xref: /linux/drivers/net/ethernet/intel/idpf/idpf_lib.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 
7 static const struct net_device_ops idpf_netdev_ops;
8 
9 /**
10  * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
11  * @adapter: private data struct
12  *
13  * Return 0 on success, error on failure
14  */
15 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
16 {
17 	struct idpf_vector_lifo *stack;
18 	u16 min_vec;
19 	u32 i;
20 
21 	mutex_lock(&adapter->vector_lock);
22 	min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
23 	stack = &adapter->vector_stack;
24 	stack->size = adapter->num_msix_entries;
25 	/* set the base and top to point at start of the 'free pool' to
26 	 * distribute the unused vectors on-demand basis
27 	 */
28 	stack->base = min_vec;
29 	stack->top = min_vec;
30 
31 	stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
32 	if (!stack->vec_idx) {
33 		mutex_unlock(&adapter->vector_lock);
34 
35 		return -ENOMEM;
36 	}
37 
38 	for (i = 0; i < stack->size; i++)
39 		stack->vec_idx[i] = i;
40 
41 	mutex_unlock(&adapter->vector_lock);
42 
43 	return 0;
44 }
45 
46 /**
47  * idpf_deinit_vector_stack - zero out the MSIX vector stack
48  * @adapter: private data struct
49  */
50 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
51 {
52 	struct idpf_vector_lifo *stack;
53 
54 	mutex_lock(&adapter->vector_lock);
55 	stack = &adapter->vector_stack;
56 	kfree(stack->vec_idx);
57 	stack->vec_idx = NULL;
58 	mutex_unlock(&adapter->vector_lock);
59 }
60 
61 /**
62  * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
63  * @adapter: adapter structure
64  *
65  * This will also disable interrupt mode and queue up mailbox task. Mailbox
66  * task will reschedule itself if not in interrupt mode.
67  */
68 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
69 {
70 	clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
71 	kfree(free_irq(adapter->msix_entries[0].vector, adapter));
72 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
73 }
74 
75 /**
76  * idpf_intr_rel - Release interrupt capabilities and free memory
77  * @adapter: adapter to disable interrupts on
78  */
79 void idpf_intr_rel(struct idpf_adapter *adapter)
80 {
81 	if (!adapter->msix_entries)
82 		return;
83 
84 	idpf_mb_intr_rel_irq(adapter);
85 	pci_free_irq_vectors(adapter->pdev);
86 	idpf_send_dealloc_vectors_msg(adapter);
87 	idpf_deinit_vector_stack(adapter);
88 	kfree(adapter->msix_entries);
89 	adapter->msix_entries = NULL;
90 }
91 
92 /**
93  * idpf_mb_intr_clean - Interrupt handler for the mailbox
94  * @irq: interrupt number
95  * @data: pointer to the adapter structure
96  */
97 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
98 {
99 	struct idpf_adapter *adapter = (struct idpf_adapter *)data;
100 
101 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
102 
103 	return IRQ_HANDLED;
104 }
105 
106 /**
107  * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
108  * @adapter: adapter to get the hardware address for register write
109  */
110 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
111 {
112 	struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
113 	u32 val;
114 
115 	val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
116 	writel(val, intr->dyn_ctl);
117 	writel(intr->icr_ena_ctlq_m, intr->icr_ena);
118 }
119 
120 /**
121  * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
122  * @adapter: adapter structure to pass to the mailbox irq handler
123  */
124 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
125 {
126 	int irq_num, mb_vidx = 0, err;
127 	char *name;
128 
129 	irq_num = adapter->msix_entries[mb_vidx].vector;
130 	name = kasprintf(GFP_KERNEL, "%s-%s-%d",
131 			 dev_driver_string(&adapter->pdev->dev),
132 			 "Mailbox", mb_vidx);
133 	err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
134 	if (err) {
135 		dev_err(&adapter->pdev->dev,
136 			"IRQ request for mailbox failed, error: %d\n", err);
137 
138 		return err;
139 	}
140 
141 	set_bit(IDPF_MB_INTR_MODE, adapter->flags);
142 
143 	return 0;
144 }
145 
146 /**
147  * idpf_set_mb_vec_id - Set vector index for mailbox
148  * @adapter: adapter structure to access the vector chunks
149  *
150  * The first vector id in the requested vector chunks from the CP is for
151  * the mailbox
152  */
153 static void idpf_set_mb_vec_id(struct idpf_adapter *adapter)
154 {
155 	if (adapter->req_vec_chunks)
156 		adapter->mb_vector.v_idx =
157 			le16_to_cpu(adapter->caps.mailbox_vector_id);
158 	else
159 		adapter->mb_vector.v_idx = 0;
160 }
161 
162 /**
163  * idpf_mb_intr_init - Initialize the mailbox interrupt
164  * @adapter: adapter structure to store the mailbox vector
165  */
166 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
167 {
168 	adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
169 	adapter->irq_mb_handler = idpf_mb_intr_clean;
170 
171 	return idpf_mb_intr_req_irq(adapter);
172 }
173 
174 /**
175  * idpf_vector_lifo_push - push MSIX vector index onto stack
176  * @adapter: private data struct
177  * @vec_idx: vector index to store
178  */
179 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
180 {
181 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
182 
183 	lockdep_assert_held(&adapter->vector_lock);
184 
185 	if (stack->top == stack->base) {
186 		dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
187 			stack->top);
188 		return -EINVAL;
189 	}
190 
191 	stack->vec_idx[--stack->top] = vec_idx;
192 
193 	return 0;
194 }
195 
196 /**
197  * idpf_vector_lifo_pop - pop MSIX vector index from stack
198  * @adapter: private data struct
199  */
200 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
201 {
202 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
203 
204 	lockdep_assert_held(&adapter->vector_lock);
205 
206 	if (stack->top == stack->size) {
207 		dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
208 
209 		return -EINVAL;
210 	}
211 
212 	return stack->vec_idx[stack->top++];
213 }
214 
215 /**
216  * idpf_vector_stash - Store the vector indexes onto the stack
217  * @adapter: private data struct
218  * @q_vector_idxs: vector index array
219  * @vec_info: info related to the number of vectors
220  *
221  * This function is a no-op if there are no vectors indexes to be stashed
222  */
223 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
224 			      struct idpf_vector_info *vec_info)
225 {
226 	int i, base = 0;
227 	u16 vec_idx;
228 
229 	lockdep_assert_held(&adapter->vector_lock);
230 
231 	if (!vec_info->num_curr_vecs)
232 		return;
233 
234 	/* For default vports, no need to stash vector allocated from the
235 	 * default pool onto the stack
236 	 */
237 	if (vec_info->default_vport)
238 		base = IDPF_MIN_Q_VEC;
239 
240 	for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
241 		vec_idx = q_vector_idxs[i];
242 		idpf_vector_lifo_push(adapter, vec_idx);
243 		adapter->num_avail_msix++;
244 	}
245 }
246 
247 /**
248  * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
249  * @adapter: driver specific private structure
250  * @q_vector_idxs: vector index array
251  * @vec_info: info related to the number of vectors
252  *
253  * This is the core function to distribute the MSIX vectors acquired from the
254  * OS. It expects the caller to pass the number of vectors required and
255  * also previously allocated. First, it stashes previously allocated vector
256  * indexes on to the stack and then figures out if it can allocate requested
257  * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
258  * requested vectors, then this function just stashes the already allocated
259  * vectors and returns 0.
