xref: /linux/drivers/net/ethernet/intel/idpf/idpf_lib.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 #include "idpf_ptp.h"
7 
8 static const struct net_device_ops idpf_netdev_ops;
9 
10 /**
11  * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
12  * @adapter: private data struct
13  *
14  * Return 0 on success, error on failure
15  */
16 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
17 {
18 	struct idpf_vector_lifo *stack;
19 	u16 min_vec;
20 	u32 i;
21 
22 	mutex_lock(&adapter->vector_lock);
23 	min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
24 	stack = &adapter->vector_stack;
25 	stack->size = adapter->num_msix_entries;
26 	/* set the base and top to point at start of the 'free pool' to
27 	 * distribute the unused vectors on-demand basis
28 	 */
29 	stack->base = min_vec;
30 	stack->top = min_vec;
31 
32 	stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
33 	if (!stack->vec_idx) {
34 		mutex_unlock(&adapter->vector_lock);
35 
36 		return -ENOMEM;
37 	}
38 
39 	for (i = 0; i < stack->size; i++)
40 		stack->vec_idx[i] = i;
41 
42 	mutex_unlock(&adapter->vector_lock);
43 
44 	return 0;
45 }
46 
47 /**
48  * idpf_deinit_vector_stack - zero out the MSIX vector stack
49  * @adapter: private data struct
50  */
51 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
52 {
53 	struct idpf_vector_lifo *stack;
54 
55 	mutex_lock(&adapter->vector_lock);
56 	stack = &adapter->vector_stack;
57 	kfree(stack->vec_idx);
58 	stack->vec_idx = NULL;
59 	mutex_unlock(&adapter->vector_lock);
60 }
61 
62 /**
63  * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
64  * @adapter: adapter structure
65  *
66  * This will also disable interrupt mode and queue up mailbox task. Mailbox
67  * task will reschedule itself if not in interrupt mode.
68  */
69 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
70 {
71 	clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
72 	kfree(free_irq(adapter->msix_entries[0].vector, adapter));
73 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
74 }
75 
76 /**
77  * idpf_intr_rel - Release interrupt capabilities and free memory
78  * @adapter: adapter to disable interrupts on
79  */
80 void idpf_intr_rel(struct idpf_adapter *adapter)
81 {
82 	if (!adapter->msix_entries)
83 		return;
84 
85 	idpf_mb_intr_rel_irq(adapter);
86 	pci_free_irq_vectors(adapter->pdev);
87 	idpf_send_dealloc_vectors_msg(adapter);
88 	idpf_deinit_vector_stack(adapter);
89 	kfree(adapter->msix_entries);
90 	adapter->msix_entries = NULL;
91 	kfree(adapter->rdma_msix_entries);
92 	adapter->rdma_msix_entries = NULL;
93 }
94 
95 /**
96  * idpf_mb_intr_clean - Interrupt handler for the mailbox
97  * @irq: interrupt number
98  * @data: pointer to the adapter structure
99  */
100 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
101 {
102 	struct idpf_adapter *adapter = (struct idpf_adapter *)data;
103 
104 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
105 
106 	return IRQ_HANDLED;
107 }
108 
109 /**
110  * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
111  * @adapter: adapter to get the hardware address for register write
112  */
113 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
114 {
115 	struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
116 	u32 val;
117 
118 	val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
119 	writel(val, intr->dyn_ctl);
120 	writel(intr->icr_ena_ctlq_m, intr->icr_ena);
121 }
122 
123 /**
124  * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
125  * @adapter: adapter structure to pass to the mailbox irq handler
126  */
127 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
128 {
129 	int irq_num, mb_vidx = 0, err;
130 	char *name;
131 
132 	irq_num = adapter->msix_entries[mb_vidx].vector;
133 	name = kasprintf(GFP_KERNEL, "%s-%s-%d",
134 			 dev_driver_string(&adapter->pdev->dev),
135 			 "Mailbox", mb_vidx);
136 	err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
137 	if (err) {
138 		dev_err(&adapter->pdev->dev,
139 			"IRQ request for mailbox failed, error: %d\n", err);
140 
141 		return err;
142 	}
143 
144 	set_bit(IDPF_MB_INTR_MODE, adapter->flags);
145 
146 	return 0;
147 }
148 
149 /**
150  * idpf_mb_intr_init - Initialize the mailbox interrupt
151  * @adapter: adapter structure to store the mailbox vector
152  */
153 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
154 {
155 	adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
156 	adapter->irq_mb_handler = idpf_mb_intr_clean;
157 
158 	return idpf_mb_intr_req_irq(adapter);
159 }
160 
161 /**
162  * idpf_vector_lifo_push - push MSIX vector index onto stack
163  * @adapter: private data struct
164  * @vec_idx: vector index to store
165  */
166 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
167 {
168 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
169 
170 	lockdep_assert_held(&adapter->vector_lock);
171 
172 	if (stack->top == stack->base) {
173 		dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
174 			stack->top);
175 		return -EINVAL;
176 	}
177 
178 	stack->vec_idx[--stack->top] = vec_idx;
179 
180 	return 0;
181 }
182 
183 /**
184  * idpf_vector_lifo_pop - pop MSIX vector index from stack
185  * @adapter: private data struct
186  */
187 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
188 {
189 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
190 
191 	lockdep_assert_held(&adapter->vector_lock);
192 
193 	if (stack->top == stack->size) {
194 		dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
195 
196 		return -EINVAL;
197 	}
198 
199 	return stack->vec_idx[stack->top++];
200 }
201 
202 /**
203  * idpf_vector_stash - Store the vector indexes onto the stack
204  * @adapter: private data struct
205  * @q_vector_idxs: vector index array
206  * @vec_info: info related to the number of vectors
207  *
208  * This function is a no-op if there are no vectors indexes to be stashed
209  */
210 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
211 			      struct idpf_vector_info *vec_info)
212 {
213 	int i, base = 0;
214 	u16 vec_idx;
215 
216 	lockdep_assert_held(&adapter->vector_lock);
217 
218 	if (!vec_info->num_curr_vecs)
219 		return;
220 
221 	/* For default vports, no need to stash vector allocated from the
222 	 * default pool onto the stack
223 	 */
224 	if (vec_info->default_vport)
225 		base = IDPF_MIN_Q_VEC;
226 
227 	for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
228 		vec_idx = q_vector_idxs[i];
229 		idpf_vector_lifo_push(adapter, vec_idx);
230 		adapter->num_avail_msix++;
231 	}
232 }
233 
234 /**
235  * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
236  * @adapter: driver specific private structure
237  * @q_vector_idxs: vector index array
238  * @vec_info: info related to the number of vectors
239  *
240  * This is the core function to distribute the MSIX vectors acquired from the
241  * OS. It expects the caller to pass the number of vectors required and
242  * also previously allocated. First, it stashes previously allocated vector
243  * indexes on to the stack and then figures out if it can allocate requested
244  * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
245  * requested vectors, then this function just stashes the already allocated
246  * vectors and returns 0.
247  *
248  * Returns actual number of vectors allocated on success, error value on failure
249  * If 0 is returned, implies the stack has no vectors to allocate which is also
250  * a failure case for the caller
251  */
252 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
253 				u16 *q_vector_idxs,
254 				struct idpf_vector_info *vec_info)
255 {
256 	u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
257 	struct idpf_vector_lifo *stack;
258 	int i, j, vecid;
259 
260 	mutex_lock(&adapter->vector_lock);
261 	stack = &adapter->vector_stack;
262 	num_req_vecs = vec_info->num_req_vecs;
263 
264 	/* Stash interrupt vector indexes onto the stack if required */
265 	idpf_vector_stash(adapter, q_vector_idxs, vec_info);
266 
267 	if (!num_req_vecs)
268 		goto rel_lock;
269 
270 	if (vec_info->default_vport) {
271 		/* As IDPF_MIN_Q_VEC per default vport is put aside in the
272 		 * default pool of the stack, use them for default vports
273 		 */
274 		j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
275 		for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
276 			q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
277 			num_req_vecs--;
278 		}
279 	}
280 
281 	/* Find if stack has enough vector to allocate */
282 	max_vecs = min(adapter->num_avail_msix, num_req_vecs);
283 
284 	for (j = 0; j < max_vecs; j++) {
285 		vecid = idpf_vector_lifo_pop(adapter);
286 		q_vector_idxs[num_alloc_vecs++] = vecid;
287 	}
288 	adapter->num_avail_msix -= max_vecs;
289 
290 rel_lock:
291 	mutex_unlock(&adapter->vector_lock);
292 
293 	return num_alloc_vecs;
294 }
295 
296 /**
297  * idpf_intr_req - Request interrupt capabilities
298  * @adapter: adapter to enable interrupts on
299  *
300  * Returns 0 on success, negative on failure
301  */
302 int idpf_intr_req(struct idpf_adapter *adapter)
303 {
304 	u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0;
305 	u16 default_vports = idpf_get_default_vports(adapter);
306 	int num_q_vecs, total_vecs, num_vec_ids;
307 	int min_vectors, actual_vecs, err;
308 	unsigned int vector;
309 	u16 *vecids;
310 	int i;
311 
312 	total_vecs = idpf_get_reserved_vecs(adapter);
313 	num_lan_vecs = total_vecs;
314 	if (idpf_is_rdma_cap_ena(adapter)) {
315 		num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter);
316 		min_rdma_vecs = IDPF_MIN_RDMA_VEC;
317 
318 		if (!num_rdma_vecs) {
319 			/* If idpf_get_reserved_rdma_vecs is 0, vectors are
320 			 * pulled from the LAN pool.
