xref: /linux/drivers/net/ethernet/intel/idpf/idpf_lib.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3 
4 #include "idpf.h"
5 #include "idpf_virtchnl.h"
6 
7 static const struct net_device_ops idpf_netdev_ops;
8 
9 /**
10  * idpf_init_vector_stack - Fill the MSIX vector stack with vector index
11  * @adapter: private data struct
12  *
13  * Return 0 on success, error on failure
14  */
15 static int idpf_init_vector_stack(struct idpf_adapter *adapter)
16 {
17 	struct idpf_vector_lifo *stack;
18 	u16 min_vec;
19 	u32 i;
20 
21 	mutex_lock(&adapter->vector_lock);
22 	min_vec = adapter->num_msix_entries - adapter->num_avail_msix;
23 	stack = &adapter->vector_stack;
24 	stack->size = adapter->num_msix_entries;
25 	/* set the base and top to point at start of the 'free pool' to
26 	 * distribute the unused vectors on-demand basis
27 	 */
28 	stack->base = min_vec;
29 	stack->top = min_vec;
30 
31 	stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL);
32 	if (!stack->vec_idx) {
33 		mutex_unlock(&adapter->vector_lock);
34 
35 		return -ENOMEM;
36 	}
37 
38 	for (i = 0; i < stack->size; i++)
39 		stack->vec_idx[i] = i;
40 
41 	mutex_unlock(&adapter->vector_lock);
42 
43 	return 0;
44 }
45 
46 /**
47  * idpf_deinit_vector_stack - zero out the MSIX vector stack
48  * @adapter: private data struct
49  */
50 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter)
51 {
52 	struct idpf_vector_lifo *stack;
53 
54 	mutex_lock(&adapter->vector_lock);
55 	stack = &adapter->vector_stack;
56 	kfree(stack->vec_idx);
57 	stack->vec_idx = NULL;
58 	mutex_unlock(&adapter->vector_lock);
59 }
60 
61 /**
62  * idpf_mb_intr_rel_irq - Free the IRQ association with the OS
63  * @adapter: adapter structure
64  *
65  * This will also disable interrupt mode and queue up mailbox task. Mailbox
66  * task will reschedule itself if not in interrupt mode.
67  */
68 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter)
69 {
70 	clear_bit(IDPF_MB_INTR_MODE, adapter->flags);
71 	kfree(free_irq(adapter->msix_entries[0].vector, adapter));
72 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
73 }
74 
75 /**
76  * idpf_intr_rel - Release interrupt capabilities and free memory
77  * @adapter: adapter to disable interrupts on
78  */
79 void idpf_intr_rel(struct idpf_adapter *adapter)
80 {
81 	if (!adapter->msix_entries)
82 		return;
83 
84 	idpf_mb_intr_rel_irq(adapter);
85 	pci_free_irq_vectors(adapter->pdev);
86 	idpf_send_dealloc_vectors_msg(adapter);
87 	idpf_deinit_vector_stack(adapter);
88 	kfree(adapter->msix_entries);
89 	adapter->msix_entries = NULL;
90 }
91 
92 /**
93  * idpf_mb_intr_clean - Interrupt handler for the mailbox
94  * @irq: interrupt number
95  * @data: pointer to the adapter structure
96  */
97 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data)
98 {
99 	struct idpf_adapter *adapter = (struct idpf_adapter *)data;
100 
101 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
102 
103 	return IRQ_HANDLED;
104 }
105 
106 /**
107  * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox
108  * @adapter: adapter to get the hardware address for register write
109  */
110 static void idpf_mb_irq_enable(struct idpf_adapter *adapter)
111 {
112 	struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg;
113 	u32 val;
114 
115 	val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m;
116 	writel(val, intr->dyn_ctl);
117 	writel(intr->icr_ena_ctlq_m, intr->icr_ena);
118 }
119 
120 /**
121  * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt
122  * @adapter: adapter structure to pass to the mailbox irq handler
123  */
124 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter)
125 {
126 	int irq_num, mb_vidx = 0, err;
127 	char *name;
128 
129 	irq_num = adapter->msix_entries[mb_vidx].vector;
130 	name = kasprintf(GFP_KERNEL, "%s-%s-%d",
131 			 dev_driver_string(&adapter->pdev->dev),
132 			 "Mailbox", mb_vidx);
133 	err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter);
134 	if (err) {
135 		dev_err(&adapter->pdev->dev,
136 			"IRQ request for mailbox failed, error: %d\n", err);
137 
138 		return err;
139 	}
140 
141 	set_bit(IDPF_MB_INTR_MODE, adapter->flags);
142 
143 	return 0;
144 }
145 
146 /**
147  * idpf_set_mb_vec_id - Set vector index for mailbox
148  * @adapter: adapter structure to access the vector chunks
149  *
150  * The first vector id in the requested vector chunks from the CP is for
151  * the mailbox
152  */
153 static void idpf_set_mb_vec_id(struct idpf_adapter *adapter)
154 {
155 	if (adapter->req_vec_chunks)
156 		adapter->mb_vector.v_idx =
157 			le16_to_cpu(adapter->caps.mailbox_vector_id);
158 	else
159 		adapter->mb_vector.v_idx = 0;
160 }
161 
162 /**
163  * idpf_mb_intr_init - Initialize the mailbox interrupt
164  * @adapter: adapter structure to store the mailbox vector
165  */
166 static int idpf_mb_intr_init(struct idpf_adapter *adapter)
167 {
168 	adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter);
169 	adapter->irq_mb_handler = idpf_mb_intr_clean;
170 
171 	return idpf_mb_intr_req_irq(adapter);
172 }
173 
174 /**
175  * idpf_vector_lifo_push - push MSIX vector index onto stack
176  * @adapter: private data struct
177  * @vec_idx: vector index to store
178  */
179 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx)
180 {
181 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
182 
183 	lockdep_assert_held(&adapter->vector_lock);
184 
185 	if (stack->top == stack->base) {
186 		dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n",
187 			stack->top);
188 		return -EINVAL;
189 	}
190 
191 	stack->vec_idx[--stack->top] = vec_idx;
192 
193 	return 0;
194 }
195 
196 /**
197  * idpf_vector_lifo_pop - pop MSIX vector index from stack
198  * @adapter: private data struct
199  */
200 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter)
201 {
202 	struct idpf_vector_lifo *stack = &adapter->vector_stack;
203 
204 	lockdep_assert_held(&adapter->vector_lock);
205 
206 	if (stack->top == stack->size) {
207 		dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n");
208 
209 		return -EINVAL;
210 	}
211 
212 	return stack->vec_idx[stack->top++];
213 }
214 
215 /**
216  * idpf_vector_stash - Store the vector indexes onto the stack
217  * @adapter: private data struct
218  * @q_vector_idxs: vector index array
219  * @vec_info: info related to the number of vectors
220  *
221  * This function is a no-op if there are no vectors indexes to be stashed
222  */
223 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs,
224 			      struct idpf_vector_info *vec_info)
225 {
226 	int i, base = 0;
227 	u16 vec_idx;
228 
229 	lockdep_assert_held(&adapter->vector_lock);
230 
231 	if (!vec_info->num_curr_vecs)
232 		return;
233 
234 	/* For default vports, no need to stash vector allocated from the
235 	 * default pool onto the stack
236 	 */
237 	if (vec_info->default_vport)
238 		base = IDPF_MIN_Q_VEC;
239 
240 	for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) {
241 		vec_idx = q_vector_idxs[i];
242 		idpf_vector_lifo_push(adapter, vec_idx);
243 		adapter->num_avail_msix++;
244 	}
245 }
246 
247 /**
248  * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes
249  * @adapter: driver specific private structure
250  * @q_vector_idxs: vector index array
251  * @vec_info: info related to the number of vectors
252  *
253  * This is the core function to distribute the MSIX vectors acquired from the
254  * OS. It expects the caller to pass the number of vectors required and
255  * also previously allocated. First, it stashes previously allocated vector
256  * indexes on to the stack and then figures out if it can allocate requested
257  * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as
258  * requested vectors, then this function just stashes the already allocated
259  * vectors and returns 0.
