xref: /linux/drivers/net/ethernet/intel/idpf/idpf_lib.c (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 
7 static const struct net_device_ops idpf_netdev_ops;
8 
9 /**
10  * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
11  * @adapter: private data struct
12  *
13  * Return 0 on success, error on failure
14  */
15 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
16 {
17 	struct idpf_vector_lifo *stack;
18 	u16 min_vec;
19 	u32 i;
20 
21 	mutex_lock(&adapter->vector_lock);
22 	min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
23 	stack = &adapter->vector_stack;
24 	stack->size = adapter->num_msix_entries;
25 	/* set the base and top to point at start of the 'free pool' to
26 	 * distribute the unused vectors on-demand basis
27 	 */
28 	stack->base = min_vec;
29 	stack->top = min_vec;
30 
31 	stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
32 	if (!stack->vec_idx) {
33 		mutex_unlock(&adapter->vector_lock);
34 
35 		return -ENOMEM;
36 	}
37 
38 	for (i = 0; i < stack->size; i++)
39 		stack->vec_idx[i] = i;
40 
41 	mutex_unlock(&adapter->vector_lock);
42 
43 	return 0;
44 }
45 
46 /**
47  * idpf_deinit_vector_stack - zero out the MSIX vector stack
48  * @adapter: private data struct
49  */
50 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
51 {
52 	struct idpf_vector_lifo *stack;
53 
54 	mutex_lock(&adapter->vector_lock);
55 	stack = &adapter->vector_stack;
56 	kfree(stack->vec_idx);
57 	stack->vec_idx = NULL;
58 	mutex_unlock(&adapter->vector_lock);
59 }
60 
61 /**
62  * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
63  * @adapter: adapter structure
64  *
65  * This will also disable interrupt mode and queue up mailbox task. Mailbox
66  * task will reschedule itself if not in interrupt mode.
67  */
68 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
69 {
70 	clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
71 	kfree(free_irq(adapter->msix_entries[0].vector, adapter));
72 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
73 }
74 
75 /**
76  * idpf_intr_rel - Release interrupt capabilities and free memory
77  * @adapter: adapter to disable interrupts on
78  */
79 void idpf_intr_rel(struct idpf_adapter *adapter)
80 {
81 	if (!adapter->msix_entries)
82 		return;
83 
84 	idpf_mb_intr_rel_irq(adapter);
85 	pci_free_irq_vectors(adapter->pdev);
86 	idpf_send_dealloc_vectors_msg(adapter);
87 	idpf_deinit_vector_stack(adapter);
88 	kfree(adapter->msix_entries);
89 	adapter->msix_entries = NULL;
90 }
91 
92 /**
93  * idpf_mb_intr_clean - Interrupt handler for the mailbox
94  * @irq: interrupt number
95  * @data: pointer to the adapter structure
96  */
97 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
98 {
99 	struct idpf_adapter *adapter = (struct idpf_adapter *)data;
100 
101 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
102 
103 	return IRQ_HANDLED;
104 }
105 
106 /**
107  * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
108  * @adapter: adapter to get the hardware address for register write
109  */
110 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
111 {
112 	struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
113 	u32 val;
114 
115 	val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
116 	writel(val, intr->dyn_ctl);
117 	writel(intr->icr_ena_ctlq_m, intr->icr_ena);
118 }
119 
120 /**
121  * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
122  * @adapter: adapter structure to pass to the mailbox irq handler
123  */
124 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
125 {
126 	int irq_num, mb_vidx = 0, err;
127 	char *name;
128 
129 	irq_num = adapter->msix_entries[mb_vidx].vector;
130 	name = kasprintf(GFP_KERNEL, "%s-%s-%d",
131 			 dev_driver_string(&adapter->pdev->dev),
132 			 "Mailbox", mb_vidx);
133 	err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
134 	if (err) {
135 		dev_err(&adapter->pdev->dev,
136 			"IRQ request for mailbox failed, error: %d\n", err);
137 
138 		return err;
139 	}
140 
141 	set_bit(IDPF_MB_INTR_MODE, adapter->flags);
142 
143 	return 0;
144 }
145 
146 /**
147  * idpf_set_mb_vec_id - Set vector index for mailbox
148  * @adapter: adapter structure to access the vector chunks
149  *
150  * The first vector id in the requested vector chunks from the CP is for
151  * the mailbox
152  */
153 static void idpf_set_mb_vec_id(struct idpf_adapter *adapter)
154 {
155 	if (adapter->req_vec_chunks)
156 		adapter->mb_vector.v_idx =
157 			le16_to_cpu(adapter->caps.mailbox_vector_id);
158 	else
159 		adapter->mb_vector.v_idx = 0;
160 }
161 
162 /**
163  * idpf_mb_intr_init - Initialize the mailbox interrupt
164  * @adapter: adapter structure to store the mailbox vector
165  */
166 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
167 {
168 	adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
169 	adapter->irq_mb_handler = idpf_mb_intr_clean;
170 
171 	return idpf_mb_intr_req_irq(adapter);
172 }
173 
174 /**
175  * idpf_vector_lifo_push - push MSIX vector index onto stack
176  * @adapter: private data struct
177  * @vec_idx: vector index to store
178  */
179 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
180 {
181 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
182 
183 	lockdep_assert_held(&adapter->vector_lock);
184 
185 	if (stack->top == stack->base) {
186 		dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
187 			stack->top);
188 		return -EINVAL;
189 	}
190 
191 	stack->vec_idx[--stack->top] = vec_idx;
192 
193 	return 0;
194 }
195 
196 /**
197  * idpf_vector_lifo_pop - pop MSIX vector index from stack
198  * @adapter: private data struct
199  */
200 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
201 {
202 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
203 
204 	lockdep_assert_held(&adapter->vector_lock);
205 
206 	if (stack->top == stack->size) {
207 		dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
208 
209 		return -EINVAL;
210 	}
211 
212 	return stack->vec_idx[stack->top++];
213 }
214 
215 /**
216  * idpf_vector_stash - Store the vector indexes onto the stack
217  * @adapter: private data struct
218  * @q_vector_idxs: vector index array
219  * @vec_info: info related to the number of vectors
220  *
221  * This function is a no-op if there are no vectors indexes to be stashed
222  */
223 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
224 			      struct idpf_vector_info *vec_info)
225 {
226 	int i, base = 0;
227 	u16 vec_idx;
228 
229 	lockdep_assert_held(&adapter->vector_lock);
230 
231 	if (!vec_info->num_curr_vecs)
232 		return;
233 
234 	/* For default vports, no need to stash vector allocated from the
235 	 * default pool onto the stack
236 	 */
237 	if (vec_info->default_vport)
238 		base = IDPF_MIN_Q_VEC;
239 
240 	for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
241 		vec_idx = q_vector_idxs[i];
242 		idpf_vector_lifo_push(adapter, vec_idx);
243 		adapter->num_avail_msix++;
244 	}
245 }
246 
247 /**
248  * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
249  * @adapter: driver specific private structure
250  * @q_vector_idxs: vector index array
251  * @vec_info: info related to the number of vectors
252  *
253  * This is the core function to distribute the MSIX vectors acquired from the
254  * OS. It expects the caller to pass the number of vectors required and
255  * also previously allocated. First, it stashes previously allocated vector
256  * indexes on to the stack and then figures out if it can allocate requested
257  * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
258  * requested vectors, then this function just stashes the already allocated
259  * vectors and returns 0.
