1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #include "idpf.h" 5 #include "idpf_virtchnl.h" 6 #include "idpf_ptp.h" 7 #include "xdp.h" 8 #include "xsk.h" 9 10 static const struct net_device_ops idpf_netdev_ops; 11 12 /** 13 * idpf_init_vector_stack - Fill the MSIX vector stack with vector index 14 * @adapter: private data struct 15 * 16 * Return 0 on success, error on failure 17 */ 18 static int idpf_init_vector_stack(struct idpf_adapter *adapter) 19 { 20 struct idpf_vector_lifo *stack; 21 u16 min_vec; 22 u32 i; 23 24 mutex_lock(&adapter->vector_lock); 25 min_vec = adapter->num_msix_entries - adapter->num_avail_msix; 26 stack = &adapter->vector_stack; 27 stack->size = adapter->num_msix_entries; 28 /* set the base and top to point at start of the 'free pool' to 29 * distribute the unused vectors on-demand basis 30 */ 31 stack->base = min_vec; 32 stack->top = min_vec; 33 34 stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL); 35 if (!stack->vec_idx) { 36 mutex_unlock(&adapter->vector_lock); 37 38 return -ENOMEM; 39 } 40 41 for (i = 0; i < stack->size; i++) 42 stack->vec_idx[i] = i; 43 44 mutex_unlock(&adapter->vector_lock); 45 46 return 0; 47 } 48 49 /** 50 * idpf_deinit_vector_stack - zero out the MSIX vector stack 51 * @adapter: private data struct 52 */ 53 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter) 54 { 55 struct idpf_vector_lifo *stack; 56 57 mutex_lock(&adapter->vector_lock); 58 stack = &adapter->vector_stack; 59 kfree(stack->vec_idx); 60 stack->vec_idx = NULL; 61 mutex_unlock(&adapter->vector_lock); 62 } 63 64 /** 65 * idpf_mb_intr_rel_irq - Free the IRQ association with the OS 66 * @adapter: adapter structure 67 * 68 * This will also disable interrupt mode and queue up mailbox task. Mailbox 69 * task will reschedule itself if not in interrupt mode. 70 */ 71 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter) 72 { 73 clear_bit(IDPF_MB_INTR_MODE, adapter->flags); 74 kfree(free_irq(adapter->msix_entries[0].vector, adapter)); 75 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 76 } 77 78 /** 79 * idpf_intr_rel - Release interrupt capabilities and free memory 80 * @adapter: adapter to disable interrupts on 81 */ 82 void idpf_intr_rel(struct idpf_adapter *adapter) 83 { 84 if (!adapter->msix_entries) 85 return; 86 87 idpf_mb_intr_rel_irq(adapter); 88 pci_free_irq_vectors(adapter->pdev); 89 idpf_send_dealloc_vectors_msg(adapter); 90 idpf_deinit_vector_stack(adapter); 91 kfree(adapter->msix_entries); 92 adapter->msix_entries = NULL; 93 kfree(adapter->rdma_msix_entries); 94 adapter->rdma_msix_entries = NULL; 95 } 96 97 /** 98 * idpf_mb_intr_clean - Interrupt handler for the mailbox 99 * @irq: interrupt number 100 * @data: pointer to the adapter structure 101 */ 102 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data) 103 { 104 struct idpf_adapter *adapter = (struct idpf_adapter *)data; 105 106 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 107 108 return IRQ_HANDLED; 109 } 110 111 /** 112 * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox 113 * @adapter: adapter to get the hardware address for register write 114 */ 115 static void idpf_mb_irq_enable(struct idpf_adapter *adapter) 116 { 117 struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg; 118 u32 val; 119 120 val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m; 121 writel(val, intr->dyn_ctl); 122 writel(intr->icr_ena_ctlq_m, intr->icr_ena); 123 } 124 125 /** 126 * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt 127 * @adapter: adapter structure to pass to the mailbox irq handler 128 */ 129 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter) 130 { 131 int irq_num, mb_vidx = 0, err; 132 char *name; 133 134 irq_num = adapter->msix_entries[mb_vidx].vector; 135 name = kasprintf(GFP_KERNEL, "%s-%s-%d", 136 dev_driver_string(&adapter->pdev->dev), 137 "Mailbox", mb_vidx); 138 err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter); 139 if (err) { 140 dev_err(&adapter->pdev->dev, 141 "IRQ request for mailbox failed, error: %d\n", err); 142 143 return err; 144 } 145 146 set_bit(IDPF_MB_INTR_MODE, adapter->flags); 147 148 return 0; 149 } 150 151 /** 152 * idpf_mb_intr_init - Initialize the mailbox interrupt 153 * @adapter: adapter structure to store the mailbox vector 154 */ 155 static int idpf_mb_intr_init(struct idpf_adapter *adapter) 156 { 157 adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter); 158 adapter->irq_mb_handler = idpf_mb_intr_clean; 159 160 return idpf_mb_intr_req_irq(adapter); 161 } 162 163 /** 164 * idpf_vector_lifo_push - push MSIX vector index onto stack 165 * @adapter: private data struct 166 * @vec_idx: vector index to store 167 */ 168 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx) 169 { 170 struct idpf_vector_lifo *stack = &adapter->vector_stack; 171 172 lockdep_assert_held(&adapter->vector_lock); 173 174 if (stack->top == stack->base) { 175 dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n", 176 stack->top); 177 return -EINVAL; 178 } 179 180 stack->vec_idx[--stack->top] = vec_idx; 181 182 return 0; 183 } 184 185 /** 186 * idpf_vector_lifo_pop - pop MSIX vector index from stack 187 * @adapter: private data struct 188 */ 189 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter) 190 { 191 struct idpf_vector_lifo *stack = &adapter->vector_stack; 192 193 lockdep_assert_held(&adapter->vector_lock); 194 195 if (stack->top == stack->size) { 196 dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n"); 197 198 return -EINVAL; 199 } 200 201 return stack->vec_idx[stack->top++]; 202 } 203 204 /** 205 * idpf_vector_stash - Store the vector indexes onto the stack 206 * @adapter: private data struct 207 * @q_vector_idxs: vector index array 208 * @vec_info: info related to the number of vectors 209 * 210 * This function is a no-op if there are no vectors indexes to be stashed 211 */ 212 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs, 213 struct idpf_vector_info *vec_info) 214 { 215 int i, base = 0; 216 u16 vec_idx; 217 218 lockdep_assert_held(&adapter->vector_lock); 219 220 if (!vec_info->num_curr_vecs) 221 return; 222 223 /* For default vports, no need to stash vector allocated from the 224 * default pool onto the stack 225 */ 226 if (vec_info->default_vport) 227 base = IDPF_MIN_Q_VEC; 228 229 for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) { 230 vec_idx = q_vector_idxs[i]; 231 idpf_vector_lifo_push(adapter, vec_idx); 232 adapter->num_avail_msix++; 233 } 234 } 235 236 /** 237 * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes 238 * @adapter: driver specific private structure 239 * @q_vector_idxs: vector index array 240 * @vec_info: info related to the number of vectors 241 * 242 * This is the core function to distribute the MSIX vectors acquired from the 243 * OS. It expects the caller to pass the number of vectors required and 244 * also previously allocated. First, it stashes previously allocated vector 245 * indexes on to the stack and then figures out if it can allocate requested 246 * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as 247 * requested vectors, then this function just stashes the already allocated 248 * vectors and returns 0. 249 * 250 * Returns actual number of vectors allocated on success, error value on failure 251 * If 0 is returned, implies the stack has no vectors to allocate which is also 252 * a failure case for the caller 253 */ 254 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter, 255 u16 *q_vector_idxs, 256 struct idpf_vector_info *vec_info) 257 { 258 u16 num_req_vecs, num_alloc_vecs = 0, max_vecs; 259 struct idpf_vector_lifo *stack; 260 int i, j, vecid; 261 262 mutex_lock(&adapter->vector_lock); 263 stack = &adapter->vector_stack; 264 num_req_vecs = vec_info->num_req_vecs; 265 266 /* Stash interrupt vector indexes onto the stack if required */ 267 idpf_vector_stash(adapter, q_vector_idxs, vec_info); 268 269 if (!num_req_vecs) 270 goto rel_lock; 271 272 if (vec_info->default_vport) { 273 /* As IDPF_MIN_Q_VEC per default vport is put aside in the 274 * default pool of the stack, use them for default vports 275 */ 276 j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC; 277 for (i = 0; i < IDPF_MIN_Q_VEC; i++) { 278 q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++]; 279 num_req_vecs--; 280 } 281 } 282 283 /* Find if stack has enough vector to allocate */ 284 max_vecs = min(adapter->num_avail_msix, num_req_vecs); 285 286 for (j = 0; j < max_vecs; j++) { 287 vecid = idpf_vector_lifo_pop(adapter); 288 q_vector_idxs[num_alloc_vecs++] = vecid; 289 } 290 adapter->num_avail_msix -= max_vecs; 291 292 rel_lock: 293 mutex_unlock(&adapter->vector_lock); 294 295 return num_alloc_vecs; 296 } 297 298 /** 299 * idpf_intr_req - Request interrupt capabilities 300 * @adapter: adapter to enable interrupts on 301 * 302 * Returns 0 on success, negative on failure 303 */ 304 int idpf_intr_req(struct idpf_adapter *adapter) 305 { 306 u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0; 307 u16 default_vports = idpf_get_default_vports(adapter); 308 int num_q_vecs, total_vecs, num_vec_ids; 309 int min_vectors, actual_vecs, err; 310 unsigned int vector; 311 u16 *vecids; 312 int i; 313 314 total_vecs = idpf_get_reserved_vecs(adapter); 315 num_lan_vecs = total_vecs; 316 if (idpf_is_rdma_cap_ena(adapter)) { 317 num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter); 318 min_rdma_vecs = IDPF_MIN_RDMA_VEC; 319 320 if (!num_rdma_vecs) { 321 /* If idpf_get_reserved_rdma_vecs is 0, vectors are 322 * pulled from the LAN pool. 323 */ 324 num_rdma_vecs = min_rdma_vecs; 325 } else if (num_rdma_vecs < min_rdma_vecs) { 326 dev_err(&adapter->pdev->dev, 327 "Not enough vectors reserved for RDMA (min: %u, current: %u)\n", 328 min_rdma_vecs, num_rdma_vecs); 329 return -EINVAL; 330 } 331 } 332 333 num_q_vecs = total_vecs - IDPF_MBX_Q_VEC; 334 335 err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs); 