321 			 */
322 			num_rdma_vecs = min_rdma_vecs;
323 		} else if (num_rdma_vecs < min_rdma_vecs) {
324 			dev_err(&adapter->pdev->dev,
325 				"Not enough vectors reserved for RDMA (min: %u, current: %u)\n",
326 				min_rdma_vecs, num_rdma_vecs);
327 			return -EINVAL;
328 		}
329 	}
330 
331 	num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
332 
333 	err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
334 	if (err) {
335 		dev_err(&adapter->pdev->dev,
336 			"Failed to allocate %d vectors: %d\n", num_q_vecs, err);
337 
338 		return -EAGAIN;
339 	}
340 
341 	min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
342 	min_vectors = min_lan_vecs + min_rdma_vecs;
343 	actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
344 					    total_vecs, PCI_IRQ_MSIX);
345 	if (actual_vecs < 0) {
346 		dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n",
347 			min_vectors);
348 		err = actual_vecs;
349 		goto send_dealloc_vecs;
350 	}
351 
352 	if (idpf_is_rdma_cap_ena(adapter)) {
353 		if (actual_vecs < total_vecs) {
354 			dev_warn(&adapter->pdev->dev,
355 				 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n",
356 				 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC);
357 			num_rdma_vecs = IDPF_MIN_RDMA_VEC;
358 		}
359 
360 		adapter->rdma_msix_entries = kcalloc(num_rdma_vecs,
361 						     sizeof(struct msix_entry),
362 						     GFP_KERNEL);
363 		if (!adapter->rdma_msix_entries) {
364 			err = -ENOMEM;
365 			goto free_irq;
366 		}
367 	}
368 
369 	num_lan_vecs = actual_vecs - num_rdma_vecs;
370 	adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry),
371 					GFP_KERNEL);
372 	if (!adapter->msix_entries) {
373 		err = -ENOMEM;
374 		goto free_rdma_msix;
375 	}
376 
377 	adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id);
378 
379 	vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL);
380 	if (!vecids) {
381 		err = -ENOMEM;
382 		goto free_msix;
383 	}
384 
385 	num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs,
386 				       &adapter->req_vec_chunks->vchunks);
387 	if (num_vec_ids < actual_vecs) {
388 		err = -EINVAL;
389 		goto free_vecids;
390 	}
391 
392 	for (vector = 0; vector < num_lan_vecs; vector++) {
393 		adapter->msix_entries[vector].entry = vecids[vector];
394 		adapter->msix_entries[vector].vector =
395 			pci_irq_vector(adapter->pdev, vector);
396 	}
397 	for (i = 0; i < num_rdma_vecs; vector++, i++) {
398 		adapter->rdma_msix_entries[i].entry = vecids[vector];
399 		adapter->rdma_msix_entries[i].vector =
400 			pci_irq_vector(adapter->pdev, vector);
401 	}
402 
403 	/* 'num_avail_msix' is used to distribute excess vectors to the vports
404 	 * after considering the minimum vectors required per each default
405 	 * vport
406 	 */
407 	adapter->num_avail_msix = num_lan_vecs - min_lan_vecs;
408 	adapter->num_msix_entries = num_lan_vecs;
409 	if (idpf_is_rdma_cap_ena(adapter))
410 		adapter->num_rdma_msix_entries = num_rdma_vecs;
411 
412 	/* Fill MSIX vector lifo stack with vector indexes */
413 	err = idpf_init_vector_stack(adapter);
414 	if (err)
415 		goto free_vecids;
416 
417 	err = idpf_mb_intr_init(adapter);
418 	if (err)
419 		goto deinit_vec_stack;
420 	idpf_mb_irq_enable(adapter);
421 	kfree(vecids);
422 
423 	return 0;
424 
425 deinit_vec_stack:
426 	idpf_deinit_vector_stack(adapter);
427 free_vecids:
428 	kfree(vecids);
429 free_msix:
430 	kfree(adapter->msix_entries);
431 	adapter->msix_entries = NULL;
432 free_rdma_msix:
433 	kfree(adapter->rdma_msix_entries);
434 	adapter->rdma_msix_entries = NULL;
435 free_irq:
436 	pci_free_irq_vectors(adapter->pdev);
437 send_dealloc_vecs:
438 	idpf_send_dealloc_vectors_msg(adapter);
439 
440 	return err;
441 }
442 
443 /**
444  * idpf_find_mac_filter - Search filter list for specific mac filter
445  * @vconfig: Vport config structure
446  * @macaddr: The MAC address
447  *
448  * Returns ptr to the filter object or NULL. Must be called while holding the
449  * mac_filter_list_lock.
450  **/
451 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
452 						    const u8 *macaddr)
453 {
454 	struct idpf_mac_filter *f;
455 
456 	if (!macaddr)
457 		return NULL;
458 
459 	list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
460 		if (ether_addr_equal(macaddr, f->macaddr))
461 			return f;
462 	}
463 
464 	return NULL;
465 }
466 
467 /**
468  * __idpf_del_mac_filter - Delete a MAC filter from the filter list
469  * @vport_config: Vport config structure
470  * @macaddr: The MAC address
471  *
472  * Returns 0 on success, error value on failure
473  **/
474 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
475 				 const u8 *macaddr)
476 {
477 	struct idpf_mac_filter *f;
478 
479 	spin_lock_bh(&vport_config->mac_filter_list_lock);
480 	f = idpf_find_mac_filter(vport_config, macaddr);
481 	if (f) {
482 		list_del(&f->list);
483 		kfree(f);
484 	}
485 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
486 
487 	return 0;
488 }
489 
490 /**
491  * idpf_del_mac_filter - Delete a MAC filter from the filter list
492  * @vport: Main vport structure
493  * @np: Netdev private structure
494  * @macaddr: The MAC address
495  * @async: Don't wait for return message
496  *
497  * Removes filter from list and if interface is up, tells hardware about the
498  * removed filter.
499  **/
500 static int idpf_del_mac_filter(struct idpf_vport *vport,
501 			       struct idpf_netdev_priv *np,
502 			       const u8 *macaddr, bool async)
503 {
504 	struct idpf_vport_config *vport_config;
505 	struct idpf_mac_filter *f;
506 
507 	vport_config = np->adapter->vport_config[np->vport_idx];
508 
509 	spin_lock_bh(&vport_config->mac_filter_list_lock);
510 	f = idpf_find_mac_filter(vport_config, macaddr);
511 	if (f) {
512 		f->remove = true;
513 	} else {
514 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
515 
516 		return -EINVAL;
517 	}
518 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
519 
520 	if (np->state == __IDPF_VPORT_UP) {
521 		int err;
522 
523 		err = idpf_add_del_mac_filters(vport, np, false, async);
524 		if (err)
525 			return err;
526 	}
527 
528 	return  __idpf_del_mac_filter(vport_config, macaddr);
529 }
530 
531 /**
532  * __idpf_add_mac_filter - Add mac filter helper function
533  * @vport_config: Vport config structure
534  * @macaddr: Address to add
535  *
536  * Takes mac_filter_list_lock spinlock to add new filter to list.
537  */
538 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
539 				 const u8 *macaddr)
540 {
541 	struct idpf_mac_filter *f;
542 
543 	spin_lock_bh(&vport_config->mac_filter_list_lock);
544 
545 	f = idpf_find_mac_filter(vport_config, macaddr);
546 	if (f) {
547 		f->remove = false;
548 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
549 
550 		return 0;
551 	}
552 
553 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
554 	if (!f) {
555 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
556 
557 		return -ENOMEM;
558 	}
559 
560 	ether_addr_copy(f->macaddr, macaddr);
561 	list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
562 	f->add = true;
563 
564 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
565 
566 	return 0;
567 }
568 
569 /**
570  * idpf_add_mac_filter - Add a mac filter to the filter list
571  * @vport: Main vport structure
572  * @np: Netdev private structure
573  * @macaddr: The MAC address
574  * @async: Don't wait for return message
575  *
576  * Returns 0 on success or error on failure. If interface is up, we'll also
577  * send the virtchnl message to tell hardware about the filter.
578  **/
579 static int idpf_add_mac_filter(struct idpf_vport *vport,
580 			       struct idpf_netdev_priv *np,
581 			       const u8 *macaddr, bool async)
582 {
583 	struct idpf_vport_config *vport_config;
584 	int err;
585 
586 	vport_config = np->adapter->vport_config[np->vport_idx];
587 	err = __idpf_add_mac_filter(vport_config, macaddr);
588 	if (err)
589 		return err;
590 
591 	if (np->state == __IDPF_VPORT_UP)
592 		err = idpf_add_del_mac_filters(vport, np, true, async);
593 
594 	return err;
595 }
596 
597 /**
598  * idpf_del_all_mac_filters - Delete all MAC filters in list
599  * @vport: main vport struct
600  *
601  * Takes mac_filter_list_lock spinlock.  Deletes all filters
602  */
603 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
604 {
605 	struct idpf_vport_config *vport_config;
606 	struct idpf_mac_filter *f, *ftmp;
607 
608 	vport_config = vport->adapter->vport_config[vport->idx];
609 	spin_lock_bh(&vport_config->mac_filter_list_lock);
610 
611 	list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
612 				 list) {
613 		list_del(&f->list);
614 		kfree(f);
615 	}
616 
617 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
618 }
619 
620 /**
621  * idpf_restore_mac_filters - Re-add all MAC filters in list
622  * @vport: main vport struct
623  *
624  * Takes mac_filter_list_lock spinlock.  Sets add field to true for filters to
625  * resync filters back to HW.
626  */
627 static void idpf_restore_mac_filters(struct idpf_vport *vport)
628 {
629 	struct idpf_vport_config *vport_config;
630 	struct idpf_mac_filter *f;
631 
632 	vport_config = vport->adapter->vport_config[vport->idx];
633 	spin_lock_bh(&vport_config->mac_filter_list_lock);
634 
635 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
636 		f->add = true;
637 
638 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
639 
640 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
641 				 true, false);
642 }
643 
644 /**
645  * idpf_remove_mac_filters - Remove all MAC filters in list
646  * @vport: main vport struct
647  *
648  * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
649  * to remove filters in HW.
