xref: /linux/drivers/net/ethernet/intel/idpf/idpf_lib.c (revision cad151904379b302a62e8967b7db6ba2e883a212)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include "idpf.h"
5 
6 static const struct net_device_ops idpf_netdev_ops_splitq;
7 static const struct net_device_ops idpf_netdev_ops_singleq;
8 
9 const char * const idpf_vport_vc_state_str[] = {
10 	IDPF_FOREACH_VPORT_VC_STATE(IDPF_GEN_STRING)
11 };
12 
13 /**
14  * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
15  * @adapter: private data struct
16  *
17  * Return 0 on success, error on failure
18  */
19 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
20 {
21 	struct idpf_vector_lifo *stack;
22 	u16 min_vec;
23 	u32 i;
24 
25 	mutex_lock(&adapter->vector_lock);
26 	min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
27 	stack = &adapter->vector_stack;
28 	stack->size = adapter->num_msix_entries;
29 	/* set the base and top to point at start of the 'free pool' to
30 	 * distribute the unused vectors on-demand basis
31 	 */
32 	stack->base = min_vec;
33 	stack->top = min_vec;
34 
35 	stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
36 	if (!stack->vec_idx) {
37 		mutex_unlock(&adapter->vector_lock);
38 
39 		return -ENOMEM;
40 	}
41 
42 	for (i = 0; i < stack->size; i++)
43 		stack->vec_idx[i] = i;
44 
45 	mutex_unlock(&adapter->vector_lock);
46 
47 	return 0;
48 }
49 
50 /**
51  * idpf_deinit_vector_stack - zero out the MSIX vector stack
52  * @adapter: private data struct
53  */
54 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
55 {
56 	struct idpf_vector_lifo *stack;
57 
58 	mutex_lock(&adapter->vector_lock);
59 	stack = &adapter->vector_stack;
60 	kfree(stack->vec_idx);
61 	stack->vec_idx = NULL;
62 	mutex_unlock(&adapter->vector_lock);
63 }
64 
65 /**
66  * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
67  * @adapter: adapter structure
68  *
69  * This will also disable interrupt mode and queue up mailbox task. Mailbox
70  * task will reschedule itself if not in interrupt mode.
71  */
72 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
73 {
74 	clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
75 	free_irq(adapter->msix_entries[0].vector, adapter);
76 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
77 }
78 
79 /**
80  * idpf_intr_rel - Release interrupt capabilities and free memory
81  * @adapter: adapter to disable interrupts on
82  */
83 void idpf_intr_rel(struct idpf_adapter *adapter)
84 {
85 	int err;
86 
87 	if (!adapter->msix_entries)
88 		return;
89 
90 	idpf_mb_intr_rel_irq(adapter);
91 	pci_free_irq_vectors(adapter->pdev);
92 
93 	err = idpf_send_dealloc_vectors_msg(adapter);
94 	if (err)
95 		dev_err(&adapter->pdev->dev,
96 			"Failed to deallocate vectors: %d\n", err);
97 
98 	idpf_deinit_vector_stack(adapter);
99 	kfree(adapter->msix_entries);
100 	adapter->msix_entries = NULL;
101 }
102 
103 /**
104  * idpf_mb_intr_clean - Interrupt handler for the mailbox
105  * @irq: interrupt number
106  * @data: pointer to the adapter structure
107  */
108 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
109 {
110 	struct idpf_adapter *adapter = (struct idpf_adapter *)data;
111 
112 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
113 
114 	return IRQ_HANDLED;
115 }
116 
117 /**
118  * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
119  * @adapter: adapter to get the hardware address for register write
120  */
121 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
122 {
123 	struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
124 	u32 val;
125 
126 	val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
127 	writel(val, intr->dyn_ctl);
128 	writel(intr->icr_ena_ctlq_m, intr->icr_ena);
129 }
130 
131 /**
132  * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
133  * @adapter: adapter structure to pass to the mailbox irq handler
134  */
135 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
136 {
137 	struct idpf_q_vector *mb_vector = &adapter->mb_vector;
138 	int irq_num, mb_vidx = 0, err;
139 
140 	irq_num = adapter->msix_entries[mb_vidx].vector;
141 	mb_vector->name = kasprintf(GFP_KERNEL, "%s-%s-%d",
142 				    dev_driver_string(&adapter->pdev->dev),
143 				    "Mailbox", mb_vidx);
144 	err = request_irq(irq_num, adapter->irq_mb_handler, 0,
145 			  mb_vector->name, adapter);
146 	if (err) {
147 		dev_err(&adapter->pdev->dev,
148 			"IRQ request for mailbox failed, error: %d\n", err);
149 
150 		return err;
151 	}
152 
153 	set_bit(IDPF_MB_INTR_MODE, adapter->flags);
154 
155 	return 0;
156 }
157 
158 /**
159  * idpf_set_mb_vec_id - Set vector index for mailbox
160  * @adapter: adapter structure to access the vector chunks
161  *
162  * The first vector id in the requested vector chunks from the CP is for
163  * the mailbox
164  */
165 static void idpf_set_mb_vec_id(struct idpf_adapter *adapter)
166 {
167 	if (adapter->req_vec_chunks)
168 		adapter->mb_vector.v_idx =
169 			le16_to_cpu(adapter->caps.mailbox_vector_id);
170 	else
171 		adapter->mb_vector.v_idx = 0;
172 }
173 
174 /**
175  * idpf_mb_intr_init - Initialize the mailbox interrupt
176  * @adapter: adapter structure to store the mailbox vector
177  */
178 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
179 {
180 	adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
181 	adapter->irq_mb_handler = idpf_mb_intr_clean;
182 
183 	return idpf_mb_intr_req_irq(adapter);
184 }
185 
186 /**
187  * idpf_vector_lifo_push - push MSIX vector index onto stack
188  * @adapter: private data struct
189  * @vec_idx: vector index to store
190  */
191 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
192 {
193 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
194 
195 	lockdep_assert_held(&adapter->vector_lock);
196 
197 	if (stack->top == stack->base) {
198 		dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
199 			stack->top);
200 		return -EINVAL;
201 	}
202 
203 	stack->vec_idx[--stack->top] = vec_idx;
204 
205 	return 0;
206 }
207 
208 /**
209  * idpf_vector_lifo_pop - pop MSIX vector index from stack
210  * @adapter: private data struct
211  */
212 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
213 {
214 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
215 
216 	lockdep_assert_held(&adapter->vector_lock);
217 
218 	if (stack->top == stack->size) {
219 		dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
220 
221 		return -EINVAL;
222 	}
223 
224 	return stack->vec_idx[stack->top++];
225 }
226 
227 /**
228  * idpf_vector_stash - Store the vector indexes onto the stack
229  * @adapter: private data struct
230  * @q_vector_idxs: vector index array
231  * @vec_info: info related to the number of vectors
232  *
233  * This function is a no-op if there are no vectors indexes to be stashed
234  */
235 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
236 			      struct idpf_vector_info *vec_info)
237 {
238 	int i, base = 0;
239 	u16 vec_idx;
240 
241 	lockdep_assert_held(&adapter->vector_lock);
242 
243 	if (!vec_info->num_curr_vecs)
244 		return;
245 
246 	/* For default vports, no need to stash vector allocated from the
247 	 * default pool onto the stack
248 	 */
249 	if (vec_info->default_vport)
250 		base = IDPF_MIN_Q_VEC;
251 
252 	for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
253 		vec_idx = q_vector_idxs[i];
254 		idpf_vector_lifo_push(adapter, vec_idx);
255 		adapter->num_avail_msix++;
256 	}
257 }
258 
259 /**
260  * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
261  * @adapter: driver specific private structure
262  * @q_vector_idxs: vector index array
263  * @vec_info: info related to the number of vectors
264  *
265  * This is the core function to distribute the MSIX vectors acquired from the
266  * OS. It expects the caller to pass the number of vectors required and
267  * also previously allocated. First, it stashes previously allocated vector
268  * indexes on to the stack and then figures out if it can allocate requested
269  * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
270  * requested vectors, then this function just stashes the already allocated
271  * vectors and returns 0.
