1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #include "idpf.h" 5 #include "idpf_virtchnl.h" 6 #include "idpf_ptp.h" 7 #include "xdp.h" 8 #include "xsk.h" 9 10 static const struct net_device_ops idpf_netdev_ops; 11 12 /** 13 * idpf_init_vector_stack - Fill the MSIX vector stack with vector index 14 * @adapter: private data struct 15 * 16 * Return 0 on success, error on failure 17 */ 18 static int idpf_init_vector_stack(struct idpf_adapter *adapter) 19 { 20 struct idpf_vector_lifo *stack; 21 u16 min_vec; 22 u32 i; 23 24 mutex_lock(&adapter->vector_lock); 25 min_vec = adapter->num_msix_entries - adapter->num_avail_msix; 26 stack = &adapter->vector_stack; 27 stack->size = adapter->num_msix_entries; 28 /* set the base and top to point at start of the 'free pool' to 29 * distribute the unused vectors on-demand basis 30 */ 31 stack->base = min_vec; 32 stack->top = min_vec; 33 34 stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL); 35 if (!stack->vec_idx) { 36 mutex_unlock(&adapter->vector_lock); 37 38 return -ENOMEM; 39 } 40 41 for (i = 0; i < stack->size; i++) 42 stack->vec_idx[i] = i; 43 44 mutex_unlock(&adapter->vector_lock); 45 46 return 0; 47 } 48 49 /** 50 * idpf_deinit_vector_stack - zero out the MSIX vector stack 51 * @adapter: private data struct 52 */ 53 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter) 54 { 55 struct idpf_vector_lifo *stack; 56 57 mutex_lock(&adapter->vector_lock); 58 stack = &adapter->vector_stack; 59 kfree(stack->vec_idx); 60 stack->vec_idx = NULL; 61 mutex_unlock(&adapter->vector_lock); 62 } 63 64 /** 65 * idpf_mb_intr_rel_irq - Free the IRQ association with the OS 66 * @adapter: adapter structure 67 * 68 * This will also disable interrupt mode and queue up mailbox task. Mailbox 69 * task will reschedule itself if not in interrupt mode. 70 */ 71 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter) 72 { 73 clear_bit(IDPF_MB_INTR_MODE, adapter->flags); 74 kfree(free_irq(adapter->msix_entries[0].vector, adapter)); 75 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 76 } 77 78 /** 79 * idpf_intr_rel - Release interrupt capabilities and free memory 80 * @adapter: adapter to disable interrupts on 81 */ 82 void idpf_intr_rel(struct idpf_adapter *adapter) 83 { 84 if (!adapter->msix_entries) 85 return; 86 87 idpf_mb_intr_rel_irq(adapter); 88 pci_free_irq_vectors(adapter->pdev); 89 idpf_send_dealloc_vectors_msg(adapter); 90 idpf_deinit_vector_stack(adapter); 91 kfree(adapter->msix_entries); 92 adapter->msix_entries = NULL; 93 kfree(adapter->rdma_msix_entries); 94 adapter->rdma_msix_entries = NULL; 95 } 96 97 /** 98 * idpf_mb_intr_clean - Interrupt handler for the mailbox 99 * @irq: interrupt number 100 * @data: pointer to the adapter structure 101 */ 102 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data) 103 { 104 struct idpf_adapter *adapter = (struct idpf_adapter *)data; 105 106 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 107 108 return IRQ_HANDLED; 109 } 110 111 /** 112 * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox 113 * @adapter: adapter to get the hardware address for register write 114 */ 115 static void idpf_mb_irq_enable(struct idpf_adapter *adapter) 116 { 117 struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg; 118 u32 val; 119 120 val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m; 121 writel(val, intr->dyn_ctl); 122 writel(intr->icr_ena_ctlq_m, intr->icr_ena); 123 } 124 125 /** 126 * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt 127 * @adapter: adapter structure to pass to the mailbox irq handler 128 */ 129 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter) 130 { 131 int irq_num, mb_vidx = 0, err; 132 char *name; 133 134 irq_num = adapter->msix_entries[mb_vidx].vector; 135 name = kasprintf(GFP_KERNEL, "%s-%s-%d", 136 dev_driver_string(&adapter->pdev->dev), 137 "Mailbox", mb_vidx); 138 err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter); 139 if (err) { 140 dev_err(&adapter->pdev->dev, 141 "IRQ request for mailbox failed, error: %d\n", err); 142 143 return err; 144 } 145 146 set_bit(IDPF_MB_INTR_MODE, adapter->flags); 147 148 return 0; 149 } 150 151 /** 152 * idpf_mb_intr_init - Initialize the mailbox interrupt 153 * @adapter: adapter structure to store the mailbox vector 154 */ 155 static int idpf_mb_intr_init(struct idpf_adapter *adapter) 156 { 157 adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter); 158 adapter->irq_mb_handler = idpf_mb_intr_clean; 159 160 return idpf_mb_intr_req_irq(adapter); 161 } 162 163 /** 164 * idpf_vector_lifo_push - push MSIX vector index onto stack 165 * @adapter: private data struct 166 * @vec_idx: vector index to store 167 */ 168 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx) 169 { 170 struct idpf_vector_lifo *stack = &adapter->vector_stack; 171 172 lockdep_assert_held(&adapter->vector_lock); 173 174 if (stack->top == stack->base) { 175 dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n", 176 stack->top); 177 return -EINVAL; 178 } 179 180 stack->vec_idx[--stack->top] = vec_idx; 181 182 return 0; 183 } 184 185 /** 186 * idpf_vector_lifo_pop - pop MSIX vector index from stack 187 * @adapter: private data struct 188 */ 189 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter) 190 { 191 struct idpf_vector_lifo *stack = &adapter->vector_stack; 192 193 lockdep_assert_held(&adapter->vector_lock); 194 195 if (stack->top == stack->size) { 196 dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n"); 197 198 return -EINVAL; 199 } 200 201 return stack->vec_idx[stack->top++]; 202 } 203 204 /** 205 * idpf_vector_stash - Store the vector indexes onto the stack 206 * @adapter: private data struct 207 * @q_vector_idxs: vector index array 208 * @vec_info: info related to the number of vectors 209 * 210 * This function is a no-op if there are no vectors indexes to be stashed 211 */ 212 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs, 213 struct idpf_vector_info *vec_info) 214 { 215 int i, base = 0; 216 u16 vec_idx; 217 218 lockdep_assert_held(&adapter->vector_lock); 219 220 if (!vec_info->num_curr_vecs) 221 return; 222 223 /* For default vports, no need to stash vector allocated from the 224 * default pool onto the stack 225 */ 226 if (vec_info->default_vport) 227 base = IDPF_MIN_Q_VEC; 228 229 for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) { 230 vec_idx = q_vector_idxs[i]; 231 idpf_vector_lifo_push(adapter, vec_idx); 232 adapter->num_avail_msix++; 233 } 234 } 235 236 /** 237 * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes 238 * @adapter: driver specific private structure 239 * @q_vector_idxs: vector index array 240 * @vec_info: info related to the number of vectors 241 * 242 * This is the core function to distribute the MSIX vectors acquired from the 243 * OS. It expects the caller to pass the number of vectors required and 244 * also previously allocated. First, it stashes previously allocated vector 245 * indexes on to the stack and then figures out if it can allocate requested 246 * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as 247 * requested vectors, then this function just stashes the already allocated 248 * vectors and returns 0. 249 * 250 * Returns actual number of vectors allocated on success, error value on failure 251 * If 0 is returned, implies the stack has no vectors to allocate which is also 252 * a failure case for the caller 253 */ 254 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter, 255 u16 *q_vector_idxs, 256 struct idpf_vector_info *vec_info) 257 { 258 u16 num_req_vecs, num_alloc_vecs = 0, max_vecs; 259 struct idpf_vector_lifo *stack; 260 int i, j, vecid; 261 262 mutex_lock(&adapter->vector_lock); 263 stack = &adapter->vector_stack; 264 num_req_vecs = vec_info->num_req_vecs; 265 266 /* Stash interrupt vector indexes onto the stack if required */ 267 idpf_vector_stash(adapter, q_vector_idxs, vec_info); 268 269 if (!num_req_vecs) 270 goto rel_lock; 271 272 if (vec_info->default_vport) { 273 /* As IDPF_MIN_Q_VEC per default vport is put aside in the 274 * default pool of the stack, use them for default vports 275 */ 276 j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC; 277 for (i = 0; i < IDPF_MIN_Q_VEC; i++) { 278 q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++]; 279 num_req_vecs--; 280 } 281 } 282 283 /* Find if stack has enough vector to allocate */ 284 max_vecs = min(adapter->num_avail_msix, num_req_vecs); 285 286 for (j = 0; j < max_vecs; j++) { 287 vecid = idpf_vector_lifo_pop(adapter); 288 q_vector_idxs[num_alloc_vecs++] = vecid; 289 } 290 adapter->num_avail_msix -= max_vecs; 291 292 rel_lock: 293 mutex_unlock(&adapter->vector_lock); 294 295 return num_alloc_vecs; 296 } 297 298 /** 299 * idpf_intr_req - Request interrupt capabilities 300 * @adapter: adapter to enable interrupts on 301 * 302 * Returns 0 on success, negative on failure 303 */ 304 int idpf_intr_req(struct idpf_adapter *adapter) 305 { 306 u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0; 307 u16 default_vports = idpf_get_default_vports(adapter); 308 int num_q_vecs, total_vecs, num_vec_ids; 309 int min_vectors, actual_vecs, err; 310 unsigned int vector; 311 u16 *vecids; 312 int i; 313 314 total_vecs = idpf_get_reserved_vecs(adapter); 315 num_lan_vecs = total_vecs; 316 if (idpf_is_rdma_cap_ena(adapter)) { 317 num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter); 318 min_rdma_vecs = IDPF_MIN_RDMA_VEC; 319 320 if (!num_rdma_vecs) { 321 /* If idpf_get_reserved_rdma_vecs is 0, vectors are 322 * pulled from the LAN pool. 323 */ 324 num_rdma_vecs = min_rdma_vecs; 325 } else if (num_rdma_vecs < min_rdma_vecs) { 326 dev_err(&adapter->pdev->dev, 327 "Not enough vectors reserved for RDMA (min: %u, current: %u)\n", 328 min_rdma_vecs, num_rdma_vecs); 329 return -EINVAL; 330 } 331 } 332 333 num_q_vecs = total_vecs - IDPF_MBX_Q_VEC; 334 335 err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs); 336 if (err) { 337 dev_err(&adapter->pdev->dev, 338 "Failed to allocate %d vectors: %d\n", num_q_vecs, err); 339 340 return -EAGAIN; 341 } 342 343 