650  */
651 static void idpf_remove_mac_filters(struct idpf_vport *vport)
652 {
653 	struct idpf_vport_config *vport_config;
654 	struct idpf_mac_filter *f;
655 
656 	vport_config = vport->adapter->vport_config[vport->idx];
657 	spin_lock_bh(&vport_config->mac_filter_list_lock);
658 
659 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
660 		f->remove = true;
661 
662 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
663 
664 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
665 				 false, false);
666 }
667 
668 /**
669  * idpf_deinit_mac_addr - deinitialize mac address for vport
670  * @vport: main vport structure
671  */
672 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
673 {
674 	struct idpf_vport_config *vport_config;
675 	struct idpf_mac_filter *f;
676 
677 	vport_config = vport->adapter->vport_config[vport->idx];
678 
679 	spin_lock_bh(&vport_config->mac_filter_list_lock);
680 
681 	f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
682 	if (f) {
683 		list_del(&f->list);
684 		kfree(f);
685 	}
686 
687 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
688 }
689 
690 /**
691  * idpf_init_mac_addr - initialize mac address for vport
692  * @vport: main vport structure
693  * @netdev: pointer to netdev struct associated with this vport
694  */
695 static int idpf_init_mac_addr(struct idpf_vport *vport,
696 			      struct net_device *netdev)
697 {
698 	struct idpf_netdev_priv *np = netdev_priv(netdev);
699 	struct idpf_adapter *adapter = vport->adapter;
700 	int err;
701 
702 	if (is_valid_ether_addr(vport->default_mac_addr)) {
703 		eth_hw_addr_set(netdev, vport->default_mac_addr);
704 		ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
705 
706 		return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
707 					   false);
708 	}
709 
710 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
711 			     VIRTCHNL2_CAP_MACFILTER)) {
712 		dev_err(&adapter->pdev->dev,
713 			"MAC address is not provided and capability is not set\n");
714 
715 		return -EINVAL;
716 	}
717 
718 	eth_hw_addr_random(netdev);
719 	err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
720 	if (err)
721 		return err;
722 
723 	dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
724 		 vport->default_mac_addr, netdev->dev_addr);
725 	ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
726 
727 	return 0;
728 }
729 
730 /**
731  * idpf_cfg_netdev - Allocate, configure and register a netdev
732  * @vport: main vport structure
733  *
734  * Returns 0 on success, negative value on failure.
735  */
736 static int idpf_cfg_netdev(struct idpf_vport *vport)
737 {
738 	struct idpf_adapter *adapter = vport->adapter;
739 	struct idpf_vport_config *vport_config;
740 	netdev_features_t other_offloads = 0;
741 	netdev_features_t csum_offloads = 0;
742 	netdev_features_t tso_offloads = 0;
743 	netdev_features_t dflt_features;
744 	struct idpf_netdev_priv *np;
745 	struct net_device *netdev;
746 	u16 idx = vport->idx;
747 	int err;
748 
749 	vport_config = adapter->vport_config[idx];
750 
751 	/* It's possible we already have a netdev allocated and registered for
752 	 * this vport
753 	 */
754 	if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
755 		netdev = adapter->netdevs[idx];
756 		np = netdev_priv(netdev);
757 		np->vport = vport;
758 		np->vport_idx = vport->idx;
759 		np->vport_id = vport->vport_id;
760 		np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
761 		vport->netdev = netdev;
762 
763 		return idpf_init_mac_addr(vport, netdev);
764 	}
765 
766 	netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
767 				    vport_config->max_q.max_txq,
768 				    vport_config->max_q.max_rxq);
769 	if (!netdev)
770 		return -ENOMEM;
771 
772 	vport->netdev = netdev;
773 	np = netdev_priv(netdev);
774 	np->vport = vport;
775 	np->adapter = adapter;
776 	np->vport_idx = vport->idx;
777 	np->vport_id = vport->vport_id;
778 	np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter);
779 
780 	spin_lock_init(&np->stats_lock);
781 
782 	err = idpf_init_mac_addr(vport, netdev);
783 	if (err) {
784 		free_netdev(vport->netdev);
785 		vport->netdev = NULL;
786 
787 		return err;
788 	}
789 
790 	/* assign netdev_ops */
791 	netdev->netdev_ops = &idpf_netdev_ops;
792 
793 	/* setup watchdog timeout value to be 5 second */
794 	netdev->watchdog_timeo = 5 * HZ;
795 
796 	netdev->dev_port = idx;
797 
798 	/* configure default MTU size */
799 	netdev->min_mtu = ETH_MIN_MTU;
800 	netdev->max_mtu = vport->max_mtu;
801 
802 	dflt_features = NETIF_F_SG	|
803 			NETIF_F_HIGHDMA;
804 
805 	if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
806 		dflt_features |= NETIF_F_RXHASH;
807 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4))
808 		csum_offloads |= NETIF_F_IP_CSUM;
809 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6))
810 		csum_offloads |= NETIF_F_IPV6_CSUM;
811 	if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
812 		csum_offloads |= NETIF_F_RXCSUM;
813 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM))
814 		csum_offloads |= NETIF_F_SCTP_CRC;
815 
816 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
817 		tso_offloads |= NETIF_F_TSO;
818 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
819 		tso_offloads |= NETIF_F_TSO6;
820 	if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
821 				VIRTCHNL2_CAP_SEG_IPV4_UDP |
822 				VIRTCHNL2_CAP_SEG_IPV6_UDP))
823 		tso_offloads |= NETIF_F_GSO_UDP_L4;
824 	if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
825 		other_offloads |= NETIF_F_GRO_HW;
826 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
827 		other_offloads |= NETIF_F_LOOPBACK;
828 
829 	netdev->features |= dflt_features | csum_offloads | tso_offloads;
830 	netdev->hw_features |=  netdev->features | other_offloads;
831 	netdev->vlan_features |= netdev->features | other_offloads;
832 	netdev->hw_enc_features |= dflt_features | other_offloads;
833 	idpf_set_ethtool_ops(netdev);
834 	netif_set_affinity_auto(netdev);
835 	SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
836 
837 	/* carrier off on init to avoid Tx hangs */
838 	netif_carrier_off(netdev);
839 
840 	/* make sure transmit queues start off as stopped */
841 	netif_tx_stop_all_queues(netdev);
842 
843 	/* The vport can be arbitrarily released so we need to also track
844 	 * netdevs in the adapter struct
845 	 */
846 	adapter->netdevs[idx] = netdev;
847 
848 	return 0;
849 }
850 
851 /**
852  * idpf_get_free_slot - get the next non-NULL location index in array
853  * @adapter: adapter in which to look for a free vport slot
854  */
855 static int idpf_get_free_slot(struct idpf_adapter *adapter)
856 {
857 	unsigned int i;
858 
859 	for (i = 0; i < adapter->max_vports; i++) {
860 		if (!adapter->vports[i])
861 			return i;
862 	}
863 
864 	return IDPF_NO_FREE_SLOT;
865 }
866 
867 /**
868  * idpf_remove_features - Turn off feature configs
869  * @vport: virtual port structure
870  */
871 static void idpf_remove_features(struct idpf_vport *vport)
872 {
873 	struct idpf_adapter *adapter = vport->adapter;
874 
875 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
876 		idpf_remove_mac_filters(vport);
877 }
878 
879 /**
880  * idpf_vport_stop - Disable a vport
881  * @vport: vport to disable
882  */
883 static void idpf_vport_stop(struct idpf_vport *vport)
884 {
885 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
886 
887 	if (np->state <= __IDPF_VPORT_DOWN)
888 		return;
889 
890 	netif_carrier_off(vport->netdev);
891 	netif_tx_disable(vport->netdev);
892 
893 	idpf_send_disable_vport_msg(vport);
894 	idpf_send_disable_queues_msg(vport);
895 	idpf_send_map_unmap_queue_vector_msg(vport, false);
896 	/* Normally we ask for queues in create_vport, but if the number of
897 	 * initially requested queues have changed, for example via ethtool
898 	 * set channels, we do delete queues and then add the queues back
899 	 * instead of deleting and reallocating the vport.
900 	 */
901 	if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
902 		idpf_send_delete_queues_msg(vport);
903 
904 	idpf_remove_features(vport);
905 
906 	vport->link_up = false;
907 	idpf_vport_intr_deinit(vport);
908 	idpf_vport_queues_rel(vport);
909 	idpf_vport_intr_rel(vport);
910 	np->state = __IDPF_VPORT_DOWN;
911 }
912 
913 /**
914  * idpf_stop - Disables a network interface
915  * @netdev: network interface device structure
916  *
917  * The stop entry point is called when an interface is de-activated by the OS,
918  * and the netdevice enters the DOWN state.  The hardware is still under the
919  * driver's control, but the netdev interface is disabled.