260  *
261  * Returns actual number of vectors allocated on success, error value on failure
262  * If 0 is returned, implies the stack has no vectors to allocate which is also
263  * a failure case for the caller
264  */
265 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter,
266 				u16 *q_vector_idxs,
267 				struct idpf_vector_info *vec_info)
268 {
269 	u16 num_req_vecs, num_alloc_vecs = 0, max_vecs;
270 	struct idpf_vector_lifo *stack;
271 	int i, j, vecid;
272 
273 	mutex_lock(&adapter->vector_lock);
274 	stack = &adapter->vector_stack;
275 	num_req_vecs = vec_info->num_req_vecs;
276 
277 	/* Stash interrupt vector indexes onto the stack if required */
278 	idpf_vector_stash(adapter, q_vector_idxs, vec_info);
279 
280 	if (!num_req_vecs)
281 		goto rel_lock;
282 
283 	if (vec_info->default_vport) {
284 		/* As IDPF_MIN_Q_VEC per default vport is put aside in the
285 		 * default pool of the stack, use them for default vports
286 		 */
287 		j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC;
288 		for (i = 0; i < IDPF_MIN_Q_VEC; i++) {
289 			q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++];
290 			num_req_vecs--;
291 		}
292 	}
293 
294 	/* Find if stack has enough vector to allocate */
295 	max_vecs = min(adapter->num_avail_msix, num_req_vecs);
296 
297 	for (j = 0; j < max_vecs; j++) {
298 		vecid = idpf_vector_lifo_pop(adapter);
299 		q_vector_idxs[num_alloc_vecs++] = vecid;
300 	}
301 	adapter->num_avail_msix -= max_vecs;
302 
303 rel_lock:
304 	mutex_unlock(&adapter->vector_lock);
305 
306 	return num_alloc_vecs;
307 }
308 
309 /**
310  * idpf_intr_req - Request interrupt capabilities
311  * @adapter: adapter to enable interrupts on
312  *
313  * Returns 0 on success, negative on failure
314  */
315 int idpf_intr_req(struct idpf_adapter *adapter)
316 {
317 	u16 default_vports = idpf_get_default_vports(adapter);
318 	int num_q_vecs, total_vecs, num_vec_ids;
319 	int min_vectors, v_actual, err;
320 	unsigned int vector;
321 	u16 *vecids;
322 
323 	total_vecs = idpf_get_reserved_vecs(adapter);
324 	num_q_vecs = total_vecs - IDPF_MBX_Q_VEC;
325 
326 	err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs);
327 	if (err) {
328 		dev_err(&adapter->pdev->dev,
329 			"Failed to allocate %d vectors: %d\n", num_q_vecs, err);
330 
331 		return -EAGAIN;
332 	}
333 
334 	min_vectors = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports;
335 	v_actual = pci_alloc_irq_vectors(adapter->pdev, min_vectors,
336 					 total_vecs, PCI_IRQ_MSIX);
337 	if (v_actual < min_vectors) {
338 		dev_err(&adapter->pdev->dev, "Failed to allocate MSIX vectors: %d\n",
339 			v_actual);
340 		err = -EAGAIN;
341 		goto send_dealloc_vecs;
342 	}
343 
344 	adapter->msix_entries = kcalloc(v_actual, sizeof(struct msix_entry),
345 					GFP_KERNEL);
346 
347 	if (!adapter->msix_entries) {
348 		err = -ENOMEM;
349 		goto free_irq;
350 	}
351 
352 	idpf_set_mb_vec_id(adapter);
353 
354 	vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
355 	if (!vecids) {
356 		err = -ENOMEM;
357 		goto free_msix;
358 	}
359 
360 	num_vec_ids = idpf_get_vec_ids(adapter, vecids, total_vecs,
361 				       &adapter->req_vec_chunks->vchunks);
362 	if (num_vec_ids < v_actual) {
363 		err = -EINVAL;
364 		goto free_vecids;
365 	}
366 
367 	for (vector = 0; vector < v_actual; vector++) {
368 		adapter->msix_entries[vector].entry = vecids[vector];
369 		adapter->msix_entries[vector].vector =
370 			pci_irq_vector(adapter->pdev, vector);
371 	}
372 
373 	adapter->num_req_msix = total_vecs;
374 	adapter->num_msix_entries = v_actual;
375 	/* 'num_avail_msix' is used to distribute excess vectors to the vports
376 	 * after considering the minimum vectors required per each default
377 	 * vport
378 	 */
379 	adapter->num_avail_msix = v_actual - min_vectors;
380 
381 	/* Fill MSIX vector lifo stack with vector indexes */
382 	err = idpf_init_vector_stack(adapter);
383 	if (err)
384 		goto free_vecids;
385 
386 	err = idpf_mb_intr_init(adapter);
387 	if (err)
388 		goto deinit_vec_stack;
389 	idpf_mb_irq_enable(adapter);
390 	kfree(vecids);
391 
392 	return 0;
393 
394 deinit_vec_stack:
395 	idpf_deinit_vector_stack(adapter);
396 free_vecids:
397 	kfree(vecids);
398 free_msix:
399 	kfree(adapter->msix_entries);
400 	adapter->msix_entries = NULL;
401 free_irq:
402 	pci_free_irq_vectors(adapter->pdev);
403 send_dealloc_vecs:
404 	idpf_send_dealloc_vectors_msg(adapter);
405 
406 	return err;
407 }
408 
409 /**
410  * idpf_find_mac_filter - Search filter list for specific mac filter
411  * @vconfig: Vport config structure
412  * @macaddr: The MAC address
413  *
414  * Returns ptr to the filter object or NULL. Must be called while holding the
415  * mac_filter_list_lock.
416  **/
417 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig,
418 						    const u8 *macaddr)
419 {
420 	struct idpf_mac_filter *f;
421 
422 	if (!macaddr)
423 		return NULL;
424 
425 	list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) {
426 		if (ether_addr_equal(macaddr, f->macaddr))
427 			return f;
428 	}
429 
430 	return NULL;
431 }
432 
433 /**
434  * __idpf_del_mac_filter - Delete a MAC filter from the filter list
435  * @vport_config: Vport config structure
436  * @macaddr: The MAC address
437  *
438  * Returns 0 on success, error value on failure
439  **/
440 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config,
441 				 const u8 *macaddr)
442 {
443 	struct idpf_mac_filter *f;
444 
445 	spin_lock_bh(&vport_config->mac_filter_list_lock);
446 	f = idpf_find_mac_filter(vport_config, macaddr);
447 	if (f) {
448 		list_del(&f->list);
449 		kfree(f);
450 	}
451 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
452 
453 	return 0;
454 }
455 
456 /**
457  * idpf_del_mac_filter - Delete a MAC filter from the filter list
458  * @vport: Main vport structure
459  * @np: Netdev private structure
460  * @macaddr: The MAC address
461  * @async: Don't wait for return message
462  *
463  * Removes filter from list and if interface is up, tells hardware about the
464  * removed filter.
465  **/
466 static int idpf_del_mac_filter(struct idpf_vport *vport,
467 			       struct idpf_netdev_priv *np,
468 			       const u8 *macaddr, bool async)
469 {
470 	struct idpf_vport_config *vport_config;
471 	struct idpf_mac_filter *f;
472 
473 	vport_config = np->adapter->vport_config[np->vport_idx];
474 
475 	spin_lock_bh(&vport_config->mac_filter_list_lock);
476 	f = idpf_find_mac_filter(vport_config, macaddr);
477 	if (f) {
478 		f->remove = true;
479 	} else {
480 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
481 
482 		return -EINVAL;
483 	}
484 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
485 
486 	if (np->state == __IDPF_VPORT_UP) {
487 		int err;
488 
489 		err = idpf_add_del_mac_filters(vport, np, false, async);
490 		if (err)
491 			return err;
492 	}
493 
494 	return  __idpf_del_mac_filter(vport_config, macaddr);
495 }
496 
497 /**
498  * __idpf_add_mac_filter - Add mac filter helper function
499  * @vport_config: Vport config structure
500  * @macaddr: Address to add
501  *
502  * Takes mac_filter_list_lock spinlock to add new filter to list.
503  */
504 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config,
505 				 const u8 *macaddr)
506 {
507 	struct idpf_mac_filter *f;
508 
509 	spin_lock_bh(&vport_config->mac_filter_list_lock);
510 
511 	f = idpf_find_mac_filter(vport_config, macaddr);
512 	if (f) {
513 		f->remove = false;
514 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
515 
516 		return 0;
517 	}
518 
519 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
520 	if (!f) {
521 		spin_unlock_bh(&vport_config->mac_filter_list_lock);
522 
523 		return -ENOMEM;
524 	}
525 
526 	ether_addr_copy(f->macaddr, macaddr);
527 	list_add_tail(&f->list, &vport_config->user_config.mac_filter_list);
528 	f->add = true;
529 
530 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
531 
532 	return 0;
533 }
534 
535 /**
536  * idpf_add_mac_filter - Add a mac filter to the filter list
537  * @vport: Main vport structure
538  * @np: Netdev private structure
539  * @macaddr: The MAC address
540  * @async: Don't wait for return message
541  *
542  * Returns 0 on success or error on failure. If interface is up, we'll also
543  * send the virtchnl message to tell hardware about the filter.
544  **/
545 static int idpf_add_mac_filter(struct idpf_vport *vport,
546 			       struct idpf_netdev_priv *np,
547 			       const u8 *macaddr, bool async)
548 {
549 	struct idpf_vport_config *vport_config;
550 	int err;
551 
552 	vport_config = np->adapter->vport_config[np->vport_idx];
553 	err = __idpf_add_mac_filter(vport_config, macaddr);
554 	if (err)
555 		return err;
556 
557 	if (np->state == __IDPF_VPORT_UP)
558 		err = idpf_add_del_mac_filters(vport, np, true, async);
559 
560 	return err;
561 }
562 
563 /**
564  * idpf_del_all_mac_filters - Delete all MAC filters in list
565  * @vport: main vport struct
566  *
567  * Takes mac_filter_list_lock spinlock.  Deletes all filters
568  */
569 static void idpf_del_all_mac_filters(struct idpf_vport *vport)
570 {
571 	struct idpf_vport_config *vport_config;
572 	struct idpf_mac_filter *f, *ftmp;
573 
574 	vport_config = vport->adapter->vport_config[vport->idx];
575 	spin_lock_bh(&vport_config->mac_filter_list_lock);
576 
577 	list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list,
578 				 list) {
579 		list_del(&f->list);
580 		kfree(f);
581 	}
582 
583 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
584 }
585 
586 /**
587  * idpf_restore_mac_filters - Re-add all MAC filters in list
588  * @vport: main vport struct
589  *
590  * Takes mac_filter_list_lock spinlock.  Sets add field to true for filters to
591  * resync filters back to HW.
592  */
593 static void idpf_restore_mac_filters(struct idpf_vport *vport)
594 {
595 	struct idpf_vport_config *vport_config;
596 	struct idpf_mac_filter *f;
597 
598 	vport_config = vport->adapter->vport_config[vport->idx];
599 	spin_lock_bh(&vport_config->mac_filter_list_lock);
600 
601 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
602 		f->add = true;
603 
604 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
605 
606 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
607 				 true, false);
608 }
609 
610 /**
611  * idpf_remove_mac_filters - Remove all MAC filters in list
612  * @vport: main vport struct
613  *
614  * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters
615  * to remove filters in HW.