min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports; 344 min_vectors = min_lan_vecs + min_rdma_vecs; 345 actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors, 346 total_vecs, PCI_IRQ_MSIX); 347 if (actual_vecs < 0) { 348 dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n", 349 min_vectors); 350 err = actual_vecs; 351 goto send_dealloc_vecs; 352 } 353 354 if (idpf_is_rdma_cap_ena(adapter)) { 355 if (actual_vecs < total_vecs) { 356 dev_warn(&adapter->pdev->dev, 357 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n", 358 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC); 359 num_rdma_vecs = IDPF_MIN_RDMA_VEC; 360 } 361 362 adapter->rdma_msix_entries = kcalloc(num_rdma_vecs, 363 sizeof(struct msix_entry), 364 GFP_KERNEL); 365 if (!adapter->rdma_msix_entries) { 366 err = -ENOMEM; 367 goto free_irq; 368 } 369 } 370 371 num_lan_vecs = actual_vecs - num_rdma_vecs; 372 adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry), 373 GFP_KERNEL); 374 if (!adapter->msix_entries) { 375 err = -ENOMEM; 376 goto free_rdma_msix; 377 } 378 379 adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id); 380 381 vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL); 382 if (!vecids) { 383 err = -ENOMEM; 384 goto free_msix; 385 } 386 387 num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs, 388 &adapter->req_vec_chunks->vchunks); 389 if (num_vec_ids < actual_vecs) { 390 err = -EINVAL; 391 goto free_vecids; 392 } 393 394 for (vector = 0; vector < num_lan_vecs; vector++) { 395 adapter->msix_entries[vector].entry = vecids[vector]; 396 adapter->msix_entries[vector].vector = 397 pci_irq_vector(adapter->pdev, vector); 398 } 399 for (i = 0; i < num_rdma_vecs; vector++, i++) { 400 adapter->rdma_msix_entries[i].entry = vecids[vector]; 401 adapter->rdma_msix_entries[i].vector = 402 pci_irq_vector(adapter->pdev, vector); 403 } 404 405 /* 'num_avail_msix' is used to distribute excess vectors to the vports 406 * after considering the minimum vectors required per each default 407 * vport 408 */ 409 adapter->num_avail_msix = num_lan_vecs - min_lan_vecs; 410 adapter->num_msix_entries = num_lan_vecs; 411 if (idpf_is_rdma_cap_ena(adapter)) 412 adapter->num_rdma_msix_entries = num_rdma_vecs; 413 414 /* Fill MSIX vector lifo stack with vector indexes */ 415 err = idpf_init_vector_stack(adapter); 416 if (err) 417 goto free_vecids; 418 419 err = idpf_mb_intr_init(adapter); 420 if (err) 421 goto deinit_vec_stack; 422 idpf_mb_irq_enable(adapter); 423 kfree(vecids); 424 425 return 0; 426 427 deinit_vec_stack: 428 idpf_deinit_vector_stack(adapter); 429 free_vecids: 430 kfree(vecids); 431 free_msix: 432 kfree(adapter->msix_entries); 433 adapter->msix_entries = NULL; 434 free_rdma_msix: 435 kfree(adapter->rdma_msix_entries); 436 adapter->rdma_msix_entries = NULL; 437 free_irq: 438 pci_free_irq_vectors(adapter->pdev); 439 send_dealloc_vecs: 440 idpf_send_dealloc_vectors_msg(adapter); 441 442 return err; 443 } 444 445 /** 446 * idpf_del_all_flow_steer_filters - Delete all flow steer filters in list 447 * @vport: main vport struct 448 * 449 * Takes flow_steer_list_lock spinlock. Deletes all filters 450 */ 451 static void idpf_del_all_flow_steer_filters(struct idpf_vport *vport) 452 { 453 struct idpf_vport_config *vport_config; 454 struct idpf_fsteer_fltr *f, *ftmp; 455 456 vport_config = vport->adapter->vport_config[vport->idx]; 457 458 spin_lock_bh(&vport_config->flow_steer_list_lock); 459 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.flow_steer_list, 460 list) { 461 list_del(&f->list); 462 kfree(f); 463 } 464 vport_config->user_config.num_fsteer_fltrs = 0; 465 spin_unlock_bh(&vport_config->flow_steer_list_lock); 466 } 467 468 /** 469 * idpf_find_mac_filter - Search filter list for specific mac filter 470 * @vconfig: Vport config structure 471 * @macaddr: The MAC address 472 * 473 * Returns ptr to the filter object or NULL. Must be called while holding the 474 * mac_filter_list_lock. 475 **/ 476 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig, 477 const u8 *macaddr) 478 { 479 struct idpf_mac_filter *f; 480 481 if (!macaddr) 482 return NULL; 483 484 list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) { 485 if (ether_addr_equal(macaddr, f->macaddr)) 486 return f; 487 } 488 489 return NULL; 490 } 491 492 /** 493 * __idpf_del_mac_filter - Delete a MAC filter from the filter list 494 * @vport_config: Vport config structure 495 * @macaddr: The MAC address 496 * 497 * Returns 0 on success, error value on failure 498 **/ 499 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config, 500 const u8 *macaddr) 501 { 502 struct idpf_mac_filter *f; 503 504 spin_lock_bh(&vport_config->mac_filter_list_lock); 505 f = idpf_find_mac_filter(vport_config, macaddr); 506 if (f) { 507 list_del(&f->list); 508 kfree(f); 509 } 510 spin_unlock_bh(&vport_config->mac_filter_list_lock); 511 512 return 0; 513 } 514 515 /** 516 * idpf_del_mac_filter - Delete a MAC filter from the filter list 517 * @vport: Main vport structure 518 * @np: Netdev private structure 519 * @macaddr: The MAC address 520 * @async: Don't wait for return message 521 * 522 * Removes filter from list and if interface is up, tells hardware about the 523 * removed filter. 524 **/ 525 static int idpf_del_mac_filter(struct idpf_vport *vport, 526 struct idpf_netdev_priv *np, 527 const u8 *macaddr, bool async) 528 { 529 struct idpf_vport_config *vport_config; 530 struct idpf_mac_filter *f; 531 532 vport_config = np->adapter->vport_config[np->vport_idx]; 533 534 spin_lock_bh(&vport_config->mac_filter_list_lock); 535 f = idpf_find_mac_filter(vport_config, macaddr); 536 if (f) { 537 f->remove = true; 538 } else { 539 spin_unlock_bh(&vport_config->mac_filter_list_lock); 540 541 return -EINVAL; 542 } 543 spin_unlock_bh(&vport_config->mac_filter_list_lock); 544 545 if (test_bit(IDPF_VPORT_UP, np->state)) { 546 int err; 547 548 err = idpf_add_del_mac_filters(vport, np, false, async); 549 if (err) 550 return err; 551 } 552 553 return __idpf_del_mac_filter(vport_config, macaddr); 554 } 555 556 /** 557 * __idpf_add_mac_filter - Add mac filter helper function 558 * @vport_config: Vport config structure 559 * @macaddr: Address to add 560 * 561 * Takes mac_filter_list_lock spinlock to add new filter to list. 562 */ 563 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config, 564 const u8 *macaddr) 565 { 566 struct idpf_mac_filter *f; 567 568 spin_lock_bh(&vport_config->mac_filter_list_lock); 569 570 f = idpf_find_mac_filter(vport_config, macaddr); 571 if (f) { 572 f->remove = false; 573 spin_unlock_bh(&vport_config->mac_filter_list_lock); 574 575 return 0; 576 } 577 578 f = kzalloc(sizeof(*f), GFP_ATOMIC); 579 if (!f) { 580 spin_unlock_bh(&vport_config->mac_filter_list_lock); 581 582 return -ENOMEM; 583 } 584 585 ether_addr_copy(f->macaddr, macaddr); 586 list_add_tail(&f->list, &vport_config->user_config.mac_filter_list); 587 f->add = true; 588 589 spin_unlock_bh(&vport_config->mac_filter_list_lock); 590 591 return 0; 592 } 593 594 /** 595 * idpf_add_mac_filter - Add a mac filter to the filter list 596 * @vport: Main vport structure 597 * @np: Netdev private structure 598 * @macaddr: The MAC address 599 * @async: Don't wait for return message 600 * 601 * Returns 0 on success or error on failure. If interface is up, we'll also 602 * send the virtchnl message to tell hardware about the filter. 603 **/ 604 static int idpf_add_mac_filter(struct idpf_vport *vport, 605 struct idpf_netdev_priv *np, 606 const u8 *macaddr, bool async) 607 { 608 struct idpf_vport_config *vport_config; 609 int err; 610 611 vport_config = np->adapter->vport_config[np->vport_idx]; 612 err = __idpf_add_mac_filter(vport_config, macaddr); 613 if (err) 614 return err; 615 616 if (test_bit(IDPF_VPORT_UP, np->state)) 617 err = idpf_add_del_mac_filters(vport, np, true, async); 618 619 return err; 620 } 621 622 /** 623 * idpf_del_all_mac_filters - Delete all MAC filters in list 624 * @vport: main vport struct 625 * 626 * Takes mac_filter_list_lock spinlock. Deletes all filters 627 */ 628 static void idpf_del_all_mac_filters(struct idpf_vport *vport) 629 { 630 struct idpf_vport_config *vport_config; 631 struct idpf_mac_filter *f, *ftmp; 632 633 vport_config = vport->adapter->vport_config[vport->idx]; 634 spin_lock_bh(&vport_config->mac_filter_list_lock); 635 636 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list, 637 list) { 638 list_del(&f->list); 639 kfree(f); 640 } 641 642 spin_unlock_bh(&vport_config->mac_filter_list_lock); 643 } 644 645 /** 646 * idpf_restore_mac_filters - Re-add all MAC filters in list 647 * @vport: main vport struct 648 * 649 * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to 650 * resync filters back to HW. 651 */ 652 static void idpf_restore_mac_filters(struct idpf_vport *vport) 653 { 654 struct idpf_vport_config *vport_config; 655 struct idpf_mac_filter *f; 656 657 vport_config = vport->adapter->vport_config[vport->idx]; 658 spin_lock_bh(&vport_config->mac_filter_list_lock); 659 660 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 661 f->add = true; 662 663 spin_unlock_bh(&vport_config->mac_filter_list_lock); 664 665 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), 666 true, false); 667 } 668 669 /** 670 * idpf_remove_mac_filters - Remove all MAC filters in list 671 * @vport: main vport struct 672 * 673 * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters 674 * to remove filters in HW. 675 */ 676 static void idpf_remove_mac_filters(struct idpf_vport *vport) 677 { 678 struct idpf_vport_config *vport_config; 679 struct idpf_mac_filter *f; 680 681 vport_config = vport->adapter->vport_config[vport->idx]; 682 spin_lock_bh(&vport_config->mac_filter_list_lock); 683 684 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 685 f->remove = true; 686 687 spin_unlock_bh(&vport_config->mac_filter_list_lock); 688 689 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), 690 false, false); 691 } 692 693 /** 694 * idpf_deinit_mac_addr - deinitialize mac address for vport 695 * @vport: main vport structure 696 */ 697 static void idpf_deinit_mac_addr(struct idpf_vport *vport) 698 { 699 struct idpf_vport_config *vport_config; 700 struct idpf_mac_filter *f; 701 702 vport_config = vport->adapter->vport_config[vport->idx]; 703 704 spin_lock_bh(&vport_config->mac_filter_list_lock); 705 706 f = idpf_find_mac_filter(vport_config, vport->default_mac_addr); 707 if (f) { 708 list_del(&f->list); 709 kfree(f); 710 } 711 712 spin_unlock_bh(&vport_config->mac_filter_list_lock); 713 } 714 715 /** 716 * idpf_init_mac_addr - initialize mac address for vport 717 * @vport: main vport structure 718 * @netdev: pointer to netdev struct associated with this vport 719 */ 720 static int idpf_init_mac_addr(struct idpf_vport *vport, 721 struct net_device *netdev) 722 { 723 struct idpf_netdev_priv *np = netdev_priv(netdev); 724 struct idpf_adapter *adapter = vport->adapter; 725 int err; 726 727 if (is_valid_ether_addr(vport->default_mac_addr)) { 728 eth_hw_addr_set(netdev, vport->default_mac_addr); 729 ether_addr_copy(netdev->perm_addr, vport->default_mac_addr); 730 731 return idpf_add_mac_filter(vport, np, vport->default_mac_addr, 732 false); 733 } 734 735 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 736 VIRTCHNL2_CAP_MACFILTER)) { 737 dev_err(&adapter->pdev->dev, 738 "MAC address is not provided and capability is not set\n"); 739 740 return -EINVAL; 741 } 742 743 eth_hw_addr_random(netdev); 744 err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false); 745 if (err) 746 return err; 747 748 dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n", 749 vport->default_mac_addr, netdev->dev_addr); 750 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 751 752 return 0; 753 } 754 755 static void idpf_detach_and_close(struct idpf_adapter *adapter) 756 { 757 int max_vports = adapter->max_vports; 758 759 for (int i = 0; i < max_vports; i++) { 760 struct net_device *netdev = adapter->netdevs[i]; 761 762 /* If the interface is in detached state, that means the 763 * previous reset was not handled successfully for this 764 * vport. 765 */ 766 if (!netif_device_present(netdev)) 767 continue; 768 769 /* Hold RTNL to protect racing with callbacks */ 770 rtnl_lock(); 771 netif_device_detach(netdev); 772 if (netif_running(netdev)) { 773 set_bit(IDPF_VPORT_UP_REQUESTED, 774 adapter->vport_config[i]->flags); 775 dev_close(netdev); 776 } 777 rtnl_unlock(); 778 } 779 } 780 781 static void idpf_attach_and_open(struct idpf_adapter *adapter) 782 { 783 int max_vports = adapter->max_vports; 784 785 for (int i = 0; i < max_vports; i++) { 786 struct idpf_vport *vport = adapter->vports[i]; 787 struct idpf_vport_config *vport_config; 788 struct net_device *netdev; 789 790 /* In case of a critical error in the init task, the vport 791 * will be freed. Only continue to restore the netdevs 792 * if the vport is allocated. 793 */ 794 if (!vport) 795 continue; 796 797 /* No need for RTNL on attach as this function is called 798 * following detach and dev_close(). We do take RTNL for 799 * dev_open() below as it can race with external callbacks 800 * following the call to netif_device_attach(). 801 */ 802 netdev = adapter->netdevs[i]; 803 netif_device_attach(netdev); 804 vport_config = adapter->vport_config[vport->idx]; 805 if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, 806 vport_config->flags)) { 807 rtnl_lock(); 808 dev_open(netdev, NULL); 809 rtnl_unlock(); 810 } 811 } 812 } 813 814 /** 815 * idpf_cfg_netdev - Allocate, configure and register a netdev 816 * @vport: main vport structure 817 * 818 * Returns 0 on success, negative value on failure. 819 */ 820 static int idpf_cfg_netdev(struct idpf_vport *vport) 821 { 822 struct idpf_adapter *adapter = vport->adapter; 823 struct idpf_vport_config *vport_config; 824 netdev_features_t other_offloads = 0; 825 netdev_features_t csum_offloads = 0; 826 netdev_features_t tso_offloads = 0; 827 netdev_features_t dflt_features; 828 struct idpf_netdev_priv *np; 829 struct net_device *netdev; 830 u16 idx = vport->idx; 831 int err; 832 833 vport_config = adapter->vport_config[idx]; 834 835 /* It's possible we already have a netdev allocated and registered for 836 * this vport 837 */ 838 if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) { 839 netdev = adapter->netdevs[idx]; 840 np = netdev_priv(netdev); 841 np->vport = vport; 842 np->vport_idx = vport->idx; 843 np->vport_id = vport->vport_id; 844 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 845 vport->netdev = netdev; 846 847 return idpf_init_mac_addr(vport, netdev); 848 } 849 850 netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv), 851 vport_config->max_q.max_txq, 852 vport_config->max_q.max_rxq); 853 if (!netdev) 854 return -ENOMEM; 855 856 vport->netdev = netdev; 857 np = netdev_priv(netdev); 858 np->vport = vport; 859 np->adapter = adapter; 860 np->vport_idx = vport->idx; 861 np->vport_id = vport->vport_id; 862 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 863 np->tx_max_bufs = idpf_get_max_tx_bufs(adapter); 864 865 spin_lock_init(&np->stats_lock); 866 867 err = idpf_init_mac_addr(vport, netdev); 868 if (err) { 869 free_netdev(vport->netdev); 870 vport->netdev = NULL; 871 872 return err; 873 } 874 875 /* assign netdev_ops */ 876 netdev->netdev_ops = &idpf_netdev_ops; 877 878 /* setup watchdog timeout value to be 5 second */ 879 netdev->watchdog_timeo = 5 * HZ; 880 881 netdev->dev_port = idx; 882 883 /* configure default MTU size */ 884 netdev->min_mtu = ETH_MIN_MTU; 885 netdev->max_mtu = vport->max_mtu; 886 887 dflt_features = NETIF_F_SG | 888 NETIF_F_HIGHDMA; 889 890 if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS)) 891 dflt_features |= NETIF_F_RXHASH; 892 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 893 VIRTCHNL2_CAP_FLOW_STEER) && 894 idpf_vport_is_cap_ena(vport, VIRTCHNL2_VPORT_SIDEBAND_FLOW_STEER)) 895 dflt_features |= NETIF_F_NTUPLE; 896 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4)) 897 csum_offloads |= NETIF_F_IP_CSUM; 898 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6)) 899 csum_offloads |= NETIF_F_IPV6_CSUM; 900 if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM)) 901 csum_offloads |= NETIF_F_RXCSUM; 902 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM)) 903 csum_offloads |= NETIF_F_SCTP_CRC; 904 905 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP)) 906 tso_offloads |= NETIF_F_TSO; 907 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP)) 908 tso_offloads |= NETIF_F_TSO6; 909 if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS, 910 VIRTCHNL2_CAP_SEG_IPV4_UDP | 911 VIRTCHNL2_CAP_SEG_IPV6_UDP)) 912 tso_offloads |= NETIF_F_GSO_UDP_L4; 913 if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC)) 914 other_offloads |= NETIF_F_GRO_HW; 915 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK)) 916 other_offloads |= NETIF_F_LOOPBACK; 917 918 netdev->features |= dflt_features | csum_offloads | tso_offloads; 919 netdev->hw_features |= netdev->features | other_offloads; 920 netdev->vlan_features |= netdev->features | other_offloads; 921 netdev->hw_enc_features |= dflt_features | other_offloads; 922 idpf_xdp_set_features(vport); 923 924 idpf_set_ethtool_ops(netdev); 925 netif_set_affinity_auto(netdev); 926 SET_NETDEV_DEV(netdev, &adapter->pdev->dev); 927 928 /* carrier off on init to avoid Tx hangs */ 929 netif_carrier_off(netdev); 930 931 /* make sure transmit queues start off as stopped */ 932 netif_tx_stop_all_queues(netdev); 933 934 /* The vport can be arbitrarily released so we need to also track 935 * netdevs in the adapter struct 936 */ 937 adapter->netdevs[idx] = netdev; 938 939 return 0; 940 } 941 942 /** 943 * idpf_get_free_slot - get the next non-NULL location index in array 944 * @adapter: adapter in which to look for a free vport slot 945 */ 946 static int idpf_get_free_slot(struct idpf_adapter *adapter) 947 { 948 unsigned int i; 949 950 for (i = 0; i < adapter->max_vports; i++) { 951 if (!adapter->vports[i]) 952 return i; 953 } 954 955 return IDPF_NO_FREE_SLOT; 956 } 957 958 /** 959 * idpf_remove_features - Turn off feature configs 960 * @vport: virtual port structure 961 */ 962 static void idpf_remove_features(struct idpf_vport *vport) 963 { 964 struct idpf_adapter *adapter = vport->adapter; 965 966 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 967 idpf_remove_mac_filters(vport); 968 } 969 970 /** 971 * idpf_vport_stop - Disable a vport 972 * @vport: vport to disable 973 * @rtnl: whether to take RTNL lock 974 */ 975 static void idpf_vport_stop(struct idpf_vport *vport, bool rtnl) 976 { 977 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 978 979 if (!test_bit(IDPF_VPORT_UP, np->state)) 980 return; 981 982 if (rtnl) 983 rtnl_lock(); 984 985 netif_carrier_off(vport->netdev); 986 netif_tx_disable(vport->netdev); 987 988 idpf_send_disable_vport_msg(vport); 989 idpf_send_disable_queues_msg(vport); 990 idpf_send_map_unmap_queue_vector_msg(vport, false); 991 /* Normally we ask for queues in create_vport, but if the number of 992 * initially requested queues have changed, for example via ethtool 993 * set channels, we do delete queues and then add the queues back 994 * instead of deleting and reallocating the vport. 995 */ 996 if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags)) 997 idpf_send_delete_queues_msg(vport); 998 999 idpf_remove_features(vport); 1000 1001 vport->link_up = false; 1002 idpf_vport_intr_deinit(vport); 1003 idpf_xdp_rxq_info_deinit_all(vport); 1004 idpf_vport_queues_rel(vport); 1005 idpf_vport_intr_rel(vport); 1006 clear_bit(IDPF_VPORT_UP, np->state); 1007 1008 if (rtnl) 1009 rtnl_unlock(); 1010 } 1011 1012 /** 1013 * idpf_stop - Disables a network interface 1014 * @netdev: network interface device structure 1015 * 1016 * The stop entry point is called when an interface is de-activated by the OS, 1017 * and the netdevice enters the DOWN state. The hardware is still under the 1018 * driver's control, but the netdev interface is disabled. 