260  *
261  * Returns actual number of vectors allocated on success, error value on failure
262  * If 0 is returned, implies the stack has no vectors to allocate which is also
263  * a failure case for the caller
264  */
265 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
266 				u16 *q_vector_idxs,
267 				struct idpf_vector_info *vec_info)
268 {
269 	u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
270 	struct idpf_vector_lifo *stack;
271 	int i, j, vecid;
272 
273 	mutex_lock(&adapter->vector_lock);
274 	stack = &adapter->vector_stack;
275 	num_req_vecs = vec_info->num_req_vecs;
276 
277 	/* Stash interrupt vector indexes onto the stack if required */
278 	idpf_vector_stash(adapter, q_vector_idxs, vec_info);
279 
280 	if (!num_req_vecs)
281 		goto rel_lock;
282 
283 	if (vec_info->default_vport) {
284 		/* As IDPF_MIN_Q_VEC per default vport is put aside in the
285 		 * default pool of the stack, use them for default vports
286 		 */
287 		j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
288 		for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
289 			q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
290 			num_req_vecs--;
291 		}
292 	}
293 
294 	/* Find if stack has enough vector to allocate */
295 	max_vecs = min(adapter->num_avail_msix, num_req_vecs);
296 
297 	for (j = 0; j < max_vecs; j++) {
298 		vecid = idpf_vector_lifo_pop(adapter);
299 		q_vector_idxs[num_alloc_vecs++] = vecid;
300 	}
301 	adapter->num_avail_msix -= max_vecs;
302 
303 rel_lock:
304 	mutex_unlock(&adapter->vector_lock);
305 
306 	return num_alloc_vecs;
307 }
308 
309 /**
310  * idpf_intr_req - Request interrupt capabilities
311  * @adapter: adapter to enable interrupts on
312  *
313  * Returns 0 on success, negative on failure
314  */
315 int idpf_intr_req(struct idpf_adapter *adapter)
316 {
317 	u16 default_vports = idpf_get_default_vports(adapter);
318 	int num_q_vecs, total_vecs, num_vec_ids;
319 	int min_vectors, v_actual, err;
320 	unsigned int vector;
321 	u16 *vecids;
322 
323 	total_vecs = idpf_get_reserved_vecs(adapter);
324 	num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
325 
326 	err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
327 	if (err) {
328 		dev_err(&adapter->pdev->dev,
329 			"Failed to allocate %d vectors: %d\n", num_q_vecs, err);
330 
331 		return -EAGAIN;
332 	}
333 
334 	min_vectors = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
335 	v_actual = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
336 					 total_vecs, PCI_IRQ_MSIX);
337 	if (v_actual < min_vectors) {
338 		dev_err(&adapter->pdev->dev, "Failed to allocate MSIX vectors: %d\n",
339 			v_actual);
340 		err = -EAGAIN;
341 		goto send_dealloc_vecs;
342 	}
343 
344 	adapter->msix_entries = kcalloc(v_actual, sizeof(struct msix_entry),
345 					GFP_KERNEL);
346 
347 	if (!adapter->msix_entries) {
348 		err = -ENOMEM;
349 		goto free_irq;
350 	}
351 
352 	idpf_set_mb_vec_id(adapter);
353 
354 	vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
355 	if (!vecids) {
356 		err = -ENOMEM;
357 		goto free_msix;
358 	}
359 
360 	if (adapter->req_vec_chunks) {
361 		struct virtchnl2_vector_chunks *vchunks;
362 		struct virtchnl2_alloc_vectors *ac;
363 
364 		ac = adapter->req_vec_chunks;
365 		vchunks = &ac->vchunks;
366 
367 		num_vec_ids = idpf_get_vec_ids(adapter, vecids, total_vecs,
368 					       vchunks);
369 		if (num_vec_ids < v_actual) {
370 			err = -EINVAL;
371 			goto free_vecids;
372 		}
373 	} else {
374 		int i;
375 
376 		for (i = 0; i < v_actual; i++)
377 			vecids[i] = i;
378 	}
379 
380 	for (vector = 0; vector < v_actual; vector++) {
381 		adapter->msix_entries[vector].entry = vecids[vector];
382 		adapter->msix_entries[vector].vector =
383 			pci_irq_vector(adapter->pdev, vector);
384 	}
385 
386 	adapter->num_req_msix = total_vecs;
387 	adapter->num_msix_entries = v_actual;
388 	/* 'num_avail_msix' is used to distribute excess vectors to the vports
389 	 * after considering the minimum vectors required per each default
390 	 * vport
391 	 */
392 	adapter->num_avail_msix = v_actual - min_vectors;
393 
394 	/* Fill MSIX vector lifo stack with vector indexes */
395 	err = idpf_init_vector_stack(adapter);
396 	if (err)
397 		goto free_vecids;
398 
399 	err = idpf_mb_intr_init(adapter);
400 	if (err)
401 		goto deinit_vec_stack;
402 	idpf_mb_irq_enable(adapter);
403 	kfree(vecids);
404 
405 	return 0;
406 
407 deinit_vec_stack:
408 	idpf_deinit_vector_stack(adapter);
409 free_vecids:
410 	kfree(vecids);
411 free_msix:
412 	kfree(adapter->msix_entries);
413 	adapter->msix_entries = NULL;
414 free_irq:
415 	pci_free_irq_vectors(adapter->pdev);
416 send_dealloc_vecs:
417 	idpf_send_dealloc_vectors_msg(adapter);
418 
419 	return err;
420 }
421 
422 /**
423  * idpf_find_mac_filter - Search filter list for specific mac filter
424  * @vconfig: Vport config structure
425  * @macaddr: The MAC address
426  *
427  * Returns ptr to the filter object or NULL. Must be called while holding the
428  * mac_filter_list_lock.
429  **/
430 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
431 						    const u8 *macaddr)
432 {
433 	struct idpf_mac_filter *f;
434 
435 	if (!macaddr)
436 		return NULL;
437 
438 	list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
439 		if (ether_addr_equal(macaddr, f->macaddr))
440 			return f;
441 	}
442 
443 	return NULL;
444 }
445 
446 /**
447  * __idpf_del_mac_filter - Delete a MAC filter from the filter list
448  * @vport_config: Vport config structure
449  * @macaddr: The MAC address
450  *
451  * Returns 0 on success, error value on failure
452  **/
453 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
454 				 const u8 *macaddr)
455 {
456 	struct idpf_mac_filter *f;
457 
458 	spin_lock_bh(&vport_config->mac_filter_list_lock);
459 	f = idpf_find_mac_filter(vport_config, macaddr);
460 	if (f) {
461 		list_del(&f->list);
462 		kfree(f);
463 	}
464 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
465 
466 	return 0;
467 }
468 
469 /**
470  * idpf_del_mac_filter - Delete a MAC filter from the filter list
471  * @vport: Main vport structure
472  * @np: Netdev private structure
473  * @macaddr: The MAC address
474  * @async: Don't wait for return message
475  *
476  * Removes filter from list and if interface is up, tells hardware about the
477  * removed filter.
478  **/
479 static int idpf_del_mac_filter(struct idpf_vport *vport,
480 			       struct idpf_netdev_priv *np,
481 			       const u8 *macaddr, bool async)
482 {
483 	struct idpf_vport_config *vport_config;
484 	struct idpf_mac_filter *f;
485 
486 	vport_config = np->adapter->vport_config[np->vport_idx];
487 
488 	spin_lock_bh(&vport_config->mac_filter_list_lock);
489 	f = idpf_find_mac_filter(vport_config, macaddr);
490 	if (f) {
491 		f->remove = true;
492 	} else {
493 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
494 
495 		return -EINVAL;
496 	}
497 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
498 
499 	if (np->state == __IDPF_VPORT_UP) {
500 		int err;
501 
502 		err = idpf_add_del_mac_filters(vport, np, false, async);
503 		if (err)
504 			return err;
505 	}
506 
507 	return  __idpf_del_mac_filter(vport_config, macaddr);
508 }
509 
510 /**
511  * __idpf_add_mac_filter - Add mac filter helper function
512  * @vport_config: Vport config structure
513  * @macaddr: Address to add
514  *
515  * Takes mac_filter_list_lock spinlock to add new filter to list.
516  */
517 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
518 				 const u8 *macaddr)
519 {
520 	struct idpf_mac_filter *f;
521 
522 	spin_lock_bh(&vport_config->mac_filter_list_lock);
523 
524 	f = idpf_find_mac_filter(vport_config, macaddr);
525 	if (f) {
526 		f->remove = false;
527 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
528 
529 		return 0;
530 	}
531 
532 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
533 	if (!f) {
534 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
535 
536 		return -ENOMEM;
537 	}
538 
539 	ether_addr_copy(f->macaddr, macaddr);
540 	list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
541 	f->add = true;
542 
543 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
544 
545 	return 0;
546 }
547 
548 /**
549  * idpf_add_mac_filter - Add a mac filter to the filter list
550  * @vport: Main vport structure
551  * @np: Netdev private structure
552  * @macaddr: The MAC address
553  * @async: Don't wait for return message
554  *
555  * Returns 0 on success or error on failure. If interface is up, we'll also
556  * send the virtchnl message to tell hardware about the filter.
557  **/
558 static int idpf_add_mac_filter(struct idpf_vport *vport,
559 			       struct idpf_netdev_priv *np,
560 			       const u8 *macaddr, bool async)
561 {
562 	struct idpf_vport_config *vport_config;
563 	int err;
564 
565 	vport_config = np->adapter->vport_config[np->vport_idx];
566 	err = __idpf_add_mac_filter(vport_config, macaddr);
567 	if (err)
568 		return err;
569 
570 	if (np->state == __IDPF_VPORT_UP)
571 		err = idpf_add_del_mac_filters(vport, np, true, async);
572 
573 	return err;
574 }
575 
576 /**
577  * idpf_del_all_mac_filters - Delete all MAC filters in list
578  * @vport: main vport struct
579  *
580  * Takes mac_filter_list_lock spinlock.  Deletes all filters
581  */
582 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
583 {
584 	struct idpf_vport_config *vport_config;
585 	struct idpf_mac_filter *f, *ftmp;
586 
587 	vport_config = vport->adapter->vport_config[vport->idx];
588 	spin_lock_bh(&vport_config->mac_filter_list_lock);
589 
590 	list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
591 				 list) {
592 		list_del(&f->list);
593 		kfree(f);
594 	}
595 
596 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
597 }
598 
599 /**
600  * idpf_restore_mac_filters - Re-add all MAC filters in list
601  * @vport: main vport struct
602  *
603  * Takes mac_filter_list_lock spinlock.  Sets add field to true for filters to
604  * resync filters back to HW.
605  */
606 static void idpf_restore_mac_filters(struct idpf_vport *vport)
607 {
608 	struct idpf_vport_config *vport_config;
609 	struct idpf_mac_filter *f;
610 
611 	vport_config = vport->adapter->vport_config[vport->idx];
612 	spin_lock_bh(&vport_config->mac_filter_list_lock);
613 
614 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
615 		f->add = true;
616 
617 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
618 
619 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
620 				 true, false);
621 }
622 
623 /**
624  * idpf_remove_mac_filters - Remove all MAC filters in list
625  * @vport: main vport struct
626  *
627  * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
628  * to remove filters in HW.