336 if (err) { 337 dev_err(&adapter->pdev->dev, 338 "Failed to allocate %d vectors: %d\n", num_q_vecs, err); 339 340 return -EAGAIN; 341 } 342 343 min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports; 344 min_vectors = min_lan_vecs + min_rdma_vecs; 345 actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors, 346 total_vecs, PCI_IRQ_MSIX); 347 if (actual_vecs < 0) { 348 dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n", 349 min_vectors); 350 err = actual_vecs; 351 goto send_dealloc_vecs; 352 } 353 354 if (idpf_is_rdma_cap_ena(adapter)) { 355 if (actual_vecs < total_vecs) { 356 dev_warn(&adapter->pdev->dev, 357 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n", 358 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC); 359 num_rdma_vecs = IDPF_MIN_RDMA_VEC; 360 } 361 362 adapter->rdma_msix_entries = kcalloc(num_rdma_vecs, 363 sizeof(struct msix_entry), 364 GFP_KERNEL); 365 if (!adapter->rdma_msix_entries) { 366 err = -ENOMEM; 367 goto free_irq; 368 } 369 } 370 371 num_lan_vecs = actual_vecs - num_rdma_vecs; 372 adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry), 373 GFP_KERNEL); 374 if (!adapter->msix_entries) { 375 err = -ENOMEM; 376 goto free_rdma_msix; 377 } 378 379 adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id); 380 381 vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL); 382 if (!vecids) { 383 err = -ENOMEM; 384 goto free_msix; 385 } 386 387 num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs, 388 &adapter->req_vec_chunks->vchunks); 389 if (num_vec_ids < actual_vecs) { 390 err = -EINVAL; 391 goto free_vecids; 392 } 393 394 for (vector = 0; vector < num_lan_vecs; vector++) { 395 adapter->msix_entries[vector].entry = vecids[vector]; 396 adapter->msix_entries[vector].vector = 397 pci_irq_vector(adapter->pdev, vector); 398 } 399 for (i = 0; i < num_rdma_vecs; vector++, i++) { 400 adapter->rdma_msix_entries[i].entry = vecids[vector]; 401 adapter->rdma_msix_entries[i].vector = 402 pci_irq_vector(adapter->pdev, vector); 403 } 404 405 /* 'num_avail_msix' is used to distribute excess vectors to the vports 406 * after considering the minimum vectors required per each default 407 * vport 408 */ 409 adapter->num_avail_msix = num_lan_vecs - min_lan_vecs; 410 adapter->num_msix_entries = num_lan_vecs; 411 if (idpf_is_rdma_cap_ena(adapter)) 412 adapter->num_rdma_msix_entries = num_rdma_vecs; 413 414 /* Fill MSIX vector lifo stack with vector indexes */ 415 err = idpf_init_vector_stack(adapter); 416 if (err) 417 goto free_vecids; 418 419 err = idpf_mb_intr_init(adapter); 420 if (err) 421 goto deinit_vec_stack; 422 idpf_mb_irq_enable(adapter); 423 kfree(vecids); 424 425 return 0; 426 427 deinit_vec_stack: 428 idpf_deinit_vector_stack(adapter); 429 free_vecids: 430 kfree(vecids); 431 free_msix: 432 kfree(adapter->msix_entries); 433 adapter->msix_entries = NULL; 434 free_rdma_msix: 435 kfree(adapter->rdma_msix_entries); 436 adapter->rdma_msix_entries = NULL; 437 free_irq: 438 pci_free_irq_vectors(adapter->pdev); 439 send_dealloc_vecs: 440 idpf_send_dealloc_vectors_msg(adapter); 441 442 return err; 443 } 444 445 /** 446 * idpf_find_mac_filter - Search filter list for specific mac filter 447 * @vconfig: Vport config structure 448 * @macaddr: The MAC address 449 * 450 * Returns ptr to the filter object or NULL. Must be called while holding the 451 * mac_filter_list_lock. 452 **/ 453 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig, 454 const u8 *macaddr) 455 { 456 struct idpf_mac_filter *f; 457 458 if (!macaddr) 459 return NULL; 460 461 list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) { 462 if (ether_addr_equal(macaddr, f->macaddr)) 463 return f; 464 } 465 466 return NULL; 467 } 468 469 /** 470 * __idpf_del_mac_filter - Delete a MAC filter from the filter list 471 * @vport_config: Vport config structure 472 * @macaddr: The MAC address 473 * 474 * Returns 0 on success, error value on failure 475 **/ 476 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config, 477 const u8 *macaddr) 478 { 479 struct idpf_mac_filter *f; 480 481 spin_lock_bh(&vport_config->mac_filter_list_lock); 482 f = idpf_find_mac_filter(vport_config, macaddr); 483 if (f) { 484 list_del(&f->list); 485 kfree(f); 486 } 487 spin_unlock_bh(&vport_config->mac_filter_list_lock); 488 489 return 0; 490 } 491 492 /** 493 * idpf_del_mac_filter - Delete a MAC filter from the filter list 494 * @vport: Main vport structure 495 * @np: Netdev private structure 496 * @macaddr: The MAC address 497 * @async: Don't wait for return message 498 * 499 * Removes filter from list and if interface is up, tells hardware about the 500 * removed filter. 501 **/ 502 static int idpf_del_mac_filter(struct idpf_vport *vport, 503 struct idpf_netdev_priv *np, 504 const u8 *macaddr, bool async) 505 { 506 struct idpf_vport_config *vport_config; 507 struct idpf_mac_filter *f; 508 509 vport_config = np->adapter->vport_config[np->vport_idx]; 510 511 spin_lock_bh(&vport_config->mac_filter_list_lock); 512 f = idpf_find_mac_filter(vport_config, macaddr); 513 if (f) { 514 f->remove = true; 515 } else { 516 spin_unlock_bh(&vport_config->mac_filter_list_lock); 517 518 return -EINVAL; 519 } 520 spin_unlock_bh(&vport_config->mac_filter_list_lock); 521 522 if (np->state == __IDPF_VPORT_UP) { 523 int err; 524 525 err = idpf_add_del_mac_filters(vport, np, false, async); 526 if (err) 527 return err; 528 } 529 530 return __idpf_del_mac_filter(vport_config, macaddr); 531 } 532 533 /** 534 * __idpf_add_mac_filter - Add mac filter helper function 535 * @vport_config: Vport config structure 536 * @macaddr: Address to add 537 * 538 * Takes mac_filter_list_lock spinlock to add new filter to list. 539 */ 540 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config, 541 const u8 *macaddr) 542 { 543 struct idpf_mac_filter *f; 544 545 spin_lock_bh(&vport_config->mac_filter_list_lock); 546 547 f = idpf_find_mac_filter(vport_config, macaddr); 548 if (f) { 549 f->remove = false; 550 spin_unlock_bh(&vport_config->mac_filter_list_lock); 551 552 return 0; 553 } 554 555 f = kzalloc(sizeof(*f), GFP_ATOMIC); 556 if (!f) { 557 spin_unlock_bh(&vport_config->mac_filter_list_lock); 558 559 return -ENOMEM; 560 } 561 562 ether_addr_copy(f->macaddr, macaddr); 563 list_add_tail(&f->list, &vport_config->user_config.mac_filter_list); 564 f->add = true; 565 566 spin_unlock_bh(&vport_config->mac_filter_list_lock); 567 568 return 0; 569 } 570 571 /** 572 * idpf_add_mac_filter - Add a mac filter to the filter list 573 * @vport: Main vport structure 574 * @np: Netdev private structure 575 * @macaddr: The MAC address 576 * @async: Don't wait for return message 577 * 578 * Returns 0 on success or error on failure. If interface is up, we'll also 579 * send the virtchnl message to tell hardware about the filter. 580 **/ 581 static int idpf_add_mac_filter(struct idpf_vport *vport, 582 struct idpf_netdev_priv *np, 583 const u8 *macaddr, bool async) 584 { 585 struct idpf_vport_config *vport_config; 586 int err; 587 588 vport_config = np->adapter->vport_config[np->vport_idx]; 589 err = __idpf_add_mac_filter(vport_config, macaddr); 590 if (err) 591 return err; 592 593 if (np->state == __IDPF_VPORT_UP) 594 err = idpf_add_del_mac_filters(vport, np, true, async); 595 596 return err; 597 } 598 599 /** 600 * idpf_del_all_mac_filters - Delete all MAC filters in list 601 * @vport: main vport struct 602 * 603 * Takes mac_filter_list_lock spinlock. Deletes all filters 604 */ 605 static void idpf_del_all_mac_filters(struct idpf_vport *vport) 606 { 607 struct idpf_vport_config *vport_config; 608 struct idpf_mac_filter *f, *ftmp; 609 610 vport_config = vport->adapter->vport_config[vport->idx]; 611 spin_lock_bh(&vport_config->mac_filter_list_lock); 612 613 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list, 614 list) { 615 list_del(&f->list); 616 kfree(f); 617 } 618 619 spin_unlock_bh(&vport_config->mac_filter_list_lock); 620 } 621 622 /** 623 * idpf_restore_mac_filters - Re-add all MAC filters in list 624 * @vport: main vport struct 625 * 626 * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to 627 * resync filters back to HW. 628 */ 629 static void idpf_restore_mac_filters(struct idpf_vport *vport) 630 { 631 struct idpf_vport_config *vport_config; 632 struct idpf_mac_filter *f; 633 634 vport_config = vport->adapter->vport_config[vport->idx]; 635 spin_lock_bh(&vport_config->mac_filter_list_lock); 636 637 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 638 f->add = true; 639 640 spin_unlock_bh(&vport_config->mac_filter_list_lock); 641 642 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), 643 true, false); 644 } 645 646 /** 647 * idpf_remove_mac_filters - Remove all MAC filters in list 648 * @vport: main vport struct 649 * 650 * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters 651 * to remove filters in HW. 652 */ 653 static void idpf_remove_mac_filters(struct idpf_vport *vport) 654 { 655 struct idpf_vport_config *vport_config; 656 struct idpf_mac_filter *f; 657 658 vport_config = vport->adapter->vport_config[vport->idx]; 659 spin_lock_bh(&vport_config->mac_filter_list_lock); 660 661 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 662 f->remove = true; 663 664 spin_unlock_bh(&vport_config->mac_filter_list_lock); 665 666 idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), 667 false, false); 668 } 669 670 /** 671 * idpf_deinit_mac_addr - deinitialize mac address for vport 672 * @vport: main vport structure 673 */ 674 static void idpf_deinit_mac_addr(struct idpf_vport *vport) 675 { 676 struct idpf_vport_config *vport_config; 677 struct idpf_mac_filter *f; 678 679 vport_config = vport->adapter->vport_config[vport->idx]; 680 681 spin_lock_bh(&vport_config->mac_filter_list_lock); 682 683 f = idpf_find_mac_filter(vport_config, vport->default_mac_addr); 684 if (f) { 685 list_del(&f->list); 686 kfree(f); 687 } 688 689 spin_unlock_bh(&vport_config->mac_filter_list_lock); 690 } 691 692 /** 693 * idpf_init_mac_addr - initialize mac address for vport 694 * @vport: main vport structure 695 * @netdev: pointer to netdev struct associated with this vport 696 */ 697 static int idpf_init_mac_addr(struct idpf_vport *vport, 698 struct net_device *netdev) 699 { 700 struct idpf_netdev_priv *np = netdev_priv(netdev); 701 struct idpf_adapter *adapter = vport->adapter; 702 int err; 703 704 if (is_valid_ether_addr(vport->default_mac_addr)) { 705 eth_hw_addr_set(netdev, vport->default_mac_addr); 706 ether_addr_copy(netdev->perm_addr, vport->default_mac_addr); 707 708 return idpf_add_mac_filter(vport, np, vport->default_mac_addr, 709 false); 710 } 711 712 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 713 VIRTCHNL2_CAP_MACFILTER)) { 714 dev_err(&adapter->pdev->dev, 715 "MAC address is not provided and capability is not set\n"); 716 717 return -EINVAL; 718 } 719 720 eth_hw_addr_random(netdev); 721 err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false); 722 if (err) 723 return err; 724 725 dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n", 726 vport->default_mac_addr, netdev->dev_addr); 727 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 728 729 return 0; 730 } 731 732 /** 733 * idpf_cfg_netdev - Allocate, configure and register a netdev 734 * @vport: main vport structure 735 * 736 * Returns 0 on success, negative value on failure. 