1019 * 1020 * Returns success only - not allowed to fail 1021 */ 1022 static int idpf_stop(struct net_device *netdev) 1023 { 1024 struct idpf_netdev_priv *np = netdev_priv(netdev); 1025 struct idpf_vport *vport; 1026 1027 if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags)) 1028 return 0; 1029 1030 idpf_vport_ctrl_lock(netdev); 1031 vport = idpf_netdev_to_vport(netdev); 1032 1033 idpf_vport_stop(vport, false); 1034 1035 idpf_vport_ctrl_unlock(netdev); 1036 1037 return 0; 1038 } 1039 1040 /** 1041 * idpf_decfg_netdev - Unregister the netdev 1042 * @vport: vport for which netdev to be unregistered 1043 */ 1044 static void idpf_decfg_netdev(struct idpf_vport *vport) 1045 { 1046 struct idpf_adapter *adapter = vport->adapter; 1047 u16 idx = vport->idx; 1048 1049 kfree(vport->rx_ptype_lkup); 1050 vport->rx_ptype_lkup = NULL; 1051 1052 if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV, 1053 adapter->vport_config[idx]->flags)) { 1054 unregister_netdev(vport->netdev); 1055 free_netdev(vport->netdev); 1056 } 1057 vport->netdev = NULL; 1058 1059 adapter->netdevs[idx] = NULL; 1060 } 1061 1062 /** 1063 * idpf_vport_rel - Delete a vport and free its resources 1064 * @vport: the vport being removed 1065 */ 1066 static void idpf_vport_rel(struct idpf_vport *vport) 1067 { 1068 struct idpf_adapter *adapter = vport->adapter; 1069 struct idpf_vport_config *vport_config; 1070 struct idpf_vector_info vec_info; 1071 struct idpf_rss_data *rss_data; 1072 struct idpf_vport_max_q max_q; 1073 u16 idx = vport->idx; 1074 1075 vport_config = adapter->vport_config[vport->idx]; 1076 idpf_deinit_rss_lut(vport); 1077 rss_data = &vport_config->user_config.rss_data; 1078 kfree(rss_data->rss_key); 1079 rss_data->rss_key = NULL; 1080 1081 idpf_send_destroy_vport_msg(vport); 1082 1083 /* Release all max queues allocated to the adapter's pool */ 1084 max_q.max_rxq = vport_config->max_q.max_rxq; 1085 max_q.max_txq = vport_config->max_q.max_txq; 1086 max_q.max_bufq = vport_config->max_q.max_bufq; 1087 max_q.max_complq = vport_config->max_q.max_complq; 1088 idpf_vport_dealloc_max_qs(adapter, &max_q); 1089 1090 /* Release all the allocated vectors on the stack */ 1091 vec_info.num_req_vecs = 0; 1092 vec_info.num_curr_vecs = vport->num_q_vectors; 1093 vec_info.default_vport = vport->default_vport; 1094 1095 idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info); 1096 1097 kfree(vport->q_vector_idxs); 1098 vport->q_vector_idxs = NULL; 1099 1100 kfree(adapter->vport_params_recvd[idx]); 1101 adapter->vport_params_recvd[idx] = NULL; 1102 kfree(adapter->vport_params_reqd[idx]); 1103 adapter->vport_params_reqd[idx] = NULL; 1104 if (adapter->vport_config[idx]) { 1105 kfree(adapter->vport_config[idx]->req_qs_chunks); 1106 adapter->vport_config[idx]->req_qs_chunks = NULL; 1107 } 1108 kfree(vport->rx_ptype_lkup); 1109 vport->rx_ptype_lkup = NULL; 1110 kfree(vport); 1111 adapter->num_alloc_vports--; 1112 } 1113 1114 /** 1115 * idpf_vport_dealloc - cleanup and release a given vport 1116 * @vport: pointer to idpf vport structure 1117 * 1118 * returns nothing 1119 */ 1120 static void idpf_vport_dealloc(struct idpf_vport *vport) 1121 { 1122 struct idpf_adapter *adapter = vport->adapter; 1123 unsigned int i = vport->idx; 1124 1125 idpf_idc_deinit_vport_aux_device(vport->vdev_info); 1126 1127 idpf_deinit_mac_addr(vport); 1128 1129 if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) { 1130 idpf_vport_stop(vport, true); 1131 idpf_decfg_netdev(vport); 1132 } 1133 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { 1134 idpf_del_all_mac_filters(vport); 1135 idpf_del_all_flow_steer_filters(vport); 1136 } 1137 1138 if (adapter->netdevs[i]) { 1139 struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]); 1140 1141 np->vport = NULL; 1142 } 1143 1144 idpf_vport_rel(vport); 1145 1146 adapter->vports[i] = NULL; 1147 adapter->next_vport = idpf_get_free_slot(adapter); 1148 } 1149 1150 /** 1151 * idpf_is_hsplit_supported - check whether the header split is supported 1152 * @vport: virtual port to check the capability for 1153 * 1154 * Return: true if it's supported by the HW/FW, false if not. 1155 */ 1156 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport) 1157 { 1158 return idpf_is_queue_model_split(vport->rxq_model) && 1159 idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS, 1160 IDPF_CAP_HSPLIT); 1161 } 1162 1163 /** 1164 * idpf_vport_get_hsplit - get the current header split feature state 1165 * @vport: virtual port to query the state for 1166 * 1167 * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported, 1168 * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled, 1169 * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active. 1170 */ 1171 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport) 1172 { 1173 const struct idpf_vport_user_config_data *config; 1174 1175 if (!idpf_is_hsplit_supported(vport)) 1176 return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1177 1178 config = &vport->adapter->vport_config[vport->idx]->user_config; 1179 1180 return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ? 1181 ETHTOOL_TCP_DATA_SPLIT_ENABLED : 1182 ETHTOOL_TCP_DATA_SPLIT_DISABLED; 1183 } 1184 1185 /** 1186 * idpf_vport_set_hsplit - enable or disable header split on a given vport 1187 * @vport: virtual port to configure 1188 * @val: Ethtool flag controlling the header split state 1189 * 1190 * Return: true on success, false if not supported by the HW. 1191 */ 1192 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val) 1193 { 1194 struct idpf_vport_user_config_data *config; 1195 1196 if (!idpf_is_hsplit_supported(vport)) 1197 return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1198 1199 config = &vport->adapter->vport_config[vport->idx]->user_config; 1200 1201 switch (val) { 1202 case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN: 1203 /* Default is to enable */ 1204 case ETHTOOL_TCP_DATA_SPLIT_ENABLED: 1205 __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1206 return true; 1207 case ETHTOOL_TCP_DATA_SPLIT_DISABLED: 1208 __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1209 return true; 1210 default: 1211 return false; 1212 } 1213 } 1214 1215 /** 1216 * idpf_vport_alloc - Allocates the next available struct vport in the adapter 1217 * @adapter: board private structure 1218 * @max_q: vport max queue info 1219 * 1220 * returns a pointer to a vport on success, NULL on failure. 1221 */ 1222 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter, 1223 struct idpf_vport_max_q *max_q) 1224 { 1225 struct idpf_rss_data *rss_data; 1226 u16 idx = adapter->next_vport; 1227 struct idpf_vport *vport; 1228 u16 num_max_q; 1229 int err; 1230 1231 if (idx == IDPF_NO_FREE_SLOT) 1232 return NULL; 1233 1234 vport = kzalloc(sizeof(*vport), GFP_KERNEL); 1235 if (!vport) 1236 return vport; 1237 1238 num_max_q = max(max_q->max_txq, max_q->max_rxq) + IDPF_RESERVED_VECS; 1239 if (!adapter->vport_config[idx]) { 1240 struct idpf_vport_config *vport_config; 1241 struct idpf_q_coalesce *q_coal; 1242 1243 vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL); 1244 if (!vport_config) { 1245 kfree(vport); 1246 1247 return NULL; 1248 } 1249 1250 q_coal = kcalloc(num_max_q, sizeof(*q_coal), GFP_KERNEL); 1251 if (!q_coal) { 1252 kfree(vport_config); 1253 kfree(vport); 1254 1255 return NULL; 1256 } 1257 for (int i = 0; i < num_max_q; i++) { 1258 q_coal[i].tx_intr_mode = IDPF_ITR_DYNAMIC; 1259 q_coal[i].tx_coalesce_usecs = IDPF_ITR_TX_DEF; 1260 q_coal[i].rx_intr_mode = IDPF_ITR_DYNAMIC; 1261 q_coal[i].rx_coalesce_usecs = IDPF_ITR_RX_DEF; 1262 } 1263 vport_config->user_config.q_coalesce = q_coal; 1264 1265 adapter->vport_config[idx] = vport_config; 1266 } 1267 1268 vport->idx = idx; 1269 vport->adapter = adapter; 1270 vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET; 1271 vport->default_vport = adapter->num_alloc_vports < 1272 idpf_get_default_vports(adapter); 1273 1274 vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL); 1275 if (!vport->q_vector_idxs) 1276 goto free_vport; 1277 1278 idpf_vport_init(vport, max_q); 1279 1280 /* LUT and key are both initialized here. Key is not strictly dependent 1281 * on how many queues we have. If we change number of queues and soft 1282 * reset is initiated, LUT will be freed and a new LUT will be allocated 1283 * as per the updated number of queues during vport bringup. However, 1284 * the key remains the same for as long as the vport exists. 1285 */ 1286 rss_data = &adapter->vport_config[idx]->user_config.rss_data; 1287 rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL); 1288 if (!rss_data->rss_key) 1289 goto free_vector_idxs; 1290 1291 /* Initialize default rss key */ 1292 netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size); 1293 1294 /* Initialize default rss LUT */ 1295 err = idpf_init_rss_lut(vport); 1296 if (err) 1297 goto free_rss_key; 1298 1299 /* fill vport slot in the adapter struct */ 1300 adapter->vports[idx] = vport; 1301 adapter->vport_ids[idx] = idpf_get_vport_id(vport); 1302 1303 adapter->num_alloc_vports++; 1304 /* prepare adapter->next_vport for next use */ 1305 adapter->next_vport = idpf_get_free_slot(adapter); 1306 1307 return vport; 1308 1309 free_rss_key: 1310 kfree(rss_data->rss_key); 1311 free_vector_idxs: 1312 kfree(vport->q_vector_idxs); 1313 free_vport: 1314 kfree(vport); 1315 1316 return NULL; 1317 } 1318 1319 /** 1320 * idpf_get_stats64 - get statistics for network device structure 1321 * @netdev: network interface device structure 1322 * @stats: main device statistics structure 1323 */ 1324 static void idpf_get_stats64(struct net_device *netdev, 1325 struct rtnl_link_stats64 *stats) 1326 { 1327 struct idpf_netdev_priv *np = netdev_priv(netdev); 1328 1329 spin_lock_bh(&np->stats_lock); 1330 *stats = np->netstats; 1331 spin_unlock_bh(&np->stats_lock); 1332 } 1333 1334 /** 1335 * idpf_statistics_task - Delayed task to get statistics over mailbox 1336 * @work: work_struct handle to our data 1337 */ 1338 void idpf_statistics_task(struct work_struct *work) 1339 { 1340 struct idpf_adapter *adapter; 1341 int i; 1342 1343 adapter = container_of(work, struct idpf_adapter, stats_task.work); 1344 1345 for (i = 0; i < adapter->max_vports; i++) { 1346 struct idpf_vport *vport = adapter->vports[i]; 1347 1348 if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1349 idpf_send_get_stats_msg(vport); 1350 } 1351 1352 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1353 msecs_to_jiffies(10000)); 1354 } 1355 1356 /** 1357 * idpf_mbx_task - Delayed task to handle mailbox responses 1358 * @work: work_struct handle 1359 */ 1360 void idpf_mbx_task(struct work_struct *work) 1361 { 1362 struct idpf_adapter *adapter; 1363 1364 adapter = container_of(work, struct idpf_adapter, mbx_task.work); 1365 1366 if (test_bit(IDPF_MB_INTR_MODE, adapter->flags)) 1367 idpf_mb_irq_enable(adapter); 1368 else 1369 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 1370 usecs_to_jiffies(300)); 1371 1372 idpf_recv_mb_msg(adapter); 1373 } 1374 1375 /** 1376 * idpf_service_task - Delayed task for handling mailbox responses 1377 * @work: work_struct handle to our data 1378 * 1379 */ 1380 void idpf_service_task(struct work_struct *work) 1381 { 1382 struct idpf_adapter *adapter; 1383 1384 adapter = container_of(work, struct idpf_adapter, serv_task.work); 1385 1386 if (idpf_is_reset_detected(adapter) && 1387 !idpf_is_reset_in_prog(adapter) && 1388 !