616  */
617 static void idpf_remove_mac_filters(struct idpf_vport *vport)
618 {
619 	struct idpf_vport_config *vport_config;
620 	struct idpf_mac_filter *f;
621 
622 	vport_config = vport->adapter->vport_config[vport->idx];
623 	spin_lock_bh(&vport_config->mac_filter_list_lock);
624 
625 	list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list)
626 		f->remove = true;
627 
628 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
629 
630 	idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev),
631 				 false, false);
632 }
633 
634 /**
635  * idpf_deinit_mac_addr - deinitialize mac address for vport
636  * @vport: main vport structure
637  */
638 static void idpf_deinit_mac_addr(struct idpf_vport *vport)
639 {
640 	struct idpf_vport_config *vport_config;
641 	struct idpf_mac_filter *f;
642 
643 	vport_config = vport->adapter->vport_config[vport->idx];
644 
645 	spin_lock_bh(&vport_config->mac_filter_list_lock);
646 
647 	f = idpf_find_mac_filter(vport_config, vport->default_mac_addr);
648 	if (f) {
649 		list_del(&f->list);
650 		kfree(f);
651 	}
652 
653 	spin_unlock_bh(&vport_config->mac_filter_list_lock);
654 }
655 
656 /**
657  * idpf_init_mac_addr - initialize mac address for vport
658  * @vport: main vport structure
659  * @netdev: pointer to netdev struct associated with this vport
660  */
661 static int idpf_init_mac_addr(struct idpf_vport *vport,
662 			      struct net_device *netdev)
663 {
664 	struct idpf_netdev_priv *np = netdev_priv(netdev);
665 	struct idpf_adapter *adapter = vport->adapter;
666 	int err;
667 
668 	if (is_valid_ether_addr(vport->default_mac_addr)) {
669 		eth_hw_addr_set(netdev, vport->default_mac_addr);
670 		ether_addr_copy(netdev->perm_addr, vport->default_mac_addr);
671 
672 		return idpf_add_mac_filter(vport, np, vport->default_mac_addr,
673 					   false);
674 	}
675 
676 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS,
677 			     VIRTCHNL2_CAP_MACFILTER)) {
678 		dev_err(&adapter->pdev->dev,
679 			"MAC address is not provided and capability is not set\n");
680 
681 		return -EINVAL;
682 	}
683 
684 	eth_hw_addr_random(netdev);
685 	err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false);
686 	if (err)
687 		return err;
688 
689 	dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n",
690 		 vport->default_mac_addr, netdev->dev_addr);
691 	ether_addr_copy(vport->default_mac_addr, netdev->dev_addr);
692 
693 	return 0;
694 }
695 
696 /**
697  * idpf_cfg_netdev - Allocate, configure and register a netdev
698  * @vport: main vport structure
699  *
700  * Returns 0 on success, negative value on failure.
701  */
702 static int idpf_cfg_netdev(struct idpf_vport *vport)
703 {
704 	struct idpf_adapter *adapter = vport->adapter;
705 	struct idpf_vport_config *vport_config;
706 	netdev_features_t dflt_features;
707 	netdev_features_t offloads = 0;
708 	struct idpf_netdev_priv *np;
709 	struct net_device *netdev;
710 	u16 idx = vport->idx;
711 	int err;
712 
713 	vport_config = adapter->vport_config[idx];
714 
715 	/* It's possible we already have a netdev allocated and registered for
716 	 * this vport
717 	 */
718 	if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) {
719 		netdev = adapter->netdevs[idx];
720 		np = netdev_priv(netdev);
721 		np->vport = vport;
722 		np->vport_idx = vport->idx;
723 		np->vport_id = vport->vport_id;
724 		vport->netdev = netdev;
725 
726 		return idpf_init_mac_addr(vport, netdev);
727 	}
728 
729 	netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv),
730 				    vport_config->max_q.max_txq,
731 				    vport_config->max_q.max_rxq);
732 	if (!netdev)
733 		return -ENOMEM;
734 
735 	vport->netdev = netdev;
736 	np = netdev_priv(netdev);
737 	np->vport = vport;
738 	np->adapter = adapter;
739 	np->vport_idx = vport->idx;
740 	np->vport_id = vport->vport_id;
741 
742 	spin_lock_init(&np->stats_lock);
743 
744 	err = idpf_init_mac_addr(vport, netdev);
745 	if (err) {
746 		free_netdev(vport->netdev);
747 		vport->netdev = NULL;
748 
749 		return err;
750 	}
751 
752 	/* assign netdev_ops */
753 	netdev->netdev_ops = &idpf_netdev_ops;
754 
755 	/* setup watchdog timeout value to be 5 second */
756 	netdev->watchdog_timeo = 5 * HZ;
757 
758 	netdev->dev_port = idx;
759 
760 	/* configure default MTU size */
761 	netdev->min_mtu = ETH_MIN_MTU;
762 	netdev->max_mtu = vport->max_mtu;
763 
764 	dflt_features = NETIF_F_SG	|
765 			NETIF_F_HIGHDMA;
766 
767 	if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS))
768 		dflt_features |= NETIF_F_RXHASH;
769 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V4))
770 		dflt_features |= NETIF_F_IP_CSUM;
771 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V6))
772 		dflt_features |= NETIF_F_IPV6_CSUM;
773 	if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM))
774 		dflt_features |= NETIF_F_RXCSUM;
775 	if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_SCTP_CSUM))
776 		dflt_features |= NETIF_F_SCTP_CRC;
777 
778 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP))
779 		dflt_features |= NETIF_F_TSO;
780 	if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP))
781 		dflt_features |= NETIF_F_TSO6;
782 	if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS,
783 				VIRTCHNL2_CAP_SEG_IPV4_UDP |
784 				VIRTCHNL2_CAP_SEG_IPV6_UDP))
785 		dflt_features |= NETIF_F_GSO_UDP_L4;
786 	if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC))
787 		offloads |= NETIF_F_GRO_HW;
788 	/* advertise to stack only if offloads for encapsulated packets is
789 	 * supported
790 	 */
791 	if (idpf_is_cap_ena(vport->adapter, IDPF_SEG_CAPS,
792 			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL)) {
793 		offloads |= NETIF_F_GSO_UDP_TUNNEL	|
794 			    NETIF_F_GSO_GRE		|
795 			    NETIF_F_GSO_GRE_CSUM	|
796 			    NETIF_F_GSO_PARTIAL		|
797 			    NETIF_F_GSO_UDP_TUNNEL_CSUM	|
798 			    NETIF_F_GSO_IPXIP4		|
799 			    NETIF_F_GSO_IPXIP6		|
800 			    0;
801 
802 		if (!idpf_is_cap_ena_all(vport->adapter, IDPF_CSUM_CAPS,
803 					 IDPF_CAP_TUNNEL_TX_CSUM))
804 			netdev->gso_partial_features |=
805 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
806 
807 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
808 		offloads |= NETIF_F_TSO_MANGLEID;
809 	}
810 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK))
811 		offloads |= NETIF_F_LOOPBACK;
812 
813 	netdev->features |= dflt_features;
814 	netdev->hw_features |= dflt_features | offloads;
815 	netdev->hw_enc_features |= dflt_features | offloads;
816 	idpf_set_ethtool_ops(netdev);
817 	SET_NETDEV_DEV(netdev, &adapter->pdev->dev);
818 
819 	/* carrier off on init to avoid Tx hangs */
820 	netif_carrier_off(netdev);
821 
822 	/* make sure transmit queues start off as stopped */
823 	netif_tx_stop_all_queues(netdev);
824 
825 	/* The vport can be arbitrarily released so we need to also track
826 	 * netdevs in the adapter struct
827 	 */
828 	adapter->netdevs[idx] = netdev;
829 
830 	return 0;
831 }
832 
833 /**
834  * idpf_get_free_slot - get the next non-NULL location index in array
835  * @adapter: adapter in which to look for a free vport slot
836  */
837 static int idpf_get_free_slot(struct idpf_adapter *adapter)
838 {
839 	unsigned int i;
840 
841 	for (i = 0; i < adapter->max_vports; i++) {
842 		if (!adapter->vports[i])
843 			return i;
844 	}
845 
846 	return IDPF_NO_FREE_SLOT;
847 }
848 
849 /**
850  * idpf_remove_features - Turn off feature configs
851  * @vport: virtual port structure
852  */
853 static void idpf_remove_features(struct idpf_vport *vport)
854 {
855 	struct idpf_adapter *adapter = vport->adapter;
856 
857 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
858 		idpf_remove_mac_filters(vport);
859 }
860 
861 /**
862  * idpf_vport_stop - Disable a vport
863  * @vport: vport to disable
864  */
865 static void idpf_vport_stop(struct idpf_vport *vport)
866 {
867 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
868 
869 	if (np->state <= __IDPF_VPORT_DOWN)
870 		return;
871 
872 	netif_carrier_off(vport->netdev);
873 	netif_tx_disable(vport->netdev);
874 
875 	idpf_send_disable_vport_msg(vport);
876 	idpf_send_disable_queues_msg(vport);
877 	idpf_send_map_unmap_queue_vector_msg(vport, false);
878 	/* Normally we ask for queues in create_vport, but if the number of
879 	 * initially requested queues have changed, for example via ethtool
880 	 * set channels, we do delete queues and then add the queues back
881 	 * instead of deleting and reallocating the vport.
882 	 */
883 	if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags))
884 		idpf_send_delete_queues_msg(vport);
885 
886 	idpf_remove_features(vport);
887 
888 	vport->link_up = false;
889 	idpf_vport_intr_deinit(vport);
890 	idpf_vport_queues_rel(vport);
891 	idpf_vport_intr_rel(vport);
892 	np->state = __IDPF_VPORT_DOWN;
893 }
894 
895 /**
896  * idpf_stop - Disables a network interface
897  * @netdev: network interface device structure
898  *
899  * The stop entry point is called when an interface is de-activated by the OS,
900  * and the netdevice enters the DOWN state.  The hardware is still under the
901  * driver's control, but the netdev interface is disabled.