272  *
273  * Returns actual number of vectors allocated on success, error value on failure
274  * If 0 is returned, implies the stack has no vectors to allocate which is also
275  * a failure case for the caller
276  */
277 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
278 				u16 *q_vector_idxs,
279 				struct idpf_vector_info *vec_info)
280 {
281 	u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
282 	struct idpf_vector_lifo *stack;
283 	int i, j, vecid;
284 
285 	mutex_lock(&adapter->vector_lock);
286 	stack = &adapter->vector_stack;
287 	num_req_vecs = vec_info->num_req_vecs;
288 
289 	/* Stash interrupt vector indexes onto the stack if required */
290 	idpf_vector_stash(adapter, q_vector_idxs, vec_info);
291 
292 	if (!num_req_vecs)
293 		goto rel_lock;
294 
295 	if (vec_info->default_vport) {
296 		/* As IDPF_MIN_Q_VEC per default vport is put aside in the
297 		 * default pool of the stack, use them for default vports
298 		 */
299 		j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
300 		for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
301 			q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
302 			num_req_vecs--;
303 		}
304 	}
305 
306 	/* Find if stack has enough vector to allocate */
307 	max_vecs = min(adapter->num_avail_msix, num_req_vecs);
308 
309 	for (j = 0; j < max_vecs; j++) {
310 		vecid = idpf_vector_lifo_pop(adapter);
311 		q_vector_idxs[num_alloc_vecs++] = vecid;
312 	}
313 	adapter->num_avail_msix -= max_vecs;
314 
315 rel_lock:
316 	mutex_unlock(&adapter->vector_lock);
317 
318 	return num_alloc_vecs;
319 }
320 
321 /**
322  * idpf_intr_req - Request interrupt capabilities
323  * @adapter: adapter to enable interrupts on
324  *
325  * Returns 0 on success, negative on failure
326  */
327 int idpf_intr_req(struct idpf_adapter *adapter)
328 {
329 	u16 default_vports = idpf_get_default_vports(adapter);
330 	int num_q_vecs, total_vecs, num_vec_ids;
331 	int min_vectors, v_actual, err;
332 	unsigned int vector;
333 	u16 *vecids;
334 
335 	total_vecs = idpf_get_reserved_vecs(adapter);
336 	num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
337 
338 	err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
339 	if (err) {
340 		dev_err(&adapter->pdev->dev,
341 			"Failed to allocate %d vectors: %d\n", num_q_vecs, err);
342 
343 		return -EAGAIN;
344 	}
345 
346 	min_vectors = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
347 	v_actual = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
348 					 total_vecs, PCI_IRQ_MSIX);
349 	if (v_actual < min_vectors) {
350 		dev_err(&adapter->pdev->dev, "Failed to allocate MSIX vectors: %d\n",
351 			v_actual);
352 		err = -EAGAIN;
353 		goto send_dealloc_vecs;
354 	}
355 
356 	adapter->msix_entries = kcalloc(v_actual, sizeof(struct msix_entry),
357 					GFP_KERNEL);
358 
359 	if (!adapter->msix_entries) {
360 		err = -ENOMEM;
361 		goto free_irq;
362 	}
363 
364 	idpf_set_mb_vec_id(adapter);
365 
366 	vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
367 	if (!vecids) {
368 		err = -ENOMEM;
369 		goto free_msix;
370 	}
371 
372 	if (adapter->req_vec_chunks) {
373 		struct virtchnl2_vector_chunks *vchunks;
374 		struct virtchnl2_alloc_vectors *ac;
375 
376 		ac = adapter->req_vec_chunks;
377 		vchunks = &ac->vchunks;
378 
379 		num_vec_ids = idpf_get_vec_ids(adapter, vecids, total_vecs,
380 					       vchunks);
381 		if (num_vec_ids < v_actual) {
382 			err = -EINVAL;
383 			goto free_vecids;
384 		}
385 	} else {
386 		int i;
387 
388 		for (i = 0; i < v_actual; i++)
389 			vecids[i] = i;
390 	}
391 
392 	for (vector = 0; vector < v_actual; vector++) {
393 		adapter->msix_entries[vector].entry = vecids[vector];
394 		adapter->msix_entries[vector].vector =
395 			pci_irq_vector(adapter->pdev, vector);
396 	}
397 
398 	adapter->num_req_msix = total_vecs;
399 	adapter->num_msix_entries = v_actual;
400 	/* 'num_avail_msix' is used to distribute excess vectors to the vports
401 	 * after considering the minimum vectors required per each default
402 	 * vport
403 	 */
404 	adapter->num_avail_msix = v_actual - min_vectors;
405 
406 	/* Fill MSIX vector lifo stack with vector indexes */
407 	err = idpf_init_vector_stack(adapter);
408 	if (err)
409 		goto free_vecids;
410 
411 	err = idpf_mb_intr_init(adapter);
412 	if (err)
413 		goto deinit_vec_stack;
414 	idpf_mb_irq_enable(adapter);
415 	kfree(vecids);
416 
417 	return 0;
418 
419 deinit_vec_stack:
420 	idpf_deinit_vector_stack(adapter);
421 free_vecids:
422 	kfree(vecids);
423 free_msix:
424 	kfree(adapter->msix_entries);
425 	adapter->msix_entries = NULL;
426 free_irq:
427 	pci_free_irq_vectors(adapter->pdev);
428 send_dealloc_vecs:
429 	idpf_send_dealloc_vectors_msg(adapter);
430 
431 	return err;
432 }
433 
434 /**
435  * idpf_find_mac_filter - Search filter list for specific mac filter
436  * @vconfig: Vport config structure
437  * @macaddr: The MAC address
438  *
439  * Returns ptr to the filter object or NULL. Must be called while holding the
440  * mac_filter_list_lock.
441  **/
442 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
443 						    const u8 *macaddr)
444 {
445 	struct idpf_mac_filter *f;
446 
447 	if (!macaddr)
448 		return NULL;
449 
450 	list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
451 		if (ether_addr_equal(macaddr, f->macaddr))
452 			return f;
453 	}
454 
455 	return NULL;
456 }
457 
458 /**
459  * __idpf_del_mac_filter - Delete a MAC filter from the filter list
460  * @vport_config: Vport config structure
461  * @macaddr: The MAC address
462  *
463  * Returns 0 on success, error value on failure
464  **/
465 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
466 				 const u8 *macaddr)
467 {
468 	struct idpf_mac_filter *f;
469 
470 	spin_lock_bh(&vport_config->mac_filter_list_lock);
471 	f = idpf_find_mac_filter(vport_config, macaddr);
472 	if (f) {
473 		list_del(&f->list);
474 		kfree(f);
475 	}
476 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
477 
478 	return 0;
479 }
480 
481 /**
482  * idpf_del_mac_filter - Delete a MAC filter from the filter list
483  * @vport: Main vport structure
484  * @np: Netdev private structure
485  * @macaddr: The MAC address
486  * @async: Don't wait for return message
487  *
488  * Removes filter from list and if interface is up, tells hardware about the
489  * removed filter.
490  **/
491 static int idpf_del_mac_filter(struct idpf_vport *vport,
492 			       struct idpf_netdev_priv *np,
493 			       const u8 *macaddr, bool async)
494 {
495 	struct idpf_vport_config *vport_config;
496 	struct idpf_mac_filter *f;
497 
498 	vport_config = np->adapter->vport_config[np->vport_idx];
499 
500 	spin_lock_bh(&vport_config->mac_filter_list_lock);
501 	f = idpf_find_mac_filter(vport_config, macaddr);
502 	if (f) {
503 		f->remove = true;
504 	} else {
505 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
506 
507 		return -EINVAL;
508 	}
509 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
510 
511 	if (np->state == __IDPF_VPORT_UP) {
512 		int err;
513 
514 		err = idpf_add_del_mac_filters(vport, np, false, async);
515 		if (err)
516 			return err;
517 	}
518 
519 	return  __idpf_del_mac_filter(vport_config, macaddr);
520 }
521 
522 /**
523  * __idpf_add_mac_filter - Add mac filter helper function
524  * @vport_config: Vport config structure
525  * @macaddr: Address to add
526  *
527  * Takes mac_filter_list_lock spinlock to add new filter to list.
528  */
529 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
530 				 const u8 *macaddr)
531 {
532 	struct idpf_mac_filter *f;
533 
534 	spin_lock_bh(&vport_config->mac_filter_list_lock);
535 
536 	f = idpf_find_mac_filter(vport_config, macaddr);
537 	if (f) {
538 		f->remove = false;
539 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
540 
541 		return 0;
542 	}
543 
544 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
545 	if (!f) {
546 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
547 
548 		return -ENOMEM;
549 	}
550 
551 	ether_addr_copy(f->macaddr, macaddr);
552 	list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
553 	f->add = true;
554 
555 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
556 
557 	return 0;
558 }
559 
560 /**
561  * idpf_add_mac_filter - Add a mac filter to the filter list
562  * @vport: Main vport structure
563  * @np: Netdev private structure
564  * @macaddr: The MAC address
565  * @async: Don't wait for return message
566  *
567  * Returns 0 on success or error on failure. If interface is up, we'll also
568  * send the virtchnl message to tell hardware about the filter.
569  **/
570 static int idpf_add_mac_filter(struct idpf_vport *vport,
571 			       struct idpf_netdev_priv *np,
572 			       const u8 *macaddr, bool async)
573 {
574 	struct idpf_vport_config *vport_config;
575 	int err;
576 
577 	vport_config = np->adapter->vport_config[np->vport_idx];
578 	err = __idpf_add_mac_filter(vport_config, macaddr);
579 	if (err)
580 		return err;
581 
582 	if (np->state == __IDPF_VPORT_UP)
583 		err = idpf_add_del_mac_filters(vport, np, true, async);
584 
585 	return err;
586 }
587 
588 /**
589  * idpf_del_all_mac_filters - Delete all MAC filters in list
590  * @vport: main vport struct
591  *
592  * Takes mac_filter_list_lock spinlock.  Deletes all filters
593  */
594 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
595 {
596 	struct idpf_vport_config *vport_config;
597 	struct idpf_mac_filter *f, *ftmp;
598 
599 	vport_config = vport->adapter->vport_config[vport->idx];
600 	spin_lock_bh(&vport_config->mac_filter_list_lock);
601 
602 	list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
603 				 list) {
604 		list_del(&f->list);
605 		kfree(f);
606 	}
607 
608 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
609 }
610 
611 /**
612  * idpf_restore_mac_filters - Re-add all MAC filters in list
613  * @vport: main vport struct
614  *
615  * Takes mac_filter_list_lock spinlock.  Sets add field to true for filters to
616  * resync filters back to HW.
617  */
618 static void idpf_restore_mac_filters(struct idpf_vport *vport)
619 {
620 	struct idpf_vport_config *vport_config;
621 	struct idpf_mac_filter *f;
622 
623 	vport_config = vport->adapter->vport_config[vport->idx];
624 	spin_lock_bh(&vport_config->mac_filter_list_lock);
625 
626 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
627 		f->add = true;
628 
629 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
630 
631 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
632 				 true, false);
633 }
634 
635 /**
636  * idpf_remove_mac_filters - Remove all MAC filters in list
637  * @vport: main vport struct
638  *
639  * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
640  * to remove filters in HW.