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { 1389 dev_info(&adapter->pdev->dev, "HW reset detected\n"); 1390 set_bit(IDPF_HR_FUNC_RESET, adapter->flags); 1391 queue_delayed_work(adapter->vc_event_wq, 1392 &adapter->vc_event_task, 1393 msecs_to_jiffies(10)); 1394 } 1395 1396 queue_delayed_work(adapter->serv_wq, &adapter->serv_task, 1397 msecs_to_jiffies(300)); 1398 } 1399 1400 /** 1401 * idpf_restore_features - Restore feature configs 1402 * @vport: virtual port structure 1403 */ 1404 static void idpf_restore_features(struct idpf_vport *vport) 1405 { 1406 struct idpf_adapter *adapter = vport->adapter; 1407 1408 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 1409 idpf_restore_mac_filters(vport); 1410 } 1411 1412 /** 1413 * idpf_set_real_num_queues - set number of queues for netdev 1414 * @vport: virtual port structure 1415 * 1416 * Returns 0 on success, negative on failure. 1417 */ 1418 static int idpf_set_real_num_queues(struct idpf_vport *vport) 1419 { 1420 int err, txq = vport->num_txq - vport->num_xdp_txq; 1421 1422 err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq); 1423 if (err) 1424 return err; 1425 1426 return netif_set_real_num_tx_queues(vport->netdev, txq); 1427 } 1428 1429 /** 1430 * idpf_up_complete - Complete interface up sequence 1431 * @vport: virtual port structure 1432 * 1433 * Returns 0 on success, negative on failure. 1434 */ 1435 static int idpf_up_complete(struct idpf_vport *vport) 1436 { 1437 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1438 1439 if (vport->link_up && !netif_carrier_ok(vport->netdev)) { 1440 netif_carrier_on(vport->netdev); 1441 netif_tx_start_all_queues(vport->netdev); 1442 } 1443 1444 set_bit(IDPF_VPORT_UP, np->state); 1445 1446 return 0; 1447 } 1448 1449 /** 1450 * idpf_rx_init_buf_tail - Write initial buffer ring tail value 1451 * @vport: virtual port struct 1452 */ 1453 static void idpf_rx_init_buf_tail(struct idpf_vport *vport) 1454 { 1455 int i, j; 1456 1457 for (i = 0; i < vport->num_rxq_grp; i++) { 1458 struct idpf_rxq_group *grp = &vport->rxq_grps[i]; 1459 1460 if (idpf_is_queue_model_split(vport->rxq_model)) { 1461 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { 1462 const struct idpf_buf_queue *q = 1463 &grp->splitq.bufq_sets[j].bufq; 1464 1465 writel(q->next_to_alloc, q->tail); 1466 } 1467 } else { 1468 for (j = 0; j < grp->singleq.num_rxq; j++) { 1469 const struct idpf_rx_queue *q = 1470 grp->singleq.rxqs[j]; 1471 1472 writel(q->next_to_alloc, q->tail); 1473 } 1474 } 1475 } 1476 } 1477 1478 /** 1479 * idpf_vport_open - Bring up a vport 1480 * @vport: vport to bring up 1481 * @rtnl: whether to take RTNL lock 1482 */ 1483 static int idpf_vport_open(struct idpf_vport *vport, bool rtnl) 1484 { 1485 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1486 struct idpf_adapter *adapter = vport->adapter; 1487 int err; 1488 1489 if (test_bit(IDPF_VPORT_UP, np->state)) 1490 return -EBUSY; 1491 1492 if (rtnl) 1493 rtnl_lock(); 1494 1495 /* we do not allow interface up just yet */ 1496 netif_carrier_off(vport->netdev); 1497 1498 err = idpf_vport_intr_alloc(vport); 1499 if (err) { 1500 dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n", 1501 vport->vport_id, err); 1502 goto err_rtnl_unlock; 1503 } 1504 1505 err = idpf_vport_queues_alloc(vport); 1506 if (err) 1507 goto intr_rel; 1508 1509 err = idpf_vport_queue_ids_init(vport); 1510 if (err) { 1511 dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n", 1512 vport->vport_id, err); 1513 goto queues_rel; 1514 } 1515 1516 err = idpf_vport_intr_init(vport); 1517 if (err) { 1518 dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n", 1519 vport->vport_id, err); 1520 goto queues_rel; 1521 } 1522 1523 err = idpf_queue_reg_init(vport); 1524 if (err) { 1525 dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n", 1526 vport->vport_id, err); 1527 goto intr_deinit; 1528 } 1529 1530 err = idpf_rx_bufs_init_all(vport); 1531 if (err) { 1532 dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n", 1533 vport->vport_id, err); 1534 goto intr_deinit; 1535 } 1536 1537 idpf_rx_init_buf_tail(vport); 1538 1539 err = idpf_xdp_rxq_info_init_all(vport); 1540 if (err) { 1541 netdev_err(vport->netdev, 1542 "Failed to initialize XDP RxQ info for vport %u: %pe\n", 1543 vport->vport_id, ERR_PTR(err)); 1544 goto intr_deinit; 1545 } 1546 1547 idpf_vport_intr_ena(vport); 1548 1549 err = idpf_send_config_queues_msg(vport); 1550 if (err) { 1551 dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n", 1552 vport->vport_id, err); 1553 goto rxq_deinit; 1554 } 1555 1556 err = idpf_send_map_unmap_queue_vector_msg(vport, true); 1557 if (err) { 1558 dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n", 1559 vport->vport_id, err); 1560 goto rxq_deinit; 1561 } 1562 1563 err = idpf_send_enable_queues_msg(vport); 1564 if (err) { 1565 dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n", 1566 vport->vport_id, err); 1567 goto unmap_queue_vectors; 1568 } 1569 1570 err = idpf_send_enable_vport_msg(vport); 1571 if (err) { 1572 dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n", 1573 vport->vport_id, err); 1574 err = -EAGAIN; 1575 goto disable_queues; 1576 } 1577 1578 idpf_restore_features(vport); 1579 1580 err = idpf_config_rss(vport); 1581 if (err) { 1582 dev_err(&adapter->pdev->dev, "Failed to configure RSS for vport %u: %d\n", 1583 vport->vport_id, err); 1584 goto disable_vport; 1585 } 1586 1587 err = idpf_up_complete(vport); 1588 if (err) { 1589 dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n", 1590 vport->vport_id, err); 1591 goto disable_vport; 1592 } 1593 1594 if (rtnl) 1595 rtnl_unlock(); 1596 1597 return 0; 1598 1599 disable_vport: 1600 idpf_send_disable_vport_msg(vport); 1601 disable_queues: 1602 idpf_send_disable_queues_msg(vport); 1603 unmap_queue_vectors: 1604 idpf_send_map_unmap_queue_vector_msg(vport, false); 1605 rxq_deinit: 1606 idpf_xdp_rxq_info_deinit_all(vport); 1607 intr_deinit: 1608 idpf_vport_intr_deinit(vport); 1609 queues_rel: 1610 idpf_vport_queues_rel(vport); 1611 intr_rel: 1612 idpf_vport_intr_rel(vport); 1613 1614 err_rtnl_unlock: 1615 if (rtnl) 1616 rtnl_unlock(); 1617 1618 return err; 1619 } 1620 1621 /** 1622 * idpf_init_task - Delayed initialization task 1623 * @work: work_struct handle to our data 1624 * 1625 * Init task finishes up pending work started in probe. Due to the asynchronous 1626 * nature in which the device communicates with hardware, we may have to wait 1627 * several milliseconds to get a response. Instead of busy polling in probe, 1628 * pulling it out into a delayed work task prevents us from bogging down the 1629 * whole system waiting for a response from hardware. 1630 */ 1631 void idpf_init_task(struct work_struct *work) 1632 { 1633 struct idpf_vport_config *vport_config; 1634 struct idpf_vport_max_q max_q; 1635 struct idpf_adapter *adapter; 1636 struct idpf_vport *vport; 1637 u16 num_default_vports; 1638 struct pci_dev *pdev; 1639 bool default_vport; 1640 int index, err; 1641 1642 adapter = container_of(work, struct idpf_adapter, init_task.work); 1643 1644 num_default_vports = idpf_get_default_vports(adapter); 1645 if (adapter->num_alloc_vports < num_default_vports) 1646 default_vport = true; 1647 else 1648 default_vport = false; 1649 1650 err = idpf_vport_alloc_max_qs(adapter, &max_q); 1651 if (err) 1652 goto unwind_vports; 1653 1654 err = idpf_send_create_vport_msg(adapter, &max_q); 1655 if (err) { 1656 idpf_vport_dealloc_max_qs(adapter, &max_q); 1657 goto unwind_vports; 1658 } 1659 1660 pdev = adapter->pdev; 1661 vport = idpf_vport_alloc(adapter, &max_q); 1662 if (!vport) { 1663 err = -EFAULT; 1664 dev_err(&pdev->dev, "failed to allocate vport: %d\n", 1665 err); 1666 idpf_vport_dealloc_max_qs(adapter, &max_q); 1667 goto unwind_vports; 1668 } 1669 1670 err = idpf_send_get_rx_ptype_msg(vport); 1671 if (err) 1672 goto unwind_vports; 1673 1674 index = vport->idx; 1675 vport_config = adapter->vport_config[index]; 1676 1677 spin_lock_init(&vport_config->mac_filter_list_lock); 1678 spin_lock_init(&vport_config->flow_steer_list_lock); 1679 1680 INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list); 1681 INIT_LIST_HEAD(&vport_config->user_config.flow_steer_list); 1682 1683 err = idpf_check_supported_desc_ids(vport); 1684 if (err) { 1685 dev_err(&pdev->dev, "failed to get required descriptor ids\n"); 1686 goto unwind_vports; 1687 } 1688 1689 if (idpf_cfg_netdev(vport)) 1690 goto unwind_vports; 1691 1692 /* Spawn and return 'idpf_init_task' work queue until all the 1693 * default vports are created 1694 */ 1695 if (adapter->num_alloc_vports < num_default_vports) { 1696 queue_delayed_work(adapter->init_wq, &adapter->init_task, 1697 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07))); 1698 1699 return; 1700 } 1701 1702 for (index = 0; index < adapter->max_vports; index++) { 