1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (vsi->xdp_rings) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (vsi->xdp_rings) 56 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 57 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 58 } 59 60 /** 61 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 62 * @vsi: VSI that has netdev 63 * @q_vector: q_vector that has NAPI context 64 * @enable: true for enable, false for disable 65 */ 66 static void 67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 68 bool enable) 69 { 70 if (!vsi->netdev || !q_vector) 71 return; 72 73 if (enable) 74 napi_enable(&q_vector->napi); 75 else 76 napi_disable(&q_vector->napi); 77 } 78 79 /** 80 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 81 * @vsi: the VSI that contains queue vector being un-configured 82 * @rx_ring: Rx ring that will have its IRQ disabled 83 * @q_vector: queue vector 84 */ 85 static void 86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 87 struct ice_q_vector *q_vector) 88 { 89 struct ice_pf *pf = vsi->back; 90 struct ice_hw *hw = &pf->hw; 91 u16 reg; 92 u32 val; 93 94 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 95 * here only QINT_RQCTL 96 */ 97 reg = rx_ring->reg_idx; 98 val = rd32(hw, QINT_RQCTL(reg)); 99 val &= ~QINT_RQCTL_CAUSE_ENA_M; 100 wr32(hw, QINT_RQCTL(reg), val); 101 102 if (q_vector) { 103 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 104 ice_flush(hw); 105 synchronize_irq(q_vector->irq.virq); 106 } 107 } 108 109 /** 110 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 111 * @vsi: the VSI that contains queue vector 112 * @q_vector: queue vector 113 * @qid: queue index 114 */ 115 static void 116 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid) 117 { 118 u16 reg_idx = q_vector->reg_idx; 119 struct ice_pf *pf = vsi->back; 120 struct ice_hw *hw = &pf->hw; 121 int q, _qid = qid; 122 123 ice_cfg_itr(hw, q_vector); 124 125 for (q = 0; q < q_vector->num_ring_tx; q++) { 126 ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx); 127 _qid++; 128 } 129 130 _qid = qid; 131 132 for (q = 0; q < q_vector->num_ring_rx; q++) { 133 ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx); 134 _qid++; 135 } 136 137 ice_flush(hw); 138 } 139 140 /** 141 * ice_qvec_ena_irq - Enable IRQ for given queue vector 142 * @vsi: the VSI that contains queue vector 143 * @q_vector: queue vector 144 */ 145 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 146 { 147 struct ice_pf *pf = vsi->back; 148 struct ice_hw *hw = &pf->hw; 149 150 ice_irq_dynamic_ena(hw, vsi, q_vector); 151 152 ice_flush(hw); 153 } 154 155 /** 156 * ice_qp_dis - Disables a queue pair 157 * @vsi: VSI of interest 158 * @q_idx: ring index in array 159 * 160 * Returns 0 on success, negative on failure. 161 */ 162 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 163 { 164 struct ice_txq_meta txq_meta = { }; 165 struct ice_q_vector *q_vector; 166 struct ice_tx_ring *tx_ring; 167 struct ice_rx_ring *rx_ring; 168 int fail = 0; 169 int err; 170 171 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 172 return -EINVAL; 173 174 tx_ring = vsi->tx_rings[q_idx]; 175 rx_ring = vsi->rx_rings[q_idx]; 176 q_vector = rx_ring->q_vector; 177 178 synchronize_net(); 179 netif_carrier_off(vsi->netdev); 180 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 181 182 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 183 ice_qvec_toggle_napi(vsi, q_vector, false); 184 185 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 186 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 187 if (!fail) 188 fail = err; 189 if (vsi->xdp_rings) { 190 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 191 192 memset(&txq_meta, 0, sizeof(txq_meta)); 193 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 194 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 195 &txq_meta); 196 if (!fail) 197 fail = err; 198 } 199 200 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false); 201 ice_qp_clean_rings(vsi, q_idx); 202 ice_qp_reset_stats(vsi, q_idx); 203 204 return fail; 205 } 206 207 /** 208 * ice_qp_ena - Enables a queue pair 209 * @vsi: VSI of interest 210 * @q_idx: ring index in array 211 * 212 * Returns 0 on success, negative on failure. 