902  *
903  * Returns success only - not allowed to fail
904  */
905 static int idpf_stop(struct net_device *netdev)
906 {
907 	struct idpf_netdev_priv *np = netdev_priv(netdev);
908 	struct idpf_vport *vport;
909 
910 	if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags))
911 		return 0;
912 
913 	idpf_vport_ctrl_lock(netdev);
914 	vport = idpf_netdev_to_vport(netdev);
915 
916 	idpf_vport_stop(vport);
917 
918 	idpf_vport_ctrl_unlock(netdev);
919 
920 	return 0;
921 }
922 
923 /**
924  * idpf_decfg_netdev - Unregister the netdev
925  * @vport: vport for which netdev to be unregistered
926  */
927 static void idpf_decfg_netdev(struct idpf_vport *vport)
928 {
929 	struct idpf_adapter *adapter = vport->adapter;
930 
931 	kfree(vport->rx_ptype_lkup);
932 	vport->rx_ptype_lkup = NULL;
933 
934 	unregister_netdev(vport->netdev);
935 	free_netdev(vport->netdev);
936 	vport->netdev = NULL;
937 
938 	adapter->netdevs[vport->idx] = NULL;
939 }
940 
941 /**
942  * idpf_vport_rel - Delete a vport and free its resources
943  * @vport: the vport being removed
944  */
945 static void idpf_vport_rel(struct idpf_vport *vport)
946 {
947 	struct idpf_adapter *adapter = vport->adapter;
948 	struct idpf_vport_config *vport_config;
949 	struct idpf_vector_info vec_info;
950 	struct idpf_rss_data *rss_data;
951 	struct idpf_vport_max_q max_q;
952 	u16 idx = vport->idx;
953 
954 	vport_config = adapter->vport_config[vport->idx];
955 	idpf_deinit_rss(vport);
956 	rss_data = &vport_config->user_config.rss_data;
957 	kfree(rss_data->rss_key);
958 	rss_data->rss_key = NULL;
959 
960 	idpf_send_destroy_vport_msg(vport);
961 
962 	/* Release all max queues allocated to the adapter's pool */
963 	max_q.max_rxq = vport_config->max_q.max_rxq;
964 	max_q.max_txq = vport_config->max_q.max_txq;
965 	max_q.max_bufq = vport_config->max_q.max_bufq;
966 	max_q.max_complq = vport_config->max_q.max_complq;
967 	idpf_vport_dealloc_max_qs(adapter, &max_q);
968 
969 	/* Release all the allocated vectors on the stack */
970 	vec_info.num_req_vecs = 0;
971 	vec_info.num_curr_vecs = vport->num_q_vectors;
972 	vec_info.default_vport = vport->default_vport;
973 
974 	idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info);
975 
976 	kfree(vport->q_vector_idxs);
977 	vport->q_vector_idxs = NULL;
978 
979 	kfree(adapter->vport_params_recvd[idx]);
980 	adapter->vport_params_recvd[idx] = NULL;
981 	kfree(adapter->vport_params_reqd[idx]);
982 	adapter->vport_params_reqd[idx] = NULL;
983 	if (adapter->vport_config[idx]) {
984 		kfree(adapter->vport_config[idx]->req_qs_chunks);
985 		adapter->vport_config[idx]->req_qs_chunks = NULL;
986 	}
987 	kfree(vport);
988 	adapter->num_alloc_vports--;
989 }
990 
991 /**
992  * idpf_vport_dealloc - cleanup and release a given vport
993  * @vport: pointer to idpf vport structure
994  *
995  * returns nothing
996  */
997 static void idpf_vport_dealloc(struct idpf_vport *vport)
998 {
999 	struct idpf_adapter *adapter = vport->adapter;
1000 	unsigned int i = vport->idx;
1001 
1002 	idpf_deinit_mac_addr(vport);
1003 	idpf_vport_stop(vport);
1004 
1005 	if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1006 		idpf_decfg_netdev(vport);
1007 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1008 		idpf_del_all_mac_filters(vport);
1009 
1010 	if (adapter->netdevs[i]) {
1011 		struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]);
1012 
1013 		np->vport = NULL;
1014 	}
1015 
1016 	idpf_vport_rel(vport);
1017 
1018 	adapter->vports[i] = NULL;
1019 	adapter->next_vport = idpf_get_free_slot(adapter);
1020 }
1021 
1022 /**
1023  * idpf_is_hsplit_supported - check whether the header split is supported
1024  * @vport: virtual port to check the capability for
1025  *
1026  * Return: true if it's supported by the HW/FW, false if not.
1027  */
1028 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport)
1029 {
1030 	return idpf_is_queue_model_split(vport->rxq_model) &&
1031 	       idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS,
1032 				   IDPF_CAP_HSPLIT);
1033 }
1034 
1035 /**
1036  * idpf_vport_get_hsplit - get the current header split feature state
1037  * @vport: virtual port to query the state for
1038  *
1039  * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported,
1040  *         ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled,
1041  *         ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active.
1042  */
1043 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport)
1044 {
1045 	const struct idpf_vport_user_config_data *config;
1046 
1047 	if (!idpf_is_hsplit_supported(vport))
1048 		return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1049 
1050 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1051 
1052 	return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ?
1053 	       ETHTOOL_TCP_DATA_SPLIT_ENABLED :
1054 	       ETHTOOL_TCP_DATA_SPLIT_DISABLED;
1055 }
1056 
1057 /**
1058  * idpf_vport_set_hsplit - enable or disable header split on a given vport
1059  * @vport: virtual port to configure
1060  * @val: Ethtool flag controlling the header split state
1061  *
1062  * Return: true on success, false if not supported by the HW.
1063  */
1064 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val)
1065 {
1066 	struct idpf_vport_user_config_data *config;
1067 
1068 	if (!idpf_is_hsplit_supported(vport))
1069 		return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN;
1070 
1071 	config = &vport->adapter->vport_config[vport->idx]->user_config;
1072 
1073 	switch (val) {
1074 	case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN:
1075 		/* Default is to enable */
1076 	case ETHTOOL_TCP_DATA_SPLIT_ENABLED:
1077 		__set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1078 		return true;
1079 	case ETHTOOL_TCP_DATA_SPLIT_DISABLED:
1080 		__clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags);
1081 		return true;
1082 	default:
1083 		return false;
1084 	}
1085 }
1086 
1087 /**
1088  * idpf_vport_alloc - Allocates the next available struct vport in the adapter
1089  * @adapter: board private structure
1090  * @max_q: vport max queue info
1091  *
1092  * returns a pointer to a vport on success, NULL on failure.
1093  */
1094 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
1095 					   struct idpf_vport_max_q *max_q)
1096 {
1097 	struct idpf_rss_data *rss_data;
1098 	u16 idx = adapter->next_vport;
1099 	struct idpf_vport *vport;
1100 	u16 num_max_q;
1101 
1102 	if (idx == IDPF_NO_FREE_SLOT)
1103 		return NULL;
1104 
1105 	vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1106 	if (!vport)
1107 		return vport;
1108 
1109 	if (!adapter->vport_config[idx]) {
1110 		struct idpf_vport_config *vport_config;
1111 
1112 		vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL);
1113 		if (!vport_config) {
1114 			kfree(vport);
1115 
1116 			return NULL;
1117 		}
1118 
1119 		adapter->vport_config[idx] = vport_config;
1120 	}
1121 
1122 	vport->idx = idx;
1123 	vport->adapter = adapter;
1124 	vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
1125 	vport->default_vport = adapter->num_alloc_vports <
1126 			       idpf_get_default_vports(adapter);
1127 
1128 	num_max_q = max(max_q->max_txq, max_q->max_rxq);
1129 	vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL);
1130 	if (!vport->q_vector_idxs) {
1131 		kfree(vport);
1132 
1133 		return NULL;
1134 	}
1135 	idpf_vport_init(vport, max_q);
1136 
1137 	/* This alloc is done separate from the LUT because it's not strictly
1138 	 * dependent on how many queues we have. If we change number of queues
1139 	 * and soft reset we'll need a new LUT but the key can remain the same
1140 	 * for as long as the vport exists.