260  *
261  * Returns actual number of vectors allocated on success, error value on failure
262  * If 0 is returned, implies the stack has no vectors to allocate which is also
263  * a failure case for the caller
264  */
265 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
266 				u16 *q_vector_idxs,
267 				struct idpf_vector_info *vec_info)
268 {
269 	u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
270 	struct idpf_vector_lifo *stack;
271 	int i, j, vecid;
272 
273 	mutex_lock(&adapter->vector_lock);
274 	stack = &adapter->vector_stack;
275 	num_req_vecs = vec_info->num_req_vecs;
276 
277 	/* Stash interrupt vector indexes onto the stack if required */
278 	idpf_vector_stash(adapter, q_vector_idxs, vec_info);
279 
280 	if (!num_req_vecs)
281 		goto rel_lock;
282 
283 	if (vec_info->default_vport) {
284 		/* As IDPF_MIN_Q_VEC per default vport is put aside in the
285 		 * default pool of the stack, use them for default vports
286 		 */
287 		j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
288 		for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
289 			q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
290 			num_req_vecs--;
291 		}
292 	}
293 
294 	/* Find if stack has enough vector to allocate */
295 	max_vecs = min(adapter->num_avail_msix, num_req_vecs);
296 
297 	for (j = 0; j < max_vecs; j++) {
298 		vecid = idpf_vector_lifo_pop(adapter);
299 		q_vector_idxs[num_alloc_vecs++] = vecid;
300 	}
301 	adapter->num_avail_msix -= max_vecs;
302 
303 rel_lock:
304 	mutex_unlock(&adapter->vector_lock);
305 
306 	return num_alloc_vecs;
307 }
308 
309 /**
310  * idpf_intr_req - Request interrupt capabilities
311  * @adapter: adapter to enable interrupts on
312  *
313  * Returns 0 on success, negative on failure
314  */
315 int idpf_intr_req(struct idpf_adapter *adapter)
316 {
317 	u16 default_vports = idpf_get_default_vports(adapter);
318 	int num_q_vecs, total_vecs, num_vec_ids;
319 	int min_vectors, v_actual, err;
320 	unsigned int vector;
321 	u16 *vecids;
322 
323 	total_vecs = idpf_get_reserved_vecs(adapter);
324 	num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
325 
326 	err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
327 	if (err) {
328 		dev_err(&adapter->pdev->dev,
329 			"Failed to allocate %d vectors: %d\n", num_q_vecs, err);
330 
331 		return -EAGAIN;
332 	}
333 
334 	min_vectors = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
335 	v_actual = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
336 					 total_vecs, PCI_IRQ_MSIX);
337 	if (v_actual < min_vectors) {
338 		dev_err(&adapter->pdev->dev, "Failed to allocate MSIX vectors: %d\n",
339 			v_actual);
340 		err = -EAGAIN;
341 		goto send_dealloc_vecs;
342 	}
343 
344 	adapter->msix_entries = kcalloc(v_actual, sizeof(struct msix_entry),
345 					GFP_KERNEL);
346 
347 	if (!adapter->msix_entries) {
348 		err = -ENOMEM;
349 		goto free_irq;
350 	}
351 
352 	idpf_set_mb_vec_id(adapter);
353 
354 	vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
355 	if (!vecids) {
356 		err = -ENOMEM;
357 		goto free_msix;
358 	}
359 
360 	num_vec_ids = idpf_get_vec_ids(adapter, vecids, total_vecs,
361 				       &adapter->req_vec_chunks->vchunks);
362 	if (num_vec_ids < v_actual) {
363 		err = -EINVAL;
364 		goto free_vecids;
365 	}
366 
367 	for (vector = 0; vector < v_actual; vector++) {
368 		adapter->msix_entries[vector].entry = vecids[vector];
369 		adapter->msix_entries[vector].vector =
370 			pci_irq_vector(adapter->pdev, vector);
371 	}
372 
373 	adapter->num_req_msix = total_vecs;
374 	adapter->num_msix_entries = v_actual;
375 	/* 'num_avail_msix' is used to distribute excess vectors to the vports
376 	 * after considering the minimum vectors required per each default
377 	 * vport
378 	 */
379 	adapter->num_avail_msix = v_actual - min_vectors;
380 
381 	/* Fill MSIX vector lifo stack with vector indexes */
382 	err = idpf_init_vector_stack(adapter);
383 	if (err)
384 		goto free_vecids;
385 
386 	err = idpf_mb_intr_init(adapter);
387 	if (err)
388 		goto deinit_vec_stack;
389 	idpf_mb_irq_enable(adapter);
390 	kfree(vecids);
391 
392 	return 0;
393 
394 deinit_vec_stack:
395 	idpf_deinit_vector_stack(adapter);
396 free_vecids:
397 	kfree(vecids);
398 free_msix:
399 	kfree(adapter->msix_entries);
400 	adapter->msix_entries = NULL;
401 free_irq:
402 	pci_free_irq_vectors(adapter->pdev);
403 send_dealloc_vecs:
404 	idpf_send_dealloc_vectors_msg(adapter);
405 
406 	return err;
407 }
408 
409 /**
410  * idpf_find_mac_filter - Search filter list for specific mac filter
411  * @vconfig: Vport config structure
412  * @macaddr: The MAC address
413  *
414  * Returns ptr to the filter object or NULL. Must be called while holding the
415  * mac_filter_list_lock.
416  **/
417 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
418 						    const u8 *macaddr)
419 {
420 	struct idpf_mac_filter *f;
421 
422 	if (!macaddr)
423 		return NULL;
424 
425 	list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
426 		if (ether_addr_equal(macaddr, f->macaddr))
427 			return f;
428 	}
429 
430 	return NULL;
431 }
432 
433 /**
434  * __idpf_del_mac_filter - Delete a MAC filter from the filter list
435  * @vport_config: Vport config structure
436  * @macaddr: The MAC address
437  *
438  * Returns 0 on success, error value on failure
439  **/
440 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
441 				 const u8 *macaddr)
442 {
443 	struct idpf_mac_filter *f;
444 
445 	spin_lock_bh(&vport_config->mac_filter_list_lock);
446 	f = idpf_find_mac_filter(vport_config, macaddr);
447 	if (f) {
448 		list_del(&f->list);
449 		kfree(f);
450 	}
451 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
452 
453 	return 0;
454 }
455 
456 /**
457  * idpf_del_mac_filter - Delete a MAC filter from the filter list
458  * @vport: Main vport structure
459  * @np: Netdev private structure
460  * @macaddr: The MAC address
461  * @async: Don't wait for return message
462  *
463  * Removes filter from list and if interface is up, tells hardware about the
464  * removed filter.
465  **/
466 static int idpf_del_mac_filter(struct idpf_vport *vport,
467 			       struct idpf_netdev_priv *np,
468 			       const u8 *macaddr, bool async)
469 {
470 	struct idpf_vport_config *vport_config;
471 	struct idpf_mac_filter *f;
472 
473 	vport_config = np->adapter->vport_config[np->vport_idx];
474 
475 	spin_lock_bh(&vport_config->mac_filter_list_lock);
476 	f = idpf_find_mac_filter(vport_config, macaddr);
477 	if (f) {
478 		f->remove = true;
479 	} else {
480 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
481 
482 		return -EINVAL;
483 	}
484 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
485 
486 	if (np->state == __IDPF_VPORT_UP) {
487 		int err;
488 
489 		err = idpf_add_del_mac_filters(vport, np, false, async);
490 		if (err)
491 			return err;
492 	}
493 
494 	return  __idpf_del_mac_filter(vport_config, macaddr);
495 }
496 
497 /**
498  * __idpf_add_mac_filter - Add mac filter helper function
499  * @vport_config: Vport config structure
500  * @macaddr: Address to add
501  *
502  * Takes mac_filter_list_lock spinlock to add new filter to list.
503  */
504 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
505 				 const u8 *macaddr)
506 {
507 	struct idpf_mac_filter *f;
508 
509 	spin_lock_bh(&vport_config->mac_filter_list_lock);
510 
511 	f = idpf_find_mac_filter(vport_config, macaddr);
512 	if (f) {
513 		f->remove = false;
514 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
515 
516 		return 0;
517 	}
518 
519 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
520 	if (!f) {
521 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
522 
523 		return -ENOMEM;
524 	}
525 
526 	ether_addr_copy(f->macaddr, macaddr);
527 	list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
528 	f->add = true;
529 
530 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
531 
532 	return 0;
533 }
534 
535 /**
536  * idpf_add_mac_filter - Add a mac filter to the filter list
537  * @vport: Main vport structure
538  * @np: Netdev private structure
539  * @macaddr: The MAC address
540  * @async: Don't wait for return message
541  *
542  * Returns 0 on success or error on failure. If interface is up, we'll also
543  * send the virtchnl message to tell hardware about the filter.
544  **/
545 static int idpf_add_mac_filter(struct idpf_vport *vport,
546 			       struct idpf_netdev_priv *np,
547 			       const u8 *macaddr, bool async)
548 {
549 	struct idpf_vport_config *vport_config;
550 	int err;
551 
552 	vport_config = np->adapter->vport_config[np->vport_idx];
553 	err = __idpf_add_mac_filter(vport_config, macaddr);
554 	if (err)
555 		return err;
556 
557 	if (np->state == __IDPF_VPORT_UP)
558 		err = idpf_add_del_mac_filters(vport, np, true, async);
559 
560 	return err;
561 }
562 
563 /**
564  * idpf_del_all_mac_filters - Delete all MAC filters in list
565  * @vport: main vport struct
566  *
567  * Takes mac_filter_list_lock spinlock.  Deletes all filters
568  */
569 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
570 {
571 	struct idpf_vport_config *vport_config;
572 	struct idpf_mac_filter *f, *ftmp;
573 
574 	vport_config = vport->adapter->vport_config[vport->idx];
575 	spin_lock_bh(&vport_config->mac_filter_list_lock);
576 
577 	list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
578 				 list) {
579 		list_del(&f->list);
580 		kfree(f);
581 	}
582 
583 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
584 }
585 
586 /**
587  * idpf_restore_mac_filters - Re-add all MAC filters in list
588  * @vport: main vport struct
589  *
590  * Takes mac_filter_list_lock spinlock.  Sets add field to true for filters to
591  * resync filters back to HW.
592  */
593 static void idpf_restore_mac_filters(struct idpf_vport *vport)
594 {
595 	struct idpf_vport_config *vport_config;
596 	struct idpf_mac_filter *f;
597 
598 	vport_config = vport->adapter->vport_config[vport->idx];
599 	spin_lock_bh(&vport_config->mac_filter_list_lock);
600 
601 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
602 		f->add = true;
603 
604 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
605 
606 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
607 				 true, false);
608 }
609 
610 /**
611  * idpf_remove_mac_filters - Remove all MAC filters in list
612  * @vport: main vport struct
613  *
614  * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
615  * to remove filters in HW.