213 */ 214 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 215 { 216 struct ice_q_vector *q_vector; 217 int fail = 0; 218 bool link_up; 219 int err; 220 221 err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx); 222 if (!fail) 223 fail = err; 224 225 if (ice_is_xdp_ena_vsi(vsi)) { 226 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 227 228 err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx); 229 if (!fail) 230 fail = err; 231 ice_set_ring_xdp(xdp_ring); 232 ice_tx_xsk_pool(vsi, q_idx); 233 } 234 235 err = ice_vsi_cfg_single_rxq(vsi, q_idx); 236 if (!fail) 237 fail = err; 238 239 q_vector = vsi->rx_rings[q_idx]->q_vector; 240 ice_qvec_cfg_msix(vsi, q_vector, q_idx); 241 242 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 243 if (!fail) 244 fail = err; 245 246 ice_qvec_toggle_napi(vsi, q_vector, true); 247 ice_qvec_ena_irq(vsi, q_vector); 248 249 /* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */ 250 synchronize_net(); 251 ice_get_link_status(vsi->port_info, &link_up); 252 if (link_up) { 253 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 254 netif_carrier_on(vsi->netdev); 255 } 256 257 return fail; 258 } 259 260 /** 261 * ice_xsk_pool_disable - disable a buffer pool region 262 * @vsi: Current VSI 263 * @qid: queue ID 264 * 265 * Returns 0 on success, negative on failure 266 */ 267 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 268 { 269 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 270 271 if (!pool) 272 return -EINVAL; 273 274 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 275 276 return 0; 277 } 278 279 /** 280 * ice_xsk_pool_enable - enable a buffer pool region 281 * @vsi: Current VSI 282 * @pool: pointer to a requested buffer pool region 283 * @qid: queue ID 284 * 285 * Returns 0 on success, negative on failure 286 */ 287 static int 288 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 289 { 290 int err; 291 292 if (vsi->type != ICE_VSI_PF) 293 return -EINVAL; 294 295 if (qid >= vsi->netdev->real_num_rx_queues || 296 qid >= vsi->netdev->real_num_tx_queues) 297 return -EINVAL; 298 299 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 300 ICE_RX_DMA_ATTR); 301 if (err) 302 return err; 303 304 return 0; 305 } 306 307 /** 308 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 309 * @rx_ring: Rx ring 310 * @pool_present: is pool for XSK present 311 * 312 * Try allocating memory and return ENOMEM, if failed to allocate. 313 * If allocation was successful, substitute buffer with allocated one. 314 * Returns 0 on success, negative on failure 315 */ 316 static int 317 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 318 { 319 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 320 sizeof(*rx_ring->rx_buf); 321 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 322 323 if (!sw_ring) 324 return -ENOMEM; 325 326 if (pool_present) { 327 kfree(rx_ring->rx_buf); 328 rx_ring->rx_buf = NULL; 329 rx_ring->xdp_buf = sw_ring; 330 } else { 331 kfree(rx_ring->xdp_buf); 332 rx_ring->xdp_buf = NULL; 333 rx_ring->rx_buf = sw_ring; 334 } 335 336 return 0; 337 } 338 339 /** 340 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 341 * @vsi: Current VSI 342 * @zc: is zero copy set 343 * 344 * Reallocate buffer for rx_rings that might be used by XSK. 345 * XDP requires more memory, than rx_buf provides. 