1141 	 */
1142 	rss_data = &adapter->vport_config[idx]->user_config.rss_data;
1143 	rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL);
1144 	if (!rss_data->rss_key) {
1145 		kfree(vport);
1146 
1147 		return NULL;
1148 	}
1149 	/* Initialize default rss key */
1150 	netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size);
1151 
1152 	/* fill vport slot in the adapter struct */
1153 	adapter->vports[idx] = vport;
1154 	adapter->vport_ids[idx] = idpf_get_vport_id(vport);
1155 
1156 	adapter->num_alloc_vports++;
1157 	/* prepare adapter->next_vport for next use */
1158 	adapter->next_vport = idpf_get_free_slot(adapter);
1159 
1160 	return vport;
1161 }
1162 
1163 /**
1164  * idpf_get_stats64 - get statistics for network device structure
1165  * @netdev: network interface device structure
1166  * @stats: main device statistics structure
1167  */
1168 static void idpf_get_stats64(struct net_device *netdev,
1169 			     struct rtnl_link_stats64 *stats)
1170 {
1171 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1172 
1173 	spin_lock_bh(&np->stats_lock);
1174 	*stats = np->netstats;
1175 	spin_unlock_bh(&np->stats_lock);
1176 }
1177 
1178 /**
1179  * idpf_statistics_task - Delayed task to get statistics over mailbox
1180  * @work: work_struct handle to our data
1181  */
1182 void idpf_statistics_task(struct work_struct *work)
1183 {
1184 	struct idpf_adapter *adapter;
1185 	int i;
1186 
1187 	adapter = container_of(work, struct idpf_adapter, stats_task.work);
1188 
1189 	for (i = 0; i < adapter->max_vports; i++) {
1190 		struct idpf_vport *vport = adapter->vports[i];
1191 
1192 		if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1193 			idpf_send_get_stats_msg(vport);
1194 	}
1195 
1196 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1197 			   msecs_to_jiffies(10000));
1198 }
1199 
1200 /**
1201  * idpf_mbx_task - Delayed task to handle mailbox responses
1202  * @work: work_struct handle
1203  */
1204 void idpf_mbx_task(struct work_struct *work)
1205 {
1206 	struct idpf_adapter *adapter;
1207 
1208 	adapter = container_of(work, struct idpf_adapter, mbx_task.work);
1209 
1210 	if (test_bit(IDPF_MB_INTR_MODE, adapter->flags))
1211 		idpf_mb_irq_enable(adapter);
1212 	else
1213 		queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task,
1214 				   msecs_to_jiffies(300));
1215 
1216 	idpf_recv_mb_msg(adapter);
1217 }
1218 
1219 /**
1220  * idpf_service_task - Delayed task for handling mailbox responses
1221  * @work: work_struct handle to our data
1222  *
1223  */
1224 void idpf_service_task(struct work_struct *work)
1225 {
1226 	struct idpf_adapter *adapter;
1227 
1228 	adapter = container_of(work, struct idpf_adapter, serv_task.work);
1229 
1230 	if (idpf_is_reset_detected(adapter) &&
1231 	    !idpf_is_reset_in_prog(adapter) &&
1232 	    !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) {
1233 		dev_info(&adapter->pdev->dev, "HW reset detected\n");
1234 		set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
1235 		queue_delayed_work(adapter->vc_event_wq,
1236 				   &adapter->vc_event_task,
1237 				   msecs_to_jiffies(10));
1238 	}
1239 
1240 	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
1241 			   msecs_to_jiffies(300));
1242 }
1243 
1244 /**
1245  * idpf_restore_features - Restore feature configs
1246  * @vport: virtual port structure
1247  */
1248 static void idpf_restore_features(struct idpf_vport *vport)
1249 {
1250 	struct idpf_adapter *adapter = vport->adapter;
1251 
1252 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER))
1253 		idpf_restore_mac_filters(vport);
1254 }
1255 
1256 /**
1257  * idpf_set_real_num_queues - set number of queues for netdev
1258  * @vport: virtual port structure
1259  *
1260  * Returns 0 on success, negative on failure.
1261  */
1262 static int idpf_set_real_num_queues(struct idpf_vport *vport)
1263 {
1264 	int err;
1265 
1266 	err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq);
1267 	if (err)
1268 		return err;
1269 
1270 	return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq);
1271 }
1272 
1273 /**
1274  * idpf_up_complete - Complete interface up sequence
1275  * @vport: virtual port structure
1276  *
1277  * Returns 0 on success, negative on failure.
1278  */
1279 static int idpf_up_complete(struct idpf_vport *vport)
1280 {
1281 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1282 
1283 	if (vport->link_up && !netif_carrier_ok(vport->netdev)) {
1284 		netif_carrier_on(vport->netdev);
1285 		netif_tx_start_all_queues(vport->netdev);
1286 	}
1287 
1288 	np->state = __IDPF_VPORT_UP;
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * idpf_rx_init_buf_tail - Write initial buffer ring tail value
1295  * @vport: virtual port struct
1296  */
1297 static void idpf_rx_init_buf_tail(struct idpf_vport *vport)
1298 {
1299 	int i, j;
1300 
1301 	for (i = 0; i < vport->num_rxq_grp; i++) {
1302 		struct idpf_rxq_group *grp = &vport->rxq_grps[i];
1303 
1304 		if (idpf_is_queue_model_split(vport->rxq_model)) {
1305 			for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1306 				const struct idpf_buf_queue *q =
1307 					&grp->splitq.bufq_sets[j].bufq;
1308 
1309 				writel(q->next_to_alloc, q->tail);
1310 			}
1311 		} else {
1312 			for (j = 0; j < grp->singleq.num_rxq; j++) {
1313 				const struct idpf_rx_queue *q =
1314 					grp->singleq.rxqs[j];
1315 
1316 				writel(q->next_to_alloc, q->tail);
1317 			}
1318 		}
1319 	}
1320 }
1321 
1322 /**
1323  * idpf_vport_open - Bring up a vport
1324  * @vport: vport to bring up
1325  */
1326 static int idpf_vport_open(struct idpf_vport *vport)
1327 {
1328 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1329 	struct idpf_adapter *adapter = vport->adapter;
1330 	struct idpf_vport_config *vport_config;
1331 	int err;
1332 
1333 	if (np->state != __IDPF_VPORT_DOWN)
1334 		return -EBUSY;
1335 
1336 	/* we do not allow interface up just yet */
1337 	netif_carrier_off(vport->netdev);
1338 
1339 	err = idpf_vport_intr_alloc(vport);
1340 	if (err) {
1341 		dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n",
1342 			vport->vport_id, err);
1343 		return err;
1344 	}
1345 
1346 	err = idpf_vport_queues_alloc(vport);
1347 	if (err)
1348 		goto intr_rel;
1349 
1350 	err = idpf_vport_queue_ids_init(vport);
1351 	if (err) {
1352 		dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n",
1353 			vport->vport_id, err);
1354 		goto queues_rel;
1355 	}
1356 
1357 	err = idpf_vport_intr_init(vport);
1358 	if (err) {
1359 		dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n",
1360 			vport->vport_id, err);
1361 		goto queues_rel;
1362 	}
1363 
1364 	err = idpf_rx_bufs_init_all(vport);
1365 	if (err) {
1366 		dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n",
1367 			vport->vport_id, err);
1368 		goto queues_rel;
1369 	}
1370 
1371 	err = idpf_queue_reg_init(vport);
1372 	if (err) {
1373 		dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n",
1374 			vport->vport_id, err);
1375 		goto queues_rel;
1376 	}
1377 
1378 	idpf_rx_init_buf_tail(vport);
1379 	idpf_vport_intr_ena(vport);
1380 
1381 	err = idpf_send_config_queues_msg(vport);
1382 	if (err) {
1383 		dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n",
1384 			vport->vport_id, err);
1385 		goto intr_deinit;
1386 	}
1387 
1388 	err = idpf_send_map_unmap_queue_vector_msg(vport, true);
1389 	if (err) {
1390 		dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n",
1391 			vport->vport_id, err);
1392 		goto intr_deinit;
1393 	}
1394 
1395 	err = idpf_send_enable_queues_msg(vport);
1396 	if (err) {
1397 		dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n",
1398 			vport->vport_id, err);
1399 		goto unmap_queue_vectors;
1400 	}
1401 
1402 	err = idpf_send_enable_vport_msg(vport);
1403 	if (err) {
1404 		dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n",
1405 			vport->vport_id, err);
1406 		err = -EAGAIN;
1407 		goto disable_queues;
1408 	}
1409 
1410 	idpf_restore_features(vport);
1411 
1412 	vport_config = adapter->vport_config[vport->idx];
1413 	if (vport_config->user_config.rss_data.rss_lut)
1414 		err = idpf_config_rss(vport);
1415 	else
1416 		err = idpf_init_rss(vport);
1417 	if (err) {
1418 		dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n",
1419 			vport->vport_id, err);
1420 		goto disable_vport;
1421 	}
1422 
1423 	err = idpf_up_complete(vport);
1424 	if (err) {
1425 		dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n",
1426 			vport->vport_id, err);
1427 		goto deinit_rss;
1428 	}
1429 
1430 	return 0;
1431 
1432 deinit_rss:
1433 	idpf_deinit_rss(vport);
1434 disable_vport:
1435 	idpf_send_disable_vport_msg(vport);
1436 disable_queues:
1437 	idpf_send_disable_queues_msg(vport);
1438 unmap_queue_vectors:
1439 	idpf_send_map_unmap_queue_vector_msg(vport, false);
1440 intr_deinit:
1441 	idpf_vport_intr_deinit(vport);
1442 queues_rel:
1443 	idpf_vport_queues_rel(vport);
1444 intr_rel:
1445 	idpf_vport_intr_rel(vport);
1446 
1447 	return err;
1448 }
1449 
1450 /**
1451  * idpf_init_task - Delayed initialization task
1452  * @work: work_struct handle to our data
1453  *
1454  * Init task finishes up pending work started in probe. Due to the asynchronous
1455  * nature in which the device communicates with hardware, we may have to wait
1456  * several milliseconds to get a response.  Instead of busy polling in probe,
1457  * pulling it out into a delayed work task prevents us from bogging down the
1458  * whole system waiting for a response from hardware.