641  */
642 static void idpf_remove_mac_filters(struct idpf_vport *vport)
643 {
644 	struct idpf_vport_config *vport_config;
645 	struct idpf_mac_filter *f;
646 
647 	vport_config = vport->adapter->vport_config[vport->idx];
648 	spin_lock_bh(&vport_config->mac_filter_list_lock);
649 
650 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
651 		f->remove = true;
652 
653 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
654 
655 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
656 				 false, false);
657 }
658 
659 /**
660  * idpf_deinit_mac_addr - deinitialize mac address for vport
661  * @vport: main vport structure
662  */
663 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
664 {
665 	struct idpf_vport_config *vport_config;
666 	struct idpf_mac_filter *f;
667 
668 	vport_config = vport->adapter->vport_config[vport->idx];
669 
670 	spin_lock_bh(&vport_config->mac_filter_list_lock);
671 
672 	f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
673 	if (f) {
674 		list_del(&f->list);
675 		kfree(f);
676 	}
677 
678 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
679 }
680 
681 /**
682  * idpf_init_mac_addr - initialize mac address for vport
683  * @vport: main vport structure
684  * @netdev: pointer to netdev struct associated with this vport
685  */
686 static int idpf_init_mac_addr(struct idpf_vport *vport,
687 			      struct net_device *netdev)
688 {
689 	struct idpf_netdev_priv *np = netdev_priv(netdev);
690 	struct idpf_adapter *adapter = vport->adapter;
691 	int err;
692 
693 	if (is_valid_ether_addr(vport->default_mac_addr)) {
694 		eth_hw_addr_set(netdev, vport->default_mac_addr);
695 		ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
696 
697 		return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
698 					   false);
699 	}
700 
701 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
702 			     VIRTCHNL2_CAP_MACFILTER)) {
703 		dev_err(&adapter->pdev->dev,
704 			"MAC address is not provided and capability is not set\n");
705 
706 		return -EINVAL;
707 	}
708 
709 	eth_hw_addr_random(netdev);
710 	err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
711 	if (err)
712 		return err;
713 
714 	dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
715 		 vport->default_mac_addr, netdev->dev_addr);
716 	ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
717 
718 	return 0;
719 }
720 
721 /**
722  * idpf_cfg_netdev - Allocate, configure and register a netdev
723  * @vport: main vport structure
724  *
725  * Returns 0 on success, negative value on failure.
726  */
727 static int idpf_cfg_netdev(struct idpf_vport *vport)
728 {
729 	struct idpf_adapter *adapter = vport->adapter;
730 	struct idpf_vport_config *vport_config;
731 	netdev_features_t dflt_features;
732 	netdev_features_t offloads = 0;
733 	struct idpf_netdev_priv *np;
734 	struct net_device *netdev;
735 	u16 idx = vport->idx;
736 	int err;
737 
738 	vport_config = adapter->vport_config[idx];
739 
740 	/* It's possible we already have a netdev allocated and registered for
741 	 * this vport
742 	 */
743 	if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
744 		netdev = adapter->netdevs[idx];
745 		np = netdev_priv(netdev);
746 		np->vport = vport;
747 		np->vport_idx = vport->idx;
748 		np->vport_id = vport->vport_id;
749 		vport->netdev = netdev;
750 
751 		return idpf_init_mac_addr(vport, netdev);
752 	}
753 
754 	netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
755 				    vport_config->max_q.max_txq,
756 				    vport_config->max_q.max_rxq);
757 	if (!netdev)
758 		return -ENOMEM;
759 
760 	vport->netdev = netdev;
761 	np = netdev_priv(netdev);
762 	np->vport = vport;
763 	np->adapter = adapter;
764 	np->vport_idx = vport->idx;
765 	np->vport_id = vport->vport_id;
766 
767 	spin_lock_init(&np->stats_lock);
768 
769 	err = idpf_init_mac_addr(vport, netdev);
770 	if (err) {
771 		free_netdev(vport->netdev);
772 		vport->netdev = NULL;
773 
774 		return err;
775 	}
776 
777 	/* assign netdev_ops */
778 	if (idpf_is_queue_model_split(vport->txq_model))
779 		netdev->netdev_ops = &idpf_netdev_ops_splitq;
780 	else
781 		netdev->netdev_ops = &idpf_netdev_ops_singleq;
782 
783 	/* setup watchdog timeout value to be 5 second */
784 	netdev->watchdog_timeo = 5 * HZ;
785 
786 	/* configure default MTU size */
787 	netdev->min_mtu = ETH_MIN_MTU;
788 	netdev->max_mtu = vport->max_mtu;
789 
790 	dflt_features = NETIF_F_SG	|
791 			NETIF_F_HIGHDMA;
792 
793 	if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
794 		dflt_features |= NETIF_F_RXHASH;
795 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V4))
796 		dflt_features |= NETIF_F_IP_CSUM;
797 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V6))
798 		dflt_features |= NETIF_F_IPV6_CSUM;
799 	if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
800 		dflt_features |= NETIF_F_RXCSUM;
801 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_SCTP_CSUM))
802 		dflt_features |= NETIF_F_SCTP_CRC;
803 
804 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
805 		dflt_features |= NETIF_F_TSO;
806 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
807 		dflt_features |= NETIF_F_TSO6;
808 	if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
809 				VIRTCHNL2_CAP_SEG_IPV4_UDP |
810 				VIRTCHNL2_CAP_SEG_IPV6_UDP))
811 		dflt_features |= NETIF_F_GSO_UDP_L4;
812 	if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
813 		offloads |= NETIF_F_GRO_HW;
814 	/* advertise to stack only if offloads for encapsulated packets is
815 	 * supported
816 	 */
817 	if (idpf_is_cap_ena(vport->adapter, IDPF_SEG_CAPS,
818 			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL)) {
819 		offloads |= NETIF_F_GSO_UDP_TUNNEL	|
820 			    NETIF_F_GSO_GRE		|
821 			    NETIF_F_GSO_GRE_CSUM	|
822 			    NETIF_F_GSO_PARTIAL		|
823 			    NETIF_F_GSO_UDP_TUNNEL_CSUM	|
824 			    NETIF_F_GSO_IPXIP4		|
825 			    NETIF_F_GSO_IPXIP6		|
826 			    0;
827 
828 		if (!idpf_is_cap_ena_all(vport->adapter, IDPF_CSUM_CAPS,
829 					 IDPF_CAP_TUNNEL_TX_CSUM))
830 			netdev->gso_partial_features |=
831 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
832 
833 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
834 		offloads |= NETIF_F_TSO_MANGLEID;
835 	}
836 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
837 		offloads |= NETIF_F_LOOPBACK;
838 
839 	netdev->features |= dflt_features;
840 	netdev->hw_features |= dflt_features | offloads;
841 	netdev->hw_enc_features |= dflt_features | offloads;
842 	idpf_set_ethtool_ops(netdev);
843 	SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
844 
845 	/* carrier off on init to avoid Tx hangs */
846 	netif_carrier_off(netdev);
847 
848 	/* make sure transmit queues start off as stopped */
849 	netif_tx_stop_all_queues(netdev);
850 
851 	/* The vport can be arbitrarily released so we need to also track
852 	 * netdevs in the adapter struct
853 	 */
854 	adapter->netdevs[idx] = netdev;
855 
856 	return 0;
857 }
858 
859 /**
860  * idpf_get_free_slot - get the next non-NULL location index in array
861  * @adapter: adapter in which to look for a free vport slot
862  */
863 static int idpf_get_free_slot(struct idpf_adapter *adapter)
864 {
865 	unsigned int i;
866 
867 	for (i = 0; i < adapter->max_vports; i++) {
868 		if (!adapter->vports[i])
869 			return i;
870 	}
871 
872 	return IDPF_NO_FREE_SLOT;
873 }
874 
875 /**
876  * idpf_remove_features - Turn off feature configs
877  * @vport: virtual port structure
878  */
879 static void idpf_remove_features(struct idpf_vport *vport)
880 {
881 	struct idpf_adapter *adapter = vport->adapter;
882 
883 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
884 		idpf_remove_mac_filters(vport);
885 }
886 
887 /**
888  * idpf_vport_stop - Disable a vport
889  * @vport: vport to disable
890  */
891 static void idpf_vport_stop(struct idpf_vport *vport)
892 {
893 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
894 
895 	if (np->state <= __IDPF_VPORT_DOWN)
896 		return;
897 
898 	netif_carrier_off(vport->netdev);
899 	netif_tx_disable(vport->netdev);
900 
901 	idpf_send_disable_vport_msg(vport);
902 	idpf_send_disable_queues_msg(vport);
903 	idpf_send_map_unmap_queue_vector_msg(vport, false);
904 	/* Normally we ask for queues in create_vport, but if the number of
905 	 * initially requested queues have changed, for example via ethtool
906 	 * set channels, we do delete queues and then add the queues back
907 	 * instead of deleting and reallocating the vport.
908 	 */
909 	if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
910 		idpf_send_delete_queues_msg(vport);
911 
912 	idpf_remove_features(vport);
913 
914 	vport->link_up = false;
915 	idpf_vport_intr_deinit(vport);
916 	idpf_vport_intr_rel(vport);
917 	idpf_vport_queues_rel(vport);
918 	np->state = __IDPF_VPORT_DOWN;
919 }
920 
921 /**
922  * idpf_stop - Disables a network interface
923  * @netdev: network interface device structure
924  *
925  * The stop entry point is called when an interface is de-activated by the OS,
926  * and the netdevice enters the DOWN state.  The hardware is still under the
927  * driver's control, but the netdev interface is disabled.