346 * Returns 0 on success, negative on failure 347 */ 348 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 349 { 350 struct ice_rx_ring *rx_ring; 351 uint i; 352 353 ice_for_each_rxq(vsi, i) { 354 rx_ring = vsi->rx_rings[i]; 355 if (!rx_ring->xsk_pool) 356 continue; 357 358 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 359 return -ENOMEM; 360 } 361 362 return 0; 363 } 364 365 /** 366 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 367 * @vsi: Current VSI 368 * @pool: buffer pool to enable/associate to a ring, NULL to disable 369 * @qid: queue ID 370 * 371 * Returns 0 on success, negative on failure 372 */ 373 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 374 { 375 bool if_running, pool_present = !!pool; 376 int ret = 0, pool_failure = 0; 377 378 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 379 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 380 pool_failure = -EINVAL; 381 goto failure; 382 } 383 384 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) && 385 ice_is_xdp_ena_vsi(vsi); 386 387 if (if_running) { 388 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 389 390 ret = ice_qp_dis(vsi, qid); 391 if (ret) { 392 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 393 goto xsk_pool_if_up; 394 } 395 396 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 397 if (ret) 398 goto xsk_pool_if_up; 399 } 400 401 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 402 ice_xsk_pool_disable(vsi, qid); 403 404 xsk_pool_if_up: 405 if (if_running) { 406 ret = ice_qp_ena(vsi, qid); 407 if (!ret && pool_present) 408 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 409 else if (ret) 410 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 411 } 412 413 failure: 414 if (pool_failure) { 415 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 416 pool_present ? "en" : "dis", pool_failure); 417 return pool_failure; 418 } 419 420 return ret; 421 } 422 423 /** 424 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 425 * @pool: XSK Buffer pool to pull the buffers from 426 * @xdp: SW ring of xdp_buff that will hold the buffers 427 * @rx_desc: Pointer to Rx descriptors that will be filled 428 * @count: The number of buffers to allocate 429 * 430 * This function allocates a number of Rx buffers from the fill ring 431 * or the internal recycle mechanism and places them on the Rx ring. 432 * 433 * Note that ring wrap should be handled by caller of this function. 434 * 435 * Returns the amount of allocated Rx descriptors 436 */ 437 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 438 union ice_32b_rx_flex_desc *rx_desc, u16 count) 439 { 440 dma_addr_t dma; 441 u16 buffs; 442 int i; 443 444 buffs = xsk_buff_alloc_batch(pool, xdp, count); 445 for (i = 0; i < buffs; i++) { 446 dma = xsk_buff_xdp_get_dma(*xdp); 447 rx_desc->read.pkt_addr = cpu_to_le64(dma); 448 rx_desc->wb.status_error0 = 0; 449 450 /* Put private info that changes on a per-packet basis 451 * into xdp_buff_xsk->cb. 452 */ 453 ice_xdp_meta_set_desc(*xdp, rx_desc); 454 455 rx_desc++; 456 xdp++; 457 } 458 459 return buffs; 460 } 461 462 /** 463 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 464 * @rx_ring: Rx ring 465 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 466 * @count: The number of buffers to allocate 467 * 468 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 469 * for case where space from next_to_use up to the end of ring is less 470 * than @count. Finally do a tail bump. 471 * 472 * Returns true if all allocations were successful, false if any fail. 473 */ 474 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 475 struct xsk_buff_pool *xsk_pool, u16 count) 476 { 477 u32 nb_buffs_extra = 0, nb_buffs = 0; 478 union ice_32b_rx_flex_desc *rx_desc; 479 u16 ntu = rx_ring->next_to_use; 480 u16 total_count = count; 481 struct xdp_buff **xdp; 482 483 rx_desc = ICE_RX_DESC(rx_ring, ntu); 484 xdp = ice_xdp_buf(rx_ring, ntu); 485 486 if (ntu + count >= rx_ring->count) { 487 nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, 488 rx_ring->count - ntu); 489 if (nb_buffs_extra != rx_ring->count - ntu) { 490 ntu += nb_buffs_extra; 491 goto exit; 492 } 493 rx_desc = ICE_RX_DESC(rx_ring, 0); 494 xdp = ice_xdp_buf(rx_ring, 0); 495 ntu = 0; 496 count -= nb_buffs_extra; 497 ice_release_rx_desc(rx_ring, 0); 498 } 499 500 nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count); 501 502 ntu += nb_buffs; 503 if (ntu == rx_ring->count) 504 ntu = 0; 505 506 exit: 507 if (rx_ring->next_to_use != ntu) 508 ice_release_rx_desc(rx_ring, ntu); 509 510 return total_count == (nb_buffs_extra + nb_buffs); 511 } 512 513 /** 514 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 515 * @rx_ring: Rx ring 516 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 517 * @count: The number of buffers to allocate 518 * 519 * Wrapper for internal allocation routine; figure out how many tail 520 * bumps should take place based on the given threshold 521 * 522 * Returns true if all calls to internal alloc routine succeeded 523 */ 524 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 525 struct xsk_buff_pool *xsk_pool, u16 count) 526 { 527 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 528 u16 leftover, i, tail_bumps; 529 530 tail_bumps = count / rx_thresh; 531 leftover = count - (tail_bumps * rx_thresh); 532 533 for (i = 0; i < tail_bumps; i++) 534 if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh)) 535 return false; 536 return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover); 537 } 538 539 /** 540 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 541 * @rx_ring: Rx ring 542 * @xdp: Pointer to XDP buffer 543 * 544 * This function allocates a new skb from a zero-copy Rx buffer. 545 * 546 * Returns the skb on success, NULL on failure. 547 */ 548 static struct sk_buff * 549 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 550 { 551 unsigned int totalsize = xdp->data_end - xdp->data_meta; 552 unsigned int metasize = xdp->data - xdp->data_meta; 553 struct skb_shared_info *sinfo = NULL; 554 struct sk_buff *skb; 555 u32 nr_frags = 0; 556 557 if (unlikely(xdp_buff_has_frags(xdp))) { 558 sinfo = xdp_get_shared_info_from_buff(xdp); 559 nr_frags = sinfo->nr_frags; 560 } 561 net_prefetch(xdp->data_meta); 562 563 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize); 564 if (unlikely(!skb)) 565 return NULL; 566 567 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 568 ALIGN(totalsize, sizeof(long))); 569 570 if (metasize) { 571 skb_metadata_set(skb, metasize); 572 __skb_pull(skb, metasize); 573 } 574 575 if (likely(!xdp_buff_has_frags(xdp))) 576 goto out; 577 578 for (int i = 0; i < nr_frags; i++) { 579 struct skb_shared_info *skinfo = skb_shinfo(skb); 580 skb_frag_t *frag = &sinfo->frags[i]; 581 struct page *page; 582 void *addr; 583 584 page = dev_alloc_page(); 585 if (!page) { 586 dev_kfree_skb(skb); 587 return NULL; 588 } 589 addr = page_to_virt(page); 590 591 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 592 593 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 594 addr, 0, skb_frag_size(frag)); 595 } 596 597 out: 598 xsk_buff_free(xdp); 599 return skb; 600 } 601 602 /** 603 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 604 * @xdp_ring: XDP Tx ring 605 * @xsk_pool: AF_XDP buffer pool pointer 606 */ 607 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, 608 struct xsk_buff_pool *xsk_pool) 609 { 610 u16 ntc = xdp_ring->next_to_clean; 611 struct ice_tx_desc *tx_desc; 612 u16 cnt = xdp_ring->count; 613 struct ice_tx_buf *tx_buf; 614 u16 completed_frames = 0; 615 u16 xsk_frames = 0; 616 u16 last_rs; 617 int i; 618 619 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 620 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 621 if (tx_desc->cmd_type_offset_bsz & 622 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 623 if (last_rs >= ntc) 624 completed_frames = last_rs - ntc + 1; 625 else 626 completed_frames = last_rs + cnt - ntc + 1; 627 } 628 629 if (!completed_frames) 630 return 0; 631 632 if (likely(!xdp_ring->xdp_tx_active)) { 633 xsk_frames = completed_frames; 634 goto skip; 635 } 636 637 ntc = xdp_ring->next_to_clean; 638 for (i = 0; i < completed_frames; i++) { 639 tx_buf = &xdp_ring->tx_buf[ntc]; 640 641 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 642 tx_buf->type = ICE_TX_BUF_EMPTY; 643 xsk_buff_free(tx_buf->xdp); 644 xdp_ring->xdp_tx_active--; 645 } else { 646 xsk_frames++; 647 } 648 649 ntc++; 650 if (ntc >= xdp_ring->count) 651 ntc = 0; 652 } 653 