616  */
617 static void idpf_remove_mac_filters(struct idpf_vport *vport)
618 {
619 	struct idpf_vport_config *vport_config;
620 	struct idpf_mac_filter *f;
621 
622 	vport_config = vport->adapter->vport_config[vport->idx];
623 	spin_lock_bh(&vport_config->mac_filter_list_lock);
624 
625 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
626 		f->remove = true;
627 
628 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
629 
630 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
631 				 false, false);
632 }
633 
634 /**
635  * idpf_deinit_mac_addr - deinitialize mac address for vport
636  * @vport: main vport structure
637  */
638 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
639 {
640 	struct idpf_vport_config *vport_config;
641 	struct idpf_mac_filter *f;
642 
643 	vport_config = vport->adapter->vport_config[vport->idx];
644 
645 	spin_lock_bh(&vport_config->mac_filter_list_lock);
646 
647 	f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
648 	if (f) {
649 		list_del(&f->list);
650 		kfree(f);
651 	}
652 
653 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
654 }
655 
656 /**
657  * idpf_init_mac_addr - initialize mac address for vport
658  * @vport: main vport structure
659  * @netdev: pointer to netdev struct associated with this vport
660  */
661 static int idpf_init_mac_addr(struct idpf_vport *vport,
662 			      struct net_device *netdev)
663 {
664 	struct idpf_netdev_priv *np = netdev_priv(netdev);
665 	struct idpf_adapter *adapter = vport->adapter;
666 	int err;
667 
668 	if (is_valid_ether_addr(vport->default_mac_addr)) {
669 		eth_hw_addr_set(netdev, vport->default_mac_addr);
670 		ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
671 
672 		return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
673 					   false);
674 	}
675 
676 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
677 			     VIRTCHNL2_CAP_MACFILTER)) {
678 		dev_err(&adapter->pdev->dev,
679 			"MAC address is not provided and capability is not set\n");
680 
681 		return -EINVAL;
682 	}
683 
684 	eth_hw_addr_random(netdev);
685 	err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
686 	if (err)
687 		return err;
688 
689 	dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
690 		 vport->default_mac_addr, netdev->dev_addr);
691 	ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
692 
693 	return 0;
694 }
695 
696 /**
697  * idpf_cfg_netdev - Allocate, configure and register a netdev
698  * @vport: main vport structure
699  *
700  * Returns 0 on success, negative value on failure.
701  */
702 static int idpf_cfg_netdev(struct idpf_vport *vport)
703 {
704 	struct idpf_adapter *adapter = vport->adapter;
705 	struct idpf_vport_config *vport_config;
706 	netdev_features_t dflt_features;
707 	netdev_features_t offloads = 0;
708 	struct idpf_netdev_priv *np;
709 	struct net_device *netdev;
710 	u16 idx = vport->idx;
711 	int err;
712 
713 	vport_config = adapter->vport_config[idx];
714 
715 	/* It's possible we already have a netdev allocated and registered for
716 	 * this vport
717 	 */
718 	if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
719 		netdev = adapter->netdevs[idx];
720 		np = netdev_priv(netdev);
721 		np->vport = vport;
722 		np->vport_idx = vport->idx;
723 		np->vport_id = vport->vport_id;
724 		vport->netdev = netdev;
725 
726 		return idpf_init_mac_addr(vport, netdev);
727 	}
728 
729 	netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
730 				    vport_config->max_q.max_txq,
731 				    vport_config->max_q.max_rxq);
732 	if (!netdev)
733 		return -ENOMEM;
734 
735 	vport->netdev = netdev;
736 	np = netdev_priv(netdev);
737 	np->vport = vport;
738 	np->adapter = adapter;
739 	np->vport_idx = vport->idx;
740 	np->vport_id = vport->vport_id;
741 
742 	spin_lock_init(&np->stats_lock);
743 
744 	err = idpf_init_mac_addr(vport, netdev);
745 	if (err) {
746 		free_netdev(vport->netdev);
747 		vport->netdev = NULL;
748 
749 		return err;
750 	}
751 
752 	/* assign netdev_ops */
753 	netdev->netdev_ops = &idpf_netdev_ops;
754 
755 	/* setup watchdog timeout value to be 5 second */
756 	netdev->watchdog_timeo = 5 * HZ;
757 
758 	netdev->dev_port = idx;
759 
760 	/* configure default MTU size */
761 	netdev->min_mtu = ETH_MIN_MTU;
762 	netdev->max_mtu = vport->max_mtu;
763 
764 	dflt_features = NETIF_F_SG	|
765 			NETIF_F_HIGHDMA;
766 
767 	if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
768 		dflt_features |= NETIF_F_RXHASH;
769 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V4))
770 		dflt_features |= NETIF_F_IP_CSUM;
771 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V6))
772 		dflt_features |= NETIF_F_IPV6_CSUM;
773 	if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
774 		dflt_features |= NETIF_F_RXCSUM;
775 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_SCTP_CSUM))
776 		dflt_features |= NETIF_F_SCTP_CRC;
777 
778 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
779 		dflt_features |= NETIF_F_TSO;
780 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
781 		dflt_features |= NETIF_F_TSO6;
782 	if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
783 				VIRTCHNL2_CAP_SEG_IPV4_UDP |
784 				VIRTCHNL2_CAP_SEG_IPV6_UDP))
785 		dflt_features |= NETIF_F_GSO_UDP_L4;
786 	if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
787 		offloads |= NETIF_F_GRO_HW;
788 	/* advertise to stack only if offloads for encapsulated packets is
789 	 * supported
790 	 */
791 	if (idpf_is_cap_ena(vport->adapter, IDPF_SEG_CAPS,
792 			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL)) {
793 		offloads |= NETIF_F_GSO_UDP_TUNNEL	|
794 			    NETIF_F_GSO_GRE		|
795 			    NETIF_F_GSO_GRE_CSUM	|
796 			    NETIF_F_GSO_PARTIAL		|
797 			    NETIF_F_GSO_UDP_TUNNEL_CSUM	|
798 			    NETIF_F_GSO_IPXIP4		|
799 			    NETIF_F_GSO_IPXIP6		|
800 			    0;
801 
802 		if (!idpf_is_cap_ena_all(vport->adapter, IDPF_CSUM_CAPS,
803 					 IDPF_CAP_TUNNEL_TX_CSUM))
804 			netdev->gso_partial_features |=
805 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
806 
807 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
808 		offloads |= NETIF_F_TSO_MANGLEID;
809 	}
810 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
811 		offloads |= NETIF_F_LOOPBACK;
812 
813 	netdev->features |= dflt_features;
814 	netdev->hw_features |= dflt_features | offloads;
815 	netdev->hw_enc_features |= dflt_features | offloads;
816 	idpf_set_ethtool_ops(netdev);
817 	netif_set_affinity_auto(netdev);
818 	SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
819 
820 	/* carrier off on init to avoid Tx hangs */
821 	netif_carrier_off(netdev);
822 
823 	/* make sure transmit queues start off as stopped */
824 	netif_tx_stop_all_queues(netdev);
825 
826 	/* The vport can be arbitrarily released so we need to also track
827 	 * netdevs in the adapter struct
828 	 */
829 	adapter->netdevs[idx] = netdev;
830 
831 	return 0;
832 }
833 
834 /**
835  * idpf_get_free_slot - get the next non-NULL location index in array
836  * @adapter: adapter in which to look for a free vport slot
837  */
838 static int idpf_get_free_slot(struct idpf_adapter *adapter)
839 {
840 	unsigned int i;
841 
842 	for (i = 0; i < adapter->max_vports; i++) {
843 		if (!adapter->vports[i])
844 			return i;
845 	}
846 
847 	return IDPF_NO_FREE_SLOT;
848 }
849 
850 /**
851  * idpf_remove_features - Turn off feature configs
852  * @vport: virtual port structure
853  */
854 static void idpf_remove_features(struct idpf_vport *vport)
855 {
856 	struct idpf_adapter *adapter = vport->adapter;
857 
858 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
859 		idpf_remove_mac_filters(vport);
860 }
861 
862 /**
863  * idpf_vport_stop - Disable a vport
864  * @vport: vport to disable
865  */
866 static void idpf_vport_stop(struct idpf_vport *vport)
867 {
868 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
869 
870 	if (np->state <= __IDPF_VPORT_DOWN)
871 		return;
872 
873 	netif_carrier_off(vport->netdev);
874 	netif_tx_disable(vport->netdev);
875 
876 	idpf_send_disable_vport_msg(vport);
877 	idpf_send_disable_queues_msg(vport);
878 	idpf_send_map_unmap_queue_vector_msg(vport, false);
879 	/* Normally we ask for queues in create_vport, but if the number of
880 	 * initially requested queues have changed, for example via ethtool
881 	 * set channels, we do delete queues and then add the queues back
882 	 * instead of deleting and reallocating the vport.
883 	 */
884 	if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
885 		idpf_send_delete_queues_msg(vport);
886 
887 	idpf_remove_features(vport);
888 
889 	vport->link_up = false;
890 	idpf_vport_intr_deinit(vport);
891 	idpf_vport_queues_rel(vport);
892 	idpf_vport_intr_rel(vport);
893 	np->state = __IDPF_VPORT_DOWN;
894 }
895 
896 /**
897  * idpf_stop - Disables a network interface
898  * @netdev: network interface device structure
899  *
900  * The stop entry point is called when an interface is de-activated by the OS,
901  * and the netdevice enters the DOWN state.  The hardware is still under the
902  * driver's control, but the netdev interface is disabled.