920  *
921  * Returns success only - not allowed to fail
922  */
923 static int idpf_stop(struct net_device *netdev)
924 {
925 	struct idpf_netdev_priv *np = netdev_priv(netdev);
926 	struct idpf_vport *vport;
927 
928 	if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
929 		return 0;
930 
931 	idpf_vport_ctrl_lock(netdev);
932 	vport = idpf_netdev_to_vport(netdev);
933 
934 	idpf_vport_stop(vport);
935 
936 	idpf_vport_ctrl_unlock(netdev);
937 
938 	return 0;
939 }
940 
941 /**
942  * idpf_decfg_netdev - Unregister the netdev
943  * @vport: vport for which netdev to be unregistered
944  */
945 static void idpf_decfg_netdev(struct idpf_vport *vport)
946 {
947 	struct idpf_adapter *adapter = vport->adapter;
948 	u16 idx = vport->idx;
949 
950 	kfree(vport->rx_ptype_lkup);
951 	vport->rx_ptype_lkup = NULL;
952 
953 	if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV,
954 			       adapter->vport_config[idx]->flags)) {
955 		unregister_netdev(vport->netdev);
956 		free_netdev(vport->netdev);
957 	}
958 	vport->netdev = NULL;
959 
960 	adapter->netdevs[idx] = NULL;
961 }
962 
963 /**
964  * idpf_vport_rel - Delete a vport and free its resources
965  * @vport: the vport being removed
966  */
967 static void idpf_vport_rel(struct idpf_vport *vport)
968 {
969 	struct idpf_adapter *adapter = vport->adapter;
970 	struct idpf_vport_config *vport_config;
971 	struct idpf_vector_info vec_info;
972 	struct idpf_rss_data *rss_data;
973 	struct idpf_vport_max_q max_q;
974 	u16 idx = vport->idx;
975 
976 	vport_config = adapter->vport_config[vport->idx];
977 	idpf_deinit_rss(vport);
978 	rss_data = &vport_config->user_config.rss_data;
979 	kfree(rss_data->rss_key);
980 	rss_data->rss_key = NULL;
981 
982 	idpf_send_destroy_vport_msg(vport);
983 
984 	/* Release all max queues allocated to the adapter's pool */
985 	max_q.max_rxq = vport_config->max_q.max_rxq;
986 	max_q.max_txq = vport_config->max_q.max_txq;
987 	max_q.max_bufq = vport_config->max_q.max_bufq;
988 	max_q.max_complq = vport_config->max_q.max_complq;
989 	idpf_vport_dealloc_max_qs(adapter, &max_q);
990 
991 	/* Release all the allocated vectors on the stack */
992 	vec_info.num_req_vecs = 0;
993 	vec_info.num_curr_vecs = vport->num_q_vectors;
994 	vec_info.default_vport = vport->default_vport;
995 
996 	idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
997 
998 	kfree(vport->q_vector_idxs);
999 	vport->q_vector_idxs = NULL;
1000 
1001 	kfree(adapter->vport_params_recvd[idx]);
1002 	adapter->vport_params_recvd[idx] = NULL;
1003 	kfree(adapter->vport_params_reqd[idx]);
1004 	adapter->vport_params_reqd[idx] = NULL;
1005 	if (adapter->vport_config[idx]) {
1006 		kfree(adapter->vport_config[idx]->req_qs_chunks);
1007 		adapter->vport_config[idx]->req_qs_chunks = NULL;
1008 	}
1009 	kfree(vport);
1010 	adapter->num_alloc_vports--;
1011 }
1012 
1013 /**
1014  * idpf_vport_dealloc - cleanup and release a given vport
1015  * @vport: pointer to idpf vport structure
1016  *
1017  * returns nothing
1018  */
1019 static void idpf_vport_dealloc(struct idpf_vport *vport)
1020 {
1021 	struct idpf_adapter *adapter = vport->adapter;
1022 	unsigned int i = vport->idx;
1023 
1024 	idpf_idc_deinit_vport_aux_device(vport->vdev_info);
1025 
1026 	idpf_deinit_mac_addr(vport);
1027 	idpf_vport_stop(vport);
1028 
1029 	if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1030 		idpf_decfg_netdev(vport);
1031 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1032 		idpf_del_all_mac_filters(vport);
1033 
1034 	if (adapter->netdevs[i]) {
1035 		struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1036 
1037 		np->vport = NULL;
1038 	}
1039 
1040 	idpf_vport_rel(vport);
1041 
1042 	adapter->vports[i] = NULL;
1043 	adapter->next_vport = idpf_get_free_slot(adapter);
1044 }
1045 
1046 /**
1047  * idpf_is_hsplit_supported - check whether the header split is supported
1048  * @vport: virtual port to check the capability for
1049  *
1050  * Return: true if it's supported by the HW/FW, false if not.
1051  */
1052 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1053 {
1054 	return idpf_is_queue_model_split(vport->rxq_model) &&
1055 	       idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1056 				   IDPF_CAP_HSPLIT);
1057 }
1058 
1059 /**
1060  * idpf_vport_get_hsplit - get the current header split feature state
1061  * @vport: virtual port to query the state for
1062  *
1063  * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1064  *         ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1065  *         ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1066  */
1067 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1068 {
1069 	const struct idpf_vport_user_config_data *config;
1070 
1071 	if (!idpf_is_hsplit_supported(vport))
1072 		return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1073 
1074 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1075 
1076 	return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1077 	       ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1078 	       ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1079 }
1080 
1081 /**
1082  * idpf_vport_set_hsplit - enable or disable header split on a given vport
1083  * @vport: virtual port to configure
1084  * @val: Ethtool flag controlling the header split state
1085  *
1086  * Return: true on success, false if not supported by the HW.
1087  */
1088 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1089 {
1090 	struct idpf_vport_user_config_data *config;
1091 
1092 	if (!idpf_is_hsplit_supported(vport))
1093 		return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1094 
1095 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1096 
1097 	switch (val) {
1098 	case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1099 		/* Default is to enable */
1100 	case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1101 		__set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1102 		return true;
1103 	case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1104 		__clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1105 		return true;
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 /**
1112  * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1113  * @adapter: board private structure
1114  * @max_q: vport max queue info
1115  *
1116  * returns a pointer to a vport on success, NULL on failure.
1117  */
1118 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1119 					   struct idpf_vport_max_q *max_q)
1120 {
1121 	struct idpf_rss_data *rss_data;
1122 	u16 idx = adapter->next_vport;
1123 	struct idpf_vport *vport;
1124 	u16 num_max_q;
1125 
1126 	if (idx == IDPF_NO_FREE_SLOT)
1127 		return NULL;
1128 
1129 	vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1130 	if (!vport)
1131 		return vport;
1132 
1133 	if (!adapter->vport_config[idx]) {
1134 		struct idpf_vport_config *vport_config;
1135 
1136 		vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1137 		if (!vport_config) {
1138 			kfree(vport);
1139 
1140 			return NULL;
1141 		}
1142 
1143 		adapter->vport_config[idx] = vport_config;
1144 	}
1145 
1146 	vport->idx = idx;
1147 	vport->adapter = adapter;
1148 	vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1149 	vport->default_vport = adapter->num_alloc_vports <
1150 			       idpf_get_default_vports(adapter);
1151 
1152 	num_max_q = max(max_q->max_txq, max_q->max_rxq);
1153 	vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1154 	if (!vport->q_vector_idxs)
1155 		goto free_vport;
1156 
1157 	idpf_vport_init(vport, max_q);
1158 
1159 	/* This alloc is done separate from the LUT because it's not strictly
1160 	 * dependent on how many queues we have. If we change number of queues
1161 	 * and soft reset we'll need a new LUT but the key can remain the same
1162 	 * for as long as the vport exists.
1163 	 */
1164 	rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1165 	rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1166 	if (!rss_data->rss_key)
1167 		goto free_vector_idxs;
1168 
1169 	/* Initialize default rss key */
1170 	netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1171 
1172 	/* fill vport slot in the adapter struct */
1173 	adapter->vports[idx] = vport;
1174 	adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1175 
1176 	adapter->num_alloc_vports++;
1177 	/* prepare adapter->next_vport for next use */
1178 	adapter->next_vport = idpf_get_free_slot(adapter);
1179 
1180 	return vport;
1181 
1182 free_vector_idxs:
1183 	kfree(vport->q_vector_idxs);
1184 free_vport:
1185 	kfree(vport);
1186 
1187 	return NULL;
1188 }
1189 
1190 /**
1191  * idpf_get_stats64 - get statistics for network device structure
1192  * @netdev: network interface device structure
1193  * @stats: main device statistics structure
1194  */
1195 static void idpf_get_stats64(struct net_device *netdev,
1196 			     struct rtnl_link_stats64 *stats)
1197 {
1198 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1199 
1200 	spin_lock_bh(&np->stats_lock);
1201 	*stats = np->netstats;
1202 	spin_unlock_bh(&np->stats_lock);
1203 }
1204 
1205 /**
1206  * idpf_statistics_task - Delayed task to get statistics over mailbox
1207  * @work: work_struct handle to our data
1208  */
1209 void idpf_statistics_task(struct work_struct *work)
1210 {
1211 	struct idpf_adapter *adapter;
1212 	int i;
1213 
1214 	adapter = container_of(work, struct idpf_adapter, stats_task.work);
1215 
1216 	for (i = 0; i < adapter->max_vports; i++) {
1217 		struct idpf_vport *vport = adapter->vports[i];
1218 
1219 		if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1220 			idpf_send_get_stats_msg(vport);
1221 	}
1222 
1223 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1224 			   msecs_to_jiffies(10000));
1225 }
1226 
1227 /**
1228  * idpf_mbx_task - Delayed task to handle mailbox responses
1229  * @work: work_struct handle
1230  */
1231 void idpf_mbx_task(struct work_struct *work)
1232 {
1233 	struct idpf_adapter *adapter;
1234 
1235 	adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1236 
1237 	if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1238 		idpf_mb_irq_enable(adapter);
1239 	else
1240 		queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1241 				   msecs_to_jiffies(300));
1242 
1243 	idpf_recv_mb_msg(adapter);
1244 }
1245 
1246 /**
1247  * idpf_service_task - Delayed task for handling mailbox responses
1248  * @work: work_struct handle to our data
1249  *
1250  */
1251 void idpf_service_task(struct work_struct *work)
1252 {
1253 	struct idpf_adapter *adapter;
1254 
1255 	adapter = container_of(work, struct idpf_adapter, serv_task.work);
1256 
1257 	if (idpf_is_reset_detected(adapter) &&
1258 	    !idpf_is_reset_in_prog(adapter) &&
1259 	    !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1260 		dev_info(&adapter->pdev->dev, "HW reset detected\n");
1261 		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1262 		queue_delayed_work(adapter->vc_event_wq,
1263 				   &adapter->vc_event_task,
1264 				   msecs_to_jiffies(10));
1265 	}
1266 
1267 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1268 			   msecs_to_jiffies(300));
1269 }
1270 
1271 /**
1272  * idpf_restore_features - Restore feature configs
1273  * @vport: virtual port structure
1274  */
1275 static void idpf_restore_features(struct idpf_vport *vport)
1276 {
1277 	struct idpf_adapter *adapter = vport->adapter;
1278 
1279 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1280 		idpf_restore_mac_filters(vport);
1281 }
1282 
1283 /**
1284  * idpf_set_real_num_queues - set number of queues for netdev
1285  * @vport: virtual port structure
1286  *
1287  * Returns 0 on success, negative on failure.