928  *
929  * Returns success only - not allowed to fail
930  */
931 static int idpf_stop(struct net_device *netdev)
932 {
933 	struct idpf_netdev_priv *np = netdev_priv(netdev);
934 	struct idpf_vport *vport;
935 
936 	if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
937 		return 0;
938 
939 	idpf_vport_ctrl_lock(netdev);
940 	vport = idpf_netdev_to_vport(netdev);
941 
942 	idpf_vport_stop(vport);
943 
944 	idpf_vport_ctrl_unlock(netdev);
945 
946 	return 0;
947 }
948 
949 /**
950  * idpf_decfg_netdev - Unregister the netdev
951  * @vport: vport for which netdev to be unregistered
952  */
953 static void idpf_decfg_netdev(struct idpf_vport *vport)
954 {
955 	struct idpf_adapter *adapter = vport->adapter;
956 
957 	unregister_netdev(vport->netdev);
958 	free_netdev(vport->netdev);
959 	vport->netdev = NULL;
960 
961 	adapter->netdevs[vport->idx] = NULL;
962 }
963 
964 /**
965  * idpf_vport_rel - Delete a vport and free its resources
966  * @vport: the vport being removed
967  */
968 static void idpf_vport_rel(struct idpf_vport *vport)
969 {
970 	struct idpf_adapter *adapter = vport->adapter;
971 	struct idpf_vport_config *vport_config;
972 	struct idpf_vector_info vec_info;
973 	struct idpf_rss_data *rss_data;
974 	struct idpf_vport_max_q max_q;
975 	u16 idx = vport->idx;
976 	int i;
977 
978 	vport_config = adapter->vport_config[vport->idx];
979 	idpf_deinit_rss(vport);
980 	rss_data = &vport_config->user_config.rss_data;
981 	kfree(rss_data->rss_key);
982 	rss_data->rss_key = NULL;
983 
984 	idpf_send_destroy_vport_msg(vport);
985 
986 	/* Set all bits as we dont know on which vc_state the vport vhnl_wq
987 	 * is waiting on and wakeup the virtchnl workqueue even if it is
988 	 * waiting for the response as we are going down
989 	 */
990 	for (i = 0; i < IDPF_VC_NBITS; i++)
991 		set_bit(i, vport->vc_state);
992 	wake_up(&vport->vchnl_wq);
993 
994 	mutex_destroy(&vport->vc_buf_lock);
995 
996 	/* Clear all the bits */
997 	for (i = 0; i < IDPF_VC_NBITS; i++)
998 		clear_bit(i, vport->vc_state);
999 
1000 	/* Release all max queues allocated to the adapter's pool */
1001 	max_q.max_rxq = vport_config->max_q.max_rxq;
1002 	max_q.max_txq = vport_config->max_q.max_txq;
1003 	max_q.max_bufq = vport_config->max_q.max_bufq;
1004 	max_q.max_complq = vport_config->max_q.max_complq;
1005 	idpf_vport_dealloc_max_qs(adapter, &max_q);
1006 
1007 	/* Release all the allocated vectors on the stack */
1008 	vec_info.num_req_vecs = 0;
1009 	vec_info.num_curr_vecs = vport->num_q_vectors;
1010 	vec_info.default_vport = vport->default_vport;
1011 
1012 	idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
1013 
1014 	kfree(vport->q_vector_idxs);
1015 	vport->q_vector_idxs = NULL;
1016 
1017 	kfree(adapter->vport_params_recvd[idx]);
1018 	adapter->vport_params_recvd[idx] = NULL;
1019 	kfree(adapter->vport_params_reqd[idx]);
1020 	adapter->vport_params_reqd[idx] = NULL;
1021 	if (adapter->vport_config[idx]) {
1022 		kfree(adapter->vport_config[idx]->req_qs_chunks);
1023 		adapter->vport_config[idx]->req_qs_chunks = NULL;
1024 	}
1025 	kfree(vport);
1026 	adapter->num_alloc_vports--;
1027 }
1028 
1029 /**
1030  * idpf_vport_dealloc - cleanup and release a given vport
1031  * @vport: pointer to idpf vport structure
1032  *
1033  * returns nothing
1034  */
1035 static void idpf_vport_dealloc(struct idpf_vport *vport)
1036 {
1037 	struct idpf_adapter *adapter = vport->adapter;
1038 	unsigned int i = vport->idx;
1039 
1040 	idpf_deinit_mac_addr(vport);
1041 	idpf_vport_stop(vport);
1042 
1043 	if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1044 		idpf_decfg_netdev(vport);
1045 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1046 		idpf_del_all_mac_filters(vport);
1047 
1048 	if (adapter->netdevs[i]) {
1049 		struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1050 
1051 		np->vport = NULL;
1052 	}
1053 
1054 	idpf_vport_rel(vport);
1055 
1056 	adapter->vports[i] = NULL;
1057 	adapter->next_vport = idpf_get_free_slot(adapter);
1058 }
1059 
1060 /**
1061  * idpf_is_hsplit_supported - check whether the header split is supported
1062  * @vport: virtual port to check the capability for
1063  *
1064  * Return: true if it's supported by the HW/FW, false if not.
1065  */
1066 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1067 {
1068 	return idpf_is_queue_model_split(vport->rxq_model) &&
1069 	       idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1070 				   IDPF_CAP_HSPLIT);
1071 }
1072 
1073 /**
1074  * idpf_vport_get_hsplit - get the current header split feature state
1075  * @vport: virtual port to query the state for
1076  *
1077  * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1078  *         ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1079  *         ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1080  */
1081 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1082 {
1083 	const struct idpf_vport_user_config_data *config;
1084 
1085 	if (!idpf_is_hsplit_supported(vport))
1086 		return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1087 
1088 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1089 
1090 	return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1091 	       ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1092 	       ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1093 }
1094 
1095 /**
1096  * idpf_vport_set_hsplit - enable or disable header split on a given vport
1097  * @vport: virtual port to configure
1098  * @val: Ethtool flag controlling the header split state
1099  *
1100  * Return: true on success, false if not supported by the HW.
1101  */
1102 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1103 {
1104 	struct idpf_vport_user_config_data *config;
1105 
1106 	if (!idpf_is_hsplit_supported(vport))
1107 		return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1108 
1109 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1110 
1111 	switch (val) {
1112 	case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1113 		/* Default is to enable */
1114 	case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1115 		__set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1116 		return true;
1117 	case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1118 		__clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1119 		return true;
1120 	default:
1121 		return false;
1122 	}
1123 }
1124 
1125 /**
1126  * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1127  * @adapter: board private structure
1128  * @max_q: vport max queue info
1129  *
1130  * returns a pointer to a vport on success, NULL on failure.
1131  */
1132 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1133 					   struct idpf_vport_max_q *max_q)
1134 {
1135 	struct idpf_rss_data *rss_data;
1136 	u16 idx = adapter->next_vport;
1137 	struct idpf_vport *vport;
1138 	u16 num_max_q;
1139 
1140 	if (idx == IDPF_NO_FREE_SLOT)
1141 		return NULL;
1142 
1143 	vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1144 	if (!vport)
1145 		return vport;
1146 
1147 	if (!adapter->vport_config[idx]) {
1148 		struct idpf_vport_config *vport_config;
1149 
1150 		vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1151 		if (!vport_config) {
1152 			kfree(vport);
1153 
1154 			return NULL;
1155 		}
1156 
1157 		adapter->vport_config[idx] = vport_config;
1158 	}
1159 
1160 	vport->idx = idx;
1161 	vport->adapter = adapter;
1162 	vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1163 	vport->default_vport = adapter->num_alloc_vports <
1164 			       idpf_get_default_vports(adapter);
1165 
1166 	num_max_q = max(max_q->max_txq, max_q->max_rxq);
1167 	vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1168 	if (!vport->q_vector_idxs) {
1169 		kfree(vport);
1170 
1171 		return NULL;
1172 	}
1173 	idpf_vport_init(vport, max_q);
1174 
1175 	/* This alloc is done separate from the LUT because it's not strictly
1176 	 * dependent on how many queues we have. If we change number of queues
1177 	 * and soft reset we'll need a new LUT but the key can remain the same
1178 	 * for as long as the vport exists.
1179 	 */
1180 	rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1181 	rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1182 	if (!rss_data->rss_key) {
1183 		kfree(vport);
1184 
1185 		return NULL;
1186 	}
1187 	/* Initialize default rss key */
1188 	netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1189 
1190 	/* fill vport slot in the adapter struct */
1191 	adapter->vports[idx] = vport;
1192 	adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1193 
1194 	adapter->num_alloc_vports++;
1195 	/* prepare adapter->next_vport for next use */
1196 	adapter->next_vport = idpf_get_free_slot(adapter);
1197 
1198 	return vport;
1199 }
1200 
1201 /**
1202  * idpf_get_stats64 - get statistics for network device structure
1203  * @netdev: network interface device structure
1204  * @stats: main device statistics structure
1205  */
1206 static void idpf_get_stats64(struct net_device *netdev,
1207 			     struct rtnl_link_stats64 *stats)
1208 {
1209 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1210 
1211 	spin_lock_bh(&np->stats_lock);
1212 	*stats = np->netstats;
1213 	spin_unlock_bh(&np->stats_lock);
1214 }
1215 
1216 /**
1217  * idpf_statistics_task - Delayed task to get statistics over mailbox
1218  * @work: work_struct handle to our data
1219  */
1220 void idpf_statistics_task(struct work_struct *work)
1221 {
1222 	struct idpf_adapter *adapter;
1223 	int i;
1224 
1225 	adapter = container_of(work, struct idpf_adapter, stats_task.work);
1226 
1227 	for (i = 0; i < adapter->max_vports; i++) {
1228 		struct idpf_vport *vport = adapter->vports[i];
1229 
1230 		if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1231 			idpf_send_get_stats_msg(vport);
1232 	}
1233 
1234 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1235 			   msecs_to_jiffies(10000));
1236 }
1237 
1238 /**
1239  * idpf_mbx_task - Delayed task to handle mailbox responses
1240  * @work: work_struct handle
1241  */
1242 void idpf_mbx_task(struct work_struct *work)
1243 {
1244 	struct idpf_adapter *adapter;
1245 
1246 	adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1247 
1248 	if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1249 		idpf_mb_irq_enable(adapter);
1250 	else
1251 		queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1252 				   msecs_to_jiffies(300));
1253 
1254 	idpf_recv_mb_msg(adapter, VIRTCHNL2_OP_UNKNOWN, NULL, 0);
1255 }
1256 
1257 /**
1258  * idpf_service_task - Delayed task for handling mailbox responses
1259  * @work: work_struct handle to our data
1260  *
1261  */
1262 void idpf_service_task(struct work_struct *work)
1263 {
1264 	struct idpf_adapter *adapter;
1265 
1266 	adapter = container_of(work, struct idpf_adapter, serv_task.work);
1267 
1268 	if (idpf_is_reset_detected(adapter) &&
1269 	    !idpf_is_reset_in_prog(adapter) &&
1270 	    !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1271 		dev_info(&adapter->pdev->dev, "HW reset detected\n");
1272 		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1273 		queue_delayed_work(adapter->vc_event_wq,
1274 				   &adapter->vc_event_task,
1275 				   msecs_to_jiffies(10));
1276 	}
1277 
1278 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1279 			   msecs_to_jiffies(300));
1280 }
1281 
1282 /**
1283  * idpf_restore_features - Restore feature configs
1284  * @vport: virtual port structure
1285  */
1286 static void idpf_restore_features(struct idpf_vport *vport)
1287 {
1288 	struct idpf_adapter *adapter = vport->adapter;
1289 
1290 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1291 		idpf_restore_mac_filters(vport);
1292 }
1293 
1294 /**
1295  * idpf_set_real_num_queues - set number of queues for netdev
1296  * @vport: virtual port structure
1297  *
1298  * Returns 0 on success, negative on failure.