skip: 654 tx_desc->cmd_type_offset_bsz = 0; 655 xdp_ring->next_to_clean += completed_frames; 656 if (xdp_ring->next_to_clean >= cnt) 657 xdp_ring->next_to_clean -= cnt; 658 if (xsk_frames) 659 xsk_tx_completed(xsk_pool, xsk_frames); 660 661 return completed_frames; 662 } 663 664 /** 665 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 666 * @xdp: XDP buffer to xmit 667 * @xdp_ring: XDP ring to produce descriptor onto 668 * @xsk_pool: AF_XDP buffer pool pointer 669 * 670 * note that this function works directly on xdp_buff, no need to convert 671 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 672 * side will be able to xsk_buff_free() it. 673 * 674 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 675 * was not enough space on XDP ring 676 */ 677 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 678 struct ice_tx_ring *xdp_ring, 679 struct xsk_buff_pool *xsk_pool) 680 { 681 struct skb_shared_info *sinfo = NULL; 682 u32 size = xdp->data_end - xdp->data; 683 u32 ntu = xdp_ring->next_to_use; 684 struct ice_tx_desc *tx_desc; 685 struct ice_tx_buf *tx_buf; 686 struct xdp_buff *head; 687 u32 nr_frags = 0; 688 u32 free_space; 689 u32 frag = 0; 690 691 free_space = ICE_DESC_UNUSED(xdp_ring); 692 if (free_space < ICE_RING_QUARTER(xdp_ring)) 693 free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 694 695 if (unlikely(!free_space)) 696 goto busy; 697 698 if (unlikely(xdp_buff_has_frags(xdp))) { 699 sinfo = xdp_get_shared_info_from_buff(xdp); 700 nr_frags = sinfo->nr_frags; 701 if (free_space < nr_frags + 1) 702 goto busy; 703 } 704 705 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 706 tx_buf = &xdp_ring->tx_buf[ntu]; 707 head = xdp; 708 709 for (;;) { 710 dma_addr_t dma; 711 712 dma = xsk_buff_xdp_get_dma(xdp); 713 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size); 714 715 tx_buf->xdp = xdp; 716 tx_buf->type = ICE_TX_BUF_XSK_TX; 717 tx_desc->buf_addr = cpu_to_le64(dma); 718 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 719 /* account for each xdp_buff from xsk_buff_pool */ 720 xdp_ring->xdp_tx_active++; 721 722 if (++ntu == xdp_ring->count) 723 ntu = 0; 724 725 if (frag == nr_frags) 726 break; 727 728 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 729 tx_buf = &xdp_ring->tx_buf[ntu]; 730 731 xdp = xsk_buff_get_frag(head); 732 size = skb_frag_size(&sinfo->frags[frag]); 733 frag++; 734 } 735 736 xdp_ring->next_to_use = ntu; 737 /* update last descriptor from a frame with EOP */ 738 tx_desc->cmd_type_offset_bsz |= 739 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 740 741 return ICE_XDP_TX; 742 743 busy: 744 xdp_ring->ring_stats->tx_stats.tx_busy++; 745 746 return ICE_XDP_CONSUMED; 747 } 748 749 /** 750 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 751 * @rx_ring: Rx ring 752 * @xdp: xdp_buff used as input to the XDP program 753 * @xdp_prog: XDP program to run 754 * @xdp_ring: ring to be used for XDP_TX action 755 * @xsk_pool: AF_XDP buffer pool pointer 756 * 757 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 758 */ 759 static int 760 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 761 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 762 struct xsk_buff_pool *xsk_pool) 763 { 764 int err, result = ICE_XDP_PASS; 765 u32 act; 766 767 act = bpf_prog_run_xdp(xdp_prog, xdp); 768 769 if (likely(act == XDP_REDIRECT)) { 770 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 771 if (!err) 772 return ICE_XDP_REDIR; 773 if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS) 774 result = ICE_XDP_EXIT; 775 else 776 result = ICE_XDP_CONSUMED; 777 goto out_failure; 778 } 779 780 switch (act) { 781 case XDP_PASS: 782 break; 783 case XDP_TX: 784 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool); 785 if (result == ICE_XDP_CONSUMED) 786 goto out_failure; 787 break; 788 case XDP_DROP: 789 result = ICE_XDP_CONSUMED; 790 break; 791 default: 792 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 793 fallthrough; 794 case XDP_ABORTED: 795 result = ICE_XDP_CONSUMED; 796 