1459  */
1460 void idpf_init_task(struct work_struct *work)
1461 {
1462 	struct idpf_vport_config *vport_config;
1463 	struct idpf_vport_max_q max_q;
1464 	struct idpf_adapter *adapter;
1465 	struct idpf_netdev_priv *np;
1466 	struct idpf_vport *vport;
1467 	u16 num_default_vports;
1468 	struct pci_dev *pdev;
1469 	bool default_vport;
1470 	int index, err;
1471 
1472 	adapter = container_of(work, struct idpf_adapter, init_task.work);
1473 
1474 	num_default_vports = idpf_get_default_vports(adapter);
1475 	if (adapter->num_alloc_vports < num_default_vports)
1476 		default_vport = true;
1477 	else
1478 		default_vport = false;
1479 
1480 	err = idpf_vport_alloc_max_qs(adapter, &max_q);
1481 	if (err)
1482 		goto unwind_vports;
1483 
1484 	err = idpf_send_create_vport_msg(adapter, &max_q);
1485 	if (err) {
1486 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1487 		goto unwind_vports;
1488 	}
1489 
1490 	pdev = adapter->pdev;
1491 	vport = idpf_vport_alloc(adapter, &max_q);
1492 	if (!vport) {
1493 		err = -EFAULT;
1494 		dev_err(&pdev->dev, "failed to allocate vport: %d\n",
1495 			err);
1496 		idpf_vport_dealloc_max_qs(adapter, &max_q);
1497 		goto unwind_vports;
1498 	}
1499 
1500 	index = vport->idx;
1501 	vport_config = adapter->vport_config[index];
1502 
1503 	init_waitqueue_head(&vport->sw_marker_wq);
1504 
1505 	spin_lock_init(&vport_config->mac_filter_list_lock);
1506 
1507 	INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list);
1508 
1509 	err = idpf_check_supported_desc_ids(vport);
1510 	if (err) {
1511 		dev_err(&pdev->dev, "failed to get required descriptor ids\n");
1512 		goto cfg_netdev_err;
1513 	}
1514 
1515 	if (idpf_cfg_netdev(vport))
1516 		goto cfg_netdev_err;
1517 
1518 	err = idpf_send_get_rx_ptype_msg(vport);
1519 	if (err)
1520 		goto handle_err;
1521 
1522 	/* Once state is put into DOWN, driver is ready for dev_open */
1523 	np = netdev_priv(vport->netdev);
1524 	np->state = __IDPF_VPORT_DOWN;
1525 	if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags))
1526 		idpf_vport_open(vport);
1527 
1528 	/* Spawn and return 'idpf_init_task' work queue until all the
1529 	 * default vports are created
1530 	 */
1531 	if (adapter->num_alloc_vports < num_default_vports) {
1532 		queue_delayed_work(adapter->init_wq, &adapter->init_task,
1533 				   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
1534 
1535 		return;
1536 	}
1537 
1538 	for (index = 0; index < adapter->max_vports; index++) {
1539 		if (adapter->netdevs[index] &&
1540 		    !test_bit(IDPF_VPORT_REG_NETDEV,
1541 			      adapter->vport_config[index]->flags)) {
1542 			register_netdev(adapter->netdevs[index]);
1543 			set_bit(IDPF_VPORT_REG_NETDEV,
1544 				adapter->vport_config[index]->flags);
1545 		}
1546 	}
1547 
1548 	/* As all the required vports are created, clear the reset flag
1549 	 * unconditionally here in case we were in reset and the link was down.
1550 	 */
1551 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1552 	/* Start the statistics task now */
1553 	queue_delayed_work(adapter->stats_wq, &adapter->stats_task,
1554 			   msecs_to_jiffies(10 * (pdev->devfn & 0x07)));
1555 
1556 	return;
1557 
1558 handle_err:
1559 	idpf_decfg_netdev(vport);
1560 cfg_netdev_err:
1561 	idpf_vport_rel(vport);
1562 	adapter->vports[index] = NULL;
1563 unwind_vports:
1564 	if (default_vport) {
1565 		for (index = 0; index < adapter->max_vports; index++) {
1566 			if (adapter->vports[index])
1567 				idpf_vport_dealloc(adapter->vports[index]);
1568 		}
1569 	}
1570 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1571 }
1572 
1573 /**
1574  * idpf_sriov_ena - Enable or change number of VFs
1575  * @adapter: private data struct
1576  * @num_vfs: number of VFs to allocate
1577  */
1578 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs)
1579 {
1580 	struct device *dev = &adapter->pdev->dev;
1581 	int err;
1582 
1583 	err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs);
1584 	if (err) {
1585 		dev_err(dev, "Failed to allocate VFs: %d\n", err);
1586 
1587 		return err;
1588 	}
1589 
1590 	err = pci_enable_sriov(adapter->pdev, num_vfs);
1591 	if (err) {
1592 		idpf_send_set_sriov_vfs_msg(adapter, 0);
1593 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1594 
1595 		return err;
1596 	}
1597 
1598 	adapter->num_vfs = num_vfs;
1599 
1600 	return num_vfs;
1601 }
1602 
1603 /**
1604  * idpf_sriov_configure - Configure the requested VFs
1605  * @pdev: pointer to a pci_dev structure
1606  * @num_vfs: number of vfs to allocate
1607  *
1608  * Enable or change the number of VFs. Called when the user updates the number
1609  * of VFs in sysfs.
1610  **/
1611 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs)
1612 {
1613 	struct idpf_adapter *adapter = pci_get_drvdata(pdev);
1614 
1615 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) {
1616 		dev_info(&pdev->dev, "SR-IOV is not supported on this device\n");
1617 
1618 		return -EOPNOTSUPP;
1619 	}
1620 
1621 	if (num_vfs)
1622 		return idpf_sriov_ena(adapter, num_vfs);
1623 
1624 	if (pci_vfs_assigned(pdev)) {
1625 		dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n");
1626 
1627 		return -EBUSY;
1628 	}
1629 
1630 	pci_disable_sriov(adapter->pdev);
1631 	idpf_send_set_sriov_vfs_msg(adapter, 0);
1632 	adapter->num_vfs = 0;
1633 
1634 	return 0;
1635 }
1636 
1637 /**
1638  * idpf_deinit_task - Device deinit routine
1639  * @adapter: Driver specific private structure
1640  *
1641  * Extended remove logic which will be used for
1642  * hard reset as well
1643  */
1644 void idpf_deinit_task(struct idpf_adapter *adapter)
1645 {
1646 	unsigned int i;
1647 
1648 	/* Wait until the init_task is done else this thread might release
1649 	 * the resources first and the other thread might end up in a bad state
1650 	 */
1651 	cancel_delayed_work_sync(&adapter->init_task);
1652 
1653 	if (!adapter->vports)
1654 		return;
1655 
1656 	cancel_delayed_work_sync(&adapter->stats_task);
1657 
1658 	for (i = 0; i < adapter->max_vports; i++) {
1659 		if (adapter->vports[i])
1660 			idpf_vport_dealloc(adapter->vports[i]);
1661 	}
1662 }
1663 
1664 /**
1665  * idpf_check_reset_complete - check that reset is complete
1666  * @hw: pointer to hw struct
1667  * @reset_reg: struct with reset registers
1668  *
1669  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
1670  **/
1671 static int idpf_check_reset_complete(struct idpf_hw *hw,
1672 				     struct idpf_reset_reg *reset_reg)
1673 {
1674 	struct idpf_adapter *adapter = hw->back;
1675 	int i;
1676 
1677 	for (i = 0; i < 2000; i++) {
1678 		u32 reg_val = readl(reset_reg->rstat);
1679 
1680 		/* 0xFFFFFFFF might be read if other side hasn't cleared the
1681 		 * register for us yet and 0xFFFFFFFF is not a valid value for
1682 		 * the register, so treat that as invalid.
1683 		 */
1684 		if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m))
1685 			return 0;
1686 
1687 		usleep_range(5000, 10000);
1688 	}
1689 
1690 	dev_warn(&adapter->pdev->dev, "Device reset timeout!\n");
1691 	/* Clear the reset flag unconditionally here since the reset
1692 	 * technically isn't in progress anymore from the driver's perspective
1693 	 */
1694 	clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1695 
1696 	return -EBUSY;
1697 }
1698 
1699 /**
1700  * idpf_set_vport_state - Set the vport state to be after the reset
1701  * @adapter: Driver specific private structure
1702  */
1703 static void idpf_set_vport_state(struct idpf_adapter *adapter)
1704 {
1705 	u16 i;
1706 
1707 	for (i = 0; i < adapter->max_vports; i++) {
1708 		struct idpf_netdev_priv *np;
1709 
1710 		if (!adapter->netdevs[i])
1711 			continue;
1712 
1713 		np = netdev_priv(adapter->netdevs[i]);
1714 		if (np->state == __IDPF_VPORT_UP)
1715 			set_bit(IDPF_VPORT_UP_REQUESTED,
1716 				adapter->vport_config[i]->flags);
1717 	}
1718 }
1719 
1720 /**
1721  * idpf_init_hard_reset - Initiate a hardware reset
1722  * @adapter: Driver specific private structure
1723  *
1724  * Deallocate the vports and all the resources associated with them and
1725  * reallocate. Also reinitialize the mailbox. Return 0 on success,
1726  * negative on failure.
1727  */
1728 static int idpf_init_hard_reset(struct idpf_adapter *adapter)
1729 {
1730 	struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops;
1731 	struct device *dev = &adapter->pdev->dev;
1732 	struct net_device *netdev;
1733 	int err;
1734 	u16 i;
1735 
1736 	mutex_lock(&adapter->vport_ctrl_lock);
1737 
1738 	dev_info(dev, "Device HW Reset initiated\n");
1739 
1740 	/* Avoid TX hangs on reset */
1741 	for (i = 0; i < adapter->max_vports; i++) {
1742 		netdev = adapter->netdevs[i];
1743 		if (!netdev)
1744 			continue;
1745 
1746 		netif_carrier_off(netdev);
1747 		netif_tx_disable(netdev);
1748 	}
1749 
1750 	/* Prepare for reset */
1751 	if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1752 		reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD);
1753 	} else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) {
1754 		bool is_reset = idpf_is_reset_detected(adapter);
1755 
1756 		idpf_set_vport_state(adapter);
1757 		idpf_vc_core_deinit(adapter);
1758 		if (!is_reset)
1759 			reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET);
1760 		idpf_deinit_dflt_mbx(adapter);
1761 	} else {
1762 		dev_err(dev, "Unhandled hard reset cause\n");
1763 		err = -EBADRQC;
1764 		goto unlock_mutex;
1765 	}
1766 
1767 	/* Wait for reset to complete */
1768 	err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg);
1769 	if (err) {
1770 		dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n",
1771 			adapter->state);
1772 		goto unlock_mutex;
1773 	}
1774 
1775 	/* Reset is complete and so start building the driver resources again */
1776 	err = idpf_init_dflt_mbx(adapter);
1777 	if (err) {
1778 		dev_err(dev, "Failed to initialize default mailbox: %d\n", err);
1779 		goto unlock_mutex;
1780 	}
1781 
1782 	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
1783 
1784 	/* Initialize the state machine, also allocate memory and request
1785 	 * resources
1786 	 */
1787 	err = idpf_vc_core_init(adapter);
1788 	if (err) {
1789 		idpf_deinit_dflt_mbx(adapter);
1790 		goto unlock_mutex;
1791 	}
1792 
1793 	/* Wait till all the vports are initialized to release the reset lock,
1794 	 * else user space callbacks may access uninitialized vports
1795 	 */
1796 	while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags))
1797 		msleep(100);
1798 
1799 unlock_mutex:
1800 	mutex_unlock(&adapter->vport_ctrl_lock);
1801 
1802 	return err;
1803 }
1804 
1805 /**
1806  * idpf_vc_event_task - Handle virtchannel event logic
1807  * @work: work queue struct
1808  */
1809 void idpf_vc_event_task(struct work_struct *work)
1810 {
1811 	struct idpf_adapter *adapter;
1812 
1813 	adapter = container_of(work, struct idpf_adapter, vc_event_task.work);
1814 
1815 	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
1816 		return;
1817 
1818 	if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags) ||
1819 	    test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) {
1820 		set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags);
1821 		idpf_init_hard_reset(adapter);
1822 	}
1823 }
1824 
1825 /**
1826  * idpf_initiate_soft_reset - Initiate a software reset
1827  * @vport: virtual port data struct
1828  * @reset_cause: reason for the soft reset
1829  *
1830  * Soft reset only reallocs vport queue resources. Returns 0 on success,
1831  * negative on failure.