1299  */
1300 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1301 {
1302 	int err;
1303 
1304 	err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1305 	if (err)
1306 		return err;
1307 
1308 	return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq);
1309 }
1310 
1311 /**
1312  * idpf_up_complete - Complete interface up sequence
1313  * @vport: virtual port structure
1314  *
1315  * Returns 0 on success, negative on failure.
1316  */
1317 static int idpf_up_complete(struct idpf_vport *vport)
1318 {
1319 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1320 
1321 	if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1322 		netif_carrier_on(vport->netdev);
1323 		netif_tx_start_all_queues(vport->netdev);
1324 	}
1325 
1326 	np->state = __IDPF_VPORT_UP;
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1333  * @vport: virtual port struct
1334  */
1335 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1336 {
1337 	int i, j;
1338 
1339 	for (i = 0; i < vport->num_rxq_grp; i++) {
1340 		struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1341 
1342 		if (idpf_is_queue_model_split(vport->rxq_model)) {
1343 			for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1344 				struct idpf_queue *q =
1345 					&grp->splitq.bufq_sets[j].bufq;
1346 
1347 				writel(q->next_to_alloc, q->tail);
1348 			}
1349 		} else {
1350 			for (j = 0; j < grp->singleq.num_rxq; j++) {
1351 				struct idpf_queue *q =
1352 					grp->singleq.rxqs[j];
1353 
1354 				writel(q->next_to_alloc, q->tail);
1355 			}
1356 		}
1357 	}
1358 }
1359 
1360 /**
1361  * idpf_vport_open - Bring up a vport
1362  * @vport: vport to bring up
1363  * @alloc_res: allocate queue resources
1364  */
1365 static int idpf_vport_open(struct idpf_vport *vport, bool alloc_res)
1366 {
1367 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1368 	struct idpf_adapter *adapter = vport->adapter;
1369 	struct idpf_vport_config *vport_config;
1370 	int err;
1371 
1372 	if (np->state != __IDPF_VPORT_DOWN)
1373 		return -EBUSY;
1374 
1375 	/* we do not allow interface up just yet */
1376 	netif_carrier_off(vport->netdev);
1377 
1378 	if (alloc_res) {
1379 		err = idpf_vport_queues_alloc(vport);
1380 		if (err)
1381 			return err;
1382 	}
1383 
1384 	err = idpf_vport_intr_alloc(vport);
1385 	if (err) {
1386 		dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1387 			vport->vport_id, err);
1388 		goto queues_rel;
1389 	}
1390 
1391 	err = idpf_vport_queue_ids_init(vport);
1392 	if (err) {
1393 		dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1394 			vport->vport_id, err);
1395 		goto intr_rel;
1396 	}
1397 
1398 	err = idpf_vport_intr_init(vport);
1399 	if (err) {
1400 		dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1401 			vport->vport_id, err);
1402 		goto intr_rel;
1403 	}
1404 
1405 	err = idpf_rx_bufs_init_all(vport);
1406 	if (err) {
1407 		dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1408 			vport->vport_id, err);
1409 		goto intr_rel;
1410 	}
1411 
1412 	err = idpf_queue_reg_init(vport);
1413 	if (err) {
1414 		dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1415 			vport->vport_id, err);
1416 		goto intr_rel;
1417 	}
1418 
1419 	idpf_rx_init_buf_tail(vport);
1420 
1421 	err = idpf_send_config_queues_msg(vport);
1422 	if (err) {
1423 		dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1424 			vport->vport_id, err);
1425 		goto intr_deinit;
1426 	}
1427 
1428 	err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1429 	if (err) {
1430 		dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1431 			vport->vport_id, err);
1432 		goto intr_deinit;
1433 	}
1434 
1435 	err = idpf_send_enable_queues_msg(vport);
1436 	if (err) {
1437 		dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1438 			vport->vport_id, err);
1439 		goto unmap_queue_vectors;
1440 	}
1441 
1442 	err = idpf_send_enable_vport_msg(vport);
1443 	if (err) {
1444 		dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1445 			vport->vport_id, err);
1446 		err = -EAGAIN;
1447 		goto disable_queues;
1448 	}
1449 
1450 	idpf_restore_features(vport);
1451 
1452 	vport_config = adapter->vport_config[vport->idx];
1453 	if (vport_config->user_config.rss_data.rss_lut)
1454 		err = idpf_config_rss(vport);
1455 	else
1456 		err = idpf_init_rss(vport);
1457 	if (err) {
1458 		dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1459 			vport->vport_id, err);
1460 		goto disable_vport;
1461 	}
1462 
1463 	err = idpf_up_complete(vport);
1464 	if (err) {
1465 		dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1466 			vport->vport_id, err);
1467 		goto deinit_rss;
1468 	}
1469 
1470 	return 0;
1471 
1472 deinit_rss:
1473 	idpf_deinit_rss(vport);
1474 disable_vport:
1475 	idpf_send_disable_vport_msg(vport);
1476 disable_queues:
1477 	idpf_send_disable_queues_msg(vport);
1478 unmap_queue_vectors:
1479 	idpf_send_map_unmap_queue_vector_msg(vport, false);
1480 intr_deinit:
1481 	idpf_vport_intr_deinit(vport);
1482 intr_rel:
1483 	idpf_vport_intr_rel(vport);
1484 queues_rel:
1485 	idpf_vport_queues_rel(vport);
1486 
1487 	return err;
1488 }
1489 
1490 /**
1491  * idpf_init_task - Delayed initialization task
1492  * @work: work_struct handle to our data
1493  *
1494  * Init task finishes up pending work started in probe. Due to the asynchronous
1495  * nature in which the device communicates with hardware, we may have to wait
1496  * several milliseconds to get a response.  Instead of busy polling in probe,
1497  * pulling it out into a delayed work task prevents us from bogging down the
1498  * whole system waiting for a response from hardware.
1499  */
1500 void idpf_init_task(struct work_struct *work)
1501 {
1502 	struct idpf_vport_config *vport_config;
1503 	struct idpf_vport_max_q max_q;
1504 	struct idpf_adapter *adapter;
1505 	struct idpf_netdev_priv *np;
1506 	struct idpf_vport *vport;
1507 	u16 num_default_vports;
1508 	struct pci_dev *pdev;
1509 	bool default_vport;
1510 	int index, err;
1511 
1512 	adapter = container_of(work, struct idpf_adapter, init_task.work);
1513 
1514 	num_default_vports = idpf_get_default_vports(adapter);
1515 	if (adapter->num_alloc_vports < num_default_vports)
1516 		default_vport = true;
1517 	else
1518 		default_vport = false;
1519 
1520 	err = idpf_vport_alloc_max_qs(adapter, &max_q);
1521 	if (err)
1522 		goto unwind_vports;
1523 
1524 	err = idpf_send_create_vport_msg(adapter, &max_q);
1525 	if (err) {
1526 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1527 		goto unwind_vports;
1528 	}
1529 
1530 	pdev = adapter->pdev;
1531 	vport = idpf_vport_alloc(adapter, &max_q);
1532 	if (!vport) {
1533 		err = -EFAULT;
1534 		dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1535 			err);
1536 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1537 		goto unwind_vports;
1538 	}
1539 
1540 	index = vport->idx;
1541 	vport_config = adapter->vport_config[index];
1542 
1543 	init_waitqueue_head(&vport->sw_marker_wq);
1544 	init_waitqueue_head(&vport->vchnl_wq);
1545 
1546 	mutex_init(&vport->vc_buf_lock);
1547 	spin_lock_init(&vport_config->mac_filter_list_lock);
1548 
1549 	INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1550 
1551 	err = idpf_check_supported_desc_ids(vport);
1552 	if (err) {
1553 		dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1554 		goto cfg_netdev_err;
1555 	}
1556 
1557 	if (idpf_cfg_netdev(vport))
1558 		goto cfg_netdev_err;
1559 
1560 	err = idpf_send_get_rx_ptype_msg(vport);
1561 	if (err)
1562 		goto handle_err;
1563 
1564 	/* Once state is put into DOWN, driver is ready for dev_open */
1565 	np = netdev_priv(vport->netdev);
1566 	np->state = __IDPF_VPORT_DOWN;
1567 	if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1568 		idpf_vport_open(vport, true);
1569 
1570 	/* Spawn and return 'idpf_init_task' work queue until all the
1571 	 * default vports are created
1572 	 */
1573 	if (adapter->num_alloc_vports < num_default_vports) {
1574 		queue_delayed_work(adapter->init_wq, &adapter->init_task,
1575 				   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1576 
1577 		return;
1578 	}
1579 
1580 	for (index = 0; index < adapter->max_vports; index++) {
1581 		if (adapter->netdevs[index] &&
1582 		    !test_bit(IDPF_VPORT_REG_NETDEV,
1583 			      adapter->vport_config[index]->flags)) {
1584 			register_netdev(adapter->netdevs[index]);
1585 			set_bit(IDPF_VPORT_REG_NETDEV,
1586 				adapter->vport_config[index]->flags);
1587 		}
1588 	}
1589 
1590 	/* As all the required vports are created, clear the reset flag
1591 	 * unconditionally here in case we were in reset and the link was down.