out_failure: 797 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 798 break; 799 } 800 801 return result; 802 } 803 804 static int 805 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 806 struct xdp_buff *xdp, const unsigned int size) 807 { 808 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 809 810 if (!size) 811 return 0; 812 813 if (!xdp_buff_has_frags(first)) { 814 sinfo->nr_frags = 0; 815 sinfo->xdp_frags_size = 0; 816 xdp_buff_set_frags_flag(first); 817 } 818 819 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 820 xsk_buff_free(first); 821 return -ENOMEM; 822 } 823 824 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 825 virt_to_page(xdp->data_hard_start), 826 XDP_PACKET_HEADROOM, size); 827 sinfo->xdp_frags_size += size; 828 xsk_buff_add_frag(xdp); 829 830 return 0; 831 } 832 833 /** 834 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 835 * @rx_ring: AF_XDP Rx ring 836 * @xsk_pool: AF_XDP buffer pool pointer 837 * @budget: NAPI budget 838 * 839 * Returns number of processed packets on success, remaining budget on failure. 840 */ 841 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, 842 struct xsk_buff_pool *xsk_pool, 843 int budget) 844 { 845 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 846 u32 ntc = rx_ring->next_to_clean; 847 u32 ntu = rx_ring->next_to_use; 848 struct xdp_buff *first = NULL; 849 struct ice_tx_ring *xdp_ring; 850 unsigned int xdp_xmit = 0; 851 struct bpf_prog *xdp_prog; 852 u32 cnt = rx_ring->count; 853 bool failure = false; 854 int entries_to_alloc; 855 856 /* ZC patch is enabled only when XDP program is set, 857 * so here it can not be NULL 858 */ 859 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 860 xdp_ring = rx_ring->xdp_ring; 861 862 if (ntc != rx_ring->first_desc) 863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 864 865 while (likely(total_rx_packets < (unsigned int)budget)) { 866 union ice_32b_rx_flex_desc *rx_desc; 867 unsigned int size, xdp_res = 0; 868 struct xdp_buff *xdp; 869 struct sk_buff *skb; 870 u16 stat_err_bits; 871 u16 vlan_tci; 872 873 rx_desc = ICE_RX_DESC(rx_ring, ntc); 874 875 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 876 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 877 break; 878 879 /* This memory barrier is needed to keep us from reading 880 * any other fields out of the rx_desc until we have 881 * verified the descriptor has been written back. 882 */ 883 dma_rmb(); 884 885 if (unlikely(ntc == ntu)) 886 break; 887 888 xdp = *ice_xdp_buf(rx_ring, ntc); 889 890 size = le16_to_cpu(rx_desc->wb.pkt_len) & 891 ICE_RX_FLX_DESC_PKT_LEN_M; 892 893 xsk_buff_set_size(xdp, size); 894 xsk_buff_dma_sync_for_cpu(xdp); 895 896 if (!first) { 897 first = xdp; 898 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 899 break; 900 } 901 902 if (++ntc == cnt) 903 ntc = 0; 904 905 if (ice_is_non_eop(rx_ring, rx_desc)) 906 continue; 907 908 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring, 909 xsk_pool); 910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 911 xdp_xmit |= xdp_res; 912 } else if (xdp_res == ICE_XDP_EXIT) { 913 failure = true; 914 first = NULL; 915 rx_ring->first_desc = ntc; 916 break; 917 } else if (xdp_res == ICE_XDP_CONSUMED) { 918 xsk_buff_free(first); 919 } else if (xdp_res == ICE_XDP_PASS) { 920 goto construct_skb; 921 } 922 923 total_rx_bytes += xdp_get_buff_len(first); 924 total_rx_packets++; 925 926 first = NULL; 927 rx_ring->first_desc = ntc; 928 continue; 929 930 construct_skb: 931 /* XDP_PASS path */ 932 skb = ice_construct_skb_zc(rx_ring, first); 933 if (!skb) { 934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 935 break; 936 } 937 938 first = NULL; 939 rx_ring->first_desc = ntc; 940 941 if (eth_skb_pad(skb)) { 942 skb = NULL; 943 continue; 944 } 945 946 total_rx_bytes += skb->len; 947 total_rx_packets++; 948 949 vlan_tci = ice_get_vlan_tci(rx_desc); 950 951 ice_process_skb_fields(rx_ring, rx_desc, skb); 952 ice_receive_skb(rx_ring, skb, vlan_tci); 953 } 954 955 rx_ring->next_to_clean = ntc; 956 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 957 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 958 failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, 959 entries_to_alloc); 960 961 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 962 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 963 964 if (xsk_uses_need_wakeup(xsk_pool)) { 965 /* ntu could have changed when allocating entries above, so 966 * use rx_ring value instead of stack based one 967 */ 968 if (failure || ntc == rx_ring->next_to_use) 969 xsk_set_rx_need_wakeup(xsk_pool); 970 else 971 xsk_clear_rx_need_wakeup(xsk_pool); 972 973 return (int)total_rx_packets; 974 } 975 976 return failure ? budget : (int)total_rx_packets; 977 } 978 979 /** 980 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 981 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 982 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 983 * @desc: AF_XDP descriptor to pull the DMA address and length from 984 * @total_bytes: bytes accumulator that will be used for stats update 985 */ 986 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, 987 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc, 988 unsigned int *total_bytes) 989 { 990 struct ice_tx_desc *tx_desc; 991 dma_addr_t dma; 992 993 dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr); 994 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len); 995 996 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 997 tx_desc->buf_addr = cpu_to_le64(dma); 998 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 999 0, desc->len, 0); 1000 1001 *total_bytes += desc->len; 1002 } 1003 1004 /** 1005 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 1006 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1007 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 1008 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1009 * @total_bytes: bytes accumulator that will be used for stats update 1010 */ 1011 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, 1012 struct xsk_buff_pool *xsk_pool, 1013 struct xdp_desc *descs, 1014 unsigned int *total_bytes) 1015 { 1016 u16 ntu = xdp_ring->next_to_use; 1017 struct ice_tx_desc *tx_desc; 1018 u32 i; 1019 1020 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1021 dma_addr_t dma; 1022 1023 dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr); 1024 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len); 1025 1026 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1027 tx_desc->buf_addr = cpu_to_le64(dma); 1028 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1029 0, descs[i].len, 0); 1030 1031 *total_bytes += descs[i].len; 1032 } 1033 1034 xdp_ring->next_to_use = ntu; 1035 } 1036 1037 /** 1038 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1039 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1040 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 1041 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1042 * @nb_pkts: count of packets to be send 1043 * @total_bytes: bytes accumulator that will be used for stats update 1044 */ 1045 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, 1046 struct xsk_buff_pool *xsk_pool, 1047 struct xdp_desc *descs, u32 nb_pkts, 1048 unsigned int *total_bytes) 1049 { 1050 u32 batched, leftover, i; 1051 1052 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1053 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1054 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1055 ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes); 1056 for (; i < batched + leftover; i++) 1057 ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes); 1058 } 1059 1060 /** 1061 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1062 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1063 * @xsk_pool: AF_XDP buffer pool pointer 1064 * 1065 * Returns true if there is no more work that needs to be done, false otherwise 1066 */ 1067 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool) 1068 { 1069 