737 */ 738 static int idpf_cfg_netdev(struct idpf_vport *vport) 739 { 740 struct idpf_adapter *adapter = vport->adapter; 741 struct idpf_vport_config *vport_config; 742 netdev_features_t other_offloads = 0; 743 netdev_features_t csum_offloads = 0; 744 netdev_features_t tso_offloads = 0; 745 netdev_features_t dflt_features; 746 struct idpf_netdev_priv *np; 747 struct net_device *netdev; 748 u16 idx = vport->idx; 749 int err; 750 751 vport_config = adapter->vport_config[idx]; 752 753 /* It's possible we already have a netdev allocated and registered for 754 * this vport 755 */ 756 if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) { 757 netdev = adapter->netdevs[idx]; 758 np = netdev_priv(netdev); 759 np->vport = vport; 760 np->vport_idx = vport->idx; 761 np->vport_id = vport->vport_id; 762 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 763 vport->netdev = netdev; 764 765 return idpf_init_mac_addr(vport, netdev); 766 } 767 768 netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv), 769 vport_config->max_q.max_txq, 770 vport_config->max_q.max_rxq); 771 if (!netdev) 772 return -ENOMEM; 773 774 vport->netdev = netdev; 775 np = netdev_priv(netdev); 776 np->vport = vport; 777 np->adapter = adapter; 778 np->vport_idx = vport->idx; 779 np->vport_id = vport->vport_id; 780 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 781 np->tx_max_bufs = idpf_get_max_tx_bufs(adapter); 782 783 spin_lock_init(&np->stats_lock); 784 785 err = idpf_init_mac_addr(vport, netdev); 786 if (err) { 787 free_netdev(vport->netdev); 788 vport->netdev = NULL; 789 790 return err; 791 } 792 793 /* assign netdev_ops */ 794 netdev->netdev_ops = &idpf_netdev_ops; 795 796 /* setup watchdog timeout value to be 5 second */ 797 netdev->watchdog_timeo = 5 * HZ; 798 799 netdev->dev_port = idx; 800 801 /* configure default MTU size */ 802 netdev->min_mtu = ETH_MIN_MTU; 803 netdev->max_mtu = vport->max_mtu; 804 805 dflt_features = NETIF_F_SG | 806 NETIF_F_HIGHDMA; 807 808 if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS)) 809 dflt_features |= NETIF_F_RXHASH; 810 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 811 VIRTCHNL2_CAP_FLOW_STEER) && 812 idpf_vport_is_cap_ena(vport, VIRTCHNL2_VPORT_SIDEBAND_FLOW_STEER)) 813 dflt_features |= NETIF_F_NTUPLE; 814 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4)) 815 csum_offloads |= NETIF_F_IP_CSUM; 816 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6)) 817 csum_offloads |= NETIF_F_IPV6_CSUM; 818 if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM)) 819 csum_offloads |= NETIF_F_RXCSUM; 820 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM)) 821 csum_offloads |= NETIF_F_SCTP_CRC; 822 823 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP)) 824 tso_offloads |= NETIF_F_TSO; 825 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP)) 826 tso_offloads |= NETIF_F_TSO6; 827 if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS, 828 VIRTCHNL2_CAP_SEG_IPV4_UDP | 829 VIRTCHNL2_CAP_SEG_IPV6_UDP)) 830 tso_offloads |= NETIF_F_GSO_UDP_L4; 831 if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC)) 832 other_offloads |= NETIF_F_GRO_HW; 833 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK)) 834 other_offloads |= NETIF_F_LOOPBACK; 835 836 netdev->features |= dflt_features | csum_offloads | tso_offloads; 837 netdev->hw_features |= netdev->features | other_offloads; 838 netdev->vlan_features |= netdev->features | other_offloads; 839 netdev->hw_enc_features |= dflt_features | other_offloads; 840 idpf_xdp_set_features(vport); 841 842 idpf_set_ethtool_ops(netdev); 843 netif_set_affinity_auto(netdev); 844 SET_NETDEV_DEV(netdev, &adapter->pdev->dev); 845 846 /* carrier off on init to avoid Tx hangs */ 847 netif_carrier_off(netdev); 848 849 /* make sure transmit queues start off as stopped */ 850 netif_tx_stop_all_queues(netdev); 851 852 /* The vport can be arbitrarily released so we need to also track 853 * netdevs in the adapter struct 854 */ 855 adapter->netdevs[idx] = netdev; 856 857 return 0; 858 } 859 860 /** 861 * idpf_get_free_slot - get the next non-NULL location index in array 862 * @adapter: adapter in which to look for a free vport slot 863 */ 864 static int idpf_get_free_slot(struct idpf_adapter *adapter) 865 { 866 unsigned int i; 867 868 for (i = 0; i < adapter->max_vports; i++) { 869 if (!adapter->vports[i]) 870 return i; 871 } 872 873 return IDPF_NO_FREE_SLOT; 874 } 875 876 /** 877 * idpf_remove_features - Turn off feature configs 878 * @vport: virtual port structure 879 */ 880 static void idpf_remove_features(struct idpf_vport *vport) 881 { 882 struct idpf_adapter *adapter = vport->adapter; 883 884 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 885 idpf_remove_mac_filters(vport); 886 } 887 888 /** 889 * idpf_vport_stop - Disable a vport 890 * @vport: vport to disable 891 * @rtnl: whether to take RTNL lock 892 */ 893 static void idpf_vport_stop(struct idpf_vport *vport, bool rtnl) 894 { 895 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 896 897 if (np->state <= __IDPF_VPORT_DOWN) 898 return; 899 900 if (rtnl) 901 rtnl_lock(); 902 903 netif_carrier_off(vport->netdev); 904 netif_tx_disable(vport->netdev); 905 906 idpf_send_disable_vport_msg(vport); 907 idpf_send_disable_queues_msg(vport); 908 idpf_send_map_unmap_queue_vector_msg(vport, false); 909 /* Normally we ask for queues in create_vport, but if the number of 910 * initially requested queues have changed, for example via ethtool 911 * set channels, we do delete queues and then add the queues back 912 * instead of deleting and reallocating the vport. 913 */ 914 if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags)) 915 idpf_send_delete_queues_msg(vport); 916 917 idpf_remove_features(vport); 918 919 vport->link_up = false; 920 idpf_vport_intr_deinit(vport); 921 idpf_xdp_rxq_info_deinit_all(vport); 922 idpf_vport_queues_rel(vport); 923 idpf_vport_intr_rel(vport); 924 np->state = __IDPF_VPORT_DOWN; 925 926 if (rtnl) 927 rtnl_unlock(); 928 } 929 930 /** 931 * idpf_stop - Disables a network interface 932 * @netdev: network interface device structure 933 * 934 * The stop entry point is called when an interface is de-activated by the OS, 935 * and the netdevice enters the DOWN state. The hardware is still under the 936 * driver's control, but the netdev interface is disabled. 937 * 938 * Returns success only - not allowed to fail 939 */ 940 static int idpf_stop(struct net_device *netdev) 941 { 942 struct idpf_netdev_priv *np = netdev_priv(netdev); 943 struct idpf_vport *vport; 944 945 if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags)) 946 return 0; 947 948 idpf_vport_ctrl_lock(netdev); 949 vport = idpf_netdev_to_vport(netdev); 950 951 idpf_vport_stop(vport, false); 952 953 idpf_vport_ctrl_unlock(netdev); 954 955 return 0; 956 } 957 958 /** 959 * idpf_decfg_netdev - Unregister the netdev 960 * @vport: vport for which netdev to be unregistered 961 */ 962 static void idpf_decfg_netdev(struct idpf_vport *vport) 963 { 964 struct idpf_adapter *adapter = vport->adapter; 965 u16 idx = vport->idx; 966 967 kfree(vport->rx_ptype_lkup); 968 vport->rx_ptype_lkup = NULL; 969 970 if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV, 971 adapter->vport_config[idx]->flags)) { 972 unregister_netdev(vport->netdev); 973 free_netdev(vport->netdev); 974 } 975 vport->netdev = NULL; 976 977 adapter->netdevs[idx] = NULL; 978 } 979 980 /** 981 * idpf_vport_rel - Delete a vport and free its resources 982 * @vport: the vport being removed 983 */ 984 static void idpf_vport_rel(struct idpf_vport *vport) 985 { 986 struct idpf_adapter *adapter = vport->adapter; 987 struct idpf_vport_config *vport_config; 988 struct idpf_vector_info vec_info; 989 struct idpf_rss_data *rss_data; 990 struct idpf_vport_max_q max_q; 991 u16 idx = vport->idx; 992 993 vport_config = adapter->vport_config[vport->idx]; 994 idpf_deinit_rss(vport); 995 rss_data = &vport_config->user_config.rss_data; 996 kfree(rss_data->rss_key); 997 rss_data->rss_key = NULL; 998 999 idpf_send_destroy_vport_msg(vport); 1000 1001 /* Release all max queues allocated to the adapter's pool */ 1002 max_q.max_rxq = vport_config->max_q.max_rxq; 1003 max_q.max_txq = vport_config->max_q.max_txq; 1004 max_q.max_bufq = vport_config->max_q.max_bufq; 1005 max_q.max_complq = vport_config->max_q.max_complq; 1006 idpf_vport_dealloc_max_qs(adapter, &max_q); 1007 1008 /* Release all the allocated vectors on the stack */ 1009 vec_info.num_req_vecs = 0; 1010 