903  *
904  * Returns success only - not allowed to fail
905  */
906 static int idpf_stop(struct net_device *netdev)
907 {
908 	struct idpf_netdev_priv *np = netdev_priv(netdev);
909 	struct idpf_vport *vport;
910 
911 	if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
912 		return 0;
913 
914 	idpf_vport_ctrl_lock(netdev);
915 	vport = idpf_netdev_to_vport(netdev);
916 
917 	idpf_vport_stop(vport);
918 
919 	idpf_vport_ctrl_unlock(netdev);
920 
921 	return 0;
922 }
923 
924 /**
925  * idpf_decfg_netdev - Unregister the netdev
926  * @vport: vport for which netdev to be unregistered
927  */
928 static void idpf_decfg_netdev(struct idpf_vport *vport)
929 {
930 	struct idpf_adapter *adapter = vport->adapter;
931 	u16 idx = vport->idx;
932 
933 	kfree(vport->rx_ptype_lkup);
934 	vport->rx_ptype_lkup = NULL;
935 
936 	if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV,
937 			       adapter->vport_config[idx]->flags)) {
938 		unregister_netdev(vport->netdev);
939 		free_netdev(vport->netdev);
940 	}
941 	vport->netdev = NULL;
942 
943 	adapter->netdevs[idx] = NULL;
944 }
945 
946 /**
947  * idpf_vport_rel - Delete a vport and free its resources
948  * @vport: the vport being removed
949  */
950 static void idpf_vport_rel(struct idpf_vport *vport)
951 {
952 	struct idpf_adapter *adapter = vport->adapter;
953 	struct idpf_vport_config *vport_config;
954 	struct idpf_vector_info vec_info;
955 	struct idpf_rss_data *rss_data;
956 	struct idpf_vport_max_q max_q;
957 	u16 idx = vport->idx;
958 
959 	vport_config = adapter->vport_config[vport->idx];
960 	idpf_deinit_rss(vport);
961 	rss_data = &vport_config->user_config.rss_data;
962 	kfree(rss_data->rss_key);
963 	rss_data->rss_key = NULL;
964 
965 	idpf_send_destroy_vport_msg(vport);
966 
967 	/* Release all max queues allocated to the adapter's pool */
968 	max_q.max_rxq = vport_config->max_q.max_rxq;
969 	max_q.max_txq = vport_config->max_q.max_txq;
970 	max_q.max_bufq = vport_config->max_q.max_bufq;
971 	max_q.max_complq = vport_config->max_q.max_complq;
972 	idpf_vport_dealloc_max_qs(adapter, &max_q);
973 
974 	/* Release all the allocated vectors on the stack */
975 	vec_info.num_req_vecs = 0;
976 	vec_info.num_curr_vecs = vport->num_q_vectors;
977 	vec_info.default_vport = vport->default_vport;
978 
979 	idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
980 
981 	kfree(vport->q_vector_idxs);
982 	vport->q_vector_idxs = NULL;
983 
984 	kfree(adapter->vport_params_recvd[idx]);
985 	adapter->vport_params_recvd[idx] = NULL;
986 	kfree(adapter->vport_params_reqd[idx]);
987 	adapter->vport_params_reqd[idx] = NULL;
988 	if (adapter->vport_config[idx]) {
989 		kfree(adapter->vport_config[idx]->req_qs_chunks);
990 		adapter->vport_config[idx]->req_qs_chunks = NULL;
991 	}
992 	kfree(vport);
993 	adapter->num_alloc_vports--;
994 }
995 
996 /**
997  * idpf_vport_dealloc - cleanup and release a given vport
998  * @vport: pointer to idpf vport structure
999  *
1000  * returns nothing
1001  */
1002 static void idpf_vport_dealloc(struct idpf_vport *vport)
1003 {
1004 	struct idpf_adapter *adapter = vport->adapter;
1005 	unsigned int i = vport->idx;
1006 
1007 	idpf_deinit_mac_addr(vport);
1008 	idpf_vport_stop(vport);
1009 
1010 	if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1011 		idpf_decfg_netdev(vport);
1012 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1013 		idpf_del_all_mac_filters(vport);
1014 
1015 	if (adapter->netdevs[i]) {
1016 		struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1017 
1018 		np->vport = NULL;
1019 	}
1020 
1021 	idpf_vport_rel(vport);
1022 
1023 	adapter->vports[i] = NULL;
1024 	adapter->next_vport = idpf_get_free_slot(adapter);
1025 }
1026 
1027 /**
1028  * idpf_is_hsplit_supported - check whether the header split is supported
1029  * @vport: virtual port to check the capability for
1030  *
1031  * Return: true if it's supported by the HW/FW, false if not.
1032  */
1033 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1034 {
1035 	return idpf_is_queue_model_split(vport->rxq_model) &&
1036 	       idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1037 				   IDPF_CAP_HSPLIT);
1038 }
1039 
1040 /**
1041  * idpf_vport_get_hsplit - get the current header split feature state
1042  * @vport: virtual port to query the state for
1043  *
1044  * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1045  *         ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1046  *         ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1047  */
1048 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1049 {
1050 	const struct idpf_vport_user_config_data *config;
1051 
1052 	if (!idpf_is_hsplit_supported(vport))
1053 		return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1054 
1055 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1056 
1057 	return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1058 	       ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1059 	       ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1060 }
1061 
1062 /**
1063  * idpf_vport_set_hsplit - enable or disable header split on a given vport
1064  * @vport: virtual port to configure
1065  * @val: Ethtool flag controlling the header split state
1066  *
1067  * Return: true on success, false if not supported by the HW.
1068  */
1069 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1070 {
1071 	struct idpf_vport_user_config_data *config;
1072 
1073 	if (!idpf_is_hsplit_supported(vport))
1074 		return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1075 
1076 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1077 
1078 	switch (val) {
1079 	case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1080 		/* Default is to enable */
1081 	case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1082 		__set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1083 		return true;
1084 	case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1085 		__clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1086 		return true;
1087 	default:
1088 		return false;
1089 	}
1090 }
1091 
1092 /**
1093  * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1094  * @adapter: board private structure
1095  * @max_q: vport max queue info
1096  *
1097  * returns a pointer to a vport on success, NULL on failure.
1098  */
1099 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1100 					   struct idpf_vport_max_q *max_q)
1101 {
1102 	struct idpf_rss_data *rss_data;
1103 	u16 idx = adapter->next_vport;
1104 	struct idpf_vport *vport;
1105 	u16 num_max_q;
1106 
1107 	if (idx == IDPF_NO_FREE_SLOT)
1108 		return NULL;
1109 
1110 	vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1111 	if (!vport)
1112 		return vport;
1113 
1114 	if (!adapter->vport_config[idx]) {
1115 		struct idpf_vport_config *vport_config;
1116 
1117 		vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1118 		if (!vport_config) {
1119 			kfree(vport);
1120 
1121 			return NULL;
1122 		}
1123 
1124 		adapter->vport_config[idx] = vport_config;
1125 	}
1126 
1127 	vport->idx = idx;
1128 	vport->adapter = adapter;
1129 	vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1130 	vport->default_vport = adapter->num_alloc_vports <
1131 			       idpf_get_default_vports(adapter);
1132 
1133 	num_max_q = max(max_q->max_txq, max_q->max_rxq);
1134 	vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1135 	if (!vport->q_vector_idxs) {
1136 		kfree(vport);
1137 
1138 		return NULL;
1139 	}
1140 	idpf_vport_init(vport, max_q);
1141 
1142 	/* This alloc is done separate from the LUT because it's not strictly
1143 	 * dependent on how many queues we have. If we change number of queues
1144 	 * and soft reset we'll need a new LUT but the key can remain the same
1145 	 * for as long as the vport exists.