1832  */
1833 int idpf_initiate_soft_reset(struct idpf_vport *vport,
1834 			     enum idpf_vport_reset_cause reset_cause)
1835 {
1836 	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
1837 	enum idpf_vport_state current_state = np->state;
1838 	struct idpf_adapter *adapter = vport->adapter;
1839 	struct idpf_vport *new_vport;
1840 	int err;
1841 
1842 	/* If the system is low on memory, we can end up in bad state if we
1843 	 * free all the memory for queue resources and try to allocate them
1844 	 * again. Instead, we can pre-allocate the new resources before doing
1845 	 * anything and bailing if the alloc fails.
1846 	 *
1847 	 * Make a clone of the existing vport to mimic its current
1848 	 * configuration, then modify the new structure with any requested
1849 	 * changes. Once the allocation of the new resources is done, stop the
1850 	 * existing vport and copy the configuration to the main vport. If an
1851 	 * error occurred, the existing vport will be untouched.
1852 	 *
1853 	 */
1854 	new_vport = kzalloc(sizeof(*vport), GFP_KERNEL);
1855 	if (!new_vport)
1856 		return -ENOMEM;
1857 
1858 	/* This purposely avoids copying the end of the struct because it
1859 	 * contains wait_queues and mutexes and other stuff we don't want to
1860 	 * mess with. Nothing below should use those variables from new_vport
1861 	 * and should instead always refer to them in vport if they need to.
1862 	 */
1863 	memcpy(new_vport, vport, offsetof(struct idpf_vport, link_speed_mbps));
1864 
1865 	/* Adjust resource parameters prior to reallocating resources */
1866 	switch (reset_cause) {
1867 	case IDPF_SR_Q_CHANGE:
1868 		err = idpf_vport_adjust_qs(new_vport);
1869 		if (err)
1870 			goto free_vport;
1871 		break;
1872 	case IDPF_SR_Q_DESC_CHANGE:
1873 		/* Update queue parameters before allocating resources */
1874 		idpf_vport_calc_num_q_desc(new_vport);
1875 		break;
1876 	case IDPF_SR_MTU_CHANGE:
1877 	case IDPF_SR_RSC_CHANGE:
1878 		break;
1879 	default:
1880 		dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n");
1881 		err = -EINVAL;
1882 		goto free_vport;
1883 	}
1884 
1885 	if (current_state <= __IDPF_VPORT_DOWN) {
1886 		idpf_send_delete_queues_msg(vport);
1887 	} else {
1888 		set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags);
1889 		idpf_vport_stop(vport);
1890 	}
1891 
1892 	idpf_deinit_rss(vport);
1893 	/* We're passing in vport here because we need its wait_queue
1894 	 * to send a message and it should be getting all the vport
1895 	 * config data out of the adapter but we need to be careful not
1896 	 * to add code to add_queues to change the vport config within
1897 	 * vport itself as it will be wiped with a memcpy later.
1898 	 */
1899 	err = idpf_send_add_queues_msg(vport, new_vport->num_txq,
1900 				       new_vport->num_complq,
1901 				       new_vport->num_rxq,
1902 				       new_vport->num_bufq);
1903 	if (err)
1904 		goto err_reset;
1905 
1906 	/* Same comment as above regarding avoiding copying the wait_queues and
1907 	 * mutexes applies here. We do not want to mess with those if possible.
1908 	 */
1909 	memcpy(vport, new_vport, offsetof(struct idpf_vport, link_speed_mbps));
1910 
1911 	if (reset_cause == IDPF_SR_Q_CHANGE)
1912 		idpf_vport_alloc_vec_indexes(vport);
1913 
1914 	err = idpf_set_real_num_queues(vport);
1915 	if (err)
1916 		goto err_open;
1917 
1918 	if (current_state == __IDPF_VPORT_UP)
1919 		err = idpf_vport_open(vport);
1920 
1921 	kfree(new_vport);
1922 
1923 	return err;
1924 
1925 err_reset:
1926 	idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq,
1927 				 vport->num_rxq, vport->num_bufq);
1928 
1929 err_open:
1930 	if (current_state == __IDPF_VPORT_UP)
1931 		idpf_vport_open(vport);
1932 
1933 free_vport:
1934 	kfree(new_vport);
1935 
1936 	return err;
1937 }
1938 
1939 /**
1940  * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1941  * @netdev: the netdevice
1942  * @addr: address to add
1943  *
1944  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1945  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1946  * meaning we cannot sleep in this context. Due to this, we have to add the
1947  * filter and send the virtchnl message asynchronously without waiting for the
1948  * response from the other side. We won't know whether or not the operation
1949  * actually succeeded until we get the message back.  Returns 0 on success,
1950  * negative on failure.
1951  */
1952 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr)
1953 {
1954 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1955 
1956 	return idpf_add_mac_filter(np->vport, np, addr, true);
1957 }
1958 
1959 /**
1960  * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1961  * @netdev: the netdevice
1962  * @addr: address to add
1963  *
1964  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1965  * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock
1966  * meaning we cannot sleep in this context. Due to this we have to delete the
1967  * filter and send the virtchnl message asynchronously without waiting for the
1968  * return from the other side.  We won't know whether or not the operation
1969  * actually succeeded until we get the message back. Returns 0 on success,
1970  * negative on failure.
1971  */
1972 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr)
1973 {
1974 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1975 
1976 	/* Under some circumstances, we might receive a request to delete
1977 	 * our own device address from our uc list. Because we store the
1978 	 * device address in the VSI's MAC filter list, we need to ignore
1979 	 * such requests and not delete our device address from this list.
1980 	 */
1981 	if (ether_addr_equal(addr, netdev->dev_addr))
1982 		return 0;
1983 
1984 	idpf_del_mac_filter(np->vport, np, addr, true);
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * idpf_set_rx_mode - NDO callback to set the netdev filters
1991  * @netdev: network interface device structure
1992  *
1993  * Stack takes addr_list_lock spinlock before calling our .set_rx_mode.  We
1994  * cannot sleep in this context.
1995  */
1996 static void idpf_set_rx_mode(struct net_device *netdev)
1997 {
1998 	struct idpf_netdev_priv *np = netdev_priv(netdev);
1999 	struct idpf_vport_user_config_data *config_data;
2000 	struct idpf_adapter *adapter;
2001 	bool changed = false;
2002 	struct device *dev;
2003 	int err;
2004 
2005 	adapter = np->adapter;
2006 	dev = &adapter->pdev->dev;
2007 
2008 	if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) {
2009 		__dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2010 		__dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync);
2011 	}
2012 
2013 	if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC))
2014 		return;
2015 
2016 	config_data = &adapter->vport_config[np->vport_idx]->user_config;
2017 	/* IFF_PROMISC enables both unicast and multicast promiscuous,
2018 	 * while IFF_ALLMULTI only enables multicast such that:
2019 	 *
2020 	 * promisc  + allmulti		= unicast | multicast
2021 	 * promisc  + !allmulti		= unicast | multicast
2022 	 * !promisc + allmulti		= multicast
2023 	 */
2024 	if ((netdev->flags & IFF_PROMISC) &&
2025 	    !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2026 		changed = true;
2027 		dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n");
2028 		if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags))
2029 			dev_info(dev, "Entering multicast promiscuous mode\n");
2030 	}
2031 
2032 	if (!(netdev->flags & IFF_PROMISC) &&
2033 	    test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) {
2034 		changed = true;
2035 		dev_info(dev, "Leaving promiscuous mode\n");
2036 	}
2037 
2038 	if (netdev->flags & IFF_ALLMULTI &&
2039 	    !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2040 		changed = true;
2041 		dev_info(dev, "Entering multicast promiscuous mode\n");
2042 	}
2043 
2044 	if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) &&
2045 	    test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) {
2046 		changed = true;
2047 		dev_info(dev, "Leaving multicast promiscuous mode\n");
2048 	}
2049 
2050 	if (!changed)
2051 		return;
2052 
2053 	err = idpf_set_promiscuous(adapter, config_data, np->vport_id);
2054 	if (err)
2055 		dev_err(dev, "Failed to set promiscuous mode: %d\n", err);
2056 }
2057 
2058 /**
2059  * idpf_vport_manage_rss_lut - disable/enable RSS
2060  * @vport: the vport being changed
2061  *
2062  * In the event of disable request for RSS, this function will zero out RSS
2063  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
2064  * LUT with the default LUT configuration.