vec_info.num_curr_vecs = vport->num_q_vectors; 1011 vec_info.default_vport = vport->default_vport; 1012 1013 idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info); 1014 1015 kfree(vport->q_vector_idxs); 1016 vport->q_vector_idxs = NULL; 1017 1018 kfree(adapter->vport_params_recvd[idx]); 1019 adapter->vport_params_recvd[idx] = NULL; 1020 kfree(adapter->vport_params_reqd[idx]); 1021 adapter->vport_params_reqd[idx] = NULL; 1022 if (adapter->vport_config[idx]) { 1023 kfree(adapter->vport_config[idx]->req_qs_chunks); 1024 adapter->vport_config[idx]->req_qs_chunks = NULL; 1025 } 1026 kfree(vport); 1027 adapter->num_alloc_vports--; 1028 } 1029 1030 /** 1031 * idpf_vport_dealloc - cleanup and release a given vport 1032 * @vport: pointer to idpf vport structure 1033 * 1034 * returns nothing 1035 */ 1036 static void idpf_vport_dealloc(struct idpf_vport *vport) 1037 { 1038 struct idpf_adapter *adapter = vport->adapter; 1039 unsigned int i = vport->idx; 1040 1041 idpf_idc_deinit_vport_aux_device(vport->vdev_info); 1042 1043 idpf_deinit_mac_addr(vport); 1044 idpf_vport_stop(vport, true); 1045 1046 if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1047 idpf_decfg_netdev(vport); 1048 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) 1049 idpf_del_all_mac_filters(vport); 1050 1051 if (adapter->netdevs[i]) { 1052 struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]); 1053 1054 np->vport = NULL; 1055 } 1056 1057 idpf_vport_rel(vport); 1058 1059 adapter->vports[i] = NULL; 1060 adapter->next_vport = idpf_get_free_slot(adapter); 1061 } 1062 1063 /** 1064 * idpf_is_hsplit_supported - check whether the header split is supported 1065 * @vport: virtual port to check the capability for 1066 * 1067 * Return: true if it's supported by the HW/FW, false if not. 1068 */ 1069 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport) 1070 { 1071 return idpf_is_queue_model_split(vport->rxq_model) && 1072 idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS, 1073 IDPF_CAP_HSPLIT); 1074 } 1075 1076 /** 1077 * idpf_vport_get_hsplit - get the current header split feature state 1078 * @vport: virtual port to query the state for 1079 * 1080 * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported, 1081 * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled, 1082 * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active. 1083 */ 1084 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport) 1085 { 1086 const struct idpf_vport_user_config_data *config; 1087 1088 if (!idpf_is_hsplit_supported(vport)) 1089 return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1090 1091 config = &vport->adapter->vport_config[vport->idx]->user_config; 1092 1093 return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ? 1094 ETHTOOL_TCP_DATA_SPLIT_ENABLED : 1095 ETHTOOL_TCP_DATA_SPLIT_DISABLED; 1096 } 1097 1098 /** 1099 * idpf_vport_set_hsplit - enable or disable header split on a given vport 1100 * @vport: virtual port to configure 1101 * @val: Ethtool flag controlling the header split state 1102 * 1103 * Return: true on success, false if not supported by the HW. 1104 */ 1105 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val) 1106 { 1107 struct idpf_vport_user_config_data *config; 1108 1109 if (!idpf_is_hsplit_supported(vport)) 1110 return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1111 1112 config = &vport->adapter->vport_config[vport->idx]->user_config; 1113 1114 switch (val) { 1115 case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN: 1116 /* Default is to enable */ 1117 case ETHTOOL_TCP_DATA_SPLIT_ENABLED: 1118 __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1119 return true; 1120 case ETHTOOL_TCP_DATA_SPLIT_DISABLED: 1121 __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1122 return true; 1123 default: 1124 return false; 1125 } 1126 } 1127 1128 /** 1129 * idpf_vport_alloc - Allocates the next available struct vport in the adapter 1130 * @adapter: board private structure 1131 * @max_q: vport max queue info 1132 * 1133 * returns a pointer to a vport on success, NULL on failure. 1134 */ 1135 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter, 1136 struct idpf_vport_max_q *max_q) 1137 { 1138 struct idpf_rss_data *rss_data; 1139 u16 idx = adapter->next_vport; 1140 struct idpf_vport *vport; 1141 u16 num_max_q; 1142 1143 if (idx == IDPF_NO_FREE_SLOT) 1144 return NULL; 1145 1146 vport = kzalloc(sizeof(*vport), GFP_KERNEL); 1147 if (!vport) 1148 return vport; 1149 1150 num_max_q = max(max_q->max_txq, max_q->max_rxq) + IDPF_RESERVED_VECS; 1151 if (!adapter->vport_config[idx]) { 1152 struct idpf_vport_config *vport_config; 1153 struct idpf_q_coalesce *q_coal; 1154 1155 vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL); 1156 if (!vport_config) { 1157 kfree(vport); 1158 1159 return NULL; 1160 } 1161 1162 q_coal = kcalloc(num_max_q, sizeof(*q_coal), GFP_KERNEL); 1163 if (!q_coal) { 1164 kfree(vport_config); 1165 kfree(vport); 1166 1167 return NULL; 1168 } 1169 for (int i = 0; i < num_max_q; i++) { 1170 q_coal[i].tx_intr_mode = IDPF_ITR_DYNAMIC; 1171 q_coal[i].tx_coalesce_usecs = IDPF_ITR_TX_DEF; 1172 q_coal[i].rx_intr_mode = IDPF_ITR_DYNAMIC; 1173 q_coal[i].rx_coalesce_usecs = IDPF_ITR_RX_DEF; 1174 } 1175 vport_config->user_config.q_coalesce = q_coal; 1176 1177 adapter->vport_config[idx] = vport_config; 1178 } 1179 1180 vport->idx = idx; 1181 vport->adapter = adapter; 1182 vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET; 1183 vport->default_vport = adapter->num_alloc_vports < 1184 idpf_get_default_vports(adapter); 1185 1186 vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL); 1187 if (!vport->q_vector_idxs) 1188 goto free_vport; 1189 1190 idpf_vport_init(vport, max_q); 1191 1192 /* This alloc is done separate from the LUT because it's not strictly 1193 * dependent on how many queues we have. If we change number of queues 1194 * and soft reset we'll need a new LUT but the key can remain the same 1195 * for as long as the vport exists. 1196 */ 1197 rss_data = &adapter->vport_config[idx]->user_config.rss_data; 1198 rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL); 1199 if (!rss_data->rss_key) 1200 goto free_vector_idxs; 1201 1202 /* Initialize default rss key */ 1203 netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size); 1204 1205 /* fill vport slot in the adapter struct */ 1206 adapter->vports[idx] = vport; 1207 adapter->vport_ids[idx] = idpf_get_vport_id(vport); 1208 1209 adapter->num_alloc_vports++; 1210 /* prepare adapter->next_vport for next use */ 1211 adapter->next_vport = idpf_get_free_slot(adapter); 1212 1213 return vport; 1214 1215 free_vector_idxs: 1216 kfree(vport->q_vector_idxs); 1217 free_vport: 1218 kfree(vport); 1219 1220 return NULL; 1221 } 1222 1223 /** 1224 * idpf_get_stats64 - get statistics for network device structure 1225 * @netdev: network interface device structure 1226 * @stats: main device statistics structure 1227 */ 1228 static void idpf_get_stats64(struct net_device *netdev, 1229 struct rtnl_link_stats64 *stats) 1230 { 1231 struct idpf_netdev_priv *np = netdev_priv(netdev); 1232 1233 spin_lock_bh(&np->stats_lock); 1234 *stats = np->netstats; 1235 spin_unlock_bh(&np->stats_lock); 1236 } 1237 1238 /** 1239 * idpf_statistics_task - Delayed task to get statistics over mailbox 1240 * @work: work_struct handle to our data 1241 */ 1242 void idpf_statistics_task(struct work_struct *work) 1243 { 1244 struct idpf_adapter *adapter; 1245 int i; 1246 1247 adapter = container_of(work, struct idpf_adapter, stats_task.work); 1248 1249 for (i = 0; i < adapter->max_vports; i++) { 1250 struct idpf_vport *vport = adapter->vports[i]; 1251 1252 if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1253 idpf_send_get_stats_msg(vport); 1254 } 1255 1256 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1257 msecs_to_jiffies(10000)); 1258 } 1259 1260 /** 1261 * idpf_mbx_task - Delayed task to handle mailbox responses 1262 * @work: work_struct handle 1263 */ 1264 void idpf_mbx_task(struct work_struct *work) 1265 { 1266 struct idpf_adapter *adapter; 1267 1268 adapter = container_of(work, struct idpf_adapter, mbx_task.work); 1269 1270 if (test_bit(IDPF_MB_INTR_MODE, adapter->flags)) 1271 idpf_mb_irq_enable(adapter); 1272 else 1273 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 1274 msecs_to_jiffies(300)); 1275 1276 idpf_recv_mb_msg(adapter); 1277 } 1278 1279 /** 1280 * idpf_service_task - Delayed task for handling mailbox responses 1281 * @work: work_struct handle to our data 1282 * 1283 */ 1284 void idpf_service_task(struct work_struct *work) 1285 { 1286 struct idpf_adapter *adapter; 1287 1288 adapter = container_of(work, struct idpf_adapter, serv_task.work); 1289 1290 if (idpf_is_reset_detected(adapter) && 1291 !idpf_is_reset_in_prog(adapter) && 1292 !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { 1293 dev_info(&adapter->pdev->dev, "HW reset detected\n"); 1294 set_bit(IDPF_HR_FUNC_RESET, adapter->flags); 1295 queue_delayed_work(adapter->vc_event_wq, 1296 &adapter->vc_event_task, 1297 msecs_to_jiffies(10)); 1298 } 1299 1300 queue_delayed_work(adapter->serv_wq, &adapter->serv_task, 1301 msecs_to_jiffies(300)); 1302 } 1303 1304 /** 1305 * idpf_restore_features - Restore feature configs 1306 * @vport: virtual port structure 1307 */ 1308 static void idpf_restore_features(struct idpf_vport *vport) 1309 { 1310 struct idpf_adapter *adapter = vport->adapter; 1311 1312 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 1313 idpf_restore_mac_filters(vport); 1314 } 1315 1316 /** 1317 * idpf_set_real_num_queues - set number of queues for netdev 1318 * @vport: virtual port structure 1319 * 1320 * Returns 0 on success, negative on failure. 