1146 	 */
1147 	rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1148 	rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1149 	if (!rss_data->rss_key) {
1150 		kfree(vport);
1151 
1152 		return NULL;
1153 	}
1154 	/* Initialize default rss key */
1155 	netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1156 
1157 	/* fill vport slot in the adapter struct */
1158 	adapter->vports[idx] = vport;
1159 	adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1160 
1161 	adapter->num_alloc_vports++;
1162 	/* prepare adapter->next_vport for next use */
1163 	adapter->next_vport = idpf_get_free_slot(adapter);
1164 
1165 	return vport;
1166 }
1167 
1168 /**
1169  * idpf_get_stats64 - get statistics for network device structure
1170  * @netdev: network interface device structure
1171  * @stats: main device statistics structure
1172  */
1173 static void idpf_get_stats64(struct net_device *netdev,
1174 			     struct rtnl_link_stats64 *stats)
1175 {
1176 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1177 
1178 	spin_lock_bh(&np->stats_lock);
1179 	*stats = np->netstats;
1180 	spin_unlock_bh(&np->stats_lock);
1181 }
1182 
1183 /**
1184  * idpf_statistics_task - Delayed task to get statistics over mailbox
1185  * @work: work_struct handle to our data
1186  */
1187 void idpf_statistics_task(struct work_struct *work)
1188 {
1189 	struct idpf_adapter *adapter;
1190 	int i;
1191 
1192 	adapter = container_of(work, struct idpf_adapter, stats_task.work);
1193 
1194 	for (i = 0; i < adapter->max_vports; i++) {
1195 		struct idpf_vport *vport = adapter->vports[i];
1196 
1197 		if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1198 			idpf_send_get_stats_msg(vport);
1199 	}
1200 
1201 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1202 			   msecs_to_jiffies(10000));
1203 }
1204 
1205 /**
1206  * idpf_mbx_task - Delayed task to handle mailbox responses
1207  * @work: work_struct handle
1208  */
1209 void idpf_mbx_task(struct work_struct *work)
1210 {
1211 	struct idpf_adapter *adapter;
1212 
1213 	adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1214 
1215 	if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1216 		idpf_mb_irq_enable(adapter);
1217 	else
1218 		queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1219 				   msecs_to_jiffies(300));
1220 
1221 	idpf_recv_mb_msg(adapter);
1222 }
1223 
1224 /**
1225  * idpf_service_task - Delayed task for handling mailbox responses
1226  * @work: work_struct handle to our data
1227  *
1228  */
1229 void idpf_service_task(struct work_struct *work)
1230 {
1231 	struct idpf_adapter *adapter;
1232 
1233 	adapter = container_of(work, struct idpf_adapter, serv_task.work);
1234 
1235 	if (idpf_is_reset_detected(adapter) &&
1236 	    !idpf_is_reset_in_prog(adapter) &&
1237 	    !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1238 		dev_info(&adapter->pdev->dev, "HW reset detected\n");
1239 		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1240 		queue_delayed_work(adapter->vc_event_wq,
1241 				   &adapter->vc_event_task,
1242 				   msecs_to_jiffies(10));
1243 	}
1244 
1245 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1246 			   msecs_to_jiffies(300));
1247 }
1248 
1249 /**
1250  * idpf_restore_features - Restore feature configs
1251  * @vport: virtual port structure
1252  */
1253 static void idpf_restore_features(struct idpf_vport *vport)
1254 {
1255 	struct idpf_adapter *adapter = vport->adapter;
1256 
1257 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1258 		idpf_restore_mac_filters(vport);
1259 }
1260 
1261 /**
1262  * idpf_set_real_num_queues - set number of queues for netdev
1263  * @vport: virtual port structure
1264  *
1265  * Returns 0 on success, negative on failure.
1266  */
1267 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1268 {
1269 	int err;
1270 
1271 	err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1272 	if (err)
1273 		return err;
1274 
1275 	return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq);
1276 }
1277 
1278 /**
1279  * idpf_up_complete - Complete interface up sequence
1280  * @vport: virtual port structure
1281  *
1282  * Returns 0 on success, negative on failure.
1283  */
1284 static int idpf_up_complete(struct idpf_vport *vport)
1285 {
1286 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1287 
1288 	if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1289 		netif_carrier_on(vport->netdev);
1290 		netif_tx_start_all_queues(vport->netdev);
1291 	}
1292 
1293 	np->state = __IDPF_VPORT_UP;
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1300  * @vport: virtual port struct
1301  */
1302 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1303 {
1304 	int i, j;
1305 
1306 	for (i = 0; i < vport->num_rxq_grp; i++) {
1307 		struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1308 
1309 		if (idpf_is_queue_model_split(vport->rxq_model)) {
1310 			for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1311 				const struct idpf_buf_queue *q =
1312 					&grp->splitq.bufq_sets[j].bufq;
1313 
1314 				writel(q->next_to_alloc, q->tail);
1315 			}
1316 		} else {
1317 			for (j = 0; j < grp->singleq.num_rxq; j++) {
1318 				const struct idpf_rx_queue *q =
1319 					grp->singleq.rxqs[j];
1320 
1321 				writel(q->next_to_alloc, q->tail);
1322 			}
1323 		}
1324 	}
1325 }
1326 
1327 /**
1328  * idpf_vport_open - Bring up a vport
1329  * @vport: vport to bring up
1330  */
1331 static int idpf_vport_open(struct idpf_vport *vport)
1332 {
1333 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1334 	struct idpf_adapter *adapter = vport->adapter;
1335 	struct idpf_vport_config *vport_config;
1336 	int err;
1337 
1338 	if (np->state != __IDPF_VPORT_DOWN)
1339 		return -EBUSY;
1340 
1341 	/* we do not allow interface up just yet */
1342 	netif_carrier_off(vport->netdev);
1343 
1344 	err = idpf_vport_intr_alloc(vport);
1345 	if (err) {
1346 		dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1347 			vport->vport_id, err);
1348 		return err;
1349 	}
1350 
1351 	err = idpf_vport_queues_alloc(vport);
1352 	if (err)
1353 		goto intr_rel;
1354 
1355 	err = idpf_vport_queue_ids_init(vport);
1356 	if (err) {
1357 		dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1358 			vport->vport_id, err);
1359 		goto queues_rel;
1360 	}
1361 
1362 	err = idpf_vport_intr_init(vport);
1363 	if (err) {
1364 		dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1365 			vport->vport_id, err);
1366 		goto queues_rel;
1367 	}
1368 
1369 	err = idpf_rx_bufs_init_all(vport);
1370 	if (err) {
1371 		dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1372 			vport->vport_id, err);
1373 		goto queues_rel;
1374 	}
1375 
1376 	err = idpf_queue_reg_init(vport);
1377 	if (err) {
1378 		dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1379 			vport->vport_id, err);
1380 		goto queues_rel;
1381 	}
1382 
1383 	idpf_rx_init_buf_tail(vport);
1384 	idpf_vport_intr_ena(vport);
1385 
1386 	err = idpf_send_config_queues_msg(vport);
1387 	if (err) {
1388 		dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1389 			vport->vport_id, err);
1390 		goto intr_deinit;
1391 	}
1392 
1393 	err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1394 	if (err) {
1395 		dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1396 			vport->vport_id, err);
1397 		goto intr_deinit;
1398 	}
1399 
1400 	err = idpf_send_enable_queues_msg(vport);
1401 	if (err) {
1402 		dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1403 			vport->vport_id, err);
1404 		goto unmap_queue_vectors;
1405 	}
1406 
1407 	err = idpf_send_enable_vport_msg(vport);
1408 	if (err) {
1409 		dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1410 			vport->vport_id, err);
1411 		err = -EAGAIN;
1412 		goto disable_queues;
1413 	}
1414 
1415 	idpf_restore_features(vport);
1416 
1417 	vport_config = adapter->vport_config[vport->idx];
1418 	if (vport_config->user_config.rss_data.rss_lut)
1419 		err = idpf_config_rss(vport);
1420 	else
1421 		err = idpf_init_rss(vport);
1422 	if (err) {
1423 		dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1424 			vport->vport_id, err);
1425 		goto disable_vport;
1426 	}
1427 
1428 	err = idpf_up_complete(vport);
1429 	if (err) {
1430 		dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1431 			vport->vport_id, err);
1432 		goto deinit_rss;
1433 	}
1434 
1435 	return 0;
1436 
1437 deinit_rss:
1438 	idpf_deinit_rss(vport);
1439 disable_vport:
1440 	idpf_send_disable_vport_msg(vport);
1441 disable_queues:
1442 	idpf_send_disable_queues_msg(vport);
1443 unmap_queue_vectors:
1444 	idpf_send_map_unmap_queue_vector_msg(vport, false);
1445 intr_deinit:
1446 	idpf_vport_intr_deinit(vport);
1447 queues_rel:
1448 	idpf_vport_queues_rel(vport);
1449 intr_rel:
1450 	idpf_vport_intr_rel(vport);
1451 
1452 	return err;
1453 }
1454 
1455 /**
1456  * idpf_init_task - Delayed initialization task
1457  * @work: work_struct handle to our data
1458  *
1459  * Init task finishes up pending work started in probe. Due to the asynchronous
1460  * nature in which the device communicates with hardware, we may have to wait
1461  * several milliseconds to get a response.  Instead of busy polling in probe,
1462  * pulling it out into a delayed work task prevents us from bogging down the
1463  * whole system waiting for a response from hardware.