629  */
630 static void idpf_remove_mac_filters(struct idpf_vport *vport)
631 {
632 	struct idpf_vport_config *vport_config;
633 	struct idpf_mac_filter *f;
634 
635 	vport_config = vport->adapter->vport_config[vport->idx];
636 	spin_lock_bh(&vport_config->mac_filter_list_lock);
637 
638 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
639 		f->remove = true;
640 
641 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
642 
643 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
644 				 false, false);
645 }
646 
647 /**
648  * idpf_deinit_mac_addr - deinitialize mac address for vport
649  * @vport: main vport structure
650  */
651 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
652 {
653 	struct idpf_vport_config *vport_config;
654 	struct idpf_mac_filter *f;
655 
656 	vport_config = vport->adapter->vport_config[vport->idx];
657 
658 	spin_lock_bh(&vport_config->mac_filter_list_lock);
659 
660 	f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
661 	if (f) {
662 		list_del(&f->list);
663 		kfree(f);
664 	}
665 
666 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
667 }
668 
669 /**
670  * idpf_init_mac_addr - initialize mac address for vport
671  * @vport: main vport structure
672  * @netdev: pointer to netdev struct associated with this vport
673  */
674 static int idpf_init_mac_addr(struct idpf_vport *vport,
675 			      struct net_device *netdev)
676 {
677 	struct idpf_netdev_priv *np = netdev_priv(netdev);
678 	struct idpf_adapter *adapter = vport->adapter;
679 	int err;
680 
681 	if (is_valid_ether_addr(vport->default_mac_addr)) {
682 		eth_hw_addr_set(netdev, vport->default_mac_addr);
683 		ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
684 
685 		return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
686 					   false);
687 	}
688 
689 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
690 			     VIRTCHNL2_CAP_MACFILTER)) {
691 		dev_err(&adapter->pdev->dev,
692 			"MAC address is not provided and capability is not set\n");
693 
694 		return -EINVAL;
695 	}
696 
697 	eth_hw_addr_random(netdev);
698 	err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
699 	if (err)
700 		return err;
701 
702 	dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
703 		 vport->default_mac_addr, netdev->dev_addr);
704 	ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
705 
706 	return 0;
707 }
708 
709 /**
710  * idpf_cfg_netdev - Allocate, configure and register a netdev
711  * @vport: main vport structure
712  *
713  * Returns 0 on success, negative value on failure.
714  */
715 static int idpf_cfg_netdev(struct idpf_vport *vport)
716 {
717 	struct idpf_adapter *adapter = vport->adapter;
718 	struct idpf_vport_config *vport_config;
719 	netdev_features_t dflt_features;
720 	netdev_features_t offloads = 0;
721 	struct idpf_netdev_priv *np;
722 	struct net_device *netdev;
723 	u16 idx = vport->idx;
724 	int err;
725 
726 	vport_config = adapter->vport_config[idx];
727 
728 	/* It's possible we already have a netdev allocated and registered for
729 	 * this vport
730 	 */
731 	if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
732 		netdev = adapter->netdevs[idx];
733 		np = netdev_priv(netdev);
734 		np->vport = vport;
735 		np->vport_idx = vport->idx;
736 		np->vport_id = vport->vport_id;
737 		vport->netdev = netdev;
738 
739 		return idpf_init_mac_addr(vport, netdev);
740 	}
741 
742 	netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
743 				    vport_config->max_q.max_txq,
744 				    vport_config->max_q.max_rxq);
745 	if (!netdev)
746 		return -ENOMEM;
747 
748 	vport->netdev = netdev;
749 	np = netdev_priv(netdev);
750 	np->vport = vport;
751 	np->adapter = adapter;
752 	np->vport_idx = vport->idx;
753 	np->vport_id = vport->vport_id;
754 
755 	spin_lock_init(&np->stats_lock);
756 
757 	err = idpf_init_mac_addr(vport, netdev);
758 	if (err) {
759 		free_netdev(vport->netdev);
760 		vport->netdev = NULL;
761 
762 		return err;
763 	}
764 
765 	/* assign netdev_ops */
766 	netdev->netdev_ops = &idpf_netdev_ops;
767 
768 	/* setup watchdog timeout value to be 5 second */
769 	netdev->watchdog_timeo = 5 * HZ;
770 
771 	netdev->dev_port = idx;
772 
773 	/* configure default MTU size */
774 	netdev->min_mtu = ETH_MIN_MTU;
775 	netdev->max_mtu = vport->max_mtu;
776 
777 	dflt_features = NETIF_F_SG	|
778 			NETIF_F_HIGHDMA;
779 
780 	if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
781 		dflt_features |= NETIF_F_RXHASH;
782 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V4))
783 		dflt_features |= NETIF_F_IP_CSUM;
784 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V6))
785 		dflt_features |= NETIF_F_IPV6_CSUM;
786 	if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
787 		dflt_features |= NETIF_F_RXCSUM;
788 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_SCTP_CSUM))
789 		dflt_features |= NETIF_F_SCTP_CRC;
790 
791 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
792 		dflt_features |= NETIF_F_TSO;
793 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
794 		dflt_features |= NETIF_F_TSO6;
795 	if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
796 				VIRTCHNL2_CAP_SEG_IPV4_UDP |
797 				VIRTCHNL2_CAP_SEG_IPV6_UDP))
798 		dflt_features |= NETIF_F_GSO_UDP_L4;
799 	if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
800 		offloads |= NETIF_F_GRO_HW;
801 	/* advertise to stack only if offloads for encapsulated packets is
802 	 * supported
803 	 */
804 	if (idpf_is_cap_ena(vport->adapter, IDPF_SEG_CAPS,
805 			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL)) {
806 		offloads |= NETIF_F_GSO_UDP_TUNNEL	|
807 			    NETIF_F_GSO_GRE		|
808 			    NETIF_F_GSO_GRE_CSUM	|
809 			    NETIF_F_GSO_PARTIAL		|
810 			    NETIF_F_GSO_UDP_TUNNEL_CSUM	|
811 			    NETIF_F_GSO_IPXIP4		|
812 			    NETIF_F_GSO_IPXIP6		|
813 			    0;
814 
815 		if (!idpf_is_cap_ena_all(vport->adapter, IDPF_CSUM_CAPS,
816 					 IDPF_CAP_TUNNEL_TX_CSUM))
817 			netdev->gso_partial_features |=
818 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
819 
820 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
821 		offloads |= NETIF_F_TSO_MANGLEID;
822 	}
823 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
824 		offloads |= NETIF_F_LOOPBACK;
825 
826 	netdev->features |= dflt_features;
827 	netdev->hw_features |= dflt_features | offloads;
828 	netdev->hw_enc_features |= dflt_features | offloads;
829 	idpf_set_ethtool_ops(netdev);
830 	SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
831 
832 	/* carrier off on init to avoid Tx hangs */
833 	netif_carrier_off(netdev);
834 
835 	/* make sure transmit queues start off as stopped */
836 	netif_tx_stop_all_queues(netdev);
837 
838 	/* The vport can be arbitrarily released so we need to also track
839 	 * netdevs in the adapter struct
840 	 */
841 	adapter->netdevs[idx] = netdev;
842 
843 	return 0;
844 }
845 
846 /**
847  * idpf_get_free_slot - get the next non-NULL location index in array
848  * @adapter: adapter in which to look for a free vport slot
849  */
850 static int idpf_get_free_slot(struct idpf_adapter *adapter)
851 {
852 	unsigned int i;
853 
854 	for (i = 0; i < adapter->max_vports; i++) {
855 		if (!adapter->vports[i])
856 			return i;
857 	}
858 
859 	return IDPF_NO_FREE_SLOT;
860 }
861 
862 /**
863  * idpf_remove_features - Turn off feature configs
864  * @vport: virtual port structure
865  */
866 static void idpf_remove_features(struct idpf_vport *vport)
867 {
868 	struct idpf_adapter *adapter = vport->adapter;
869 
870 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
871 		idpf_remove_mac_filters(vport);
872 }
873 
874 /**
875  * idpf_vport_stop - Disable a vport
876  * @vport: vport to disable
877  */
878 static void idpf_vport_stop(struct idpf_vport *vport)
879 {
880 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
881 
882 	if (np->state <= __IDPF_VPORT_DOWN)
883 		return;
884 
885 	netif_carrier_off(vport->netdev);
886 	netif_tx_disable(vport->netdev);
887 
888 	idpf_send_disable_vport_msg(vport);
889 	idpf_send_disable_queues_msg(vport);
890 	idpf_send_map_unmap_queue_vector_msg(vport, false);
891 	/* Normally we ask for queues in create_vport, but if the number of
892 	 * initially requested queues have changed, for example via ethtool
893 	 * set channels, we do delete queues and then add the queues back
894 	 * instead of deleting and reallocating the vport.
895 	 */
896 	if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
897 		idpf_send_delete_queues_msg(vport);
898 
899 	idpf_remove_features(vport);
900 
901 	vport->link_up = false;
902 	idpf_vport_intr_deinit(vport);
903 	idpf_vport_intr_rel(vport);
904 	idpf_vport_queues_rel(vport);
905 	np->state = __IDPF_VPORT_DOWN;
906 }
907 
908 /**
909  * idpf_stop - Disables a network interface
910  * @netdev: network interface device structure
911  *
912  * The stop entry point is called when an interface is de-activated by the OS,
913  * and the netdevice enters the DOWN state.  The hardware is still under the
914  * driver's control, but the netdev interface is disabled.