1592 	 */
1593 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1594 	/* Start the statistics task now */
1595 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1596 			   msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1597 
1598 	return;
1599 
1600 handle_err:
1601 	idpf_decfg_netdev(vport);
1602 cfg_netdev_err:
1603 	idpf_vport_rel(vport);
1604 	adapter->vports[index] = NULL;
1605 unwind_vports:
1606 	if (default_vport) {
1607 		for (index = 0; index < adapter->max_vports; index++) {
1608 			if (adapter->vports[index])
1609 				idpf_vport_dealloc(adapter->vports[index]);
1610 		}
1611 	}
1612 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1613 }
1614 
1615 /**
1616  * idpf_sriov_ena - Enable or change number of VFs
1617  * @adapter: private data struct
1618  * @num_vfs: number of VFs to allocate
1619  */
1620 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1621 {
1622 	struct device *dev = &adapter->pdev->dev;
1623 	int err;
1624 
1625 	err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1626 	if (err) {
1627 		dev_err(dev, "Failed to allocate VFs: %d\n", err);
1628 
1629 		return err;
1630 	}
1631 
1632 	err = pci_enable_sriov(adapter->pdev, num_vfs);
1633 	if (err) {
1634 		idpf_send_set_sriov_vfs_msg(adapter, 0);
1635 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1636 
1637 		return err;
1638 	}
1639 
1640 	adapter->num_vfs = num_vfs;
1641 
1642 	return num_vfs;
1643 }
1644 
1645 /**
1646  * idpf_sriov_configure - Configure the requested VFs
1647  * @pdev: pointer to a pci_dev structure
1648  * @num_vfs: number of vfs to allocate
1649  *
1650  * Enable or change the number of VFs. Called when the user updates the number
1651  * of VFs in sysfs.
1652  **/
1653 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1654 {
1655 	struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1656 
1657 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1658 		dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1659 
1660 		return -EOPNOTSUPP;
1661 	}
1662 
1663 	if (num_vfs)
1664 		return idpf_sriov_ena(adapter, num_vfs);
1665 
1666 	if (pci_vfs_assigned(pdev)) {
1667 		dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1668 
1669 		return -EBUSY;
1670 	}
1671 
1672 	pci_disable_sriov(adapter->pdev);
1673 	idpf_send_set_sriov_vfs_msg(adapter, 0);
1674 	adapter->num_vfs = 0;
1675 
1676 	return 0;
1677 }
1678 
1679 /**
1680  * idpf_deinit_task - Device deinit routine
1681  * @adapter: Driver specific private structure
1682  *
1683  * Extended remove logic which will be used for
1684  * hard reset as well
1685  */
1686 void idpf_deinit_task(struct idpf_adapter *adapter)
1687 {
1688 	unsigned int i;
1689 
1690 	/* Wait until the init_task is done else this thread might release
1691 	 * the resources first and the other thread might end up in a bad state
1692 	 */
1693 	cancel_delayed_work_sync(&adapter->init_task);
1694 
1695 	if (!adapter->vports)
1696 		return;
1697 
1698 	cancel_delayed_work_sync(&adapter->stats_task);
1699 
1700 	for (i = 0; i < adapter->max_vports; i++) {
1701 		if (adapter->vports[i])
1702 			idpf_vport_dealloc(adapter->vports[i]);
1703 	}
1704 }
1705 
1706 /**
1707  * idpf_check_reset_complete - check that reset is complete
1708  * @hw: pointer to hw struct
1709  * @reset_reg: struct with reset registers
1710  *
1711  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1712  **/
1713 static int idpf_check_reset_complete(struct idpf_hw *hw,
1714 				     struct idpf_reset_reg *reset_reg)
1715 {
1716 	struct idpf_adapter *adapter = hw->back;
1717 	int i;
1718 
1719 	for (i = 0; i < 2000; i++) {
1720 		u32 reg_val = readl(reset_reg->rstat);
1721 
1722 		/* 0xFFFFFFFF might be read if other side hasn't cleared the
1723 		 * register for us yet and 0xFFFFFFFF is not a valid value for
1724 		 * the register, so treat that as invalid.
1725 		 */
1726 		if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1727 			return 0;
1728 
1729 		usleep_range(5000, 10000);
1730 	}
1731 
1732 	dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1733 	/* Clear the reset flag unconditionally here since the reset
1734 	 * technically isn't in progress anymore from the driver's perspective
1735 	 */
1736 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1737 
1738 	return -EBUSY;
1739 }
1740 
1741 /**
1742  * idpf_set_vport_state - Set the vport state to be after the reset
1743  * @adapter: Driver specific private structure
1744  */
1745 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1746 {
1747 	u16 i;
1748 
1749 	for (i = 0; i < adapter->max_vports; i++) {
1750 		struct idpf_netdev_priv *np;
1751 
1752 		if (!adapter->netdevs[i])
1753 			continue;
1754 
1755 		np = netdev_priv(adapter->netdevs[i]);
1756 		if (np->state == __IDPF_VPORT_UP)
1757 			set_bit(IDPF_VPORT_UP_REQUESTED,
1758 				adapter->vport_config[i]->flags);
1759 	}
1760 }
1761 
1762 /**
1763  * idpf_init_hard_reset - Initiate a hardware reset
1764  * @adapter: Driver specific private structure
1765  *
1766  * Deallocate the vports and all the resources associated with them and
1767  * reallocate. Also reinitialize the mailbox. Return 0 on success,
1768  * negative on failure.
1769  */
1770 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1771 {
1772 	struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1773 	struct device *dev = &adapter->pdev->dev;
1774 	struct net_device *netdev;
1775 	int err;
1776 	u16 i;
1777 
1778 	mutex_lock(&adapter->vport_ctrl_lock);
1779 
1780 	dev_info(dev, "Device HW Reset initiated\n");
1781 
1782 	/* Avoid TX hangs on reset */
1783 	for (i = 0; i < adapter->max_vports; i++) {
1784 		netdev = adapter->netdevs[i];
1785 		if (!netdev)
1786 			continue;
1787 
1788 		netif_carrier_off(netdev);
1789 		netif_tx_disable(netdev);
1790 	}
1791 
1792 	/* Prepare for reset */
1793 	if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1794 		reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1795 	} else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1796 		bool is_reset = idpf_is_reset_detected(adapter);
1797 
1798 		idpf_set_vport_state(adapter);
1799 		idpf_vc_core_deinit(adapter);
1800 		if (!is_reset)
1801 			reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1802 		idpf_deinit_dflt_mbx(adapter);
1803 	} else {
1804 		dev_err(dev, "Unhandled hard reset cause\n");
1805 		err = -EBADRQC;
1806 		goto unlock_mutex;
1807 	}
1808 
1809 	/* Wait for reset to complete */
1810 	err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1811 	if (err) {
1812 		dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1813 			adapter->state);
1814 		goto unlock_mutex;
1815 	}
1816 
1817 	/* Reset is complete and so start building the driver resources again */
1818 	err = idpf_init_dflt_mbx(adapter);
1819 	if (err) {
1820 		dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1821 		goto unlock_mutex;
1822 	}
1823 
1824 	/* Initialize the state machine, also allocate memory and request
1825 	 * resources
1826 	 */
1827 	err = idpf_vc_core_init(adapter);
1828 	if (err) {
1829 		idpf_deinit_dflt_mbx(adapter);
1830 		goto unlock_mutex;
1831 	}
1832 
1833 	/* Wait till all the vports are initialized to release the reset lock,
1834 	 * else user space callbacks may access uninitialized vports
1835 	 */
1836 	while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1837 		msleep(100);
1838 
1839 unlock_mutex:
1840 	mutex_unlock(&adapter->vport_ctrl_lock);
1841 
1842 	return err;
1843 }
1844 
1845 /**
1846  * idpf_vc_event_task - Handle virtchannel event logic
1847  * @work: work queue struct
1848  */
1849 void idpf_vc_event_task(struct work_struct *work)
1850 {
1851 	struct idpf_adapter *adapter;
1852 
1853 	adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1854 
1855 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1856 		return;
1857 
1858 	if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags) ||
1859 	    test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1860 		set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1861 		idpf_init_hard_reset(adapter);
1862 	}
1863 }
1864 
1865 /**
1866  * idpf_initiate_soft_reset - Initiate a software reset
1867  * @vport: virtual port data struct
1868  * @reset_cause: reason for the soft reset
1869  *
1870  * Soft reset only reallocs vport queue resources. Returns 0 on success,
1871  * negative on failure.