1464  */
1465 void idpf_init_task(struct work_struct *work)
1466 {
1467 	struct idpf_vport_config *vport_config;
1468 	struct idpf_vport_max_q max_q;
1469 	struct idpf_adapter *adapter;
1470 	struct idpf_netdev_priv *np;
1471 	struct idpf_vport *vport;
1472 	u16 num_default_vports;
1473 	struct pci_dev *pdev;
1474 	bool default_vport;
1475 	int index, err;
1476 
1477 	adapter = container_of(work, struct idpf_adapter, init_task.work);
1478 
1479 	num_default_vports = idpf_get_default_vports(adapter);
1480 	if (adapter->num_alloc_vports < num_default_vports)
1481 		default_vport = true;
1482 	else
1483 		default_vport = false;
1484 
1485 	err = idpf_vport_alloc_max_qs(adapter, &max_q);
1486 	if (err)
1487 		goto unwind_vports;
1488 
1489 	err = idpf_send_create_vport_msg(adapter, &max_q);
1490 	if (err) {
1491 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1492 		goto unwind_vports;
1493 	}
1494 
1495 	pdev = adapter->pdev;
1496 	vport = idpf_vport_alloc(adapter, &max_q);
1497 	if (!vport) {
1498 		err = -EFAULT;
1499 		dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1500 			err);
1501 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1502 		goto unwind_vports;
1503 	}
1504 
1505 	index = vport->idx;
1506 	vport_config = adapter->vport_config[index];
1507 
1508 	init_waitqueue_head(&vport->sw_marker_wq);
1509 
1510 	spin_lock_init(&vport_config->mac_filter_list_lock);
1511 
1512 	INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1513 
1514 	err = idpf_check_supported_desc_ids(vport);
1515 	if (err) {
1516 		dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1517 		goto cfg_netdev_err;
1518 	}
1519 
1520 	if (idpf_cfg_netdev(vport))
1521 		goto cfg_netdev_err;
1522 
1523 	err = idpf_send_get_rx_ptype_msg(vport);
1524 	if (err)
1525 		goto handle_err;
1526 
1527 	/* Once state is put into DOWN, driver is ready for dev_open */
1528 	np = netdev_priv(vport->netdev);
1529 	np->state = __IDPF_VPORT_DOWN;
1530 	if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1531 		idpf_vport_open(vport);
1532 
1533 	/* Spawn and return 'idpf_init_task' work queue until all the
1534 	 * default vports are created
1535 	 */
1536 	if (adapter->num_alloc_vports < num_default_vports) {
1537 		queue_delayed_work(adapter->init_wq, &adapter->init_task,
1538 				   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1539 
1540 		return;
1541 	}
1542 
1543 	for (index = 0; index < adapter->max_vports; index++) {
1544 		struct net_device *netdev = adapter->netdevs[index];
1545 		struct idpf_vport_config *vport_config;
1546 
1547 		vport_config = adapter->vport_config[index];
1548 
1549 		if (!netdev ||
1550 		    test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags))
1551 			continue;
1552 
1553 		err = register_netdev(netdev);
1554 		if (err) {
1555 			dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n",
1556 				index, ERR_PTR(err));
1557 			continue;
1558 		}
1559 		set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags);
1560 	}
1561 
1562 	/* As all the required vports are created, clear the reset flag
1563 	 * unconditionally here in case we were in reset and the link was down.
1564 	 */
1565 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1566 	/* Start the statistics task now */
1567 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1568 			   msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1569 
1570 	return;
1571 
1572 handle_err:
1573 	idpf_decfg_netdev(vport);
1574 cfg_netdev_err:
1575 	idpf_vport_rel(vport);
1576 	adapter->vports[index] = NULL;
1577 unwind_vports:
1578 	if (default_vport) {
1579 		for (index = 0; index < adapter->max_vports; index++) {
1580 			if (adapter->vports[index])
1581 				idpf_vport_dealloc(adapter->vports[index]);
1582 		}
1583 	}
1584 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1585 }
1586 
1587 /**
1588  * idpf_sriov_ena - Enable or change number of VFs
1589  * @adapter: private data struct
1590  * @num_vfs: number of VFs to allocate
1591  */
1592 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1593 {
1594 	struct device *dev = &adapter->pdev->dev;
1595 	int err;
1596 
1597 	err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1598 	if (err) {
1599 		dev_err(dev, "Failed to allocate VFs: %d\n", err);
1600 
1601 		return err;
1602 	}
1603 
1604 	err = pci_enable_sriov(adapter->pdev, num_vfs);
1605 	if (err) {
1606 		idpf_send_set_sriov_vfs_msg(adapter, 0);
1607 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1608 
1609 		return err;
1610 	}
1611 
1612 	adapter->num_vfs = num_vfs;
1613 
1614 	return num_vfs;
1615 }
1616 
1617 /**
1618  * idpf_sriov_configure - Configure the requested VFs
1619  * @pdev: pointer to a pci_dev structure
1620  * @num_vfs: number of vfs to allocate
1621  *
1622  * Enable or change the number of VFs. Called when the user updates the number
1623  * of VFs in sysfs.
1624  **/
1625 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1626 {
1627 	struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1628 
1629 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1630 		dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1631 
1632 		return -EOPNOTSUPP;
1633 	}
1634 
1635 	if (num_vfs)
1636 		return idpf_sriov_ena(adapter, num_vfs);
1637 
1638 	if (pci_vfs_assigned(pdev)) {
1639 		dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1640 
1641 		return -EBUSY;
1642 	}
1643 
1644 	pci_disable_sriov(adapter->pdev);
1645 	idpf_send_set_sriov_vfs_msg(adapter, 0);
1646 	adapter->num_vfs = 0;
1647 
1648 	return 0;
1649 }
1650 
1651 /**
1652  * idpf_deinit_task - Device deinit routine
1653  * @adapter: Driver specific private structure
1654  *
1655  * Extended remove logic which will be used for
1656  * hard reset as well
1657  */
1658 void idpf_deinit_task(struct idpf_adapter *adapter)
1659 {
1660 	unsigned int i;
1661 
1662 	/* Wait until the init_task is done else this thread might release
1663 	 * the resources first and the other thread might end up in a bad state
1664 	 */
1665 	cancel_delayed_work_sync(&adapter->init_task);
1666 
1667 	if (!adapter->vports)
1668 		return;
1669 
1670 	cancel_delayed_work_sync(&adapter->stats_task);
1671 
1672 	for (i = 0; i < adapter->max_vports; i++) {
1673 		if (adapter->vports[i])
1674 			idpf_vport_dealloc(adapter->vports[i]);
1675 	}
1676 }
1677 
1678 /**
1679  * idpf_check_reset_complete - check that reset is complete
1680  * @hw: pointer to hw struct
1681  * @reset_reg: struct with reset registers
1682  *
1683  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1684  **/
1685 static int idpf_check_reset_complete(struct idpf_hw *hw,
1686 				     struct idpf_reset_reg *reset_reg)
1687 {
1688 	struct idpf_adapter *adapter = hw->back;
1689 	int i;
1690 
1691 	for (i = 0; i < 2000; i++) {
1692 		u32 reg_val = readl(reset_reg->rstat);
1693 
1694 		/* 0xFFFFFFFF might be read if other side hasn't cleared the
1695 		 * register for us yet and 0xFFFFFFFF is not a valid value for
1696 		 * the register, so treat that as invalid.
1697 		 */
1698 		if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1699 			return 0;
1700 
1701 		usleep_range(5000, 10000);
1702 	}
1703 
1704 	dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1705 	/* Clear the reset flag unconditionally here since the reset
1706 	 * technically isn't in progress anymore from the driver's perspective
1707 	 */
1708 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1709 
1710 	return -EBUSY;
1711 }
1712 
1713 /**
1714  * idpf_set_vport_state - Set the vport state to be after the reset
1715  * @adapter: Driver specific private structure
1716  */
1717 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1718 {
1719 	u16 i;
1720 
1721 	for (i = 0; i < adapter->max_vports; i++) {
1722 		struct idpf_netdev_priv *np;
1723 
1724 		if (!adapter->netdevs[i])
1725 			continue;
1726 
1727 		np = netdev_priv(adapter->netdevs[i]);
1728 		if (np->state == __IDPF_VPORT_UP)
1729 			set_bit(IDPF_VPORT_UP_REQUESTED,
1730 				adapter->vport_config[i]->flags);
1731 	}
1732 }
1733 
1734 /**
1735  * idpf_init_hard_reset - Initiate a hardware reset
1736  * @adapter: Driver specific private structure
1737  *
1738  * Deallocate the vports and all the resources associated with them and
1739  * reallocate. Also reinitialize the mailbox. Return 0 on success,
1740  * negative on failure.
1741  */
1742 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1743 {
1744 	struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1745 	struct device *dev = &adapter->pdev->dev;
1746 	struct net_device *netdev;
1747 	int err;
1748 	u16 i;
1749 
1750 	mutex_lock(&adapter->vport_ctrl_lock);
1751 
1752 	dev_info(dev, "Device HW Reset initiated\n");
1753 
1754 	/* Avoid TX hangs on reset */
1755 	for (i = 0; i < adapter->max_vports; i++) {
1756 		netdev = adapter->netdevs[i];
1757 		if (!netdev)
1758 			continue;
1759 
1760 		netif_carrier_off(netdev);
1761 		netif_tx_disable(netdev);
1762 	}
1763 
1764 	/* Prepare for reset */
1765 	if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1766 		reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1767 	} else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1768 		bool is_reset = idpf_is_reset_detected(adapter);
1769 
1770 		idpf_set_vport_state(adapter);
1771 		idpf_vc_core_deinit(adapter);
1772 		if (!is_reset)
1773 			reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1774 		idpf_deinit_dflt_mbx(adapter);
1775 	} else {
1776 		dev_err(dev, "Unhandled hard reset cause\n");
1777 		err = -EBADRQC;
1778 		goto unlock_mutex;
1779 	}
1780 
1781 	/* Wait for reset to complete */
1782 	err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1783 	if (err) {
1784 		dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1785 			adapter->state);
1786 		goto unlock_mutex;
1787 	}
1788 
1789 	/* Reset is complete and so start building the driver resources again */
1790 	err = idpf_init_dflt_mbx(adapter);
1791 	if (err) {
1792 		dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1793 		goto unlock_mutex;
1794 	}
1795 
1796 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1797 
1798 	/* Initialize the state machine, also allocate memory and request
1799 	 * resources
1800 	 */
1801 	err = idpf_vc_core_init(adapter);
1802 	if (err) {
1803 		cancel_delayed_work_sync(&adapter->mbx_task);
1804 		idpf_deinit_dflt_mbx(adapter);
1805 		goto unlock_mutex;
1806 	}
1807 
1808 	/* Wait till all the vports are initialized to release the reset lock,
1809 	 * else user space callbacks may access uninitialized vports
1810 	 */
1811 	while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1812 		msleep(100);
1813 
1814 unlock_mutex:
1815 	mutex_unlock(&adapter->vport_ctrl_lock);
1816 
1817 	return err;
1818 }
1819 
1820 /**
1821  * idpf_vc_event_task - Handle virtchannel event logic
1822  * @work: work queue struct
1823  */
1824 void idpf_vc_event_task(struct work_struct *work)
1825 {
1826 	struct idpf_adapter *adapter;
1827 
1828 	adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1829 
1830 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1831 		return;
1832 
1833 	if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags) ||
1834 	    test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1835 		set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1836 		idpf_init_hard_reset(adapter);
1837 	}
1838 }
1839 
1840 /**
1841  * idpf_initiate_soft_reset - Initiate a software reset
1842  * @vport: virtual port data struct
1843  * @reset_cause: reason for the soft reset
1844  *
1845  * Soft reset only reallocs vport queue resources. Returns 0 on success,
1846  * negative on failure.