1288  */
1289 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1290 {
1291 	int err;
1292 
1293 	err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1294 	if (err)
1295 		return err;
1296 
1297 	return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq);
1298 }
1299 
1300 /**
1301  * idpf_up_complete - Complete interface up sequence
1302  * @vport: virtual port structure
1303  *
1304  * Returns 0 on success, negative on failure.
1305  */
1306 static int idpf_up_complete(struct idpf_vport *vport)
1307 {
1308 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1309 
1310 	if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1311 		netif_carrier_on(vport->netdev);
1312 		netif_tx_start_all_queues(vport->netdev);
1313 	}
1314 
1315 	np->state = __IDPF_VPORT_UP;
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1322  * @vport: virtual port struct
1323  */
1324 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1325 {
1326 	int i, j;
1327 
1328 	for (i = 0; i < vport->num_rxq_grp; i++) {
1329 		struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1330 
1331 		if (idpf_is_queue_model_split(vport->rxq_model)) {
1332 			for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1333 				const struct idpf_buf_queue *q =
1334 					&grp->splitq.bufq_sets[j].bufq;
1335 
1336 				writel(q->next_to_alloc, q->tail);
1337 			}
1338 		} else {
1339 			for (j = 0; j < grp->singleq.num_rxq; j++) {
1340 				const struct idpf_rx_queue *q =
1341 					grp->singleq.rxqs[j];
1342 
1343 				writel(q->next_to_alloc, q->tail);
1344 			}
1345 		}
1346 	}
1347 }
1348 
1349 /**
1350  * idpf_vport_open - Bring up a vport
1351  * @vport: vport to bring up
1352  */
1353 static int idpf_vport_open(struct idpf_vport *vport)
1354 {
1355 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1356 	struct idpf_adapter *adapter = vport->adapter;
1357 	struct idpf_vport_config *vport_config;
1358 	int err;
1359 
1360 	if (np->state != __IDPF_VPORT_DOWN)
1361 		return -EBUSY;
1362 
1363 	/* we do not allow interface up just yet */
1364 	netif_carrier_off(vport->netdev);
1365 
1366 	err = idpf_vport_intr_alloc(vport);
1367 	if (err) {
1368 		dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1369 			vport->vport_id, err);
1370 		return err;
1371 	}
1372 
1373 	err = idpf_vport_queues_alloc(vport);
1374 	if (err)
1375 		goto intr_rel;
1376 
1377 	err = idpf_vport_queue_ids_init(vport);
1378 	if (err) {
1379 		dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1380 			vport->vport_id, err);
1381 		goto queues_rel;
1382 	}
1383 
1384 	err = idpf_vport_intr_init(vport);
1385 	if (err) {
1386 		dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1387 			vport->vport_id, err);
1388 		goto queues_rel;
1389 	}
1390 
1391 	err = idpf_rx_bufs_init_all(vport);
1392 	if (err) {
1393 		dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1394 			vport->vport_id, err);
1395 		goto queues_rel;
1396 	}
1397 
1398 	err = idpf_queue_reg_init(vport);
1399 	if (err) {
1400 		dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1401 			vport->vport_id, err);
1402 		goto queues_rel;
1403 	}
1404 
1405 	idpf_rx_init_buf_tail(vport);
1406 	idpf_vport_intr_ena(vport);
1407 
1408 	err = idpf_send_config_queues_msg(vport);
1409 	if (err) {
1410 		dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1411 			vport->vport_id, err);
1412 		goto intr_deinit;
1413 	}
1414 
1415 	err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1416 	if (err) {
1417 		dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1418 			vport->vport_id, err);
1419 		goto intr_deinit;
1420 	}
1421 
1422 	err = idpf_send_enable_queues_msg(vport);
1423 	if (err) {
1424 		dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1425 			vport->vport_id, err);
1426 		goto unmap_queue_vectors;
1427 	}
1428 
1429 	err = idpf_send_enable_vport_msg(vport);
1430 	if (err) {
1431 		dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1432 			vport->vport_id, err);
1433 		err = -EAGAIN;
1434 		goto disable_queues;
1435 	}
1436 
1437 	idpf_restore_features(vport);
1438 
1439 	vport_config = adapter->vport_config[vport->idx];
1440 	if (vport_config->user_config.rss_data.rss_lut)
1441 		err = idpf_config_rss(vport);
1442 	else
1443 		err = idpf_init_rss(vport);
1444 	if (err) {
1445 		dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1446 			vport->vport_id, err);
1447 		goto disable_vport;
1448 	}
1449 
1450 	err = idpf_up_complete(vport);
1451 	if (err) {
1452 		dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1453 			vport->vport_id, err);
1454 		goto deinit_rss;
1455 	}
1456 
1457 	return 0;
1458 
1459 deinit_rss:
1460 	idpf_deinit_rss(vport);
1461 disable_vport:
1462 	idpf_send_disable_vport_msg(vport);
1463 disable_queues:
1464 	idpf_send_disable_queues_msg(vport);
1465 unmap_queue_vectors:
1466 	idpf_send_map_unmap_queue_vector_msg(vport, false);
1467 intr_deinit:
1468 	idpf_vport_intr_deinit(vport);
1469 queues_rel:
1470 	idpf_vport_queues_rel(vport);
1471 intr_rel:
1472 	idpf_vport_intr_rel(vport);
1473 
1474 	return err;
1475 }
1476 
1477 /**
1478  * idpf_init_task - Delayed initialization task
1479  * @work: work_struct handle to our data
1480  *
1481  * Init task finishes up pending work started in probe. Due to the asynchronous
1482  * nature in which the device communicates with hardware, we may have to wait
1483  * several milliseconds to get a response.  Instead of busy polling in probe,
1484  * pulling it out into a delayed work task prevents us from bogging down the
1485  * whole system waiting for a response from hardware.
1486  */
1487 void idpf_init_task(struct work_struct *work)
1488 {
1489 	struct idpf_vport_config *vport_config;
1490 	struct idpf_vport_max_q max_q;
1491 	struct idpf_adapter *adapter;
1492 	struct idpf_netdev_priv *np;
1493 	struct idpf_vport *vport;
1494 	u16 num_default_vports;
1495 	struct pci_dev *pdev;
1496 	bool default_vport;
1497 	int index, err;
1498 
1499 	adapter = container_of(work, struct idpf_adapter, init_task.work);
1500 
1501 	num_default_vports = idpf_get_default_vports(adapter);
1502 	if (adapter->num_alloc_vports < num_default_vports)
1503 		default_vport = true;
1504 	else
1505 		default_vport = false;
1506 
1507 	err = idpf_vport_alloc_max_qs(adapter, &max_q);
1508 	if (err)
1509 		goto unwind_vports;
1510 
1511 	err = idpf_send_create_vport_msg(adapter, &max_q);
1512 	if (err) {
1513 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1514 		goto unwind_vports;
1515 	}
1516 
1517 	pdev = adapter->pdev;
1518 	vport = idpf_vport_alloc(adapter, &max_q);
1519 	if (!vport) {
1520 		err = -EFAULT;
1521 		dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1522 			err);
1523 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1524 		goto unwind_vports;
1525 	}
1526 
1527 	index = vport->idx;
1528 	vport_config = adapter->vport_config[index];
1529 
1530 	init_waitqueue_head(&vport->sw_marker_wq);
1531 
1532 	spin_lock_init(&vport_config->mac_filter_list_lock);
1533 
1534 	INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1535 
1536 	err = idpf_check_supported_desc_ids(vport);
1537 	if (err) {
1538 		dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1539 		goto cfg_netdev_err;
1540 	}
1541 
1542 	if (idpf_cfg_netdev(vport))
1543 		goto cfg_netdev_err;
1544 
1545 	err = idpf_send_get_rx_ptype_msg(vport);
1546 	if (err)
1547 		goto handle_err;
1548 
1549 	/* Once state is put into DOWN, driver is ready for dev_open */
1550 	np = netdev_priv(vport->netdev);
1551 	np->state = __IDPF_VPORT_DOWN;
1552 	if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1553 		idpf_vport_open(vport);
1554 
1555 	/* Spawn and return 'idpf_init_task' work queue until all the
1556 	 * default vports are created
1557 	 */
1558 	if (adapter->num_alloc_vports < num_default_vports) {
1559 		queue_delayed_work(adapter->init_wq, &adapter->init_task,
1560 				   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1561 
1562 		return;
1563 	}
1564 
1565 	for (index = 0; index < adapter->max_vports; index++) {
1566 		struct net_device *netdev = adapter->netdevs[index];
1567 		struct idpf_vport_config *vport_config;
1568 
1569 		vport_config = adapter->vport_config[index];
1570 
1571 		if (!netdev ||
1572 		    test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags))
1573 			continue;
1574 
1575 		err = register_netdev(netdev);
1576 		if (err) {
1577 			dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n",
1578 				index, ERR_PTR(err));
1579 			continue;
1580 		}
1581 		set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags);
1582 	}
1583 
1584 	/* As all the required vports are created, clear the reset flag
1585 	 * unconditionally here in case we were in reset and the link was down.