915  *
916  * Returns success only - not allowed to fail
917  */
918 static int idpf_stop(struct net_device *netdev)
919 {
920 	struct idpf_netdev_priv *np = netdev_priv(netdev);
921 	struct idpf_vport *vport;
922 
923 	if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
924 		return 0;
925 
926 	idpf_vport_ctrl_lock(netdev);
927 	vport = idpf_netdev_to_vport(netdev);
928 
929 	idpf_vport_stop(vport);
930 
931 	idpf_vport_ctrl_unlock(netdev);
932 
933 	return 0;
934 }
935 
936 /**
937  * idpf_decfg_netdev - Unregister the netdev
938  * @vport: vport for which netdev to be unregistered
939  */
940 static void idpf_decfg_netdev(struct idpf_vport *vport)
941 {
942 	struct idpf_adapter *adapter = vport->adapter;
943 
944 	kfree(vport->rx_ptype_lkup);
945 	vport->rx_ptype_lkup = NULL;
946 
947 	unregister_netdev(vport->netdev);
948 	free_netdev(vport->netdev);
949 	vport->netdev = NULL;
950 
951 	adapter->netdevs[vport->idx] = NULL;
952 }
953 
954 /**
955  * idpf_vport_rel - Delete a vport and free its resources
956  * @vport: the vport being removed
957  */
958 static void idpf_vport_rel(struct idpf_vport *vport)
959 {
960 	struct idpf_adapter *adapter = vport->adapter;
961 	struct idpf_vport_config *vport_config;
962 	struct idpf_vector_info vec_info;
963 	struct idpf_rss_data *rss_data;
964 	struct idpf_vport_max_q max_q;
965 	u16 idx = vport->idx;
966 
967 	vport_config = adapter->vport_config[vport->idx];
968 	idpf_deinit_rss(vport);
969 	rss_data = &vport_config->user_config.rss_data;
970 	kfree(rss_data->rss_key);
971 	rss_data->rss_key = NULL;
972 
973 	idpf_send_destroy_vport_msg(vport);
974 
975 	/* Release all max queues allocated to the adapter's pool */
976 	max_q.max_rxq = vport_config->max_q.max_rxq;
977 	max_q.max_txq = vport_config->max_q.max_txq;
978 	max_q.max_bufq = vport_config->max_q.max_bufq;
979 	max_q.max_complq = vport_config->max_q.max_complq;
980 	idpf_vport_dealloc_max_qs(adapter, &max_q);
981 
982 	/* Release all the allocated vectors on the stack */
983 	vec_info.num_req_vecs = 0;
984 	vec_info.num_curr_vecs = vport->num_q_vectors;
985 	vec_info.default_vport = vport->default_vport;
986 
987 	idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
988 
989 	kfree(vport->q_vector_idxs);
990 	vport->q_vector_idxs = NULL;
991 
992 	kfree(adapter->vport_params_recvd[idx]);
993 	adapter->vport_params_recvd[idx] = NULL;
994 	kfree(adapter->vport_params_reqd[idx]);
995 	adapter->vport_params_reqd[idx] = NULL;
996 	if (adapter->vport_config[idx]) {
997 		kfree(adapter->vport_config[idx]->req_qs_chunks);
998 		adapter->vport_config[idx]->req_qs_chunks = NULL;
999 	}
1000 	kfree(vport);
1001 	adapter->num_alloc_vports--;
1002 }
1003 
1004 /**
1005  * idpf_vport_dealloc - cleanup and release a given vport
1006  * @vport: pointer to idpf vport structure
1007  *
1008  * returns nothing
1009  */
1010 static void idpf_vport_dealloc(struct idpf_vport *vport)
1011 {
1012 	struct idpf_adapter *adapter = vport->adapter;
1013 	unsigned int i = vport->idx;
1014 
1015 	idpf_deinit_mac_addr(vport);
1016 	idpf_vport_stop(vport);
1017 
1018 	if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1019 		idpf_decfg_netdev(vport);
1020 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1021 		idpf_del_all_mac_filters(vport);
1022 
1023 	if (adapter->netdevs[i]) {
1024 		struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1025 
1026 		np->vport = NULL;
1027 	}
1028 
1029 	idpf_vport_rel(vport);
1030 
1031 	adapter->vports[i] = NULL;
1032 	adapter->next_vport = idpf_get_free_slot(adapter);
1033 }
1034 
1035 /**
1036  * idpf_is_hsplit_supported - check whether the header split is supported
1037  * @vport: virtual port to check the capability for
1038  *
1039  * Return: true if it's supported by the HW/FW, false if not.
1040  */
1041 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1042 {
1043 	return idpf_is_queue_model_split(vport->rxq_model) &&
1044 	       idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1045 				   IDPF_CAP_HSPLIT);
1046 }
1047 
1048 /**
1049  * idpf_vport_get_hsplit - get the current header split feature state
1050  * @vport: virtual port to query the state for
1051  *
1052  * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1053  *         ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1054  *         ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1055  */
1056 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1057 {
1058 	const struct idpf_vport_user_config_data *config;
1059 
1060 	if (!idpf_is_hsplit_supported(vport))
1061 		return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1062 
1063 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1064 
1065 	return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1066 	       ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1067 	       ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1068 }
1069 
1070 /**
1071  * idpf_vport_set_hsplit - enable or disable header split on a given vport
1072  * @vport: virtual port to configure
1073  * @val: Ethtool flag controlling the header split state
1074  *
1075  * Return: true on success, false if not supported by the HW.
1076  */
1077 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1078 {
1079 	struct idpf_vport_user_config_data *config;
1080 
1081 	if (!idpf_is_hsplit_supported(vport))
1082 		return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1083 
1084 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1085 
1086 	switch (val) {
1087 	case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1088 		/* Default is to enable */
1089 	case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1090 		__set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1091 		return true;
1092 	case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1093 		__clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1094 		return true;
1095 	default:
1096 		return false;
1097 	}
1098 }
1099 
1100 /**
1101  * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1102  * @adapter: board private structure
1103  * @max_q: vport max queue info
1104  *
1105  * returns a pointer to a vport on success, NULL on failure.
1106  */
1107 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1108 					   struct idpf_vport_max_q *max_q)
1109 {
1110 	struct idpf_rss_data *rss_data;
1111 	u16 idx = adapter->next_vport;
1112 	struct idpf_vport *vport;
1113 	u16 num_max_q;
1114 
1115 	if (idx == IDPF_NO_FREE_SLOT)
1116 		return NULL;
1117 
1118 	vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1119 	if (!vport)
1120 		return vport;
1121 
1122 	if (!adapter->vport_config[idx]) {
1123 		struct idpf_vport_config *vport_config;
1124 
1125 		vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1126 		if (!vport_config) {
1127 			kfree(vport);
1128 
1129 			return NULL;
1130 		}
1131 
1132 		adapter->vport_config[idx] = vport_config;
1133 	}
1134 
1135 	vport->idx = idx;
1136 	vport->adapter = adapter;
1137 	vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1138 	vport->default_vport = adapter->num_alloc_vports <
1139 			       idpf_get_default_vports(adapter);
1140 
1141 	num_max_q = max(max_q->max_txq, max_q->max_rxq);
1142 	vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1143 	if (!vport->q_vector_idxs) {
1144 		kfree(vport);
1145 
1146 		return NULL;
1147 	}
1148 	idpf_vport_init(vport, max_q);
1149 
1150 	/* This alloc is done separate from the LUT because it's not strictly
1151 	 * dependent on how many queues we have. If we change number of queues
1152 	 * and soft reset we'll need a new LUT but the key can remain the same
1153 	 * for as long as the vport exists.