1872  */
1873 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1874 			     enum idpf_vport_reset_cause reset_cause)
1875 {
1876 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1877 	enum idpf_vport_state current_state = np->state;
1878 	struct idpf_adapter *adapter = vport->adapter;
1879 	struct idpf_vport *new_vport;
1880 	int err, i;
1881 
1882 	/* If the system is low on memory, we can end up in bad state if we
1883 	 * free all the memory for queue resources and try to allocate them
1884 	 * again. Instead, we can pre-allocate the new resources before doing
1885 	 * anything and bailing if the alloc fails.
1886 	 *
1887 	 * Make a clone of the existing vport to mimic its current
1888 	 * configuration, then modify the new structure with any requested
1889 	 * changes. Once the allocation of the new resources is done, stop the
1890 	 * existing vport and copy the configuration to the main vport. If an
1891 	 * error occurred, the existing vport will be untouched.
1892 	 *
1893 	 */
1894 	new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1895 	if (!new_vport)
1896 		return -ENOMEM;
1897 
1898 	/* This purposely avoids copying the end of the struct because it
1899 	 * contains wait_queues and mutexes and other stuff we don't want to
1900 	 * mess with. Nothing below should use those variables from new_vport
1901 	 * and should instead always refer to them in vport if they need to.
1902 	 */
1903 	memcpy(new_vport, vport, offsetof(struct idpf_vport, vc_state));
1904 
1905 	/* Adjust resource parameters prior to reallocating resources */
1906 	switch (reset_cause) {
1907 	case IDPF_SR_Q_CHANGE:
1908 		err = idpf_vport_adjust_qs(new_vport);
1909 		if (err)
1910 			goto free_vport;
1911 		break;
1912 	case IDPF_SR_Q_DESC_CHANGE:
1913 		/* Update queue parameters before allocating resources */
1914 		idpf_vport_calc_num_q_desc(new_vport);
1915 		break;
1916 	case IDPF_SR_MTU_CHANGE:
1917 	case IDPF_SR_RSC_CHANGE:
1918 		break;
1919 	default:
1920 		dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1921 		err = -EINVAL;
1922 		goto free_vport;
1923 	}
1924 
1925 	err = idpf_vport_queues_alloc(new_vport);
1926 	if (err)
1927 		goto free_vport;
1928 	if (current_state <= __IDPF_VPORT_DOWN) {
1929 		idpf_send_delete_queues_msg(vport);
1930 	} else {
1931 		set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1932 		idpf_vport_stop(vport);
1933 	}
1934 
1935 	idpf_deinit_rss(vport);
1936 	/* We're passing in vport here because we need its wait_queue
1937 	 * to send a message and it should be getting all the vport
1938 	 * config data out of the adapter but we need to be careful not
1939 	 * to add code to add_queues to change the vport config within
1940 	 * vport itself as it will be wiped with a memcpy later.
1941 	 */
1942 	err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
1943 				       new_vport->num_complq,
1944 				       new_vport->num_rxq,
1945 				       new_vport->num_bufq);
1946 	if (err)
1947 		goto err_reset;
1948 
1949 	/* Same comment as above regarding avoiding copying the wait_queues and
1950 	 * mutexes applies here. We do not want to mess with those if possible.
1951 	 */
1952 	memcpy(vport, new_vport, offsetof(struct idpf_vport, vc_state));
1953 
1954 	/* Since idpf_vport_queues_alloc was called with new_port, the queue
1955 	 * back pointers are currently pointing to the local new_vport. Reset
1956 	 * the backpointers to the original vport here
1957 	 */
1958 	for (i = 0; i < vport->num_txq_grp; i++) {
1959 		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1960 		int j;
1961 
1962 		tx_qgrp->vport = vport;
1963 		for (j = 0; j < tx_qgrp->num_txq; j++)
1964 			tx_qgrp->txqs[j]->vport = vport;
1965 
1966 		if (idpf_is_queue_model_split(vport->txq_model))
1967 			tx_qgrp->complq->vport = vport;
1968 	}
1969 
1970 	for (i = 0; i < vport->num_rxq_grp; i++) {
1971 		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1972 		struct idpf_queue *q;
1973 		u16 num_rxq;
1974 		int j;
1975 
1976 		rx_qgrp->vport = vport;
1977 		for (j = 0; j < vport->num_bufqs_per_qgrp; j++)
1978 			rx_qgrp->splitq.bufq_sets[j].bufq.vport = vport;
1979 
1980 		if (idpf_is_queue_model_split(vport->rxq_model))
1981 			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1982 		else
1983 			num_rxq = rx_qgrp->singleq.num_rxq;
1984 
1985 		for (j = 0; j < num_rxq; j++) {
1986 			if (idpf_is_queue_model_split(vport->rxq_model))
1987 				q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1988 			else
1989 				q = rx_qgrp->singleq.rxqs[j];
1990 			q->vport = vport;
1991 		}
1992 	}
1993 
1994 	if (reset_cause == IDPF_SR_Q_CHANGE)
1995 		idpf_vport_alloc_vec_indexes(vport);
1996 
1997 	err = idpf_set_real_num_queues(vport);
1998 	if (err)
1999 		goto err_reset;
2000 
2001 	if (current_state == __IDPF_VPORT_UP)
2002 		err = idpf_vport_open(vport, false);
2003 
2004 	kfree(new_vport);
2005 
2006 	return err;
2007 
2008 err_reset:
2009 	idpf_vport_queues_rel(new_vport);
2010 free_vport:
2011 	kfree(new_vport);
2012 
2013 	return err;
2014 }
2015 
2016 /**
2017  * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
2018  * @netdev: the netdevice
2019  * @addr: address to add
2020  *
2021  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2022  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2023  * meaning we cannot sleep in this context. Due to this, we have to add the
2024  * filter and send the virtchnl message asynchronously without waiting for the
2025  * response from the other side. We won't know whether or not the operation
2026  * actually succeeded until we get the message back.  Returns 0 on success,
2027  * negative on failure.
2028  */
2029 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
2030 {
2031 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2032 
2033 	return idpf_add_mac_filter(np->vport, np, addr, true);
2034 }
2035 
2036 /**
2037  * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2038  * @netdev: the netdevice
2039  * @addr: address to add
2040  *
2041  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2042  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2043  * meaning we cannot sleep in this context. Due to this we have to delete the
2044  * filter and send the virtchnl message asynchronously without waiting for the
2045  * return from the other side.  We won't know whether or not the operation
2046  * actually succeeded until we get the message back. Returns 0 on success,
2047  * negative on failure.
2048  */
2049 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
2050 {
2051 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2052 
2053 	/* Under some circumstances, we might receive a request to delete
2054 	 * our own device address from our uc list. Because we store the
2055 	 * device address in the VSI's MAC filter list, we need to ignore
2056 	 * such requests and not delete our device address from this list.
2057 	 */
2058 	if (ether_addr_equal(addr, netdev->dev_addr))
2059 		return 0;
2060 
2061 	idpf_del_mac_filter(np->vport, np, addr, true);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * idpf_set_rx_mode - NDO callback to set the netdev filters
2068  * @netdev: network interface device structure
2069  *
2070  * Stack takes addr_list_lock spinlock before calling our .set_rx_mode.  We
2071  * cannot sleep in this context.
2072  */
2073 static void idpf_set_rx_mode(struct net_device *netdev)
2074 {
2075 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2076 	struct idpf_vport_user_config_data *config_data;
2077 	struct idpf_adapter *adapter;
2078 	bool changed = false;
2079 	struct device *dev;
2080 	int err;
2081 
2082 	adapter = np->adapter;
2083 	dev = &adapter->pdev->dev;
2084 
2085 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2086 		__dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2087 		__dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2088 	}
2089 
2090 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2091 		return;
2092 
2093 	config_data = &adapter->vport_config[np->vport_idx]->user_config;
2094 	/* IFF_PROMISC enables both unicast and multicast promiscuous,
2095 	 * while IFF_ALLMULTI only enables multicast such that:
2096 	 *
2097 	 * promisc  + allmulti		= unicast | multicast
2098 	 * promisc  + !allmulti		= unicast | multicast
2099 	 * !promisc + allmulti		= multicast
2100 	 */
2101 	if ((netdev->flags & IFF_PROMISC) &&
2102 	    !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2103 		changed = true;
2104 		dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2105 		if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2106 			dev_info(dev, "Entering multicast promiscuous mode\n");
2107 	}
2108 
2109 	if (!(netdev->flags & IFF_PROMISC) &&
2110 	    test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2111 		changed = true;
2112 		dev_info(dev, "Leaving promiscuous mode\n");
2113 	}
2114 
2115 	if (netdev->flags & IFF_ALLMULTI &&
2116 	    !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2117 		changed = true;
2118 		dev_info(dev, "Entering multicast promiscuous mode\n");
2119 	}
2120 
2121 	if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2122 	    test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2123 		changed = true;
2124 		dev_info(dev, "Leaving multicast promiscuous mode\n");
2125 	}
2126 
2127 	if (!changed)
2128 		return;
2129 
2130 	err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2131 	if (err)
2132 		dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2133 }
2134 
2135 /**
2136  * idpf_vport_manage_rss_lut - disable/enable RSS
2137  * @vport: the vport being changed
2138  *
2139  * In the event of disable request for RSS, this function will zero out RSS
2140  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2141  * LUT with the default LUT configuration.
2142  */
2143 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2144 {
2145 	bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2146 	struct idpf_rss_data *rss_data;
2147 	u16 idx = vport->idx;
2148 	int lut_size;
2149 
2150 	rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2151 	lut_size = rss_data->rss_lut_size * sizeof(u32);
2152 
2153 	if (ena) {
2154 		/* This will contain the default or user configured LUT */
2155 		memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2156 	} else {
2157 		/* Save a copy of the current LUT to be restored later if
2158 		 * requested.