1703 struct net_device *netdev = adapter->netdevs[index]; 1704 struct idpf_vport_config *vport_config; 1705 1706 vport_config = adapter->vport_config[index]; 1707 1708 if (!netdev || 1709 test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) 1710 continue; 1711 1712 err = register_netdev(netdev); 1713 if (err) { 1714 dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n", 1715 index, ERR_PTR(err)); 1716 continue; 1717 } 1718 set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags); 1719 } 1720 1721 /* Clear the reset and load bits as all vports are created */ 1722 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1723 clear_bit(IDPF_HR_DRV_LOAD, adapter->flags); 1724 /* Start the statistics task now */ 1725 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1726 msecs_to_jiffies(10 * (pdev->devfn & 0x07))); 1727 1728 return; 1729 1730 unwind_vports: 1731 if (default_vport) { 1732 for (index = 0; index < adapter->max_vports; index++) { 1733 if (adapter->vports[index]) 1734 idpf_vport_dealloc(adapter->vports[index]); 1735 } 1736 } 1737 /* Cleanup after vc_core_init, which has no way of knowing the 1738 * init task failed on driver load. 1739 */ 1740 if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { 1741 cancel_delayed_work_sync(&adapter->serv_task); 1742 cancel_delayed_work_sync(&adapter->mbx_task); 1743 } 1744 idpf_ptp_release(adapter); 1745 1746 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1747 } 1748 1749 /** 1750 * idpf_sriov_ena - Enable or change number of VFs 1751 * @adapter: private data struct 1752 * @num_vfs: number of VFs to allocate 1753 */ 1754 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs) 1755 { 1756 struct device *dev = &adapter->pdev->dev; 1757 int err; 1758 1759 err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs); 1760 if (err) { 1761 dev_err(dev, "Failed to allocate VFs: %d\n", err); 1762 1763 return err; 1764 } 1765 1766 err = pci_enable_sriov(adapter->pdev, num_vfs); 1767 if (err) { 1768 idpf_send_set_sriov_vfs_msg(adapter, 0); 1769 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 1770 1771 return err; 1772 } 1773 1774 adapter->num_vfs = num_vfs; 1775 1776 return num_vfs; 1777 } 1778 1779 /** 1780 * idpf_sriov_configure - Configure the requested VFs 1781 * @pdev: pointer to a pci_dev structure 1782 * @num_vfs: number of vfs to allocate 1783 * 1784 * Enable or change the number of VFs. Called when the user updates the number 1785 * of VFs in sysfs. 1786 **/ 1787 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs) 1788 { 1789 struct idpf_adapter *adapter = pci_get_drvdata(pdev); 1790 1791 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) { 1792 dev_info(&pdev->dev, "SR-IOV is not supported on this device\n"); 1793 1794 return -EOPNOTSUPP; 1795 } 1796 1797 if (num_vfs) 1798 return idpf_sriov_ena(adapter, num_vfs); 1799 1800 if (pci_vfs_assigned(pdev)) { 1801 dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n"); 1802 1803 return -EBUSY; 1804 } 1805 1806 pci_disable_sriov(adapter->pdev); 1807 idpf_send_set_sriov_vfs_msg(adapter, 0); 1808 adapter->num_vfs = 0; 1809 1810 return 0; 1811 } 1812 1813 /** 1814 * idpf_deinit_task - Device deinit routine 1815 * @adapter: Driver specific private structure 1816 * 1817 * Extended remove logic which will be used for 1818 * hard reset as well 1819 */ 1820 void idpf_deinit_task(struct idpf_adapter *adapter) 1821 { 1822 unsigned int i; 1823 1824 /* Wait until the init_task is done else this thread might release 1825 * the resources first and the other thread might end up in a bad state 1826 */ 1827 cancel_delayed_work_sync(&adapter->init_task); 1828 1829 if (!adapter->vports) 1830 return; 1831 1832 cancel_delayed_work_sync(&adapter->stats_task); 1833 1834 for (i = 0; i < adapter->max_vports; i++) { 1835 if (adapter->vports[i]) 1836 idpf_vport_dealloc(adapter->vports[i]); 1837 } 1838 } 1839 1840 /** 1841 * idpf_check_reset_complete - check that reset is complete 1842 * @hw: pointer to hw struct 1843 * @reset_reg: struct with reset registers 1844 * 1845 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 1846 **/ 1847 static int idpf_check_reset_complete(struct idpf_hw *hw, 1848 struct idpf_reset_reg *reset_reg) 1849 { 1850 struct idpf_adapter *adapter = hw->back; 1851 int i; 1852 1853 for (i = 0; i < 2000; i++) { 1854 u32 reg_val = readl(reset_reg->rstat); 1855 1856 /* 0xFFFFFFFF might be read if other side hasn't cleared the 1857 * register for us yet and 0xFFFFFFFF is not a valid value for 1858 * the register, so treat that as invalid. 1859 */ 1860 if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m)) 1861 return 0; 1862 1863 usleep_range(5000, 10000); 1864 } 1865 1866 dev_warn(&adapter->pdev->dev, "Device reset timeout!\n"); 1867 /* Clear the reset flag unconditionally here since the reset 1868 * technically isn't in progress anymore from the driver's perspective 1869 */ 1870 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1871 1872 return -EBUSY; 1873 } 1874 1875 /** 1876 * idpf_init_hard_reset - Initiate a hardware reset 1877 * @adapter: Driver specific private structure 1878 * 1879 * Deallocate the vports and all the resources associated with them and 1880 * reallocate. Also reinitialize the mailbox. Return 0 on success, 1881 * negative on failure. 1882 */ 1883 static void idpf_init_hard_reset(struct idpf_adapter *adapter) 1884 { 1885 struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops; 1886 struct device *dev = &adapter->pdev->dev; 1887 int err; 1888 1889 idpf_detach_and_close(adapter); 1890 mutex_lock(&adapter->vport_ctrl_lock); 1891 1892 dev_info(dev, "Device HW Reset initiated\n"); 1893 1894 /* Prepare for reset */ 1895 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { 1896 reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD); 1897 } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) { 1898 bool is_reset = idpf_is_reset_detected(adapter); 1899 1900 idpf_idc_issue_reset_event(adapter->cdev_info); 1901 1902 idpf_vc_core_deinit(adapter); 1903 if (!is_reset) 1904 reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET); 1905 idpf_deinit_dflt_mbx(adapter); 1906 } else { 1907 dev_err(dev, "Unhandled hard reset cause\n"); 1908 err = -EBADRQC; 1909 goto unlock_mutex; 1910 } 1911 1912 /* Wait for reset to complete */ 1913 err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg); 1914 if (err) { 1915 dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n", 1916 adapter->state); 1917 goto unlock_mutex; 1918 } 1919 1920 /* Reset is complete and so start building the driver resources again */ 1921 err = idpf_init_dflt_mbx(adapter); 1922 if (err) { 1923 dev_err(dev, "Failed to initialize default mailbox: %d\n", err); 1924 goto unlock_mutex; 1925 } 1926 1927 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 1928 1929 /* Initialize the state machine, also allocate memory and request 1930 * resources 1931 */ 1932 err = idpf_vc_core_init(adapter); 1933 if (err) { 1934 cancel_delayed_work_sync(&adapter->mbx_task); 1935 idpf_deinit_dflt_mbx(adapter); 1936 goto unlock_mutex; 1937 } 1938 1939 /* Wait till all the vports are initialized to release the reset lock, 1940 * else user space callbacks may access uninitialized vports 1941 */ 1942 while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1943 msleep(100); 1944 1945 unlock_mutex: 1946 mutex_unlock(&adapter->vport_ctrl_lock); 1947 1948 /* Attempt to restore netdevs and initialize RDMA CORE AUX device, 1949 * provided vc_core_init succeeded. It is still possible that 1950 * vports are not allocated at this point if the init task failed. 1951 */ 1952 if (!err) { 1953 idpf_attach_and_open(adapter); 1954 idpf_idc_init(adapter); 1955 } 1956 } 1957 1958 /** 1959 * idpf_vc_event_task - Handle virtchannel event logic 1960 * @work: work queue struct 1961 */ 1962 void idpf_vc_event_task(struct work_struct *work) 1963 { 1964 struct idpf_adapter *adapter; 1965 1966 adapter = container_of(work, struct idpf_adapter, vc_event_task.work); 1967 1968 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) 1969 return; 1970 1971 if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags)) 1972 goto func_reset; 1973 1974 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) 1975 goto drv_load; 1976 1977 return; 1978 1979 func_reset: 1980 idpf_vc_xn_shutdown(adapter->vcxn_mngr); 1981 drv_load: 1982 set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1983 idpf_init_hard_reset(adapter); 1984 } 1985 1986 /** 1987 * idpf_initiate_soft_reset - Initiate a software reset 1988 * @vport: virtual port data struct 1989 * @reset_cause: reason for the soft reset 1990 * 1991 * Soft reset only reallocs vport queue resources. Returns 0 on success, 1992 * negative on failure. 1993 */ 1994 int idpf_initiate_soft_reset(struct idpf_vport *vport, 1995 enum idpf_vport_reset_cause reset_cause) 1996 { 1997 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1998 bool vport_is_up = test_bit(IDPF_VPORT_UP, np->state); 1999 struct idpf_adapter *adapter = vport->adapter; 2000 struct idpf_vport *new_vport; 2001 int err; 2002 2003 /* If the system is low on memory, we can end up in bad state if we 2004 * free all the memory for queue resources and try to allocate them 2005 * again. Instead, we can pre-allocate the new resources before doing 2006 * anything and bailing if the alloc fails. 2007 * 2008 * Make a clone of the existing vport to mimic its current 2009 * configuration, then modify the new structure with any requested 2010 * changes. Once the allocation of the new resources is done, stop the 2011 * existing vport and copy the configuration to the main vport. If an 2012 * error occurred, the existing vport will be untouched. 