1154 	 */
1155 	rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1156 	rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1157 	if (!rss_data->rss_key) {
1158 		kfree(vport);
1159 
1160 		return NULL;
1161 	}
1162 	/* Initialize default rss key */
1163 	netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1164 
1165 	/* fill vport slot in the adapter struct */
1166 	adapter->vports[idx] = vport;
1167 	adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1168 
1169 	adapter->num_alloc_vports++;
1170 	/* prepare adapter->next_vport for next use */
1171 	adapter->next_vport = idpf_get_free_slot(adapter);
1172 
1173 	return vport;
1174 }
1175 
1176 /**
1177  * idpf_get_stats64 - get statistics for network device structure
1178  * @netdev: network interface device structure
1179  * @stats: main device statistics structure
1180  */
1181 static void idpf_get_stats64(struct net_device *netdev,
1182 			     struct rtnl_link_stats64 *stats)
1183 {
1184 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1185 
1186 	spin_lock_bh(&np->stats_lock);
1187 	*stats = np->netstats;
1188 	spin_unlock_bh(&np->stats_lock);
1189 }
1190 
1191 /**
1192  * idpf_statistics_task - Delayed task to get statistics over mailbox
1193  * @work: work_struct handle to our data
1194  */
1195 void idpf_statistics_task(struct work_struct *work)
1196 {
1197 	struct idpf_adapter *adapter;
1198 	int i;
1199 
1200 	adapter = container_of(work, struct idpf_adapter, stats_task.work);
1201 
1202 	for (i = 0; i < adapter->max_vports; i++) {
1203 		struct idpf_vport *vport = adapter->vports[i];
1204 
1205 		if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1206 			idpf_send_get_stats_msg(vport);
1207 	}
1208 
1209 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1210 			   msecs_to_jiffies(10000));
1211 }
1212 
1213 /**
1214  * idpf_mbx_task - Delayed task to handle mailbox responses
1215  * @work: work_struct handle
1216  */
1217 void idpf_mbx_task(struct work_struct *work)
1218 {
1219 	struct idpf_adapter *adapter;
1220 
1221 	adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1222 
1223 	if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1224 		idpf_mb_irq_enable(adapter);
1225 	else
1226 		queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1227 				   msecs_to_jiffies(300));
1228 
1229 	idpf_recv_mb_msg(adapter);
1230 }
1231 
1232 /**
1233  * idpf_service_task - Delayed task for handling mailbox responses
1234  * @work: work_struct handle to our data
1235  *
1236  */
1237 void idpf_service_task(struct work_struct *work)
1238 {
1239 	struct idpf_adapter *adapter;
1240 
1241 	adapter = container_of(work, struct idpf_adapter, serv_task.work);
1242 
1243 	if (idpf_is_reset_detected(adapter) &&
1244 	    !idpf_is_reset_in_prog(adapter) &&
1245 	    !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1246 		dev_info(&adapter->pdev->dev, "HW reset detected\n");
1247 		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1248 		queue_delayed_work(adapter->vc_event_wq,
1249 				   &adapter->vc_event_task,
1250 				   msecs_to_jiffies(10));
1251 	}
1252 
1253 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1254 			   msecs_to_jiffies(300));
1255 }
1256 
1257 /**
1258  * idpf_restore_features - Restore feature configs
1259  * @vport: virtual port structure
1260  */
1261 static void idpf_restore_features(struct idpf_vport *vport)
1262 {
1263 	struct idpf_adapter *adapter = vport->adapter;
1264 
1265 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1266 		idpf_restore_mac_filters(vport);
1267 }
1268 
1269 /**
1270  * idpf_set_real_num_queues - set number of queues for netdev
1271  * @vport: virtual port structure
1272  *
1273  * Returns 0 on success, negative on failure.
1274  */
1275 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1276 {
1277 	int err;
1278 
1279 	err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1280 	if (err)
1281 		return err;
1282 
1283 	return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq);
1284 }
1285 
1286 /**
1287  * idpf_up_complete - Complete interface up sequence
1288  * @vport: virtual port structure
1289  *
1290  * Returns 0 on success, negative on failure.
1291  */
1292 static int idpf_up_complete(struct idpf_vport *vport)
1293 {
1294 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1295 
1296 	if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1297 		netif_carrier_on(vport->netdev);
1298 		netif_tx_start_all_queues(vport->netdev);
1299 	}
1300 
1301 	np->state = __IDPF_VPORT_UP;
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1308  * @vport: virtual port struct
1309  */
1310 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1311 {
1312 	int i, j;
1313 
1314 	for (i = 0; i < vport->num_rxq_grp; i++) {
1315 		struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1316 
1317 		if (idpf_is_queue_model_split(vport->rxq_model)) {
1318 			for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1319 				const struct idpf_buf_queue *q =
1320 					&grp->splitq.bufq_sets[j].bufq;
1321 
1322 				writel(q->next_to_alloc, q->tail);
1323 			}
1324 		} else {
1325 			for (j = 0; j < grp->singleq.num_rxq; j++) {
1326 				const struct idpf_rx_queue *q =
1327 					grp->singleq.rxqs[j];
1328 
1329 				writel(q->next_to_alloc, q->tail);
1330 			}
1331 		}
1332 	}
1333 }
1334 
1335 /**
1336  * idpf_vport_open - Bring up a vport
1337  * @vport: vport to bring up
1338  * @alloc_res: allocate queue resources
1339  */
1340 static int idpf_vport_open(struct idpf_vport *vport, bool alloc_res)
1341 {
1342 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1343 	struct idpf_adapter *adapter = vport->adapter;
1344 	struct idpf_vport_config *vport_config;
1345 	int err;
1346 
1347 	if (np->state != __IDPF_VPORT_DOWN)
1348 		return -EBUSY;
1349 
1350 	/* we do not allow interface up just yet */
1351 	netif_carrier_off(vport->netdev);
1352 
1353 	if (alloc_res) {
1354 		err = idpf_vport_queues_alloc(vport);
1355 		if (err)
1356 			return err;
1357 	}
1358 
1359 	err = idpf_vport_intr_alloc(vport);
1360 	if (err) {
1361 		dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1362 			vport->vport_id, err);
1363 		goto queues_rel;
1364 	}
1365 
1366 	err = idpf_vport_queue_ids_init(vport);
1367 	if (err) {
1368 		dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1369 			vport->vport_id, err);
1370 		goto intr_rel;
1371 	}
1372 
1373 	err = idpf_vport_intr_init(vport);
1374 	if (err) {
1375 		dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1376 			vport->vport_id, err);
1377 		goto intr_rel;
1378 	}
1379 
1380 	err = idpf_rx_bufs_init_all(vport);
1381 	if (err) {
1382 		dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1383 			vport->vport_id, err);
1384 		goto intr_rel;
1385 	}
1386 
1387 	err = idpf_queue_reg_init(vport);
1388 	if (err) {
1389 		dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1390 			vport->vport_id, err);
1391 		goto intr_rel;
1392 	}
1393 
1394 	idpf_rx_init_buf_tail(vport);
1395 	idpf_vport_intr_ena(vport);
1396 
1397 	err = idpf_send_config_queues_msg(vport);
1398 	if (err) {
1399 		dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1400 			vport->vport_id, err);
1401 		goto intr_deinit;
1402 	}
1403 
1404 	err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1405 	if (err) {
1406 		dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1407 			vport->vport_id, err);
1408 		goto intr_deinit;
1409 	}
1410 
1411 	err = idpf_send_enable_queues_msg(vport);
1412 	if (err) {
1413 		dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1414 			vport->vport_id, err);
1415 		goto unmap_queue_vectors;
1416 	}
1417 
1418 	err = idpf_send_enable_vport_msg(vport);
1419 	if (err) {
1420 		dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1421 			vport->vport_id, err);
1422 		err = -EAGAIN;
1423 		goto disable_queues;
1424 	}
1425 
1426 	idpf_restore_features(vport);
1427 
1428 	vport_config = adapter->vport_config[vport->idx];
1429 	if (vport_config->user_config.rss_data.rss_lut)
1430 		err = idpf_config_rss(vport);
1431 	else
1432 		err = idpf_init_rss(vport);
1433 	if (err) {
1434 		dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1435 			vport->vport_id, err);
1436 		goto disable_vport;
1437 	}
1438 
1439 	err = idpf_up_complete(vport);
1440 	if (err) {
1441 		dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1442 			vport->vport_id, err);
1443 		goto deinit_rss;
1444 	}
1445 
1446 	return 0;
1447 
1448 deinit_rss:
1449 	idpf_deinit_rss(vport);
1450 disable_vport:
1451 	idpf_send_disable_vport_msg(vport);
1452 disable_queues:
1453 	idpf_send_disable_queues_msg(vport);
1454 unmap_queue_vectors:
1455 	idpf_send_map_unmap_queue_vector_msg(vport, false);
1456 intr_deinit:
1457 	idpf_vport_intr_deinit(vport);
1458 intr_rel:
1459 	idpf_vport_intr_rel(vport);
1460 queues_rel:
1461 	idpf_vport_queues_rel(vport);
1462 
1463 	return err;
1464 }
1465 
1466 /**
1467  * idpf_init_task - Delayed initialization task
1468  * @work: work_struct handle to our data
1469  *
1470  * Init task finishes up pending work started in probe. Due to the asynchronous
1471  * nature in which the device communicates with hardware, we may have to wait
1472  * several milliseconds to get a response.  Instead of busy polling in probe,
1473  * pulling it out into a delayed work task prevents us from bogging down the
1474  * whole system waiting for a response from hardware.