1321 */ 1322 static int idpf_set_real_num_queues(struct idpf_vport *vport) 1323 { 1324 int err, txq = vport->num_txq - vport->num_xdp_txq; 1325 1326 err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq); 1327 if (err) 1328 return err; 1329 1330 return netif_set_real_num_tx_queues(vport->netdev, txq); 1331 } 1332 1333 /** 1334 * idpf_up_complete - Complete interface up sequence 1335 * @vport: virtual port structure 1336 * 1337 * Returns 0 on success, negative on failure. 1338 */ 1339 static int idpf_up_complete(struct idpf_vport *vport) 1340 { 1341 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1342 1343 if (vport->link_up && !netif_carrier_ok(vport->netdev)) { 1344 netif_carrier_on(vport->netdev); 1345 netif_tx_start_all_queues(vport->netdev); 1346 } 1347 1348 np->state = __IDPF_VPORT_UP; 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * idpf_rx_init_buf_tail - Write initial buffer ring tail value 1355 * @vport: virtual port struct 1356 */ 1357 static void idpf_rx_init_buf_tail(struct idpf_vport *vport) 1358 { 1359 int i, j; 1360 1361 for (i = 0; i < vport->num_rxq_grp; i++) { 1362 struct idpf_rxq_group *grp = &vport->rxq_grps[i]; 1363 1364 if (idpf_is_queue_model_split(vport->rxq_model)) { 1365 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { 1366 const struct idpf_buf_queue *q = 1367 &grp->splitq.bufq_sets[j].bufq; 1368 1369 writel(q->next_to_alloc, q->tail); 1370 } 1371 } else { 1372 for (j = 0; j < grp->singleq.num_rxq; j++) { 1373 const struct idpf_rx_queue *q = 1374 grp->singleq.rxqs[j]; 1375 1376 writel(q->next_to_alloc, q->tail); 1377 } 1378 } 1379 } 1380 } 1381 1382 /** 1383 * idpf_vport_open - Bring up a vport 1384 * @vport: vport to bring up 1385 * @rtnl: whether to take RTNL lock 1386 */ 1387 static int idpf_vport_open(struct idpf_vport *vport, bool rtnl) 1388 { 1389 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1390 struct idpf_adapter *adapter = vport->adapter; 1391 struct idpf_vport_config *vport_config; 1392 int err; 1393 1394 if (np->state != __IDPF_VPORT_DOWN) 1395 return -EBUSY; 1396 1397 if (rtnl) 1398 rtnl_lock(); 1399 1400 /* we do not allow interface up just yet */ 1401 netif_carrier_off(vport->netdev); 1402 1403 err = idpf_vport_intr_alloc(vport); 1404 if (err) { 1405 dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n", 1406 vport->vport_id, err); 1407 goto err_rtnl_unlock; 1408 } 1409 1410 err = idpf_vport_queues_alloc(vport); 1411 if (err) 1412 goto intr_rel; 1413 1414 err = idpf_vport_queue_ids_init(vport); 1415 if (err) { 1416 dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n", 1417 vport->vport_id, err); 1418 goto queues_rel; 1419 } 1420 1421 err = idpf_vport_intr_init(vport); 1422 if (err) { 1423 dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n", 1424 vport->vport_id, err); 1425 goto queues_rel; 1426 } 1427 1428 err = idpf_queue_reg_init(vport); 1429 if (err) { 1430 dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n", 1431 vport->vport_id, err); 1432 goto queues_rel; 1433 } 1434 1435 err = idpf_rx_bufs_init_all(vport); 1436 if (err) { 1437 dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n", 1438 vport->vport_id, err); 1439 goto queues_rel; 1440 } 1441 1442 idpf_rx_init_buf_tail(vport); 1443 1444 err = idpf_xdp_rxq_info_init_all(vport); 1445 if (err) { 1446 netdev_err(vport->netdev, 1447 "Failed to initialize XDP RxQ info for vport %u: %pe\n", 1448 vport->vport_id, ERR_PTR(err)); 1449 goto intr_deinit; 1450 } 1451 1452 idpf_vport_intr_ena(vport); 1453 1454 err = idpf_send_config_queues_msg(vport); 1455 if (err) { 1456 dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n", 1457 vport->vport_id, err); 1458 goto rxq_deinit; 1459 } 1460 1461 err = idpf_send_map_unmap_queue_vector_msg(vport, true); 1462 if (err) { 1463 dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n", 1464 vport->vport_id, err); 1465 goto rxq_deinit; 1466 } 1467 1468 err = idpf_send_enable_queues_msg(vport); 1469 if (err) { 1470 dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n", 1471 vport->vport_id, err); 1472 goto unmap_queue_vectors; 1473 } 1474 1475 err = idpf_send_enable_vport_msg(vport); 1476 if (err) { 1477 dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n", 1478 vport->vport_id, err); 1479 err = -EAGAIN; 1480 goto disable_queues; 1481 } 1482 1483 idpf_restore_features(vport); 1484 1485 vport_config = adapter->vport_config[vport->idx]; 1486 if (vport_config->user_config.rss_data.rss_lut) 1487 err = idpf_config_rss(vport); 1488 else 1489 err = idpf_init_rss(vport); 1490 if (err) { 1491 dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n", 1492 vport->vport_id, err); 1493 goto disable_vport; 1494 } 1495 1496 err = idpf_up_complete(vport); 1497 if (err) { 1498 dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n", 1499 vport->vport_id, err); 1500 goto deinit_rss; 1501 } 1502 1503 if (rtnl) 1504 rtnl_unlock(); 1505 1506 return 0; 1507 1508 deinit_rss: 1509 idpf_deinit_rss(vport); 1510 disable_vport: 1511 idpf_send_disable_vport_msg(vport); 1512 disable_queues: 1513 idpf_send_disable_queues_msg(vport); 1514 unmap_queue_vectors: 1515 idpf_send_map_unmap_queue_vector_msg(vport, false); 1516 rxq_deinit: 1517 idpf_xdp_rxq_info_deinit_all(vport); 1518 intr_deinit: 1519 idpf_vport_intr_deinit(vport); 1520 queues_rel: 1521 idpf_vport_queues_rel(vport); 1522 intr_rel: 1523 idpf_vport_intr_rel(vport); 1524 1525 err_rtnl_unlock: 1526 if (rtnl) 1527 rtnl_unlock(); 1528 1529 return err; 1530 } 1531 1532 /** 1533 * idpf_init_task - Delayed initialization task 1534 * @work: work_struct handle to our data 1535 * 1536 * Init task finishes up pending work started in probe. Due to the asynchronous 1537 * nature in which the device communicates with hardware, we may have to wait 1538 * several milliseconds to get a response. Instead of busy polling in probe, 1539 * pulling it out into a delayed work task prevents us from bogging down the 1540 * whole system waiting for a response from hardware. 1541 */ 1542 void idpf_init_task(struct work_struct *work) 1543 { 1544 struct idpf_vport_config *vport_config; 1545 struct idpf_vport_max_q max_q; 1546 struct idpf_adapter *adapter; 1547 struct idpf_netdev_priv *np; 1548 struct idpf_vport *vport; 1549 u16 num_default_vports; 1550 struct pci_dev *pdev; 1551 bool default_vport; 1552 int index, err; 1553 1554 adapter = container_of(work, struct idpf_adapter, init_task.work); 1555 1556 num_default_vports = idpf_get_default_vports(adapter); 1557 if (adapter->num_alloc_vports < num_default_vports) 1558 default_vport = true; 1559 else 1560 default_vport = false; 1561 1562 err = idpf_vport_alloc_max_qs(adapter, &max_q); 1563 if (err) 1564 goto unwind_vports; 1565 1566 err = idpf_send_create_vport_msg(adapter, &max_q); 1567 if (err) { 1568 idpf_vport_dealloc_max_qs(adapter, &max_q); 1569 goto unwind_vports; 1570 } 1571 1572 pdev = adapter->pdev; 1573 vport = idpf_vport_alloc(adapter, &max_q); 1574 if (!vport) { 1575 err = -EFAULT; 1576 dev_err(&pdev->dev, "failed to allocate vport: %d\n", 1577 err); 1578 idpf_vport_dealloc_max_qs(adapter, &max_q); 1579 goto unwind_vports; 1580 } 1581 1582 index = vport->idx; 1583 vport_config = adapter->vport_config[index]; 1584 1585 spin_lock_init(&vport_config->mac_filter_list_lock); 1586 1587 INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list); 1588 INIT_LIST_HEAD(&vport_config->user_config.flow_steer_list); 1589 1590 err = idpf_check_supported_desc_ids(vport); 1591 if (err) { 1592 dev_err(&pdev->dev, "failed to get required descriptor ids\n"); 1593 goto cfg_netdev_err; 1594 } 1595 1596 if (idpf_cfg_netdev(vport)) 1597 goto cfg_netdev_err; 1598 1599 err = idpf_send_get_rx_ptype_msg(vport); 1600 if (err) 1601 goto handle_err; 1602 1603 /* Once state is put into DOWN, driver is ready for dev_open */ 1604 np = netdev_priv(vport->netdev); 1605 np->state = __IDPF_VPORT_DOWN; 1606 if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags)) 1607 idpf_vport_open(vport, true); 1608 1609 /* Spawn and return 'idpf_init_task' work queue until all the 1610 * default vports are created 1611 */ 1612 if (adapter->num_alloc_vports < num_default_vports) { 1613 queue_delayed_work(adapter->init_wq, &adapter->init_task, 1614 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07))); 1615 1616 return; 1617 } 1618 1619 for (index = 0; index < adapter->max_vports; index++) { 1620 struct net_device *netdev = adapter->netdevs[index]; 1621 struct idpf_vport_config *vport_config; 1622 1623 vport_config = adapter->vport_config[index]; 1624 1625 if (!netdev || 1626 test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) 1627 continue; 1628 1629 err = register_netdev(netdev); 1630 if (err) { 1631 dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n", 1632 index, ERR_PTR(err)); 1633 continue; 1634 } 1635 set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags); 1636 } 1637 1638 /* As all the required vports are created, clear the reset flag 1639 * unconditionally here in case we were in reset and the link was down. 1640 */ 1641 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1642 /* Start the statistics task now */ 1643 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1644 msecs_to_jiffies(10 * (pdev->devfn & 0x07))); 1645 1646 return; 1647 1648 handle_err: 1649 idpf_decfg_netdev(vport); 1650 cfg_netdev_err: 1651 idpf_vport_rel(vport); 1652 adapter->vports[index] = NULL; 1653 unwind_vports: 1654 if (default_vport) { 1655 for (index = 0; index < adapter->max_vports; index++) { 1656 if (adapter->vports[index]) 1657 idpf_vport_dealloc(adapter->vports[index]); 1658 } 1659 } 1660 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1661 } 1662 1663 /** 1664 * idpf_sriov_ena - Enable or change number of VFs 1665 * @adapter: private data struct 1666 * @num_vfs: number of VFs to allocate 1667 */ 1668 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs) 1669 { 1670 struct device *dev = &adapter->pdev->dev; 1671 int err; 1672 1673 err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs); 1674 if (err) { 1675 dev_err(dev, "Failed to allocate VFs: %d\n", err); 1676 1677 return err; 1678 } 1679 1680 err = pci_enable_sriov(adapter->pdev, num_vfs); 1681 if (err) { 1682 idpf_send_set_sriov_vfs_msg(adapter, 0); 1683 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 1684 1685 return err; 1686 } 1687 1688 adapter->num_vfs = num_vfs; 1689 1690 return num_vfs; 1691 } 1692 1693 /** 1694 * idpf_sriov_configure - Configure the requested VFs 1695 * @pdev: pointer to a pci_dev structure 1696 * @num_vfs: number of vfs to allocate 1697 * 1698 * Enable or change the number of VFs. Called when the user updates the number 1699 * of VFs in sysfs. 