1847  */
1848 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1849 			     enum idpf_vport_reset_cause reset_cause)
1850 {
1851 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1852 	enum idpf_vport_state current_state = np->state;
1853 	struct idpf_adapter *adapter = vport->adapter;
1854 	struct idpf_vport *new_vport;
1855 	int err;
1856 
1857 	/* If the system is low on memory, we can end up in bad state if we
1858 	 * free all the memory for queue resources and try to allocate them
1859 	 * again. Instead, we can pre-allocate the new resources before doing
1860 	 * anything and bailing if the alloc fails.
1861 	 *
1862 	 * Make a clone of the existing vport to mimic its current
1863 	 * configuration, then modify the new structure with any requested
1864 	 * changes. Once the allocation of the new resources is done, stop the
1865 	 * existing vport and copy the configuration to the main vport. If an
1866 	 * error occurred, the existing vport will be untouched.
1867 	 *
1868 	 */
1869 	new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1870 	if (!new_vport)
1871 		return -ENOMEM;
1872 
1873 	/* This purposely avoids copying the end of the struct because it
1874 	 * contains wait_queues and mutexes and other stuff we don't want to
1875 	 * mess with. Nothing below should use those variables from new_vport
1876 	 * and should instead always refer to them in vport if they need to.
1877 	 */
1878 	memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up));
1879 
1880 	/* Adjust resource parameters prior to reallocating resources */
1881 	switch (reset_cause) {
1882 	case IDPF_SR_Q_CHANGE:
1883 		err = idpf_vport_adjust_qs(new_vport);
1884 		if (err)
1885 			goto free_vport;
1886 		break;
1887 	case IDPF_SR_Q_DESC_CHANGE:
1888 		/* Update queue parameters before allocating resources */
1889 		idpf_vport_calc_num_q_desc(new_vport);
1890 		break;
1891 	case IDPF_SR_MTU_CHANGE:
1892 	case IDPF_SR_RSC_CHANGE:
1893 		break;
1894 	default:
1895 		dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1896 		err = -EINVAL;
1897 		goto free_vport;
1898 	}
1899 
1900 	if (current_state <= __IDPF_VPORT_DOWN) {
1901 		idpf_send_delete_queues_msg(vport);
1902 	} else {
1903 		set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1904 		idpf_vport_stop(vport);
1905 	}
1906 
1907 	idpf_deinit_rss(vport);
1908 	/* We're passing in vport here because we need its wait_queue
1909 	 * to send a message and it should be getting all the vport
1910 	 * config data out of the adapter but we need to be careful not
1911 	 * to add code to add_queues to change the vport config within
1912 	 * vport itself as it will be wiped with a memcpy later.
1913 	 */
1914 	err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
1915 				       new_vport->num_complq,
1916 				       new_vport->num_rxq,
1917 				       new_vport->num_bufq);
1918 	if (err)
1919 		goto err_reset;
1920 
1921 	/* Same comment as above regarding avoiding copying the wait_queues and
1922 	 * mutexes applies here. We do not want to mess with those if possible.
1923 	 */
1924 	memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up));
1925 
1926 	if (reset_cause == IDPF_SR_Q_CHANGE)
1927 		idpf_vport_alloc_vec_indexes(vport);
1928 
1929 	err = idpf_set_real_num_queues(vport);
1930 	if (err)
1931 		goto err_open;
1932 
1933 	if (current_state == __IDPF_VPORT_UP)
1934 		err = idpf_vport_open(vport);
1935 
1936 	kfree(new_vport);
1937 
1938 	return err;
1939 
1940 err_reset:
1941 	idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq,
1942 				 vport->num_rxq, vport->num_bufq);
1943 
1944 err_open:
1945 	if (current_state == __IDPF_VPORT_UP)
1946 		idpf_vport_open(vport);
1947 
1948 free_vport:
1949 	kfree(new_vport);
1950 
1951 	return err;
1952 }
1953 
1954 /**
1955  * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1956  * @netdev: the netdevice
1957  * @addr: address to add
1958  *
1959  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1960  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1961  * meaning we cannot sleep in this context. Due to this, we have to add the
1962  * filter and send the virtchnl message asynchronously without waiting for the
1963  * response from the other side. We won't know whether or not the operation
1964  * actually succeeded until we get the message back.  Returns 0 on success,
1965  * negative on failure.
1966  */
1967 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
1968 {
1969 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1970 
1971 	return idpf_add_mac_filter(np->vport, np, addr, true);
1972 }
1973 
1974 /**
1975  * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1976  * @netdev: the netdevice
1977  * @addr: address to add
1978  *
1979  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1980  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1981  * meaning we cannot sleep in this context. Due to this we have to delete the
1982  * filter and send the virtchnl message asynchronously without waiting for the
1983  * return from the other side.  We won't know whether or not the operation
1984  * actually succeeded until we get the message back. Returns 0 on success,
1985  * negative on failure.
1986  */
1987 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
1988 {
1989 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1990 
1991 	/* Under some circumstances, we might receive a request to delete
1992 	 * our own device address from our uc list. Because we store the
1993 	 * device address in the VSI's MAC filter list, we need to ignore
1994 	 * such requests and not delete our device address from this list.
1995 	 */
1996 	if (ether_addr_equal(addr, netdev->dev_addr))
1997 		return 0;
1998 
1999 	idpf_del_mac_filter(np->vport, np, addr, true);
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  * idpf_set_rx_mode - NDO callback to set the netdev filters
2006  * @netdev: network interface device structure
2007  *
2008  * Stack takes addr_list_lock spinlock before calling our .set_rx_mode.  We
2009  * cannot sleep in this context.
2010  */
2011 static void idpf_set_rx_mode(struct net_device *netdev)
2012 {
2013 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2014 	struct idpf_vport_user_config_data *config_data;
2015 	struct idpf_adapter *adapter;
2016 	bool changed = false;
2017 	struct device *dev;
2018 	int err;
2019 
2020 	adapter = np->adapter;
2021 	dev = &adapter->pdev->dev;
2022 
2023 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2024 		__dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2025 		__dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2026 	}
2027 
2028 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2029 		return;
2030 
2031 	config_data = &adapter->vport_config[np->vport_idx]->user_config;
2032 	/* IFF_PROMISC enables both unicast and multicast promiscuous,
2033 	 * while IFF_ALLMULTI only enables multicast such that:
2034 	 *
2035 	 * promisc  + allmulti		= unicast | multicast
2036 	 * promisc  + !allmulti		= unicast | multicast
2037 	 * !promisc + allmulti		= multicast
2038 	 */
2039 	if ((netdev->flags & IFF_PROMISC) &&
2040 	    !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2041 		changed = true;
2042 		dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2043 		if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2044 			dev_info(dev, "Entering multicast promiscuous mode\n");
2045 	}
2046 
2047 	if (!(netdev->flags & IFF_PROMISC) &&
2048 	    test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2049 		changed = true;
2050 		dev_info(dev, "Leaving promiscuous mode\n");
2051 	}
2052 
2053 	if (netdev->flags & IFF_ALLMULTI &&
2054 	    !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2055 		changed = true;
2056 		dev_info(dev, "Entering multicast promiscuous mode\n");
2057 	}
2058 
2059 	if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2060 	    test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2061 		changed = true;
2062 		dev_info(dev, "Leaving multicast promiscuous mode\n");
2063 	}
2064 
2065 	if (!changed)
2066 		return;
2067 
2068 	err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2069 	if (err)
2070 		dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2071 }
2072 
2073 /**
2074  * idpf_vport_manage_rss_lut - disable/enable RSS
2075  * @vport: the vport being changed
2076  *
2077  * In the event of disable request for RSS, this function will zero out RSS
2078  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2079  * LUT with the default LUT configuration.
2080  */
2081 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2082 {
2083 	bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2084 	struct idpf_rss_data *rss_data;
2085 	u16 idx = vport->idx;
2086 	int lut_size;
2087 
2088 	rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2089 	lut_size = rss_data->rss_lut_size * sizeof(u32);
2090 
2091 	if (ena) {
2092 		/* This will contain the default or user configured LUT */
2093 		memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2094 	} else {
2095 		/* Save a copy of the current LUT to be restored later if
2096 		 * requested.