1586 	 */
1587 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1588 	/* Start the statistics task now */
1589 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1590 			   msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1591 
1592 	return;
1593 
1594 handle_err:
1595 	idpf_decfg_netdev(vport);
1596 cfg_netdev_err:
1597 	idpf_vport_rel(vport);
1598 	adapter->vports[index] = NULL;
1599 unwind_vports:
1600 	if (default_vport) {
1601 		for (index = 0; index < adapter->max_vports; index++) {
1602 			if (adapter->vports[index])
1603 				idpf_vport_dealloc(adapter->vports[index]);
1604 		}
1605 	}
1606 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1607 }
1608 
1609 /**
1610  * idpf_sriov_ena - Enable or change number of VFs
1611  * @adapter: private data struct
1612  * @num_vfs: number of VFs to allocate
1613  */
1614 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1615 {
1616 	struct device *dev = &adapter->pdev->dev;
1617 	int err;
1618 
1619 	err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1620 	if (err) {
1621 		dev_err(dev, "Failed to allocate VFs: %d\n", err);
1622 
1623 		return err;
1624 	}
1625 
1626 	err = pci_enable_sriov(adapter->pdev, num_vfs);
1627 	if (err) {
1628 		idpf_send_set_sriov_vfs_msg(adapter, 0);
1629 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1630 
1631 		return err;
1632 	}
1633 
1634 	adapter->num_vfs = num_vfs;
1635 
1636 	return num_vfs;
1637 }
1638 
1639 /**
1640  * idpf_sriov_configure - Configure the requested VFs
1641  * @pdev: pointer to a pci_dev structure
1642  * @num_vfs: number of vfs to allocate
1643  *
1644  * Enable or change the number of VFs. Called when the user updates the number
1645  * of VFs in sysfs.
1646  **/
1647 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1648 {
1649 	struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1650 
1651 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1652 		dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1653 
1654 		return -EOPNOTSUPP;
1655 	}
1656 
1657 	if (num_vfs)
1658 		return idpf_sriov_ena(adapter, num_vfs);
1659 
1660 	if (pci_vfs_assigned(pdev)) {
1661 		dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1662 
1663 		return -EBUSY;
1664 	}
1665 
1666 	pci_disable_sriov(adapter->pdev);
1667 	idpf_send_set_sriov_vfs_msg(adapter, 0);
1668 	adapter->num_vfs = 0;
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * idpf_deinit_task - Device deinit routine
1675  * @adapter: Driver specific private structure
1676  *
1677  * Extended remove logic which will be used for
1678  * hard reset as well
1679  */
1680 void idpf_deinit_task(struct idpf_adapter *adapter)
1681 {
1682 	unsigned int i;
1683 
1684 	/* Wait until the init_task is done else this thread might release
1685 	 * the resources first and the other thread might end up in a bad state
1686 	 */
1687 	cancel_delayed_work_sync(&adapter->init_task);
1688 
1689 	if (!adapter->vports)
1690 		return;
1691 
1692 	cancel_delayed_work_sync(&adapter->stats_task);
1693 
1694 	for (i = 0; i < adapter->max_vports; i++) {
1695 		if (adapter->vports[i])
1696 			idpf_vport_dealloc(adapter->vports[i]);
1697 	}
1698 }
1699 
1700 /**
1701  * idpf_check_reset_complete - check that reset is complete
1702  * @hw: pointer to hw struct
1703  * @reset_reg: struct with reset registers
1704  *
1705  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1706  **/
1707 static int idpf_check_reset_complete(struct idpf_hw *hw,
1708 				     struct idpf_reset_reg *reset_reg)
1709 {
1710 	struct idpf_adapter *adapter = hw->back;
1711 	int i;
1712 
1713 	for (i = 0; i < 2000; i++) {
1714 		u32 reg_val = readl(reset_reg->rstat);
1715 
1716 		/* 0xFFFFFFFF might be read if other side hasn't cleared the
1717 		 * register for us yet and 0xFFFFFFFF is not a valid value for
1718 		 * the register, so treat that as invalid.
1719 		 */
1720 		if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1721 			return 0;
1722 
1723 		usleep_range(5000, 10000);
1724 	}
1725 
1726 	dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1727 	/* Clear the reset flag unconditionally here since the reset
1728 	 * technically isn't in progress anymore from the driver's perspective
1729 	 */
1730 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1731 
1732 	return -EBUSY;
1733 }
1734 
1735 /**
1736  * idpf_set_vport_state - Set the vport state to be after the reset
1737  * @adapter: Driver specific private structure
1738  */
1739 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1740 {
1741 	u16 i;
1742 
1743 	for (i = 0; i < adapter->max_vports; i++) {
1744 		struct idpf_netdev_priv *np;
1745 
1746 		if (!adapter->netdevs[i])
1747 			continue;
1748 
1749 		np = netdev_priv(adapter->netdevs[i]);
1750 		if (np->state == __IDPF_VPORT_UP)
1751 			set_bit(IDPF_VPORT_UP_REQUESTED,
1752 				adapter->vport_config[i]->flags);
1753 	}
1754 }
1755 
1756 /**
1757  * idpf_init_hard_reset - Initiate a hardware reset
1758  * @adapter: Driver specific private structure
1759  *
1760  * Deallocate the vports and all the resources associated with them and
1761  * reallocate. Also reinitialize the mailbox. Return 0 on success,
1762  * negative on failure.
1763  */
1764 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1765 {
1766 	struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1767 	struct device *dev = &adapter->pdev->dev;
1768 	struct net_device *netdev;
1769 	int err;
1770 	u16 i;
1771 
1772 	mutex_lock(&adapter->vport_ctrl_lock);
1773 
1774 	dev_info(dev, "Device HW Reset initiated\n");
1775 
1776 	/* Avoid TX hangs on reset */
1777 	for (i = 0; i < adapter->max_vports; i++) {
1778 		netdev = adapter->netdevs[i];
1779 		if (!netdev)
1780 			continue;
1781 
1782 		netif_carrier_off(netdev);
1783 		netif_tx_disable(netdev);
1784 	}
1785 
1786 	/* Prepare for reset */
1787 	if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1788 		reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1789 	} else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1790 		bool is_reset = idpf_is_reset_detected(adapter);
1791 
1792 		idpf_idc_issue_reset_event(adapter->cdev_info);
1793 
1794 		idpf_set_vport_state(adapter);
1795 		idpf_vc_core_deinit(adapter);
1796 		if (!is_reset)
1797 			reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1798 		idpf_deinit_dflt_mbx(adapter);
1799 	} else {
1800 		dev_err(dev, "Unhandled hard reset cause\n");
1801 		err = -EBADRQC;
1802 		goto unlock_mutex;
1803 	}
1804 
1805 	/* Wait for reset to complete */
1806 	err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1807 	if (err) {
1808 		dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1809 			adapter->state);
1810 		goto unlock_mutex;
1811 	}
1812 
1813 	/* Reset is complete and so start building the driver resources again */
1814 	err = idpf_init_dflt_mbx(adapter);
1815 	if (err) {
1816 		dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1817 		goto unlock_mutex;
1818 	}
1819 
1820 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1821 
1822 	/* Initialize the state machine, also allocate memory and request
1823 	 * resources
1824 	 */
1825 	err = idpf_vc_core_init(adapter);
1826 	if (err) {
1827 		cancel_delayed_work_sync(&adapter->mbx_task);
1828 		idpf_deinit_dflt_mbx(adapter);
1829 		goto unlock_mutex;
1830 	}
1831 
1832 	/* Wait till all the vports are initialized to release the reset lock,
1833 	 * else user space callbacks may access uninitialized vports
1834 	 */
1835 	while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1836 		msleep(100);
1837 
1838 unlock_mutex:
1839 	mutex_unlock(&adapter->vport_ctrl_lock);
1840 
1841 	/* Wait until all vports are created to init RDMA CORE AUX */
1842 	if (!err)
1843 		err = idpf_idc_init(adapter);
1844 
1845 	return err;
1846 }
1847 
1848 /**
1849  * idpf_vc_event_task - Handle virtchannel event logic
1850  * @work: work queue struct
1851  */
1852 void idpf_vc_event_task(struct work_struct *work)
1853 {
1854 	struct idpf_adapter *adapter;
1855 
1856 	adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1857 
1858 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1859 		return;
1860 
1861 	if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags))
1862 		goto func_reset;
1863 
1864 	if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags))
1865 		goto drv_load;
1866 
1867 	return;
1868 
1869 func_reset:
1870 	idpf_vc_xn_shutdown(adapter->vcxn_mngr);
1871 drv_load:
1872 	set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1873 	idpf_init_hard_reset(adapter);
1874 }
1875 
1876 /**
1877  * idpf_initiate_soft_reset - Initiate a software reset
1878  * @vport: virtual port data struct
1879  * @reset_cause: reason for the soft reset
1880  *
1881  * Soft reset only reallocs vport queue resources. Returns 0 on success,
1882  * negative on failure.
1883  */
1884 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1885 			     enum idpf_vport_reset_cause reset_cause)
1886 {
1887 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1888 	enum idpf_vport_state current_state = np->state;
1889 	struct idpf_adapter *adapter = vport->adapter;
1890 	struct idpf_vport *new_vport;
1891 	int err;
1892 
1893 	/* If the system is low on memory, we can end up in bad state if we
1894 	 * free all the memory for queue resources and try to allocate them
1895 	 * again. Instead, we can pre-allocate the new resources before doing
1896 	 * anything and bailing if the alloc fails.