2065  */
2066 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport)
2067 {
2068 	bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH);
2069 	struct idpf_rss_data *rss_data;
2070 	u16 idx = vport->idx;
2071 	int lut_size;
2072 
2073 	rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data;
2074 	lut_size = rss_data->rss_lut_size * sizeof(u32);
2075 
2076 	if (ena) {
2077 		/* This will contain the default or user configured LUT */
2078 		memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size);
2079 	} else {
2080 		/* Save a copy of the current LUT to be restored later if
2081 		 * requested.
2082 		 */
2083 		memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size);
2084 
2085 		/* Zero out the current LUT to disable */
2086 		memset(rss_data->rss_lut, 0, lut_size);
2087 	}
2088 
2089 	return idpf_config_rss(vport);
2090 }
2091 
2092 /**
2093  * idpf_set_features - set the netdev feature flags
2094  * @netdev: ptr to the netdev being adjusted
2095  * @features: the feature set that the stack is suggesting
2096  */
2097 static int idpf_set_features(struct net_device *netdev,
2098 			     netdev_features_t features)
2099 {
2100 	netdev_features_t changed = netdev->features ^ features;
2101 	struct idpf_adapter *adapter;
2102 	struct idpf_vport *vport;
2103 	int err = 0;
2104 
2105 	idpf_vport_ctrl_lock(netdev);
2106 	vport = idpf_netdev_to_vport(netdev);
2107 
2108 	adapter = vport->adapter;
2109 
2110 	if (idpf_is_reset_in_prog(adapter)) {
2111 		dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n");
2112 		err = -EBUSY;
2113 		goto unlock_mutex;
2114 	}
2115 
2116 	if (changed & NETIF_F_RXHASH) {
2117 		netdev->features ^= NETIF_F_RXHASH;
2118 		err = idpf_vport_manage_rss_lut(vport);
2119 		if (err)
2120 			goto unlock_mutex;
2121 	}
2122 
2123 	if (changed & NETIF_F_GRO_HW) {
2124 		netdev->features ^= NETIF_F_GRO_HW;
2125 		err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE);
2126 		if (err)
2127 			goto unlock_mutex;
2128 	}
2129 
2130 	if (changed & NETIF_F_LOOPBACK) {
2131 		netdev->features ^= NETIF_F_LOOPBACK;
2132 		err = idpf_send_ena_dis_loopback_msg(vport);
2133 	}
2134 
2135 unlock_mutex:
2136 	idpf_vport_ctrl_unlock(netdev);
2137 
2138 	return err;
2139 }
2140 
2141 /**
2142  * idpf_open - Called when a network interface becomes active
2143  * @netdev: network interface device structure
2144  *
2145  * The open entry point is called when a network interface is made
2146  * active by the system (IFF_UP).  At this point all resources needed
2147  * for transmit and receive operations are allocated, the interrupt
2148  * handler is registered with the OS, the netdev watchdog is enabled,
2149  * and the stack is notified that the interface is ready.
2150  *
2151  * Returns 0 on success, negative value on failure
2152  */
2153 static int idpf_open(struct net_device *netdev)
2154 {
2155 	struct idpf_vport *vport;
2156 	int err;
2157 
2158 	idpf_vport_ctrl_lock(netdev);
2159 	vport = idpf_netdev_to_vport(netdev);
2160 
2161 	err = idpf_vport_open(vport);
2162 
2163 	idpf_vport_ctrl_unlock(netdev);
2164 
2165 	return err;
2166 }
2167 
2168 /**
2169  * idpf_change_mtu - NDO callback to change the MTU
2170  * @netdev: network interface device structure
2171  * @new_mtu: new value for maximum frame size
2172  *
2173  * Returns 0 on success, negative on failure
2174  */
2175 static int idpf_change_mtu(struct net_device *netdev, int new_mtu)
2176 {
2177 	struct idpf_vport *vport;
2178 	int err;
2179 
2180 	idpf_vport_ctrl_lock(netdev);
2181 	vport = idpf_netdev_to_vport(netdev);
2182 
2183 	WRITE_ONCE(netdev->mtu, new_mtu);
2184 
2185 	err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE);
2186 
2187 	idpf_vport_ctrl_unlock(netdev);
2188 
2189 	return err;
2190 }
2191 
2192 /**
2193  * idpf_features_check - Validate packet conforms to limits
2194  * @skb: skb buffer
2195  * @netdev: This port's netdev
2196  * @features: Offload features that the stack believes apply
2197  */
2198 static netdev_features_t idpf_features_check(struct sk_buff *skb,
2199 					     struct net_device *netdev,
2200 					     netdev_features_t features)
2201 {
2202 	struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2203 	struct idpf_adapter *adapter = vport->adapter;
2204 	size_t len;
2205 
2206 	/* No point in doing any of this if neither checksum nor GSO are
2207 	 * being requested for this frame.  We can rule out both by just
2208 	 * checking for CHECKSUM_PARTIAL
2209 	 */
2210 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2211 		return features;
2212 
2213 	/* We cannot support GSO if the MSS is going to be less than
2214 	 * 88 bytes. If it is then we need to drop support for GSO.
2215 	 */
2216 	if (skb_is_gso(skb) &&
2217 	    (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS))
2218 		features &= ~NETIF_F_GSO_MASK;
2219 
2220 	/* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */
2221 	len = skb_network_offset(skb);
2222 	if (unlikely(len & ~(126)))
2223 		goto unsupported;
2224 
2225 	len = skb_network_header_len(skb);
2226 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2227 		goto unsupported;
2228 
2229 	if (!skb->encapsulation)
2230 		return features;
2231 
2232 	/* L4TUNLEN can support 127 words */
2233 	len = skb_inner_network_header(skb) - skb_transport_header(skb);
2234 	if (unlikely(len & ~(127 * 2)))
2235 		goto unsupported;
2236 
2237 	/* IPLEN can support at most 127 dwords */
2238 	len = skb_inner_network_header_len(skb);
2239 	if (unlikely(len > idpf_get_max_tx_hdr_size(adapter)))
2240 		goto unsupported;
2241 
2242 	/* No need to validate L4LEN as TCP is the only protocol with a
2243 	 * a flexible value and we support all possible values supported
2244 	 * by TCP, which is at most 15 dwords
2245 	 */
2246 
2247 	return features;
2248 
2249 unsupported:
2250 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2251 }
2252 
2253 /**
2254  * idpf_set_mac - NDO callback to set port mac address
2255  * @netdev: network interface device structure
2256  * @p: pointer to an address structure
2257  *
2258  * Returns 0 on success, negative on failure
2259  **/
2260 static int idpf_set_mac(struct net_device *netdev, void *p)
2261 {
2262 	struct idpf_netdev_priv *np = netdev_priv(netdev);
2263 	struct idpf_vport_config *vport_config;
2264 	struct sockaddr *addr = p;
2265 	struct idpf_vport *vport;
2266 	int err = 0;
2267 
2268 	idpf_vport_ctrl_lock(netdev);
2269 	vport = idpf_netdev_to_vport(netdev);
2270 
2271 	if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
2272 			     VIRTCHNL2_CAP_MACFILTER)) {
2273 		dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n");
2274 		err = -EOPNOTSUPP;
2275 		goto unlock_mutex;
2276 	}
2277 
2278 	if (!is_valid_ether_addr(addr->sa_data)) {
2279 		dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n",
2280 			 addr->sa_data);
2281 		err = -EADDRNOTAVAIL;
2282 		goto unlock_mutex;
2283 	}
2284 
2285 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
2286 		goto unlock_mutex;
2287 
2288 	vport_config = vport->adapter->vport_config[vport->idx];
2289 	err = idpf_add_mac_filter(vport, np, addr->sa_data, false);
2290 	if (err) {
2291 		__idpf_del_mac_filter(vport_config, addr->sa_data);
2292 		goto unlock_mutex;
2293 	}
2294 
2295 	if (is_valid_ether_addr(vport->default_mac_addr))
2296 		idpf_del_mac_filter(vport, np, vport->default_mac_addr, false);
2297 
2298 	ether_addr_copy(vport->default_mac_addr, addr->sa_data);
2299 	eth_hw_addr_set(netdev, addr->sa_data);
2300 
2301 unlock_mutex:
2302 	idpf_vport_ctrl_unlock(netdev);
2303 
2304 	return err;
2305 }
2306 
2307 /**
2308  * idpf_alloc_dma_mem - Allocate dma memory
2309  * @hw: pointer to hw struct
2310  * @mem: pointer to dma_mem struct
2311  * @size: size of the memory to allocate
2312  */
2313 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size)
2314 {
2315 	struct idpf_adapter *adapter = hw->back;
2316 	size_t sz = ALIGN(size, 4096);
2317 
2318 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, sz,
2319 				     &mem->pa, GFP_KERNEL);
2320 	mem->size = sz;
2321 
2322 	return mem->va;
2323 }
2324 
2325 /**
2326  * idpf_free_dma_mem - Free the allocated dma memory
2327  * @hw: pointer to hw struct
2328  * @mem: pointer to dma_mem struct
2329  */
2330 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem)
2331 {
2332 	struct idpf_adapter *adapter = hw->back;
2333 
2334 	dma_free_coherent(&adapter->pdev->dev, mem->size,
2335 			  mem->va, mem->pa);
2336 	mem->size = 0;
2337 	mem->va = NULL;
2338 	mem->pa = 0;
2339 }
2340 
2341 static const struct net_device_ops idpf_netdev_ops = {
2342 	.ndo_open = idpf_open,
2343 	.ndo_stop = idpf_stop,
2344 	.ndo_start_xmit = idpf_tx_start,
2345 	.ndo_features_check = idpf_features_check,
2346 	.ndo_set_rx_mode = idpf_set_rx_mode,
2347 	.ndo_validate_addr = eth_validate_addr,
2348 	.ndo_set_mac_address = idpf_set_mac,
2349 	.ndo_change_mtu = idpf_change_mtu,
2350 	.ndo_get_stats64 = idpf_get_stats64,
2351 	.ndo_set_features = idpf_set_features,
2352 	.ndo_tx_timeout = idpf_tx_timeout,
2353 };
2354