2097 		 */
2098 		memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2099 
2100 		/* Zero out the current LUT to disable */
2101 		memset(rss_data->rss_lut, 0, lut_size);
2102 	}
2103 
2104 	return idpf_config_rss(vport);
2105 }
2106 
2107 /**
2108  * idpf_set_features - set the netdev feature flags
2109  * @netdev: ptr to the netdev being adjusted
2110  * @features: the feature set that the stack is suggesting
2111  */
2112 static int idpf_set_features(struct net_device *netdev,
2113 			     netdev_features_t features)
2114 {
2115 	netdev_features_t changed = netdev->features ^ features;
2116 	struct idpf_adapter *adapter;
2117 	struct idpf_vport *vport;
2118 	int err = 0;
2119 
2120 	idpf_vport_ctrl_lock(netdev);
2121 	vport = idpf_netdev_to_vport(netdev);
2122 
2123 	adapter = vport->adapter;
2124 
2125 	if (idpf_is_reset_in_prog(adapter)) {
2126 		dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2127 		err = -EBUSY;
2128 		goto unlock_mutex;
2129 	}
2130 
2131 	if (changed & NETIF_F_RXHASH) {
2132 		netdev->features ^= NETIF_F_RXHASH;
2133 		err = idpf_vport_manage_rss_lut(vport);
2134 		if (err)
2135 			goto unlock_mutex;
2136 	}
2137 
2138 	if (changed & NETIF_F_GRO_HW) {
2139 		netdev->features ^= NETIF_F_GRO_HW;
2140 		err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2141 		if (err)
2142 			goto unlock_mutex;
2143 	}
2144 
2145 	if (changed & NETIF_F_LOOPBACK) {
2146 		netdev->features ^= NETIF_F_LOOPBACK;
2147 		err = idpf_send_ena_dis_loopback_msg(vport);
2148 	}
2149 
2150 unlock_mutex:
2151 	idpf_vport_ctrl_unlock(netdev);
2152 
2153 	return err;
2154 }
2155 
2156 /**
2157  * idpf_open - Called when a network interface becomes active
2158  * @netdev: network interface device structure
2159  *
2160  * The open entry point is called when a network interface is made
2161  * active by the system (IFF_UP).  At this point all resources needed
2162  * for transmit and receive operations are allocated, the interrupt
2163  * handler is registered with the OS, the netdev watchdog is enabled,
2164  * and the stack is notified that the interface is ready.
2165  *
2166  * Returns 0 on success, negative value on failure
2167  */
2168 static int idpf_open(struct net_device *netdev)
2169 {
2170 	struct idpf_vport *vport;
2171 	int err;
2172 
2173 	idpf_vport_ctrl_lock(netdev);
2174 	vport = idpf_netdev_to_vport(netdev);
2175 
2176 	err = idpf_set_real_num_queues(vport);
2177 	if (err)
2178 		goto unlock;
2179 
2180 	err = idpf_vport_open(vport);
2181 
2182 unlock:
2183 	idpf_vport_ctrl_unlock(netdev);
2184 
2185 	return err;
2186 }
2187 
2188 /**
2189  * idpf_change_mtu - NDO callback to change the MTU
2190  * @netdev: network interface device structure
2191  * @new_mtu: new value for maximum frame size
2192  *
2193  * Returns 0 on success, negative on failure
2194  */
2195 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2196 {
2197 	struct idpf_vport *vport;
2198 	int err;
2199 
2200 	idpf_vport_ctrl_lock(netdev);
2201 	vport = idpf_netdev_to_vport(netdev);
2202 
2203 	WRITE_ONCE(netdev->mtu, new_mtu);
2204 
2205 	err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2206 
2207 	idpf_vport_ctrl_unlock(netdev);
2208 
2209 	return err;
2210 }
2211 
2212 /**
2213  * idpf_features_check - Validate packet conforms to limits
2214  * @skb: skb buffer
2215  * @netdev: This port's netdev
2216  * @features: Offload features that the stack believes apply
2217  */
2218 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2219 					     struct net_device *netdev,
2220 					     netdev_features_t features)
2221 {
2222 	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2223 	struct idpf_adapter *adapter = vport->adapter;
2224 	size_t len;
2225 
2226 	/* No point in doing any of this if neither checksum nor GSO are
2227 	 * being requested for this frame.  We can rule out both by just
2228 	 * checking for CHECKSUM_PARTIAL
2229 	 */
2230 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2231 		return features;
2232 
2233 	/* We cannot support GSO if the MSS is going to be less than
2234 	 * 88 bytes. If it is then we need to drop support for GSO.
2235 	 */
2236 	if (skb_is_gso(skb) &&
2237 	    (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS))
2238 		features &= ~NETIF_F_GSO_MASK;
2239 
2240 	/* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2241 	len = skb_network_offset(skb);
2242 	if (unlikely(len & ~(126)))
2243 		goto unsupported;
2244 
2245 	len = skb_network_header_len(skb);
2246 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2247 		goto unsupported;
2248 
2249 	if (!skb->encapsulation)
2250 		return features;
2251 
2252 	/* L4TUNLEN can support 127 words */
2253 	len = skb_inner_network_header(skb) - skb_transport_header(skb);
2254 	if (unlikely(len & ~(127 * 2)))
2255 		goto unsupported;
2256 
2257 	/* IPLEN can support at most 127 dwords */
2258 	len = skb_inner_network_header_len(skb);
2259 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2260 		goto unsupported;
2261 
2262 	/* No need to validate L4LEN as TCP is the only protocol with a
2263 	 * a flexible value and we support all possible values supported
2264 	 * by TCP, which is at most 15 dwords
2265 	 */
2266 
2267 	return features;
2268 
2269 unsupported:
2270 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2271 }
2272 
2273 /**
2274  * idpf_set_mac - NDO callback to set port mac address
2275  * @netdev: network interface device structure
2276  * @p: pointer to an address structure
2277  *
2278  * Returns 0 on success, negative on failure
2279  **/
2280 static int idpf_set_mac(struct net_device *netdev, void *p)
2281 {
2282 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2283 	struct idpf_vport_config *vport_config;
2284 	struct sockaddr *addr = p;
2285 	struct idpf_vport *vport;
2286 	int err = 0;
2287 
2288 	idpf_vport_ctrl_lock(netdev);
2289 	vport = idpf_netdev_to_vport(netdev);
2290 
2291 	if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2292 			     VIRTCHNL2_CAP_MACFILTER)) {
2293 		dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2294 		err = -EOPNOTSUPP;
2295 		goto unlock_mutex;
2296 	}
2297 
2298 	if (!is_valid_ether_addr(addr->sa_data)) {
2299 		dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2300 			 addr->sa_data);
2301 		err = -EADDRNOTAVAIL;
2302 		goto unlock_mutex;
2303 	}
2304 
2305 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2306 		goto unlock_mutex;
2307 
2308 	vport_config = vport->adapter->vport_config[vport->idx];
2309 	err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2310 	if (err) {
2311 		__idpf_del_mac_filter(vport_config, addr->sa_data);
2312 		goto unlock_mutex;
2313 	}
2314 
2315 	if (is_valid_ether_addr(vport->default_mac_addr))
2316 		idpf_del_mac_filter(vport, np, vport->default_mac_addr, false);
2317 
2318 	ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2319 	eth_hw_addr_set(netdev, addr->sa_data);
2320 
2321 unlock_mutex:
2322 	idpf_vport_ctrl_unlock(netdev);
2323 
2324 	return err;
2325 }
2326 
2327 /**
2328  * idpf_alloc_dma_mem - Allocate dma memory
2329  * @hw: pointer to hw struct
2330  * @mem: pointer to dma_mem struct
2331  * @size: size of the memory to allocate
2332  */
2333 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2334 {
2335 	struct idpf_adapter *adapter = hw->back;
2336 	size_t sz = ALIGN(size, 4096);
2337 
2338 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, sz,
2339 				     &mem->pa, GFP_KERNEL);
2340 	mem->size = sz;
2341 
2342 	return mem->va;
2343 }
2344 
2345 /**
2346  * idpf_free_dma_mem - Free the allocated dma memory
2347  * @hw: pointer to hw struct
2348  * @mem: pointer to dma_mem struct
2349  */
2350 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2351 {
2352 	struct idpf_adapter *adapter = hw->back;
2353 
2354 	dma_free_coherent(&adapter->pdev->dev, mem->size,
2355 			  mem->va, mem->pa);
2356 	mem->size = 0;
2357 	mem->va = NULL;
2358 	mem->pa = 0;
2359 }
2360 
2361 static const struct net_device_ops idpf_netdev_ops = {
2362 	.ndo_open = idpf_open,
2363 	.ndo_stop = idpf_stop,
2364 	.ndo_start_xmit = idpf_tx_start,
2365 	.ndo_features_check = idpf_features_check,
2366 	.ndo_set_rx_mode = idpf_set_rx_mode,
2367 	.ndo_validate_addr = eth_validate_addr,
2368 	.ndo_set_mac_address = idpf_set_mac,
2369 	.ndo_change_mtu = idpf_change_mtu,
2370 	.ndo_get_stats64 = idpf_get_stats64,
2371 	.ndo_set_features = idpf_set_features,
2372 	.ndo_tx_timeout = idpf_tx_timeout,
2373 };
2374