1700 **/ 1701 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs) 1702 { 1703 struct idpf_adapter *adapter = pci_get_drvdata(pdev); 1704 1705 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) { 1706 dev_info(&pdev->dev, "SR-IOV is not supported on this device\n"); 1707 1708 return -EOPNOTSUPP; 1709 } 1710 1711 if (num_vfs) 1712 return idpf_sriov_ena(adapter, num_vfs); 1713 1714 if (pci_vfs_assigned(pdev)) { 1715 dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n"); 1716 1717 return -EBUSY; 1718 } 1719 1720 pci_disable_sriov(adapter->pdev); 1721 idpf_send_set_sriov_vfs_msg(adapter, 0); 1722 adapter->num_vfs = 0; 1723 1724 return 0; 1725 } 1726 1727 /** 1728 * idpf_deinit_task - Device deinit routine 1729 * @adapter: Driver specific private structure 1730 * 1731 * Extended remove logic which will be used for 1732 * hard reset as well 1733 */ 1734 void idpf_deinit_task(struct idpf_adapter *adapter) 1735 { 1736 unsigned int i; 1737 1738 /* Wait until the init_task is done else this thread might release 1739 * the resources first and the other thread might end up in a bad state 1740 */ 1741 cancel_delayed_work_sync(&adapter->init_task); 1742 1743 if (!adapter->vports) 1744 return; 1745 1746 cancel_delayed_work_sync(&adapter->stats_task); 1747 1748 for (i = 0; i < adapter->max_vports; i++) { 1749 if (adapter->vports[i]) 1750 idpf_vport_dealloc(adapter->vports[i]); 1751 } 1752 } 1753 1754 /** 1755 * idpf_check_reset_complete - check that reset is complete 1756 * @hw: pointer to hw struct 1757 * @reset_reg: struct with reset registers 1758 * 1759 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 1760 **/ 1761 static int idpf_check_reset_complete(struct idpf_hw *hw, 1762 struct idpf_reset_reg *reset_reg) 1763 { 1764 struct idpf_adapter *adapter = hw->back; 1765 int i; 1766 1767 for (i = 0; i < 2000; i++) { 1768 u32 reg_val = readl(reset_reg->rstat); 1769 1770 /* 0xFFFFFFFF might be read if other side hasn't cleared the 1771 * register for us yet and 0xFFFFFFFF is not a valid value for 1772 * the register, so treat that as invalid. 1773 */ 1774 if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m)) 1775 return 0; 1776 1777 usleep_range(5000, 10000); 1778 } 1779 1780 dev_warn(&adapter->pdev->dev, "Device reset timeout!\n"); 1781 /* Clear the reset flag unconditionally here since the reset 1782 * technically isn't in progress anymore from the driver's perspective 1783 */ 1784 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1785 1786 return -EBUSY; 1787 } 1788 1789 /** 1790 * idpf_set_vport_state - Set the vport state to be after the reset 1791 * @adapter: Driver specific private structure 1792 */ 1793 static void idpf_set_vport_state(struct idpf_adapter *adapter) 1794 { 1795 u16 i; 1796 1797 for (i = 0; i < adapter->max_vports; i++) { 1798 struct idpf_netdev_priv *np; 1799 1800 if (!adapter->netdevs[i]) 1801 continue; 1802 1803 np = netdev_priv(adapter->netdevs[i]); 1804 if (np->state == __IDPF_VPORT_UP) 1805 set_bit(IDPF_VPORT_UP_REQUESTED, 1806 adapter->vport_config[i]->flags); 1807 } 1808 } 1809 1810 /** 1811 * idpf_init_hard_reset - Initiate a hardware reset 1812 * @adapter: Driver specific private structure 1813 * 1814 * Deallocate the vports and all the resources associated with them and 1815 * reallocate. Also reinitialize the mailbox. Return 0 on success, 1816 * negative on failure. 1817 */ 1818 static int idpf_init_hard_reset(struct idpf_adapter *adapter) 1819 { 1820 struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops; 1821 struct device *dev = &adapter->pdev->dev; 1822 struct net_device *netdev; 1823 int err; 1824 u16 i; 1825 1826 mutex_lock(&adapter->vport_ctrl_lock); 1827 1828 dev_info(dev, "Device HW Reset initiated\n"); 1829 1830 /* Avoid TX hangs on reset */ 1831 for (i = 0; i < adapter->max_vports; i++) { 1832 netdev = adapter->netdevs[i]; 1833 if (!netdev) 1834 continue; 1835 1836 netif_carrier_off(netdev); 1837 netif_tx_disable(netdev); 1838 } 1839 1840 /* Prepare for reset */ 1841 if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { 1842 reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD); 1843 } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) { 1844 bool is_reset = idpf_is_reset_detected(adapter); 1845 1846 idpf_idc_issue_reset_event(adapter->cdev_info); 1847 1848 idpf_set_vport_state(adapter); 1849 idpf_vc_core_deinit(adapter); 1850 if (!is_reset) 1851 reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET); 1852 idpf_deinit_dflt_mbx(adapter); 1853 } else { 1854 dev_err(dev, "Unhandled hard reset cause\n"); 1855 err = -EBADRQC; 1856 goto unlock_mutex; 1857 } 1858 1859 /* Wait for reset to complete */ 1860 err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg); 1861 if (err) { 1862 dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n", 1863 adapter->state); 1864 goto unlock_mutex; 1865 } 1866 1867 /* Reset is complete and so start building the driver resources again */ 1868 err = idpf_init_dflt_mbx(adapter); 1869 if (err) { 1870 dev_err(dev, "Failed to initialize default mailbox: %d\n", err); 1871 goto unlock_mutex; 1872 } 1873 1874 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 1875 1876 /* Initialize the state machine, also allocate memory and request 1877 * resources 1878 */ 1879 err = idpf_vc_core_init(adapter); 1880 if (err) { 1881 cancel_delayed_work_sync(&adapter->mbx_task); 1882 idpf_deinit_dflt_mbx(adapter); 1883 goto unlock_mutex; 1884 } 1885 1886 /* Wait till all the vports are initialized to release the reset lock, 1887 * else user space callbacks may access uninitialized vports 1888 */ 1889 while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1890 msleep(100); 1891 1892 unlock_mutex: 1893 mutex_unlock(&adapter->vport_ctrl_lock); 1894 1895 /* Wait until all vports are created to init RDMA CORE AUX */ 1896 if (!err) 1897 err = idpf_idc_init(adapter); 1898 1899 return err; 1900 } 1901 1902 /** 1903 * idpf_vc_event_task - Handle virtchannel event logic 1904 * @work: work queue struct 1905 */ 1906 void idpf_vc_event_task(struct work_struct *work) 1907 { 1908 struct idpf_adapter *adapter; 1909 1910 adapter = container_of(work, struct idpf_adapter, vc_event_task.work); 1911 1912 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) 1913 return; 1914 1915 if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags)) 1916 goto func_reset; 1917 1918 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) 1919 goto drv_load; 1920 1921 return; 1922 1923 func_reset: 1924 idpf_vc_xn_shutdown(adapter->vcxn_mngr); 1925 drv_load: 1926 set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1927 idpf_init_hard_reset(adapter); 1928 } 1929 1930 /** 1931 * idpf_initiate_soft_reset - Initiate a software reset 1932 * @vport: virtual port data struct 1933 * @reset_cause: reason for the soft reset 1934 * 1935 * Soft reset only reallocs vport queue resources. Returns 0 on success, 1936 * negative on failure. 1937 */ 1938 int idpf_initiate_soft_reset(struct idpf_vport *vport, 1939 enum idpf_vport_reset_cause reset_cause) 1940 { 1941 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1942 enum idpf_vport_state current_state = np->state; 1943 struct idpf_adapter *adapter = vport->adapter; 1944 struct idpf_vport *new_vport; 1945 int err; 1946 1947 /* If the system is low on memory, we can end up in bad state if we 1948 * free all the memory for queue resources and try to allocate them 1949 * again. Instead, we can pre-allocate the new resources before doing 1950 * anything and bailing if the alloc fails. 1951 * 1952 * Make a clone of the existing vport to mimic its current 1953 * configuration, then modify the new structure with any requested 1954 * changes. Once the allocation of the new resources is done, stop the 1955 * existing vport and copy the configuration to the main vport. If an 1956 * error occurred, the existing vport will be untouched. 1957 * 1958 */ 1959 new_vport = kzalloc(sizeof(*vport), GFP_KERNEL); 1960 if (!new_vport) 1961 return -ENOMEM; 1962 1963 /* This purposely avoids copying the end of the struct because it 1964 * contains wait_queues and mutexes and other stuff we don't want to 1965 * mess with. Nothing below should use those variables from new_vport 1966 * and should instead always refer to them in vport if they need to. 1967 */ 1968 memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up)); 1969 1970 /* Adjust resource parameters prior to reallocating resources */ 1971 switch (reset_cause) { 1972 case IDPF_SR_Q_CHANGE: 1973 err = idpf_vport_adjust_qs(new_vport); 1974 if (err) 1975 goto free_vport; 1976 break; 1977 case IDPF_SR_Q_DESC_CHANGE: 1978 /* Update queue parameters before allocating resources */ 1979 idpf_vport_calc_num_q_desc(new_vport); 1980 break; 1981 case IDPF_SR_MTU_CHANGE: 1982 idpf_idc_vdev_mtu_event(vport->vdev_info, 1983 IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE); 1984 break; 1985 case IDPF_SR_RSC_CHANGE: 1986 break; 1987 default: 1988 dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n"); 1989 err = -EINVAL; 1990 goto free_vport; 1991 } 1992 1993 if (current_state <= __IDPF_VPORT_DOWN) { 1994 idpf_send_delete_queues_msg(vport); 1995 } else { 1996 set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags); 1997 idpf_vport_stop(vport, false); 1998 } 1999 2000 idpf_deinit_rss(vport); 2001 /* We're passing in vport here because we need its wait_queue 2002 * to send a message and it should be getting all the vport 2003 * config data out of the adapter but we need to be careful not 2004 * to add code to add_queues to change the vport config within 2005 * vport itself as it will be wiped with a memcpy later. 