1897 	 *
1898 	 * Make a clone of the existing vport to mimic its current
1899 	 * configuration, then modify the new structure with any requested
1900 	 * changes. Once the allocation of the new resources is done, stop the
1901 	 * existing vport and copy the configuration to the main vport. If an
1902 	 * error occurred, the existing vport will be untouched.
1903 	 *
1904 	 */
1905 	new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1906 	if (!new_vport)
1907 		return -ENOMEM;
1908 
1909 	/* This purposely avoids copying the end of the struct because it
1910 	 * contains wait_queues and mutexes and other stuff we don't want to
1911 	 * mess with. Nothing below should use those variables from new_vport
1912 	 * and should instead always refer to them in vport if they need to.
1913 	 */
1914 	memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up));
1915 
1916 	/* Adjust resource parameters prior to reallocating resources */
1917 	switch (reset_cause) {
1918 	case IDPF_SR_Q_CHANGE:
1919 		err = idpf_vport_adjust_qs(new_vport);
1920 		if (err)
1921 			goto free_vport;
1922 		break;
1923 	case IDPF_SR_Q_DESC_CHANGE:
1924 		/* Update queue parameters before allocating resources */
1925 		idpf_vport_calc_num_q_desc(new_vport);
1926 		break;
1927 	case IDPF_SR_MTU_CHANGE:
1928 		idpf_idc_vdev_mtu_event(vport->vdev_info,
1929 					IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE);
1930 		break;
1931 	case IDPF_SR_RSC_CHANGE:
1932 		break;
1933 	default:
1934 		dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1935 		err = -EINVAL;
1936 		goto free_vport;
1937 	}
1938 
1939 	if (current_state <= __IDPF_VPORT_DOWN) {
1940 		idpf_send_delete_queues_msg(vport);
1941 	} else {
1942 		set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1943 		idpf_vport_stop(vport);
1944 	}
1945 
1946 	idpf_deinit_rss(vport);
1947 	/* We're passing in vport here because we need its wait_queue
1948 	 * to send a message and it should be getting all the vport
1949 	 * config data out of the adapter but we need to be careful not
1950 	 * to add code to add_queues to change the vport config within
1951 	 * vport itself as it will be wiped with a memcpy later.
1952 	 */
1953 	err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
1954 				       new_vport->num_complq,
1955 				       new_vport->num_rxq,
1956 				       new_vport->num_bufq);
1957 	if (err)
1958 		goto err_reset;
1959 
1960 	/* Same comment as above regarding avoiding copying the wait_queues and
1961 	 * mutexes applies here. We do not want to mess with those if possible.
1962 	 */
1963 	memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up));
1964 
1965 	if (reset_cause == IDPF_SR_Q_CHANGE)
1966 		idpf_vport_alloc_vec_indexes(vport);
1967 
1968 	err = idpf_set_real_num_queues(vport);
1969 	if (err)
1970 		goto err_open;
1971 
1972 	if (current_state == __IDPF_VPORT_UP)
1973 		err = idpf_vport_open(vport);
1974 
1975 	goto free_vport;
1976 
1977 err_reset:
1978 	idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq,
1979 				 vport->num_rxq, vport->num_bufq);
1980 
1981 err_open:
1982 	if (current_state == __IDPF_VPORT_UP)
1983 		idpf_vport_open(vport);
1984 
1985 free_vport:
1986 	kfree(new_vport);
1987 
1988 	if (reset_cause == IDPF_SR_MTU_CHANGE)
1989 		idpf_idc_vdev_mtu_event(vport->vdev_info,
1990 					IIDC_RDMA_EVENT_AFTER_MTU_CHANGE);
1991 
1992 	return err;
1993 }
1994 
1995 /**
1996  * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1997  * @netdev: the netdevice
1998  * @addr: address to add
1999  *
2000  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2001  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2002  * meaning we cannot sleep in this context. Due to this, we have to add the
2003  * filter and send the virtchnl message asynchronously without waiting for the
2004  * response from the other side. We won't know whether or not the operation
2005  * actually succeeded until we get the message back.  Returns 0 on success,
2006  * negative on failure.
2007  */
2008 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
2009 {
2010 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2011 
2012 	return idpf_add_mac_filter(np->vport, np, addr, true);
2013 }
2014 
2015 /**
2016  * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2017  * @netdev: the netdevice
2018  * @addr: address to add
2019  *
2020  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2021  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
2022  * meaning we cannot sleep in this context. Due to this we have to delete the
2023  * filter and send the virtchnl message asynchronously without waiting for the
2024  * return from the other side.  We won't know whether or not the operation
2025  * actually succeeded until we get the message back. Returns 0 on success,
2026  * negative on failure.
2027  */
2028 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
2029 {
2030 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2031 
2032 	/* Under some circumstances, we might receive a request to delete
2033 	 * our own device address from our uc list. Because we store the
2034 	 * device address in the VSI's MAC filter list, we need to ignore
2035 	 * such requests and not delete our device address from this list.
2036 	 */
2037 	if (ether_addr_equal(addr, netdev->dev_addr))
2038 		return 0;
2039 
2040 	idpf_del_mac_filter(np->vport, np, addr, true);
2041 
2042 	return 0;
2043 }
2044 
2045 /**
2046  * idpf_set_rx_mode - NDO callback to set the netdev filters
2047  * @netdev: network interface device structure
2048  *
2049  * Stack takes addr_list_lock spinlock before calling our .set_rx_mode.  We
2050  * cannot sleep in this context.
2051  */
2052 static void idpf_set_rx_mode(struct net_device *netdev)
2053 {
2054 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2055 	struct idpf_vport_user_config_data *config_data;
2056 	struct idpf_adapter *adapter;
2057 	bool changed = false;
2058 	struct device *dev;
2059 	int err;
2060 
2061 	adapter = np->adapter;
2062 	dev = &adapter->pdev->dev;
2063 
2064 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2065 		__dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2066 		__dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2067 	}
2068 
2069 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2070 		return;
2071 
2072 	config_data = &adapter->vport_config[np->vport_idx]->user_config;
2073 	/* IFF_PROMISC enables both unicast and multicast promiscuous,
2074 	 * while IFF_ALLMULTI only enables multicast such that:
2075 	 *
2076 	 * promisc  + allmulti		= unicast | multicast
2077 	 * promisc  + !allmulti		= unicast | multicast
2078 	 * !promisc + allmulti		= multicast
2079 	 */
2080 	if ((netdev->flags & IFF_PROMISC) &&
2081 	    !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2082 		changed = true;
2083 		dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2084 		if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2085 			dev_info(dev, "Entering multicast promiscuous mode\n");
2086 	}
2087 
2088 	if (!(netdev->flags & IFF_PROMISC) &&
2089 	    test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2090 		changed = true;
2091 		dev_info(dev, "Leaving promiscuous mode\n");
2092 	}
2093 
2094 	if (netdev->flags & IFF_ALLMULTI &&
2095 	    !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2096 		changed = true;
2097 		dev_info(dev, "Entering multicast promiscuous mode\n");
2098 	}
2099 
2100 	if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2101 	    test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2102 		changed = true;
2103 		dev_info(dev, "Leaving multicast promiscuous mode\n");
2104 	}
2105 
2106 	if (!changed)
2107 		return;
2108 
2109 	err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2110 	if (err)
2111 		dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2112 }
2113 
2114 /**
2115  * idpf_vport_manage_rss_lut - disable/enable RSS
2116  * @vport: the vport being changed
2117  *
2118  * In the event of disable request for RSS, this function will zero out RSS
2119  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2120  * LUT with the default LUT configuration.
2121  */
2122 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2123 {
2124 	bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2125 	struct idpf_rss_data *rss_data;
2126 	u16 idx = vport->idx;
2127 	int lut_size;
2128 
2129 	rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2130 	lut_size = rss_data->rss_lut_size * sizeof(u32);
2131 
2132 	if (ena) {
2133 		/* This will contain the default or user configured LUT */
2134 		memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2135 	} else {
2136 		/* Save a copy of the current LUT to be restored later if
2137 		 * requested.
2138 		 */
2139 		memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2140 
2141 		/* Zero out the current LUT to disable */
2142 		memset(rss_data->rss_lut, 0, lut_size);
2143 	}
2144 
2145 	return idpf_config_rss(vport);
2146 }
2147 
2148 /**
2149  * idpf_set_features - set the netdev feature flags
2150  * @netdev: ptr to the netdev being adjusted
2151  * @features: the feature set that the stack is suggesting
2152  */
2153 static int idpf_set_features(struct net_device *netdev,
2154 			     netdev_features_t features)
2155 {
2156 	netdev_features_t changed = netdev->features ^ features;
2157 	struct idpf_adapter *adapter;
2158 	struct idpf_vport *vport;
2159 	int err = 0;
2160 
2161 	idpf_vport_ctrl_lock(netdev);
2162 	vport = idpf_netdev_to_vport(netdev);
2163 
2164 	adapter = vport->adapter;
2165 
2166 	if (idpf_is_reset_in_prog(adapter)) {
2167 		dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2168 		err = -EBUSY;
2169 		goto unlock_mutex;
2170 	}
2171 
2172 	if (changed & NETIF_F_RXHASH) {
2173 		netdev->features ^= NETIF_F_RXHASH;
2174 		err = idpf_vport_manage_rss_lut(vport);
2175 		if (err)
2176 			goto unlock_mutex;
2177 	}
2178 
2179 	if (changed & NETIF_F_GRO_HW) {
2180 		netdev->features ^= NETIF_F_GRO_HW;
2181 		err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2182 		if (err)
2183 			goto unlock_mutex;
2184 	}
2185 
2186 	if (changed & NETIF_F_LOOPBACK) {
2187 		netdev->features ^= NETIF_F_LOOPBACK;
2188 		err = idpf_send_ena_dis_loopback_msg(vport);
2189 	}
2190 
2191 unlock_mutex:
2192 	idpf_vport_ctrl_unlock(netdev);
2193 
2194 	return err;
2195 }
2196 
2197 /**
2198  * idpf_open - Called when a network interface becomes active
2199  * @netdev: network interface device structure
2200  *
2201  * The open entry point is called when a network interface is made
2202  * active by the system (IFF_UP).  At this point all resources needed
2203  * for transmit and receive operations are allocated, the interrupt
2204  * handler is registered with the OS, the netdev watchdog is enabled,
2205  * and the stack is notified that the interface is ready.
