *q_vector =
1160 				container_of(napi, struct idpf_q_vector, napi);
1161 	bool clean_complete;
1162 	int work_done = 0;
1163 
1164 	/* Handle case where we are called by netpoll with a budget of 0 */
1165 	if (budget <= 0) {
1166 		idpf_tx_singleq_clean_all(q_vector, budget, &work_done);
1167 
1168 		return budget;
1169 	}
1170 
1171 	clean_complete = idpf_rx_singleq_clean_all(q_vector, budget,
1172 						   &work_done);
1173 	clean_complete &= idpf_tx_singleq_clean_all(q_vector, budget,
1174 						    &work_done);
1175 
1176 	/* If work not completed, return budget and polling will return */
1177 	if (!clean_complete) {
1178 		idpf_vport_intr_set_wb_on_itr(q_vector);
1179 		return budget;
1180 	}
1181 
1182 	work_done = min_t(int, work_done, budget - 1);
1183 
1184 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1185 	 * poll us due to busy-polling
1186 	 */
1187 	if (likely(napi_complete_done(napi, work_done)))
1188 		idpf_vport_intr_update_itr_ena_irq(q_vector);
1189 	else
1190 		idpf_vport_intr_set_wb_on_itr(q_vector);
1191 
1192 	return work_done;
1193 }
1194