1475  */
1476 void idpf_init_task(struct work_struct *work)
1477 {
1478 	struct idpf_vport_config *vport_config;
1479 	struct idpf_vport_max_q max_q;
1480 	struct idpf_adapter *adapter;
1481 	struct idpf_netdev_priv *np;
1482 	struct idpf_vport *vport;
1483 	u16 num_default_vports;
1484 	struct pci_dev *pdev;
1485 	bool default_vport;
1486 	int index, err;
1487 
1488 	adapter = container_of(work, struct idpf_adapter, init_task.work);
1489 
1490 	num_default_vports = idpf_get_default_vports(adapter);
1491 	if (adapter->num_alloc_vports < num_default_vports)
1492 		default_vport = true;
1493 	else
1494 		default_vport = false;
1495 
1496 	err = idpf_vport_alloc_max_qs(adapter, &max_q);
1497 	if (err)
1498 		goto unwind_vports;
1499 
1500 	err = idpf_send_create_vport_msg(adapter, &max_q);
1501 	if (err) {
1502 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1503 		goto unwind_vports;
1504 	}
1505 
1506 	pdev = adapter->pdev;
1507 	vport = idpf_vport_alloc(adapter, &max_q);
1508 	if (!vport) {
1509 		err = -EFAULT;
1510 		dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1511 			err);
1512 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1513 		goto unwind_vports;
1514 	}
1515 
1516 	index = vport->idx;
1517 	vport_config = adapter->vport_config[index];
1518 
1519 	init_waitqueue_head(&vport->sw_marker_wq);
1520 
1521 	spin_lock_init(&vport_config->mac_filter_list_lock);
1522 
1523 	INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1524 
1525 	err = idpf_check_supported_desc_ids(vport);
1526 	if (err) {
1527 		dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1528 		goto cfg_netdev_err;
1529 	}
1530 
1531 	if (idpf_cfg_netdev(vport))
1532 		goto cfg_netdev_err;
1533 
1534 	err = idpf_send_get_rx_ptype_msg(vport);
1535 	if (err)
1536 		goto handle_err;
1537 
1538 	/* Once state is put into DOWN, driver is ready for dev_open */
1539 	np = netdev_priv(vport->netdev);
1540 	np->state = __IDPF_VPORT_DOWN;
1541 	if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1542 		idpf_vport_open(vport, true);
1543 
1544 	/* Spawn and return 'idpf_init_task' work queue until all the
1545 	 * default vports are created
1546 	 */
1547 	if (adapter->num_alloc_vports < num_default_vports) {
1548 		queue_delayed_work(adapter->init_wq, &adapter->init_task,
1549 				   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1550 
1551 		return;
1552 	}
1553 
1554 	for (index = 0; index < adapter->max_vports; index++) {
1555 		if (adapter->netdevs[index] &&
1556 		    !test_bit(IDPF_VPORT_REG_NETDEV,
1557 			      adapter->vport_config[index]->flags)) {
1558 			register_netdev(adapter->netdevs[index]);
1559 			set_bit(IDPF_VPORT_REG_NETDEV,
1560 				adapter->vport_config[index]->flags);
1561 		}
1562 	}
1563 
1564 	/* As all the required vports are created, clear the reset flag
1565 	 * unconditionally here in case we were in reset and the link was down.
1566 	 */
1567 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1568 	/* Start the statistics task now */
1569 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1570 			   msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1571 
1572 	return;
1573 
1574 handle_err:
1575 	idpf_decfg_netdev(vport);
1576 cfg_netdev_err:
1577 	idpf_vport_rel(vport);
1578 	adapter->vports[index] = NULL;
1579 unwind_vports:
1580 	if (default_vport) {
1581 		for (index = 0; index < adapter->max_vports; index++) {
1582 			if (adapter->vports[index])
1583 				idpf_vport_dealloc(adapter->vports[index]);
1584 		}
1585 	}
1586 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1587 }
1588 
1589 /**
1590  * idpf_sriov_ena - Enable or change number of VFs
1591  * @adapter: private data struct
1592  * @num_vfs: number of VFs to allocate
1593  */
1594 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1595 {
1596 	struct device *dev = &adapter->pdev->dev;
1597 	int err;
1598 
1599 	err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1600 	if (err) {
1601 		dev_err(dev, "Failed to allocate VFs: %d\n", err);
1602 
1603 		return err;
1604 	}
1605 
1606 	err = pci_enable_sriov(adapter->pdev, num_vfs);
1607 	if (err) {
1608 		idpf_send_set_sriov_vfs_msg(adapter, 0);
1609 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1610 
1611 		return err;
1612 	}
1613 
1614 	adapter->num_vfs = num_vfs;
1615 
1616 	return num_vfs;
1617 }
1618 
1619 /**
1620  * idpf_sriov_configure - Configure the requested VFs
1621  * @pdev: pointer to a pci_dev structure
1622  * @num_vfs: number of vfs to allocate
1623  *
1624  * Enable or change the number of VFs. Called when the user updates the number
1625  * of VFs in sysfs.
1626  **/
1627 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1628 {
1629 	struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1630 
1631 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1632 		dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1633 
1634 		return -EOPNOTSUPP;
1635 	}
1636 
1637 	if (num_vfs)
1638 		return idpf_sriov_ena(adapter, num_vfs);
1639 
1640 	if (pci_vfs_assigned(pdev)) {
1641 		dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1642 
1643 		return -EBUSY;
1644 	}
1645 
1646 	pci_disable_sriov(adapter->pdev);
1647 	idpf_send_set_sriov_vfs_msg(adapter, 0);
1648 	adapter->num_vfs = 0;
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * idpf_deinit_task - Device deinit routine
1655  * @adapter: Driver specific private structure
1656  *
1657  * Extended remove logic which will be used for
1658  * hard reset as well
1659  */
1660 void idpf_deinit_task(struct idpf_adapter *adapter)
1661 {
1662 	unsigned int i;
1663 
1664 	/* Wait until the init_task is done else this thread might release
1665 	 * the resources first and the other thread might end up in a bad state
1666 	 */
1667 	cancel_delayed_work_sync(&adapter->init_task);
1668 
1669 	if (!adapter->vports)
1670 		return;
1671 
1672 	cancel_delayed_work_sync(&adapter->stats_task);
1673 
1674 	for (i = 0; i < adapter->max_vports; i++) {
1675 		if (adapter->vports[i])
1676 			idpf_vport_dealloc(adapter->vports[i]);
1677 	}
1678 }
1679 
1680 /**
1681  * idpf_check_reset_complete - check that reset is complete
1682  * @hw: pointer to hw struct
1683  * @reset_reg: struct with reset registers
1684  *
1685  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1686  **/
1687 static int idpf_check_reset_complete(struct idpf_hw *hw,
1688 				     struct idpf_reset_reg *reset_reg)
1689 {
1690 	struct idpf_adapter *adapter = hw->back;
1691 	int i;
1692 
1693 	for (i = 0; i < 2000; i++) {
1694 		u32 reg_val = readl(reset_reg->rstat);
1695 
1696 		/* 0xFFFFFFFF might be read if other side hasn't cleared the
1697 		 * register for us yet and 0xFFFFFFFF is not a valid value for
1698 		 * the register, so treat that as invalid.
1699 		 */
1700 		if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1701 			return 0;
1702 
1703 		usleep_range(5000, 10000);
1704 	}
1705 
1706 	dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1707 	/* Clear the reset flag unconditionally here since the reset
1708 	 * technically isn't in progress anymore from the driver's perspective
1709 	 */
1710 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1711 
1712 	return -EBUSY;
1713 }
1714 
1715 /**
1716  * idpf_set_vport_state - Set the vport state to be after the reset
1717  * @adapter: Driver specific private structure
1718  */
1719 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1720 {
1721 	u16 i;
1722 
1723 	for (i = 0; i < adapter->max_vports; i++) {
1724 		struct idpf_netdev_priv *np;
1725 
1726 		if (!adapter->netdevs[i])
1727 			continue;
1728 
1729 		np = netdev_priv(adapter->netdevs[i]);
1730 		if (np->state == __IDPF_VPORT_UP)
1731 			set_bit(IDPF_VPORT_UP_REQUESTED,
1732 				adapter->vport_config[i]->flags);
1733 	}
1734 }
1735 
1736 /**
1737  * idpf_init_hard_reset - Initiate a hardware reset
1738  * @adapter: Driver specific private structure
1739  *
1740  * Deallocate the vports and all the resources associated with them and
1741  * reallocate. Also reinitialize the mailbox. Return 0 on success,
1742  * negative on failure.
1743  */
1744 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1745 {
1746 	struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1747 	struct device *dev = &adapter->pdev->dev;
1748 	struct net_device *netdev;
1749 	int err;
1750 	u16 i;
1751 
1752 	mutex_lock(&adapter->vport_ctrl_lock);
1753 
1754 	dev_info(dev, "Device HW Reset initiated\n");
1755 
1756 	/* Avoid TX hangs on reset */
1757 	for (i = 0; i < adapter->max_vports; i++) {
1758 		netdev = adapter->netdevs[i];
1759 		if (!netdev)
1760 			continue;
1761 
1762 		netif_carrier_off(netdev);
1763 		netif_tx_disable(netdev);
1764 	}
1765 
1766 	/* Prepare for reset */
1767 	if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1768 		reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1769 	} else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1770 		bool is_reset = idpf_is_reset_detected(adapter);
1771 
1772 		idpf_set_vport_state(adapter);
1773 		idpf_vc_core_deinit(adapter);
1774 		if (!is_reset)
1775 			reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1776 		idpf_deinit_dflt_mbx(adapter);
1777 	} else {
1778 		dev_err(dev, "Unhandled hard reset cause\n");
1779 		err = -EBADRQC;
1780 		goto unlock_mutex;
1781 	}
1782 
1783 	/* Wait for reset to complete */
1784 	err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1785 	if (err) {
1786 		dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1787 			adapter->state);
1788 		goto unlock_mutex;
1789 	}
1790 
1791 	/* Reset is complete and so start building the driver resources again */
1792 	err = idpf_init_dflt_mbx(adapter);
1793 	if (err) {
1794 		dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1795 		goto unlock_mutex;
1796 	}
1797 
1798 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1799 
1800 	/* Initialize the state machine, also allocate memory and request
1801 	 * resources
1802 	 */
1803 	err = idpf_vc_core_init(adapter);
1804 	if (err) {
1805 		idpf_deinit_dflt_mbx(adapter);
1806 		goto unlock_mutex;
1807 	}
1808 
1809 	/* Wait till all the vports are initialized to release the reset lock,
1810 	 * else user space callbacks may access uninitialized vports
1811 	 */
1812 	while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1813 		msleep(100);
1814 
1815 unlock_mutex:
1816 	mutex_unlock(&adapter->vport_ctrl_lock);
1817 
1818 	return err;
1819 }
1820 
1821 /**
1822  * idpf_vc_event_task - Handle virtchannel event logic
1823  * @work: work queue struct
1824  */
1825 void idpf_vc_event_task(struct work_struct *work)
1826 {
1827 	struct idpf_adapter *adapter;
1828 
1829 	adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1830 
1831 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1832 		return;
1833 
1834 	if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags) ||
1835 	    test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1836 		set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1837 		idpf_init_hard_reset(adapter);
1838 	}
1839 }
1840 
1841 /**
1842  * idpf_initiate_soft_reset - Initiate a software reset
1843  * @vport: virtual port data struct
1844  * @reset_cause: reason for the soft reset
1845  *
1846  * Soft reset only reallocs vport queue resources. Returns 0 on success,
1847  * negative on failure.