2006 */ 2007 err = idpf_send_add_queues_msg(vport, new_vport->num_txq, 2008 new_vport->num_complq, 2009 new_vport->num_rxq, 2010 new_vport->num_bufq); 2011 if (err) 2012 goto err_reset; 2013 2014 /* Same comment as above regarding avoiding copying the wait_queues and 2015 * mutexes applies here. We do not want to mess with those if possible. 2016 */ 2017 memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up)); 2018 2019 if (reset_cause == IDPF_SR_Q_CHANGE) 2020 idpf_vport_alloc_vec_indexes(vport); 2021 2022 err = idpf_set_real_num_queues(vport); 2023 if (err) 2024 goto err_open; 2025 2026 if (current_state == __IDPF_VPORT_UP) 2027 err = idpf_vport_open(vport, false); 2028 2029 goto free_vport; 2030 2031 err_reset: 2032 idpf_send_add_queues_msg(vport, vport->num_txq, vport->num_complq, 2033 vport->num_rxq, vport->num_bufq); 2034 2035 err_open: 2036 if (current_state == __IDPF_VPORT_UP) 2037 idpf_vport_open(vport, false); 2038 2039 free_vport: 2040 kfree(new_vport); 2041 2042 if (reset_cause == IDPF_SR_MTU_CHANGE) 2043 idpf_idc_vdev_mtu_event(vport->vdev_info, 2044 IIDC_RDMA_EVENT_AFTER_MTU_CHANGE); 2045 2046 return err; 2047 } 2048 2049 /** 2050 * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address 2051 * @netdev: the netdevice 2052 * @addr: address to add 2053 * 2054 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2055 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2056 * meaning we cannot sleep in this context. Due to this, we have to add the 2057 * filter and send the virtchnl message asynchronously without waiting for the 2058 * response from the other side. We won't know whether or not the operation 2059 * actually succeeded until we get the message back. Returns 0 on success, 2060 * negative on failure. 2061 */ 2062 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr) 2063 { 2064 struct idpf_netdev_priv *np = netdev_priv(netdev); 2065 2066 return idpf_add_mac_filter(np->vport, np, addr, true); 2067 } 2068 2069 /** 2070 * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2071 * @netdev: the netdevice 2072 * @addr: address to add 2073 * 2074 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2075 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2076 * meaning we cannot sleep in this context. Due to this we have to delete the 2077 * filter and send the virtchnl message asynchronously without waiting for the 2078 * return from the other side. We won't know whether or not the operation 2079 * actually succeeded until we get the message back. Returns 0 on success, 2080 * negative on failure. 2081 */ 2082 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr) 2083 { 2084 struct idpf_netdev_priv *np = netdev_priv(netdev); 2085 2086 /* Under some circumstances, we might receive a request to delete 2087 * our own device address from our uc list. Because we store the 2088 * device address in the VSI's MAC filter list, we need to ignore 2089 * such requests and not delete our device address from this list. 2090 */ 2091 if (ether_addr_equal(addr, netdev->dev_addr)) 2092 return 0; 2093 2094 idpf_del_mac_filter(np->vport, np, addr, true); 2095 2096 return 0; 2097 } 2098 2099 /** 2100 * idpf_set_rx_mode - NDO callback to set the netdev filters 2101 * @netdev: network interface device structure 2102 * 2103 * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We 2104 * cannot sleep in this context. 2105 */ 2106 static void idpf_set_rx_mode(struct net_device *netdev) 2107 { 2108 struct idpf_netdev_priv *np = netdev_priv(netdev); 2109 struct idpf_vport_user_config_data *config_data; 2110 struct idpf_adapter *adapter; 2111 bool changed = false; 2112 struct device *dev; 2113 int err; 2114 2115 adapter = np->adapter; 2116 dev = &adapter->pdev->dev; 2117 2118 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { 2119 __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2120 __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2121 } 2122 2123 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC)) 2124 return; 2125 2126 config_data = &adapter->vport_config[np->vport_idx]->user_config; 2127 /* IFF_PROMISC enables both unicast and multicast promiscuous, 2128 * while IFF_ALLMULTI only enables multicast such that: 2129 * 2130 * promisc + allmulti = unicast | multicast 2131 * promisc + !allmulti = unicast | multicast 2132 * !promisc + allmulti = multicast 2133 */ 2134 if ((netdev->flags & IFF_PROMISC) && 2135 !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2136 changed = true; 2137 dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n"); 2138 if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags)) 2139 dev_info(dev, "Entering multicast promiscuous mode\n"); 2140 } 2141 2142 if (!(netdev->flags & IFF_PROMISC) && 2143 test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2144 changed = true; 2145 dev_info(dev, "Leaving promiscuous mode\n"); 2146 } 2147 2148 if (netdev->flags & IFF_ALLMULTI && 2149 !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2150 changed = true; 2151 dev_info(dev, "Entering multicast promiscuous mode\n"); 2152 } 2153 2154 if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) && 2155 test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2156 changed = true; 2157 dev_info(dev, "Leaving multicast promiscuous mode\n"); 2158 } 2159 2160 if (!changed) 2161 return; 2162 2163 err = idpf_set_promiscuous(adapter, config_data, np->vport_id); 2164 if (err) 2165 dev_err(dev, "Failed to set promiscuous mode: %d\n", err); 2166 } 2167 2168 /** 2169 * idpf_vport_manage_rss_lut - disable/enable RSS 2170 * @vport: the vport being changed 2171 * 2172 * In the event of disable request for RSS, this function will zero out RSS 2173 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 2174 * LUT with the default LUT configuration. 2175 */ 2176 static int idpf_vport_manage_rss_lut(struct idpf_vport *vport) 2177 { 2178 bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH); 2179 struct idpf_rss_data *rss_data; 2180 u16 idx = vport->idx; 2181 int lut_size; 2182 2183 rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data; 2184 lut_size = rss_data->rss_lut_size * sizeof(u32); 2185 2186 if (ena) { 2187 /* This will contain the default or user configured LUT */ 2188 memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size); 2189 } else { 2190 /* Save a copy of the current LUT to be restored later if 2191 * requested. 2192 */ 2193 memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size); 2194 2195 /* Zero out the current LUT to disable */ 2196 memset(rss_data->rss_lut, 0, lut_size); 2197 } 2198 2199 return idpf_config_rss(vport); 2200 } 2201 2202 /** 2203 * idpf_set_features - set the netdev feature flags 2204 * @netdev: ptr to the netdev being adjusted 2205 * @features: the feature set that the stack is suggesting 2206 */ 2207 static int idpf_set_features(struct net_device *netdev, 2208 netdev_features_t features) 2209 { 2210 netdev_features_t changed = netdev->features ^ features; 2211 struct idpf_adapter *adapter; 2212 struct idpf_vport *vport; 2213 int err = 0; 2214 2215 idpf_vport_ctrl_lock(netdev); 2216 vport = idpf_netdev_to_vport(netdev); 2217 2218 adapter = vport->adapter; 2219 2220 if (idpf_is_reset_in_prog(adapter)) { 2221 dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n"); 2222 err = -EBUSY; 2223 goto unlock_mutex; 2224 } 2225 2226 if (changed & NETIF_F_RXHASH) { 2227 netdev->features ^= NETIF_F_RXHASH; 2228 err = idpf_vport_manage_rss_lut(vport); 2229 if (err) 2230 goto unlock_mutex; 2231 } 2232 2233 if (changed & NETIF_F_GRO_HW) { 2234 netdev->features ^= NETIF_F_GRO_HW; 2235 err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE); 2236 if (err) 2237 goto unlock_mutex; 2238 } 2239 2240 if (changed & NETIF_F_LOOPBACK) { 2241 netdev->features ^= NETIF_F_LOOPBACK; 2242 err = idpf_send_ena_dis_loopback_msg(vport); 2243 } 2244 2245 unlock_mutex: 2246 idpf_vport_ctrl_unlock(netdev); 2247 2248 return err; 2249 } 2250 2251 /** 2252 * idpf_open - Called when a network interface becomes active 2253 * @netdev: network interface device structure 2254 * 2255 * The open entry point is called when a network interface is made 2256 * active by the system (IFF_UP). At this point all resources needed 2257 * for transmit and receive operations are allocated, the interrupt 2258 * handler is registered with the OS, the netdev watchdog is enabled, 2259 * and the stack is notified that the interface is ready. 2260 * 2261 * Returns 0 on success, negative value on failure 2262 */ 2263 static int idpf_open(struct net_device *netdev) 2264 { 2265 struct idpf_vport *vport; 2266 int err; 2267 2268 idpf_vport_ctrl_lock(netdev); 2269 vport = idpf_netdev_to_vport(netdev); 2270 2271 err = idpf_set_real_num_queues(vport); 2272 if (err) 2273 goto unlock; 2274 2275 err = idpf_vport_open(vport, false); 2276 2277 unlock: 2278 idpf_vport_ctrl_unlock(netdev); 2279 2280 return err; 2281 } 2282 2283 /** 2284 * idpf_change_mtu - NDO callback to change the MTU 2285 * @netdev: network interface device structure 2286 * @new_mtu: new value for maximum frame size 2287 * 2288 * Returns 0 on success, negative on failure 2289 */ 2290 static int idpf_change_mtu(struct net_device *netdev, int new_mtu) 2291 { 2292 struct idpf_vport *vport; 2293 int err; 2294 2295 idpf_vport_ctrl_lock(netdev); 2296 vport = idpf_netdev_to_vport(netdev); 2297 2298 WRITE_ONCE(netdev->mtu, new_mtu); 2299 2300 err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE); 2301 2302 idpf_vport_ctrl_unlock(netdev); 2303 2304 return err; 2305 } 2306 2307 /** 2308 * idpf_chk_tso_segment - Check skb is not using too many buffers 2309 * @skb: send buffer 2310 * @max_bufs: maximum number of buffers 2311 * 2312 * For TSO we need to count the TSO header and segment payload separately. As 2313 * such we need to check cases where we have max_bufs-1 fragments or more as we 2314 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1 2315 * for the segment payload in the first descriptor, and another max_buf-1 for 2316 * the fragments. 