2013 * 2014 */ 2015 new_vport = kzalloc(sizeof(*vport), GFP_KERNEL); 2016 if (!new_vport) 2017 return -ENOMEM; 2018 2019 /* This purposely avoids copying the end of the struct because it 2020 * contains wait_queues and mutexes and other stuff we don't want to 2021 * mess with. Nothing below should use those variables from new_vport 2022 * and should instead always refer to them in vport if they need to. 2023 */ 2024 memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up)); 2025 2026 /* Adjust resource parameters prior to reallocating resources */ 2027 switch (reset_cause) { 2028 case IDPF_SR_Q_CHANGE: 2029 err = idpf_vport_adjust_qs(new_vport); 2030 if (err) 2031 goto free_vport; 2032 break; 2033 case IDPF_SR_Q_DESC_CHANGE: 2034 /* Update queue parameters before allocating resources */ 2035 idpf_vport_calc_num_q_desc(new_vport); 2036 break; 2037 case IDPF_SR_MTU_CHANGE: 2038 idpf_idc_vdev_mtu_event(vport->vdev_info, 2039 IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE); 2040 break; 2041 case IDPF_SR_RSC_CHANGE: 2042 break; 2043 default: 2044 dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n"); 2045 err = -EINVAL; 2046 goto free_vport; 2047 } 2048 2049 if (!vport_is_up) { 2050 idpf_send_delete_queues_msg(vport); 2051 } else { 2052 set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags); 2053 idpf_vport_stop(vport, false); 2054 } 2055 2056 /* We're passing in vport here because we need its wait_queue 2057 * to send a message and it should be getting all the vport 2058 * config data out of the adapter but we need to be careful not 2059 * to add code to add_queues to change the vport config within 2060 * vport itself as it will be wiped with a memcpy later. 2061 */ 2062 err = idpf_send_add_queues_msg(vport, new_vport->num_txq, 2063 new_vport->num_complq, 2064 new_vport->num_rxq, 2065 new_vport->num_bufq); 2066 if (err) 2067 goto err_reset; 2068 2069 /* Same comment as above regarding avoiding copying the wait_queues and 2070 * mutexes applies here. We do not want to mess with those if possible. 2071 */ 2072 memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up)); 2073 2074 if (reset_cause == IDPF_SR_Q_CHANGE) 2075 idpf_vport_alloc_vec_indexes(vport); 2076 2077 err = idpf_set_real_num_queues(vport); 2078 if (err) 2079 goto err_open; 2080 2081 if (reset_cause == IDPF_SR_Q_CHANGE && 2082 !netif_is_rxfh_configured(vport->netdev)) 2083 idpf_fill_dflt_rss_lut(vport); 2084 2085 if (vport_is_up) 2086 err = idpf_vport_open(vport, false); 2087 2088 goto free_vport; 2089 2090 err_reset: 2091 idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq, 2092 vport->num_rxq, vport->num_bufq); 2093 2094 err_open: 2095 if (vport_is_up) 2096 idpf_vport_open(vport, false); 2097 2098 free_vport: 2099 kfree(new_vport); 2100 2101 if (reset_cause == IDPF_SR_MTU_CHANGE) 2102 idpf_idc_vdev_mtu_event(vport->vdev_info, 2103 IIDC_RDMA_EVENT_AFTER_MTU_CHANGE); 2104 2105 return err; 2106 } 2107 2108 /** 2109 * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address 2110 * @netdev: the netdevice 2111 * @addr: address to add 2112 * 2113 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2114 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2115 * meaning we cannot sleep in this context. Due to this, we have to add the 2116 * filter and send the virtchnl message asynchronously without waiting for the 2117 * response from the other side. We won't know whether or not the operation 2118 * actually succeeded until we get the message back. Returns 0 on success, 2119 * negative on failure. 2120 */ 2121 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr) 2122 { 2123 struct idpf_netdev_priv *np = netdev_priv(netdev); 2124 2125 return idpf_add_mac_filter(np->vport, np, addr, true); 2126 } 2127 2128 /** 2129 * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2130 * @netdev: the netdevice 2131 * @addr: address to add 2132 * 2133 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2134 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2135 * meaning we cannot sleep in this context. Due to this we have to delete the 2136 * filter and send the virtchnl message asynchronously without waiting for the 2137 * return from the other side. We won't know whether or not the operation 2138 * actually succeeded until we get the message back. Returns 0 on success, 2139 * negative on failure. 2140 */ 2141 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr) 2142 { 2143 struct idpf_netdev_priv *np = netdev_priv(netdev); 2144 2145 /* Under some circumstances, we might receive a request to delete 2146 * our own device address from our uc list. Because we store the 2147 * device address in the VSI's MAC filter list, we need to ignore 2148 * such requests and not delete our device address from this list. 2149 */ 2150 if (ether_addr_equal(addr, netdev->dev_addr)) 2151 return 0; 2152 2153 idpf_del_mac_filter(np->vport, np, addr, true); 2154 2155 return 0; 2156 } 2157 2158 /** 2159 * idpf_set_rx_mode - NDO callback to set the netdev filters 2160 * @netdev: network interface device structure 2161 * 2162 * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We 2163 * cannot sleep in this context. 2164 */ 2165 static void idpf_set_rx_mode(struct net_device *netdev) 2166 { 2167 struct idpf_netdev_priv *np = netdev_priv(netdev); 2168 struct idpf_vport_user_config_data *config_data; 2169 struct idpf_adapter *adapter; 2170 bool changed = false; 2171 struct device *dev; 2172 int err; 2173 2174 adapter = np->adapter; 2175 dev = &adapter->pdev->dev; 2176 2177 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { 2178 __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2179 __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2180 } 2181 2182 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC)) 2183 return; 2184 2185 config_data = &adapter->vport_config[np->vport_idx]->user_config; 2186 /* IFF_PROMISC enables both unicast and multicast promiscuous, 2187 * while IFF_ALLMULTI only enables multicast such that: 2188 * 2189 * promisc + allmulti = unicast | multicast 2190 * promisc + !allmulti = unicast | multicast 2191 * !promisc + allmulti = multicast 2192 */ 2193 if ((netdev->flags & IFF_PROMISC) && 2194 !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2195 changed = true; 2196 dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n"); 2197 if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags)) 2198 dev_info(dev, "Entering multicast promiscuous mode\n"); 2199 } 2200 2201 if (!(netdev->flags & IFF_PROMISC) && 2202 test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2203 changed = true; 2204 dev_info(dev, "Leaving promiscuous mode\n"); 2205 } 2206 2207 if (netdev->flags & IFF_ALLMULTI && 2208 !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2209 changed = true; 2210 dev_info(dev, "Entering multicast promiscuous mode\n"); 2211 } 2212 2213 if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) && 2214 test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2215 changed = true; 2216 dev_info(dev, "Leaving multicast promiscuous mode\n"); 2217 } 2218 2219 if (!changed) 2220 return; 2221 2222 err = idpf_set_promiscuous(adapter, config_data, np->vport_id); 2223 if (err) 2224 dev_err(dev, "Failed to set promiscuous mode: %d\n", err); 2225 } 2226 2227 /** 2228 * idpf_set_features - set the netdev feature flags 2229 * @netdev: ptr to the netdev being adjusted 2230 * @features: the feature set that the stack is suggesting 2231 */ 2232 static int idpf_set_features(struct net_device *netdev, 2233 netdev_features_t features) 2234 { 2235 netdev_features_t changed = netdev->features ^ features; 2236 struct idpf_adapter *adapter; 2237 struct idpf_vport *vport; 2238 int err = 0; 2239 2240 idpf_vport_ctrl_lock(netdev); 2241 vport = idpf_netdev_to_vport(netdev); 2242 2243 adapter = vport->adapter; 2244 2245 if (idpf_is_reset_in_prog(adapter)) { 2246 dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n"); 2247 err = -EBUSY; 2248 goto unlock_mutex; 2249 } 2250 2251 if (changed & NETIF_F_RXHASH) { 2252 struct idpf_netdev_priv *np = netdev_priv(netdev); 2253 2254 netdev->features ^= NETIF_F_RXHASH; 2255 2256 /* If the interface is not up when changing the rxhash, update 2257 * to the HW is skipped. The updated LUT will be committed to 2258 * the HW when the interface is brought up. 2259 */ 2260 if (test_bit(IDPF_VPORT_UP, np->state)) { 2261 err = idpf_config_rss(vport); 2262 if (err) 2263 goto unlock_mutex; 2264 } 2265 } 2266 2267 if (changed & NETIF_F_GRO_HW) { 2268 netdev->features ^= NETIF_F_GRO_HW; 2269 err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE); 2270 if (err) 2271 goto unlock_mutex; 2272 } 2273 2274 if (changed & NETIF_F_LOOPBACK) { 2275 netdev->features ^= NETIF_F_LOOPBACK; 2276 err = idpf_send_ena_dis_loopback_msg(vport); 2277 } 2278 2279 unlock_mutex: 2280 idpf_vport_ctrl_unlock(netdev); 2281 2282 return err; 2283 } 2284 2285 /** 2286 * idpf_open - Called when a network interface becomes active 2287 * @netdev: network interface device structure 2288 * 2289 * The open entry point is called when a network interface is made 2290 * active by the system (IFF_UP). At this point all resources needed 2291 * for transmit and receive operations are allocated, the interrupt 2292 * handler is registered with the OS, the netdev watchdog is enabled, 2293 * and the stack is notified that the interface is ready. 2294 * 2295 * Returns 0 on success, negative value on failure 2296 */ 2297 static int idpf_open(struct net_device *netdev) 2298 { 2299 struct idpf_vport *vport; 2300 int err; 2301 2302 idpf_vport_ctrl_lock(netdev); 2303 vport = idpf_netdev_to_vport(netdev); 2304 2305 err = idpf_set_real_num_queues(vport); 2306 if (err) 2307 goto unlock; 2308 2309 err = idpf_vport_open(vport, false); 2310 2311 unlock: 2312 idpf_vport_ctrl_unlock(netdev); 2313 2314 return err; 2315 } 2316 2317 /** 2318 * idpf_change_mtu - NDO callback to change the MTU 2319 * @netdev: network interface device structure 2320 * @new_mtu: new value for maximum frame size 2321 * 2322 * Returns 0 on success, negative on failure 2323 */ 2324 static int idpf_change_mtu(struct net_device *netdev, int new_mtu) 2325 { 2326 struct idpf_vport *vport; 2327 int err; 2328 2329 idpf_vport_ctrl_lock(netdev); 2330 vport = idpf_netdev_to_vport(netdev); 2331 2332 WRITE_ONCE(netdev->mtu, new_mtu); 2333 2334 err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE); 2335 2336 idpf_vport_ctrl_unlock(netdev); 2337 2338 return err; 2339 } 2340 2341 /** 2342 * idpf_chk_tso_segment - Check skb is not using too many buffers 2343 * @skb: send buffer 2344 * @max_bufs: maximum number of buffers 2345 * 2346 * For TSO we need to count the TSO header and segment payload separately. As 2347 * such we need to check cases where we have max_bufs-1 fragments or more as we 2348 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1 2349 * for the segment payload in the first descriptor, and another max_buf-1 for 2350 * the fragments. 