2159 		 */
2160 		memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2161 
2162 		/* Zero out the current LUT to disable */
2163 		memset(rss_data->rss_lut, 0, lut_size);
2164 	}
2165 
2166 	return idpf_config_rss(vport);
2167 }
2168 
2169 /**
2170  * idpf_set_features - set the netdev feature flags
2171  * @netdev: ptr to the netdev being adjusted
2172  * @features: the feature set that the stack is suggesting
2173  */
2174 static int idpf_set_features(struct net_device *netdev,
2175 			     netdev_features_t features)
2176 {
2177 	netdev_features_t changed = netdev->features ^ features;
2178 	struct idpf_adapter *adapter;
2179 	struct idpf_vport *vport;
2180 	int err = 0;
2181 
2182 	idpf_vport_ctrl_lock(netdev);
2183 	vport = idpf_netdev_to_vport(netdev);
2184 
2185 	adapter = vport->adapter;
2186 
2187 	if (idpf_is_reset_in_prog(adapter)) {
2188 		dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2189 		err = -EBUSY;
2190 		goto unlock_mutex;
2191 	}
2192 
2193 	if (changed & NETIF_F_RXHASH) {
2194 		netdev->features ^= NETIF_F_RXHASH;
2195 		err = idpf_vport_manage_rss_lut(vport);
2196 		if (err)
2197 			goto unlock_mutex;
2198 	}
2199 
2200 	if (changed & NETIF_F_GRO_HW) {
2201 		netdev->features ^= NETIF_F_GRO_HW;
2202 		err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2203 		if (err)
2204 			goto unlock_mutex;
2205 	}
2206 
2207 	if (changed & NETIF_F_LOOPBACK) {
2208 		netdev->features ^= NETIF_F_LOOPBACK;
2209 		err = idpf_send_ena_dis_loopback_msg(vport);
2210 	}
2211 
2212 unlock_mutex:
2213 	idpf_vport_ctrl_unlock(netdev);
2214 
2215 	return err;
2216 }
2217 
2218 /**
2219  * idpf_open - Called when a network interface becomes active
2220  * @netdev: network interface device structure
2221  *
2222  * The open entry point is called when a network interface is made
2223  * active by the system (IFF_UP).  At this point all resources needed
2224  * for transmit and receive operations are allocated, the interrupt
2225  * handler is registered with the OS, the netdev watchdog is enabled,
2226  * and the stack is notified that the interface is ready.
2227  *
2228  * Returns 0 on success, negative value on failure
2229  */
2230 static int idpf_open(struct net_device *netdev)
2231 {
2232 	struct idpf_vport *vport;
2233 	int err;
2234 
2235 	idpf_vport_ctrl_lock(netdev);
2236 	vport = idpf_netdev_to_vport(netdev);
2237 
2238 	err = idpf_vport_open(vport, true);
2239 
2240 	idpf_vport_ctrl_unlock(netdev);
2241 
2242 	return err;
2243 }
2244 
2245 /**
2246  * idpf_change_mtu - NDO callback to change the MTU
2247  * @netdev: network interface device structure
2248  * @new_mtu: new value for maximum frame size
2249  *
2250  * Returns 0 on success, negative on failure
2251  */
2252 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2253 {
2254 	struct idpf_vport *vport;
2255 	int err;
2256 
2257 	idpf_vport_ctrl_lock(netdev);
2258 	vport = idpf_netdev_to_vport(netdev);
2259 
2260 	netdev->mtu = new_mtu;
2261 
2262 	err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2263 
2264 	idpf_vport_ctrl_unlock(netdev);
2265 
2266 	return err;
2267 }
2268 
2269 /**
2270  * idpf_features_check - Validate packet conforms to limits
2271  * @skb: skb buffer
2272  * @netdev: This port's netdev
2273  * @features: Offload features that the stack believes apply
2274  */
2275 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2276 					     struct net_device *netdev,
2277 					     netdev_features_t features)
2278 {
2279 	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2280 	struct idpf_adapter *adapter = vport->adapter;
2281 	size_t len;
2282 
2283 	/* No point in doing any of this if neither checksum nor GSO are
2284 	 * being requested for this frame.  We can rule out both by just
2285 	 * checking for CHECKSUM_PARTIAL
2286 	 */
2287 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2288 		return features;
2289 
2290 	/* We cannot support GSO if the MSS is going to be less than
2291 	 * 88 bytes. If it is then we need to drop support for GSO.
2292 	 */
2293 	if (skb_is_gso(skb) &&
2294 	    (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS))
2295 		features &= ~NETIF_F_GSO_MASK;
2296 
2297 	/* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2298 	len = skb_network_offset(skb);
2299 	if (unlikely(len & ~(126)))
2300 		goto unsupported;
2301 
2302 	len = skb_network_header_len(skb);
2303 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2304 		goto unsupported;
2305 
2306 	if (!skb->encapsulation)
2307 		return features;
2308 
2309 	/* L4TUNLEN can support 127 words */
2310 	len = skb_inner_network_header(skb) - skb_transport_header(skb);
2311 	if (unlikely(len & ~(127 * 2)))
2312 		goto unsupported;
2313 
2314 	/* IPLEN can support at most 127 dwords */
2315 	len = skb_inner_network_header_len(skb);
2316 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2317 		goto unsupported;
2318 
2319 	/* No need to validate L4LEN as TCP is the only protocol with a
2320 	 * a flexible value and we support all possible values supported
2321 	 * by TCP, which is at most 15 dwords
2322 	 */
2323 
2324 	return features;
2325 
2326 unsupported:
2327 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2328 }
2329 
2330 /**
2331  * idpf_set_mac - NDO callback to set port mac address
2332  * @netdev: network interface device structure
2333  * @p: pointer to an address structure
2334  *
2335  * Returns 0 on success, negative on failure
2336  **/
2337 static int idpf_set_mac(struct net_device *netdev, void *p)
2338 {
2339 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2340 	struct idpf_vport_config *vport_config;
2341 	struct sockaddr *addr = p;
2342 	struct idpf_vport *vport;
2343 	int err = 0;
2344 
2345 	idpf_vport_ctrl_lock(netdev);
2346 	vport = idpf_netdev_to_vport(netdev);
2347 
2348 	if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2349 			     VIRTCHNL2_CAP_MACFILTER)) {
2350 		dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2351 		err = -EOPNOTSUPP;
2352 		goto unlock_mutex;
2353 	}
2354 
2355 	if (!is_valid_ether_addr(addr->sa_data)) {
2356 		dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2357 			 addr->sa_data);
2358 		err = -EADDRNOTAVAIL;
2359 		goto unlock_mutex;
2360 	}
2361 
2362 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2363 		goto unlock_mutex;
2364 
2365 	vport_config = vport->adapter->vport_config[vport->idx];
2366 	err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2367 	if (err) {
2368 		__idpf_del_mac_filter(vport_config, addr->sa_data);
2369 		goto unlock_mutex;
2370 	}
2371 
2372 	if (is_valid_ether_addr(vport->default_mac_addr))
2373 		idpf_del_mac_filter(vport, np, vport->default_mac_addr, false);
2374 
2375 	ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2376 	eth_hw_addr_set(netdev, addr->sa_data);
2377 
2378 unlock_mutex:
2379 	idpf_vport_ctrl_unlock(netdev);
2380 
2381 	return err;
2382 }
2383 
2384 /**
2385  * idpf_alloc_dma_mem - Allocate dma memory
2386  * @hw: pointer to hw struct
2387  * @mem: pointer to dma_mem struct
2388  * @size: size of the memory to allocate
2389  */
2390 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2391 {
2392 	struct idpf_adapter *adapter = hw->back;
2393 	size_t sz = ALIGN(size, 4096);
2394 
2395 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, sz,
2396 				     &mem->pa, GFP_KERNEL);
2397 	mem->size = sz;
2398 
2399 	return mem->va;
2400 }
2401 
2402 /**
2403  * idpf_free_dma_mem - Free the allocated dma memory
2404  * @hw: pointer to hw struct
2405  * @mem: pointer to dma_mem struct
2406  */
2407 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2408 {
2409 	struct idpf_adapter *adapter = hw->back;
2410 
2411 	dma_free_coherent(&adapter->pdev->dev, mem->size,
2412 			  mem->va, mem->pa);
2413 	mem->size = 0;
2414 	mem->va = NULL;
2415 	mem->pa = 0;
2416 }
2417 
2418 static const struct net_device_ops idpf_netdev_ops_splitq = {
2419 	.ndo_open = idpf_open,
2420 	.ndo_stop = idpf_stop,
2421 	.ndo_start_xmit = idpf_tx_splitq_start,
2422 	.ndo_features_check = idpf_features_check,
2423 	.ndo_set_rx_mode = idpf_set_rx_mode,
2424 	.ndo_validate_addr = eth_validate_addr,
2425 	.ndo_set_mac_address = idpf_set_mac,
2426 	.ndo_change_mtu = idpf_change_mtu,
2427 	.ndo_get_stats64 = idpf_get_stats64,
2428 	.ndo_set_features = idpf_set_features,
2429 	.ndo_tx_timeout = idpf_tx_timeout,
2430 };
2431 
2432 static const struct net_device_ops idpf_netdev_ops_singleq = {
2433 	.ndo_open = idpf_open,
2434 	.ndo_stop = idpf_stop,
2435 	.ndo_start_xmit = idpf_tx_singleq_start,
2436 	.ndo_features_check = idpf_features_check,
2437 	.ndo_set_rx_mode = idpf_set_rx_mode,
2438 	.ndo_validate_addr = eth_validate_addr,
2439 	.ndo_set_mac_address = idpf_set_mac,
2440 	.ndo_change_mtu = idpf_change_mtu,
2441 	.ndo_get_stats64 = idpf_get_stats64,
2442 	.ndo_set_features = idpf_set_features,
2443 	.ndo_tx_timeout = idpf_tx_timeout,
2444 };
2445