2317 * 2318 * Returns true if the packet needs to be software segmented by core stack. 2319 */ 2320 static bool idpf_chk_tso_segment(const struct sk_buff *skb, 2321 unsigned int max_bufs) 2322 { 2323 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2324 const skb_frag_t *frag, *stale; 2325 int nr_frags, sum; 2326 2327 /* no need to check if number of frags is less than max_bufs - 1 */ 2328 nr_frags = shinfo->nr_frags; 2329 if (nr_frags < (max_bufs - 1)) 2330 return false; 2331 2332 /* We need to walk through the list and validate that each group 2333 * of max_bufs-2 fragments totals at least gso_size. 2334 */ 2335 nr_frags -= max_bufs - 2; 2336 frag = &shinfo->frags[0]; 2337 2338 /* Initialize size to the negative value of gso_size minus 1. We use 2339 * this as the worst case scenario in which the frag ahead of us only 2340 * provides one byte which is why we are limited to max_bufs-2 2341 * descriptors for a single transmit as the header and previous 2342 * fragment are already consuming 2 descriptors. 2343 */ 2344 sum = 1 - shinfo->gso_size; 2345 2346 /* Add size of frags 0 through 4 to create our initial sum */ 2347 sum += skb_frag_size(frag++); 2348 sum += skb_frag_size(frag++); 2349 sum += skb_frag_size(frag++); 2350 sum += skb_frag_size(frag++); 2351 sum += skb_frag_size(frag++); 2352 2353 /* Walk through fragments adding latest fragment, testing it, and 2354 * then removing stale fragments from the sum. 2355 */ 2356 for (stale = &shinfo->frags[0];; stale++) { 2357 int stale_size = skb_frag_size(stale); 2358 2359 sum += skb_frag_size(frag++); 2360 2361 /* The stale fragment may present us with a smaller 2362 * descriptor than the actual fragment size. To account 2363 * for that we need to remove all the data on the front and 2364 * figure out what the remainder would be in the last 2365 * descriptor associated with the fragment. 2366 */ 2367 if (stale_size > IDPF_TX_MAX_DESC_DATA) { 2368 int align_pad = -(skb_frag_off(stale)) & 2369 (IDPF_TX_MAX_READ_REQ_SIZE - 1); 2370 2371 sum -= align_pad; 2372 stale_size -= align_pad; 2373 2374 do { 2375 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2376 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2377 } while (stale_size > IDPF_TX_MAX_DESC_DATA); 2378 } 2379 2380 /* if sum is negative we failed to make sufficient progress */ 2381 if (sum < 0) 2382 return true; 2383 2384 if (!nr_frags--) 2385 break; 2386 2387 sum -= stale_size; 2388 } 2389 2390 return false; 2391 } 2392 2393 /** 2394 * idpf_features_check - Validate packet conforms to limits 2395 * @skb: skb buffer 2396 * @netdev: This port's netdev 2397 * @features: Offload features that the stack believes apply 2398 */ 2399 static netdev_features_t idpf_features_check(struct sk_buff *skb, 2400 struct net_device *netdev, 2401 netdev_features_t features) 2402 { 2403 struct idpf_netdev_priv *np = netdev_priv(netdev); 2404 u16 max_tx_hdr_size = np->max_tx_hdr_size; 2405 size_t len; 2406 2407 /* No point in doing any of this if neither checksum nor GSO are 2408 * being requested for this frame. We can rule out both by just 2409 * checking for CHECKSUM_PARTIAL 2410 */ 2411 if (skb->ip_summed != CHECKSUM_PARTIAL) 2412 return features; 2413 2414 if (skb_is_gso(skb)) { 2415 /* We cannot support GSO if the MSS is going to be less than 2416 * 88 bytes. If it is then we need to drop support for GSO. 2417 */ 2418 if (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS) 2419 features &= ~NETIF_F_GSO_MASK; 2420 else if (idpf_chk_tso_segment(skb, np->tx_max_bufs)) 2421 features &= ~NETIF_F_GSO_MASK; 2422 } 2423 2424 /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */ 2425 len = skb_network_offset(skb); 2426 if (unlikely(len & ~(126))) 2427 goto unsupported; 2428 2429 len = skb_network_header_len(skb); 2430 if (unlikely(len > max_tx_hdr_size)) 2431 goto unsupported; 2432 2433 if (!skb->encapsulation) 2434 return features; 2435 2436 /* L4TUNLEN can support 127 words */ 2437 len = skb_inner_network_header(skb) - skb_transport_header(skb); 2438 if (unlikely(len & ~(127 * 2))) 2439 goto unsupported; 2440 2441 /* IPLEN can support at most 127 dwords */ 2442 len = skb_inner_network_header_len(skb); 2443 if (unlikely(len > max_tx_hdr_size)) 2444 goto unsupported; 2445 2446 /* No need to validate L4LEN as TCP is the only protocol with a 2447 * a flexible value and we support all possible values supported 2448 * by TCP, which is at most 15 dwords 2449 */ 2450 2451 return features; 2452 2453 unsupported: 2454 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2455 } 2456 2457 /** 2458 * idpf_set_mac - NDO callback to set port mac address 2459 * @netdev: network interface device structure 2460 * @p: pointer to an address structure 2461 * 2462 * Returns 0 on success, negative on failure 2463 **/ 2464 static int idpf_set_mac(struct net_device *netdev, void *p) 2465 { 2466 struct idpf_netdev_priv *np = netdev_priv(netdev); 2467 struct idpf_vport_config *vport_config; 2468 struct sockaddr *addr = p; 2469 u8 old_mac_addr[ETH_ALEN]; 2470 struct idpf_vport *vport; 2471 int err = 0; 2472 2473 idpf_vport_ctrl_lock(netdev); 2474 vport = idpf_netdev_to_vport(netdev); 2475 2476 if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS, 2477 VIRTCHNL2_CAP_MACFILTER)) { 2478 dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n"); 2479 err = -EOPNOTSUPP; 2480 goto unlock_mutex; 2481 } 2482 2483 if (!is_valid_ether_addr(addr->sa_data)) { 2484 dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n", 2485 addr->sa_data); 2486 err = -EADDRNOTAVAIL; 2487 goto unlock_mutex; 2488 } 2489 2490 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 2491 goto unlock_mutex; 2492 2493 ether_addr_copy(old_mac_addr, vport->default_mac_addr); 2494 ether_addr_copy(vport->default_mac_addr, addr->sa_data); 2495 vport_config = vport->adapter->vport_config[vport->idx]; 2496 err = idpf_add_mac_filter(vport, np, addr->sa_data, false); 2497 if (err) { 2498 __idpf_del_mac_filter(vport_config, addr->sa_data); 2499 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 2500 goto unlock_mutex; 2501 } 2502 2503 if (is_valid_ether_addr(old_mac_addr)) 2504 __idpf_del_mac_filter(vport_config, old_mac_addr); 2505 2506 eth_hw_addr_set(netdev, addr->sa_data); 2507 2508 unlock_mutex: 2509 idpf_vport_ctrl_unlock(netdev); 2510 2511 return err; 2512 } 2513 2514 /** 2515 * idpf_alloc_dma_mem - Allocate dma memory 2516 * @hw: pointer to hw struct 2517 * @mem: pointer to dma_mem struct 2518 * @size: size of the memory to allocate 2519 */ 2520 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size) 2521 { 2522 struct idpf_adapter *adapter = hw->back; 2523 size_t sz = ALIGN(size, 4096); 2524 2525 /* The control queue resources are freed under a spinlock, contiguous 2526 * pages will avoid IOMMU remapping and the use vmap (and vunmap in 2527 * dma_free_*() path. 2528 */ 2529 mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa, 2530 GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS); 2531 mem->size = sz; 2532 2533 return mem->va; 2534 } 2535 2536 /** 2537 * idpf_free_dma_mem - Free the allocated dma memory 2538 * @hw: pointer to hw struct 2539 * @mem: pointer to dma_mem struct 2540 */ 2541 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem) 2542 { 2543 struct idpf_adapter *adapter = hw->back; 2544 2545 dma_free_attrs(&adapter->pdev->dev, mem->size, 2546 mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS); 2547 mem->size = 0; 2548 mem->va = NULL; 2549 mem->pa = 0; 2550 } 2551 2552 static int idpf_hwtstamp_set(struct net_device *netdev, 2553 struct kernel_hwtstamp_config *config, 2554 struct netlink_ext_ack *extack) 2555 { 2556 struct idpf_vport *vport; 2557 int err; 2558 2559 idpf_vport_ctrl_lock(netdev); 2560 vport = idpf_netdev_to_vport(netdev); 2561 2562 if (!vport->link_up) { 2563 idpf_vport_ctrl_unlock(netdev); 2564 return -EPERM; 2565 } 2566 2567 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2568 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2569 idpf_vport_ctrl_unlock(netdev); 2570 return -EOPNOTSUPP; 2571 } 2572 2573 err = idpf_ptp_set_timestamp_mode(vport, config); 2574 2575 idpf_vport_ctrl_unlock(netdev); 2576 2577 return err; 2578 } 2579 2580 static int idpf_hwtstamp_get(struct net_device *netdev, 2581 struct kernel_hwtstamp_config *config) 2582 { 2583 struct idpf_vport *vport; 2584 2585 idpf_vport_ctrl_lock(netdev); 2586 vport = idpf_netdev_to_vport(netdev); 2587 2588 if (!vport->link_up) { 2589 idpf_vport_ctrl_unlock(netdev); 2590 return -EPERM; 2591 } 2592 2593 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2594 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2595 idpf_vport_ctrl_unlock(netdev); 2596 return 0; 2597 } 2598 2599 *config = vport->tstamp_config; 2600 2601 idpf_vport_ctrl_unlock(netdev); 2602 2603 return 0; 2604 } 2605 2606 static const struct net_device_ops idpf_netdev_ops = { 2607 .ndo_open = idpf_open, 2608 .ndo_stop = idpf_stop, 2609 .ndo_start_xmit = idpf_tx_start, 2610 .ndo_features_check = idpf_features_check, 2611 .ndo_set_rx_mode = idpf_set_rx_mode, 2612 .ndo_validate_addr = eth_validate_addr, 2613 .ndo_set_mac_address = idpf_set_mac, 2614 .ndo_change_mtu = idpf_change_mtu, 2615 .ndo_get_stats64 = idpf_get_stats64, 2616 .ndo_set_features = idpf_set_features, 2617 .ndo_tx_timeout = idpf_tx_timeout, 2618 .ndo_hwtstamp_get = idpf_hwtstamp_get, 2619 .ndo_hwtstamp_set = idpf_hwtstamp_set, 2620 .ndo_bpf = idpf_xdp, 2621 .ndo_xdp_xmit = idpf_xdp_xmit, 2622 .ndo_xsk_wakeup = idpf_xsk_wakeup, 2623 }; 2624