2351 * 2352 * Returns true if the packet needs to be software segmented by core stack. 2353 */ 2354 static bool idpf_chk_tso_segment(const struct sk_buff *skb, 2355 unsigned int max_bufs) 2356 { 2357 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2358 const skb_frag_t *frag, *stale; 2359 int nr_frags, sum; 2360 2361 /* no need to check if number of frags is less than max_bufs - 1 */ 2362 nr_frags = shinfo->nr_frags; 2363 if (nr_frags < (max_bufs - 1)) 2364 return false; 2365 2366 /* We need to walk through the list and validate that each group 2367 * of max_bufs-2 fragments totals at least gso_size. 2368 */ 2369 nr_frags -= max_bufs - 2; 2370 frag = &shinfo->frags[0]; 2371 2372 /* Initialize size to the negative value of gso_size minus 1. We use 2373 * this as the worst case scenario in which the frag ahead of us only 2374 * provides one byte which is why we are limited to max_bufs-2 2375 * descriptors for a single transmit as the header and previous 2376 * fragment are already consuming 2 descriptors. 2377 */ 2378 sum = 1 - shinfo->gso_size; 2379 2380 /* Add size of frags 0 through 4 to create our initial sum */ 2381 sum += skb_frag_size(frag++); 2382 sum += skb_frag_size(frag++); 2383 sum += skb_frag_size(frag++); 2384 sum += skb_frag_size(frag++); 2385 sum += skb_frag_size(frag++); 2386 2387 /* Walk through fragments adding latest fragment, testing it, and 2388 * then removing stale fragments from the sum. 2389 */ 2390 for (stale = &shinfo->frags[0];; stale++) { 2391 int stale_size = skb_frag_size(stale); 2392 2393 sum += skb_frag_size(frag++); 2394 2395 /* The stale fragment may present us with a smaller 2396 * descriptor than the actual fragment size. To account 2397 * for that we need to remove all the data on the front and 2398 * figure out what the remainder would be in the last 2399 * descriptor associated with the fragment. 2400 */ 2401 if (stale_size > IDPF_TX_MAX_DESC_DATA) { 2402 int align_pad = -(skb_frag_off(stale)) & 2403 (IDPF_TX_MAX_READ_REQ_SIZE - 1); 2404 2405 sum -= align_pad; 2406 stale_size -= align_pad; 2407 2408 do { 2409 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2410 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2411 } while (stale_size > IDPF_TX_MAX_DESC_DATA); 2412 } 2413 2414 /* if sum is negative we failed to make sufficient progress */ 2415 if (sum < 0) 2416 return true; 2417 2418 if (!nr_frags--) 2419 break; 2420 2421 sum -= stale_size; 2422 } 2423 2424 return false; 2425 } 2426 2427 /** 2428 * idpf_features_check - Validate packet conforms to limits 2429 * @skb: skb buffer 2430 * @netdev: This port's netdev 2431 * @features: Offload features that the stack believes apply 2432 */ 2433 static netdev_features_t idpf_features_check(struct sk_buff *skb, 2434 struct net_device *netdev, 2435 netdev_features_t features) 2436 { 2437 struct idpf_netdev_priv *np = netdev_priv(netdev); 2438 u16 max_tx_hdr_size = np->max_tx_hdr_size; 2439 size_t len; 2440 2441 /* No point in doing any of this if neither checksum nor GSO are 2442 * being requested for this frame. We can rule out both by just 2443 * checking for CHECKSUM_PARTIAL 2444 */ 2445 if (skb->ip_summed != CHECKSUM_PARTIAL) 2446 return features; 2447 2448 if (skb_is_gso(skb)) { 2449 /* We cannot support GSO if the MSS is going to be less than 2450 * 88 bytes. If it is then we need to drop support for GSO. 2451 */ 2452 if (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS) 2453 features &= ~NETIF_F_GSO_MASK; 2454 else if (idpf_chk_tso_segment(skb, np->tx_max_bufs)) 2455 features &= ~NETIF_F_GSO_MASK; 2456 } 2457 2458 /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */ 2459 len = skb_network_offset(skb); 2460 if (unlikely(len & ~(126))) 2461 goto unsupported; 2462 2463 len = skb_network_header_len(skb); 2464 if (unlikely(len > max_tx_hdr_size)) 2465 goto unsupported; 2466 2467 if (!skb->encapsulation) 2468 return features; 2469 2470 /* L4TUNLEN can support 127 words */ 2471 len = skb_inner_network_header(skb) - skb_transport_header(skb); 2472 if (unlikely(len & ~(127 * 2))) 2473 goto unsupported; 2474 2475 /* IPLEN can support at most 127 dwords */ 2476 len = skb_inner_network_header_len(skb); 2477 if (unlikely(len > max_tx_hdr_size)) 2478 goto unsupported; 2479 2480 /* No need to validate L4LEN as TCP is the only protocol with a 2481 * a flexible value and we support all possible values supported 2482 * by TCP, which is at most 15 dwords 2483 */ 2484 2485 return features; 2486 2487 unsupported: 2488 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2489 } 2490 2491 /** 2492 * idpf_set_mac - NDO callback to set port mac address 2493 * @netdev: network interface device structure 2494 * @p: pointer to an address structure 2495 * 2496 * Returns 0 on success, negative on failure 2497 **/ 2498 static int idpf_set_mac(struct net_device *netdev, void *p) 2499 { 2500 struct idpf_netdev_priv *np = netdev_priv(netdev); 2501 struct idpf_vport_config *vport_config; 2502 struct sockaddr *addr = p; 2503 u8 old_mac_addr[ETH_ALEN]; 2504 struct idpf_vport *vport; 2505 int err = 0; 2506 2507 idpf_vport_ctrl_lock(netdev); 2508 vport = idpf_netdev_to_vport(netdev); 2509 2510 if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS, 2511 VIRTCHNL2_CAP_MACFILTER)) { 2512 dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n"); 2513 err = -EOPNOTSUPP; 2514 goto unlock_mutex; 2515 } 2516 2517 if (!is_valid_ether_addr(addr->sa_data)) { 2518 dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n", 2519 addr->sa_data); 2520 err = -EADDRNOTAVAIL; 2521 goto unlock_mutex; 2522 } 2523 2524 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 2525 goto unlock_mutex; 2526 2527 ether_addr_copy(old_mac_addr, vport->default_mac_addr); 2528 ether_addr_copy(vport->default_mac_addr, addr->sa_data); 2529 vport_config = vport->adapter->vport_config[vport->idx]; 2530 err = idpf_add_mac_filter(vport, np, addr->sa_data, false); 2531 if (err) { 2532 __idpf_del_mac_filter(vport_config, addr->sa_data); 2533 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 2534 goto unlock_mutex; 2535 } 2536 2537 if (is_valid_ether_addr(old_mac_addr)) 2538 __idpf_del_mac_filter(vport_config, old_mac_addr); 2539 2540 eth_hw_addr_set(netdev, addr->sa_data); 2541 2542 unlock_mutex: 2543 idpf_vport_ctrl_unlock(netdev); 2544 2545 return err; 2546 } 2547 2548 /** 2549 * idpf_alloc_dma_mem - Allocate dma memory 2550 * @hw: pointer to hw struct 2551 * @mem: pointer to dma_mem struct 2552 * @size: size of the memory to allocate 2553 */ 2554 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size) 2555 { 2556 struct idpf_adapter *adapter = hw->back; 2557 size_t sz = ALIGN(size, 4096); 2558 2559 /* The control queue resources are freed under a spinlock, contiguous 2560 * pages will avoid IOMMU remapping and the use vmap (and vunmap in 2561 * dma_free_*() path. 2562 */ 2563 mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa, 2564 GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS); 2565 mem->size = sz; 2566 2567 return mem->va; 2568 } 2569 2570 /** 2571 * idpf_free_dma_mem - Free the allocated dma memory 2572 * @hw: pointer to hw struct 2573 * @mem: pointer to dma_mem struct 2574 */ 2575 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem) 2576 { 2577 struct idpf_adapter *adapter = hw->back; 2578 2579 dma_free_attrs(&adapter->pdev->dev, mem->size, 2580 mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS); 2581 mem->size = 0; 2582 mem->va = NULL; 2583 mem->pa = 0; 2584 } 2585 2586 static int idpf_hwtstamp_set(struct net_device *netdev, 2587 struct kernel_hwtstamp_config *config, 2588 struct netlink_ext_ack *extack) 2589 { 2590 struct idpf_vport *vport; 2591 int err; 2592 2593 idpf_vport_ctrl_lock(netdev); 2594 vport = idpf_netdev_to_vport(netdev); 2595 2596 if (!vport->link_up) { 2597 idpf_vport_ctrl_unlock(netdev); 2598 return -EPERM; 2599 } 2600 2601 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2602 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2603 idpf_vport_ctrl_unlock(netdev); 2604 return -EOPNOTSUPP; 2605 } 2606 2607 err = idpf_ptp_set_timestamp_mode(vport, config); 2608 2609 idpf_vport_ctrl_unlock(netdev); 2610 2611 return err; 2612 } 2613 2614 static int idpf_hwtstamp_get(struct net_device *netdev, 2615 struct kernel_hwtstamp_config *config) 2616 { 2617 struct idpf_vport *vport; 2618 2619 idpf_vport_ctrl_lock(netdev); 2620 vport = idpf_netdev_to_vport(netdev); 2621 2622 if (!vport->link_up) { 2623 idpf_vport_ctrl_unlock(netdev); 2624 return -EPERM; 2625 } 2626 2627 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2628 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2629 idpf_vport_ctrl_unlock(netdev); 2630 return 0; 2631 } 2632 2633 *config = vport->tstamp_config; 2634 2635 idpf_vport_ctrl_unlock(netdev); 2636 2637 return 0; 2638 } 2639 2640 static const struct net_device_ops idpf_netdev_ops = { 2641 .ndo_open = idpf_open, 2642 .ndo_stop = idpf_stop, 2643 .ndo_start_xmit = idpf_tx_start, 2644 .ndo_features_check = idpf_features_check, 2645 .ndo_set_rx_mode = idpf_set_rx_mode, 2646 .ndo_validate_addr = eth_validate_addr, 2647 .ndo_set_mac_address = idpf_set_mac, 2648 .ndo_change_mtu = idpf_change_mtu, 2649 .ndo_get_stats64 = idpf_get_stats64, 2650 .ndo_set_features = idpf_set_features, 2651 .ndo_tx_timeout = idpf_tx_timeout, 2652 .ndo_hwtstamp_get = idpf_hwtstamp_get, 2653 .ndo_hwtstamp_set = idpf_hwtstamp_set, 2654 .ndo_bpf = idpf_xdp, 2655 .ndo_xdp_xmit = idpf_xdp_xmit, 2656 .ndo_xsk_wakeup = idpf_xsk_wakeup, 2657 }; 2658