1848  */
1849 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1850 			     enum idpf_vport_reset_cause reset_cause)
1851 {
1852 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1853 	enum idpf_vport_state current_state = np->state;
1854 	struct idpf_adapter *adapter = vport->adapter;
1855 	struct idpf_vport *new_vport;
1856 	int err;
1857 
1858 	/* If the system is low on memory, we can end up in bad state if we
1859 	 * free all the memory for queue resources and try to allocate them
1860 	 * again. Instead, we can pre-allocate the new resources before doing
1861 	 * anything and bailing if the alloc fails.
1862 	 *
1863 	 * Make a clone of the existing vport to mimic its current
1864 	 * configuration, then modify the new structure with any requested
1865 	 * changes. Once the allocation of the new resources is done, stop the
1866 	 * existing vport and copy the configuration to the main vport. If an
1867 	 * error occurred, the existing vport will be untouched.
1868 	 *
1869 	 */
1870 	new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1871 	if (!new_vport)
1872 		return -ENOMEM;
1873 
1874 	/* This purposely avoids copying the end of the struct because it
1875 	 * contains wait_queues and mutexes and other stuff we don't want to
1876 	 * mess with. Nothing below should use those variables from new_vport
1877 	 * and should instead always refer to them in vport if they need to.
1878 	 */
1879 	memcpy(new_vport, vport, offsetof(struct idpf_vport, link_speed_mbps));
1880 
1881 	/* Adjust resource parameters prior to reallocating resources */
1882 	switch (reset_cause) {
1883 	case IDPF_SR_Q_CHANGE:
1884 		err = idpf_vport_adjust_qs(new_vport);
1885 		if (err)
1886 			goto free_vport;
1887 		break;
1888 	case IDPF_SR_Q_DESC_CHANGE:
1889 		/* Update queue parameters before allocating resources */
1890 		idpf_vport_calc_num_q_desc(new_vport);
1891 		break;
1892 	case IDPF_SR_MTU_CHANGE:
1893 	case IDPF_SR_RSC_CHANGE:
1894 		break;
1895 	default:
1896 		dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1897 		err = -EINVAL;
1898 		goto free_vport;
1899 	}
1900 
1901 	err = idpf_vport_queues_alloc(new_vport);
1902 	if (err)
1903 		goto free_vport;
1904 	if (current_state <= __IDPF_VPORT_DOWN) {
1905 		idpf_send_delete_queues_msg(vport);
1906 	} else {
1907 		set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1908 		idpf_vport_stop(vport);
1909 	}
1910 
1911 	idpf_deinit_rss(vport);
1912 	/* We're passing in vport here because we need its wait_queue
1913 	 * to send a message and it should be getting all the vport
1914 	 * config data out of the adapter but we need to be careful not
1915 	 * to add code to add_queues to change the vport config within
1916 	 * vport itself as it will be wiped with a memcpy later.
1917 	 */
1918 	err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
1919 				       new_vport->num_complq,
1920 				       new_vport->num_rxq,
1921 				       new_vport->num_bufq);
1922 	if (err)
1923 		goto err_reset;
1924 
1925 	/* Same comment as above regarding avoiding copying the wait_queues and
1926 	 * mutexes applies here. We do not want to mess with those if possible.
1927 	 */
1928 	memcpy(vport, new_vport, offsetof(struct idpf_vport, link_speed_mbps));
1929 
1930 	if (reset_cause == IDPF_SR_Q_CHANGE)
1931 		idpf_vport_alloc_vec_indexes(vport);
1932 
1933 	err = idpf_set_real_num_queues(vport);
1934 	if (err)
1935 		goto err_reset;
1936 
1937 	if (current_state == __IDPF_VPORT_UP)
1938 		err = idpf_vport_open(vport, false);
1939 
1940 	kfree(new_vport);
1941 
1942 	return err;
1943 
1944 err_reset:
1945 	idpf_vport_queues_rel(new_vport);
1946 free_vport:
1947 	kfree(new_vport);
1948 
1949 	return err;
1950 }
1951 
1952 /**
1953  * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1954  * @netdev: the netdevice
1955  * @addr: address to add
1956  *
1957  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1958  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1959  * meaning we cannot sleep in this context. Due to this, we have to add the
1960  * filter and send the virtchnl message asynchronously without waiting for the
1961  * response from the other side. We won't know whether or not the operation
1962  * actually succeeded until we get the message back.  Returns 0 on success,
1963  * negative on failure.
1964  */
1965 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
1966 {
1967 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1968 
1969 	return idpf_add_mac_filter(np->vport, np, addr, true);
1970 }
1971 
1972 /**
1973  * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1974  * @netdev: the netdevice
1975  * @addr: address to add
1976  *
1977  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1978  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1979  * meaning we cannot sleep in this context. Due to this we have to delete the
1980  * filter and send the virtchnl message asynchronously without waiting for the
1981  * return from the other side.  We won't know whether or not the operation
1982  * actually succeeded until we get the message back. Returns 0 on success,
1983  * negative on failure.
1984  */
1985 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
1986 {
1987 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1988 
1989 	/* Under some circumstances, we might receive a request to delete
1990 	 * our own device address from our uc list. Because we store the
1991 	 * device address in the VSI's MAC filter list, we need to ignore
1992 	 * such requests and not delete our device address from this list.
1993 	 */
1994 	if (ether_addr_equal(addr, netdev->dev_addr))
1995 		return 0;
1996 
1997 	idpf_del_mac_filter(np->vport, np, addr, true);
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  * idpf_set_rx_mode - NDO callback to set the netdev filters
2004  * @netdev: network interface device structure
2005  *
2006  * Stack takes addr_list_lock spinlock before calling our .set_rx_mode.  We
2007  * cannot sleep in this context.
2008  */
2009 static void idpf_set_rx_mode(struct net_device *netdev)
2010 {
2011 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2012 	struct idpf_vport_user_config_data *config_data;
2013 	struct idpf_adapter *adapter;
2014 	bool changed = false;
2015 	struct device *dev;
2016 	int err;
2017 
2018 	adapter = np->adapter;
2019 	dev = &adapter->pdev->dev;
2020 
2021 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2022 		__dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2023 		__dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2024 	}
2025 
2026 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2027 		return;
2028 
2029 	config_data = &adapter->vport_config[np->vport_idx]->user_config;
2030 	/* IFF_PROMISC enables both unicast and multicast promiscuous,
2031 	 * while IFF_ALLMULTI only enables multicast such that:
2032 	 *
2033 	 * promisc  + allmulti		= unicast | multicast
2034 	 * promisc  + !allmulti		= unicast | multicast
2035 	 * !promisc + allmulti		= multicast
2036 	 */
2037 	if ((netdev->flags & IFF_PROMISC) &&
2038 	    !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2039 		changed = true;
2040 		dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2041 		if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2042 			dev_info(dev, "Entering multicast promiscuous mode\n");
2043 	}
2044 
2045 	if (!(netdev->flags & IFF_PROMISC) &&
2046 	    test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2047 		changed = true;
2048 		dev_info(dev, "Leaving promiscuous mode\n");
2049 	}
2050 
2051 	if (netdev->flags & IFF_ALLMULTI &&
2052 	    !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2053 		changed = true;
2054 		dev_info(dev, "Entering multicast promiscuous mode\n");
2055 	}
2056 
2057 	if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2058 	    test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2059 		changed = true;
2060 		dev_info(dev, "Leaving multicast promiscuous mode\n");
2061 	}
2062 
2063 	if (!changed)
2064 		return;
2065 
2066 	err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2067 	if (err)
2068 		dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2069 }
2070 
2071 /**
2072  * idpf_vport_manage_rss_lut - disable/enable RSS
2073  * @vport: the vport being changed
2074  *
2075  * In the event of disable request for RSS, this function will zero out RSS
2076  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2077  * LUT with the default LUT configuration.
2078  */
2079 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2080 {
2081 	bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2082 	struct idpf_rss_data *rss_data;
2083 	u16 idx = vport->idx;
2084 	int lut_size;
2085 
2086 	rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2087 	lut_size = rss_data->rss_lut_size * sizeof(u32);
2088 
2089 	if (ena) {
2090 		/* This will contain the default or user configured LUT */
2091 		memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2092 	} else {
2093 		/* Save a copy of the current LUT to be restored later if
2094 		 * requested.