struct xdp_desc *descs = xsk_pool->tx_descs; 1070 u32 nb_pkts, nb_processed = 0; 1071 unsigned int total_bytes = 0; 1072 int budget; 1073 1074 ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 1075 1076 if (!netif_carrier_ok(xdp_ring->vsi->netdev) || 1077 !netif_running(xdp_ring->vsi->netdev)) 1078 return true; 1079 1080 budget = ICE_DESC_UNUSED(xdp_ring); 1081 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1082 1083 nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget); 1084 if (!nb_pkts) 1085 return true; 1086 1087 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1088 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1089 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed, 1090 &total_bytes); 1091 xdp_ring->next_to_use = 0; 1092 } 1093 1094 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed], 1095 nb_pkts - nb_processed, &total_bytes); 1096 1097 ice_set_rs_bit(xdp_ring); 1098 ice_xdp_ring_update_tail(xdp_ring); 1099 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1100 1101 if (xsk_uses_need_wakeup(xsk_pool)) 1102 xsk_set_tx_need_wakeup(xsk_pool); 1103 1104 return nb_pkts < budget; 1105 } 1106 1107 /** 1108 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1109 * @netdev: net_device 1110 * @queue_id: queue to wake up 1111 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1112 * 1113 * Returns negative on error, zero otherwise. 1114 */ 1115 int 1116 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1117 u32 __always_unused flags) 1118 { 1119 struct ice_netdev_priv *np = netdev_priv(netdev); 1120 struct ice_q_vector *q_vector; 1121 struct ice_vsi *vsi = np->vsi; 1122 struct ice_tx_ring *ring; 1123 1124 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev)) 1125 return -ENETDOWN; 1126 1127 if (!ice_is_xdp_ena_vsi(vsi)) 1128 return -EINVAL; 1129 1130 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1131 return -EINVAL; 1132 1133 ring = vsi->rx_rings[queue_id]->xdp_ring; 1134 1135 if (!READ_ONCE(ring->xsk_pool)) 1136 return -EINVAL; 1137 1138 /* The idea here is that if NAPI is running, mark a miss, so 1139 * it will run again. If not, trigger an interrupt and 1140 * schedule the NAPI from interrupt context. If NAPI would be 1141 * scheduled here, the interrupt affinity would not be 1142 * honored. 1143 */ 1144 q_vector = ring->q_vector; 1145 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1146 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1147 1148 return 0; 1149 } 1150 1151 /** 1152 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1153 * @vsi: VSI to be checked 1154 * 1155 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1156 */ 1157 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1158 { 1159 int i; 1160 1161 ice_for_each_rxq(vsi, i) { 1162 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1163 return true; 1164 } 1165 1166 return false; 1167 } 1168 1169 /** 1170 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1171 * @rx_ring: ring to be cleaned 1172 */ 1173 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1174 { 1175 u16 ntc = rx_ring->next_to_clean; 1176 u16 ntu = rx_ring->next_to_use; 1177 1178 while (ntc != ntu) { 1179 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1180 1181 xsk_buff_free(xdp); 1182 ntc++; 1183 if (ntc >= rx_ring->count) 1184 ntc = 0; 1185 } 1186 } 1187 1188 /** 1189 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1190 * @xdp_ring: XDP_Tx ring 1191 */ 1192 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1193 { 1194 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1195 u32 xsk_frames = 0; 1196 1197 while (ntc != ntu) { 1198 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1199 1200 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1201 tx_buf->type = ICE_TX_BUF_EMPTY; 1202 xsk_buff_free(tx_buf->xdp); 1203 } else { 1204 xsk_frames++; 1205 } 1206 1207 ntc++; 1208 if (ntc >= xdp_ring->count) 1209 ntc = 0; 1210 } 1211 1212 if (xsk_frames) 1213 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1214 } 1215