2206  *
2207  * Returns 0 on success, negative value on failure
2208  */
2209 static int idpf_open(struct net_device *netdev)
2210 {
2211 	struct idpf_vport *vport;
2212 	int err;
2213 
2214 	idpf_vport_ctrl_lock(netdev);
2215 	vport = idpf_netdev_to_vport(netdev);
2216 
2217 	err = idpf_set_real_num_queues(vport);
2218 	if (err)
2219 		goto unlock;
2220 
2221 	err = idpf_vport_open(vport);
2222 
2223 unlock:
2224 	idpf_vport_ctrl_unlock(netdev);
2225 
2226 	return err;
2227 }
2228 
2229 /**
2230  * idpf_change_mtu - NDO callback to change the MTU
2231  * @netdev: network interface device structure
2232  * @new_mtu: new value for maximum frame size
2233  *
2234  * Returns 0 on success, negative on failure
2235  */
2236 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2237 {
2238 	struct idpf_vport *vport;
2239 	int err;
2240 
2241 	idpf_vport_ctrl_lock(netdev);
2242 	vport = idpf_netdev_to_vport(netdev);
2243 
2244 	WRITE_ONCE(netdev->mtu, new_mtu);
2245 
2246 	err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2247 
2248 	idpf_vport_ctrl_unlock(netdev);
2249 
2250 	return err;
2251 }
2252 
2253 /**
2254  * idpf_features_check - Validate packet conforms to limits
2255  * @skb: skb buffer
2256  * @netdev: This port's netdev
2257  * @features: Offload features that the stack believes apply
2258  */
2259 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2260 					     struct net_device *netdev,
2261 					     netdev_features_t features)
2262 {
2263 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2264 	u16 max_tx_hdr_size = np->max_tx_hdr_size;
2265 	size_t len;
2266 
2267 	/* No point in doing any of this if neither checksum nor GSO are
2268 	 * being requested for this frame.  We can rule out both by just
2269 	 * checking for CHECKSUM_PARTIAL
2270 	 */
2271 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2272 		return features;
2273 
2274 	/* We cannot support GSO if the MSS is going to be less than
2275 	 * 88 bytes. If it is then we need to drop support for GSO.
2276 	 */
2277 	if (skb_is_gso(skb) &&
2278 	    (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS))
2279 		features &= ~NETIF_F_GSO_MASK;
2280 
2281 	/* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2282 	len = skb_network_offset(skb);
2283 	if (unlikely(len & ~(126)))
2284 		goto unsupported;
2285 
2286 	len = skb_network_header_len(skb);
2287 	if (unlikely(len > max_tx_hdr_size))
2288 		goto unsupported;
2289 
2290 	if (!skb->encapsulation)
2291 		return features;
2292 
2293 	/* L4TUNLEN can support 127 words */
2294 	len = skb_inner_network_header(skb) - skb_transport_header(skb);
2295 	if (unlikely(len & ~(127 * 2)))
2296 		goto unsupported;
2297 
2298 	/* IPLEN can support at most 127 dwords */
2299 	len = skb_inner_network_header_len(skb);
2300 	if (unlikely(len > max_tx_hdr_size))
2301 		goto unsupported;
2302 
2303 	/* No need to validate L4LEN as TCP is the only protocol with a
2304 	 * a flexible value and we support all possible values supported
2305 	 * by TCP, which is at most 15 dwords
2306 	 */
2307 
2308 	return features;
2309 
2310 unsupported:
2311 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2312 }
2313 
2314 /**
2315  * idpf_set_mac - NDO callback to set port mac address
2316  * @netdev: network interface device structure
2317  * @p: pointer to an address structure
2318  *
2319  * Returns 0 on success, negative on failure
2320  **/
2321 static int idpf_set_mac(struct net_device *netdev, void *p)
2322 {
2323 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2324 	struct idpf_vport_config *vport_config;
2325 	struct sockaddr *addr = p;
2326 	struct idpf_vport *vport;
2327 	int err = 0;
2328 
2329 	idpf_vport_ctrl_lock(netdev);
2330 	vport = idpf_netdev_to_vport(netdev);
2331 
2332 	if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2333 			     VIRTCHNL2_CAP_MACFILTER)) {
2334 		dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2335 		err = -EOPNOTSUPP;
2336 		goto unlock_mutex;
2337 	}
2338 
2339 	if (!is_valid_ether_addr(addr->sa_data)) {
2340 		dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2341 			 addr->sa_data);
2342 		err = -EADDRNOTAVAIL;
2343 		goto unlock_mutex;
2344 	}
2345 
2346 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2347 		goto unlock_mutex;
2348 
2349 	vport_config = vport->adapter->vport_config[vport->idx];
2350 	err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2351 	if (err) {
2352 		__idpf_del_mac_filter(vport_config, addr->sa_data);
2353 		goto unlock_mutex;
2354 	}
2355 
2356 	if (is_valid_ether_addr(vport->default_mac_addr))
2357 		idpf_del_mac_filter(vport, np, vport->default_mac_addr, false);
2358 
2359 	ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2360 	eth_hw_addr_set(netdev, addr->sa_data);
2361 
2362 unlock_mutex:
2363 	idpf_vport_ctrl_unlock(netdev);
2364 
2365 	return err;
2366 }
2367 
2368 /**
2369  * idpf_alloc_dma_mem - Allocate dma memory
2370  * @hw: pointer to hw struct
2371  * @mem: pointer to dma_mem struct
2372  * @size: size of the memory to allocate
2373  */
2374 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2375 {
2376 	struct idpf_adapter *adapter = hw->back;
2377 	size_t sz = ALIGN(size, 4096);
2378 
2379 	/* The control queue resources are freed under a spinlock, contiguous
2380 	 * pages will avoid IOMMU remapping and the use vmap (and vunmap in
2381 	 * dma_free_*() path.
2382 	 */
2383 	mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa,
2384 				  GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS);
2385 	mem->size = sz;
2386 
2387 	return mem->va;
2388 }
2389 
2390 /**
2391  * idpf_free_dma_mem - Free the allocated dma memory
2392  * @hw: pointer to hw struct
2393  * @mem: pointer to dma_mem struct
2394  */
2395 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2396 {
2397 	struct idpf_adapter *adapter = hw->back;
2398 
2399 	dma_free_attrs(&adapter->pdev->dev, mem->size,
2400 		       mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS);
2401 	mem->size = 0;
2402 	mem->va = NULL;
2403 	mem->pa = 0;
2404 }
2405 
2406 static int idpf_hwtstamp_set(struct net_device *netdev,
2407 			     struct kernel_hwtstamp_config *config,
2408 			     struct netlink_ext_ack *extack)
2409 {
2410 	struct idpf_vport *vport;
2411 	int err;
2412 
2413 	idpf_vport_ctrl_lock(netdev);
2414 	vport = idpf_netdev_to_vport(netdev);
2415 
2416 	if (!vport->link_up) {
2417 		idpf_vport_ctrl_unlock(netdev);
2418 		return -EPERM;
2419 	}
2420 
2421 	if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2422 	    !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2423 		idpf_vport_ctrl_unlock(netdev);
2424 		return -EOPNOTSUPP;
2425 	}
2426 
2427 	err = idpf_ptp_set_timestamp_mode(vport, config);
2428 
2429 	idpf_vport_ctrl_unlock(netdev);
2430 
2431 	return err;
2432 }
2433 
2434 static int idpf_hwtstamp_get(struct net_device *netdev,
2435 			     struct kernel_hwtstamp_config *config)
2436 {
2437 	struct idpf_vport *vport;
2438 
2439 	idpf_vport_ctrl_lock(netdev);
2440 	vport = idpf_netdev_to_vport(netdev);
2441 
2442 	if (!vport->link_up) {
2443 		idpf_vport_ctrl_unlock(netdev);
2444 		return -EPERM;
2445 	}
2446 
2447 	if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) &&
2448 	    !idpf_ptp_is_vport_rx_tstamp_ena(vport)) {
2449 		idpf_vport_ctrl_unlock(netdev);
2450 		return 0;
2451 	}
2452 
2453 	*config = vport->tstamp_config;
2454 
2455 	idpf_vport_ctrl_unlock(netdev);
2456 
2457 	return 0;
2458 }
2459 
2460 static const struct net_device_ops idpf_netdev_ops = {
2461 	.ndo_open = idpf_open,
2462 	.ndo_stop = idpf_stop,
2463 	.ndo_start_xmit = idpf_tx_start,
2464 	.ndo_features_check = idpf_features_check,
2465 	.ndo_set_rx_mode = idpf_set_rx_mode,
2466 	.ndo_validate_addr = eth_validate_addr,
2467 	.ndo_set_mac_address = idpf_set_mac,
2468 	.ndo_change_mtu = idpf_change_mtu,
2469 	.ndo_get_stats64 = idpf_get_stats64,
2470 	.ndo_set_features = idpf_set_features,
2471 	.ndo_tx_timeout = idpf_tx_timeout,
2472 	.ndo_hwtstamp_get = idpf_hwtstamp_get,
2473 	.ndo_hwtstamp_set = idpf_hwtstamp_set,
2474 };
2475