2095 		 */
2096 		memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2097 
2098 		/* Zero out the current LUT to disable */
2099 		memset(rss_data->rss_lut, 0, lut_size);
2100 	}
2101 
2102 	return idpf_config_rss(vport);
2103 }
2104 
2105 /**
2106  * idpf_set_features - set the netdev feature flags
2107  * @netdev: ptr to the netdev being adjusted
2108  * @features: the feature set that the stack is suggesting
2109  */
2110 static int idpf_set_features(struct net_device *netdev,
2111 			     netdev_features_t features)
2112 {
2113 	netdev_features_t changed = netdev->features ^ features;
2114 	struct idpf_adapter *adapter;
2115 	struct idpf_vport *vport;
2116 	int err = 0;
2117 
2118 	idpf_vport_ctrl_lock(netdev);
2119 	vport = idpf_netdev_to_vport(netdev);
2120 
2121 	adapter = vport->adapter;
2122 
2123 	if (idpf_is_reset_in_prog(adapter)) {
2124 		dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2125 		err = -EBUSY;
2126 		goto unlock_mutex;
2127 	}
2128 
2129 	if (changed & NETIF_F_RXHASH) {
2130 		netdev->features ^= NETIF_F_RXHASH;
2131 		err = idpf_vport_manage_rss_lut(vport);
2132 		if (err)
2133 			goto unlock_mutex;
2134 	}
2135 
2136 	if (changed & NETIF_F_GRO_HW) {
2137 		netdev->features ^= NETIF_F_GRO_HW;
2138 		err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2139 		if (err)
2140 			goto unlock_mutex;
2141 	}
2142 
2143 	if (changed & NETIF_F_LOOPBACK) {
2144 		netdev->features ^= NETIF_F_LOOPBACK;
2145 		err = idpf_send_ena_dis_loopback_msg(vport);
2146 	}
2147 
2148 unlock_mutex:
2149 	idpf_vport_ctrl_unlock(netdev);
2150 
2151 	return err;
2152 }
2153 
2154 /**
2155  * idpf_open - Called when a network interface becomes active
2156  * @netdev: network interface device structure
2157  *
2158  * The open entry point is called when a network interface is made
2159  * active by the system (IFF_UP).  At this point all resources needed
2160  * for transmit and receive operations are allocated, the interrupt
2161  * handler is registered with the OS, the netdev watchdog is enabled,
2162  * and the stack is notified that the interface is ready.
2163  *
2164  * Returns 0 on success, negative value on failure
2165  */
2166 static int idpf_open(struct net_device *netdev)
2167 {
2168 	struct idpf_vport *vport;
2169 	int err;
2170 
2171 	idpf_vport_ctrl_lock(netdev);
2172 	vport = idpf_netdev_to_vport(netdev);
2173 
2174 	err = idpf_vport_open(vport, true);
2175 
2176 	idpf_vport_ctrl_unlock(netdev);
2177 
2178 	return err;
2179 }
2180 
2181 /**
2182  * idpf_change_mtu - NDO callback to change the MTU
2183  * @netdev: network interface device structure
2184  * @new_mtu: new value for maximum frame size
2185  *
2186  * Returns 0 on success, negative on failure
2187  */
2188 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2189 {
2190 	struct idpf_vport *vport;
2191 	int err;
2192 
2193 	idpf_vport_ctrl_lock(netdev);
2194 	vport = idpf_netdev_to_vport(netdev);
2195 
2196 	WRITE_ONCE(netdev->mtu, new_mtu);
2197 
2198 	err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2199 
2200 	idpf_vport_ctrl_unlock(netdev);
2201 
2202 	return err;
2203 }
2204 
2205 /**
2206  * idpf_features_check - Validate packet conforms to limits
2207  * @skb: skb buffer
2208  * @netdev: This port's netdev
2209  * @features: Offload features that the stack believes apply
2210  */
2211 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2212 					     struct net_device *netdev,
2213 					     netdev_features_t features)
2214 {
2215 	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2216 	struct idpf_adapter *adapter = vport->adapter;
2217 	size_t len;
2218 
2219 	/* No point in doing any of this if neither checksum nor GSO are
2220 	 * being requested for this frame.  We can rule out both by just
2221 	 * checking for CHECKSUM_PARTIAL
2222 	 */
2223 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2224 		return features;
2225 
2226 	/* We cannot support GSO if the MSS is going to be less than
2227 	 * 88 bytes. If it is then we need to drop support for GSO.
2228 	 */
2229 	if (skb_is_gso(skb) &&
2230 	    (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS))
2231 		features &= ~NETIF_F_GSO_MASK;
2232 
2233 	/* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2234 	len = skb_network_offset(skb);
2235 	if (unlikely(len & ~(126)))
2236 		goto unsupported;
2237 
2238 	len = skb_network_header_len(skb);
2239 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2240 		goto unsupported;
2241 
2242 	if (!skb->encapsulation)
2243 		return features;
2244 
2245 	/* L4TUNLEN can support 127 words */
2246 	len = skb_inner_network_header(skb) - skb_transport_header(skb);
2247 	if (unlikely(len & ~(127 * 2)))
2248 		goto unsupported;
2249 
2250 	/* IPLEN can support at most 127 dwords */
2251 	len = skb_inner_network_header_len(skb);
2252 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2253 		goto unsupported;
2254 
2255 	/* No need to validate L4LEN as TCP is the only protocol with a
2256 	 * a flexible value and we support all possible values supported
2257 	 * by TCP, which is at most 15 dwords
2258 	 */
2259 
2260 	return features;
2261 
2262 unsupported:
2263 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2264 }
2265 
2266 /**
2267  * idpf_set_mac - NDO callback to set port mac address
2268  * @netdev: network interface device structure
2269  * @p: pointer to an address structure
2270  *
2271  * Returns 0 on success, negative on failure
2272  **/
2273 static int idpf_set_mac(struct net_device *netdev, void *p)
2274 {
2275 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2276 	struct idpf_vport_config *vport_config;
2277 	struct sockaddr *addr = p;
2278 	struct idpf_vport *vport;
2279 	int err = 0;
2280 
2281 	idpf_vport_ctrl_lock(netdev);
2282 	vport = idpf_netdev_to_vport(netdev);
2283 
2284 	if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2285 			     VIRTCHNL2_CAP_MACFILTER)) {
2286 		dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2287 		err = -EOPNOTSUPP;
2288 		goto unlock_mutex;
2289 	}
2290 
2291 	if (!is_valid_ether_addr(addr->sa_data)) {
2292 		dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2293 			 addr->sa_data);
2294 		err = -EADDRNOTAVAIL;
2295 		goto unlock_mutex;
2296 	}
2297 
2298 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2299 		goto unlock_mutex;
2300 
2301 	vport_config = vport->adapter->vport_config[vport->idx];
2302 	err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2303 	if (err) {
2304 		__idpf_del_mac_filter(vport_config, addr->sa_data);
2305 		goto unlock_mutex;
2306 	}
2307 
2308 	if (is_valid_ether_addr(vport->default_mac_addr))
2309 		idpf_del_mac_filter(vport, np, vport->default_mac_addr, false);
2310 
2311 	ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2312 	eth_hw_addr_set(netdev, addr->sa_data);
2313 
2314 unlock_mutex:
2315 	idpf_vport_ctrl_unlock(netdev);
2316 
2317 	return err;
2318 }
2319 
2320 /**
2321  * idpf_alloc_dma_mem - Allocate dma memory
2322  * @hw: pointer to hw struct
2323  * @mem: pointer to dma_mem struct
2324  * @size: size of the memory to allocate
2325  */
2326 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2327 {
2328 	struct idpf_adapter *adapter = hw->back;
2329 	size_t sz = ALIGN(size, 4096);
2330 
2331 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, sz,
2332 				     &mem->pa, GFP_KERNEL);
2333 	mem->size = sz;
2334 
2335 	return mem->va;
2336 }
2337 
2338 /**
2339  * idpf_free_dma_mem - Free the allocated dma memory
2340  * @hw: pointer to hw struct
2341  * @mem: pointer to dma_mem struct
2342  */
2343 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2344 {
2345 	struct idpf_adapter *adapter = hw->back;
2346 
2347 	dma_free_coherent(&adapter->pdev->dev, mem->size,
2348 			  mem->va, mem->pa);
2349 	mem->size = 0;
2350 	mem->va = NULL;
2351 	mem->pa = 0;
2352 }
2353 
2354 static const struct net_device_ops idpf_netdev_ops = {
2355 	.ndo_open = idpf_open,
2356 	.ndo_stop = idpf_stop,
2357 	.ndo_start_xmit = idpf_tx_start,
2358 	.ndo_features_check = idpf_features_check,
2359 	.ndo_set_rx_mode = idpf_set_rx_mode,
2360 	.ndo_validate_addr = eth_validate_addr,
2361 	.ndo_set_mac_address = idpf_set_mac,
2362 	.ndo_change_mtu = idpf_change_mtu,
2363 	.ndo_get_stats64 = idpf_get_stats64,
2364 	.ndo_set_features = idpf_set_features,
2365 	.ndo_tx_timeout = idpf_tx_timeout,
2366 };
2367