xref: /linux/drivers/net/ethernet/intel/ice/ice_xsk.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (ice_is_xdp_ena_vsi(vsi))
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (ice_is_xdp_ena_vsi(vsi))
56 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58 }
59 
60 /**
61  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62  * @vsi: VSI that has netdev
63  * @q_vector: q_vector that has NAPI context
64  * @enable: true for enable, false for disable
65  */
66 static void
67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 		     bool enable)
69 {
70 	if (!vsi->netdev || !q_vector)
71 		return;
72 
73 	if (enable)
74 		napi_enable(&q_vector->napi);
75 	else
76 		napi_disable(&q_vector->napi);
77 }
78 
79 /**
80  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81  * @vsi: the VSI that contains queue vector being un-configured
82  * @rx_ring: Rx ring that will have its IRQ disabled
83  * @q_vector: queue vector
84  */
85 static void
86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 		 struct ice_q_vector *q_vector)
88 {
89 	struct ice_pf *pf = vsi->back;
90 	struct ice_hw *hw = &pf->hw;
91 	u16 reg;
92 	u32 val;
93 
94 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 	 * here only QINT_RQCTL
96 	 */
97 	reg = rx_ring->reg_idx;
98 	val = rd32(hw, QINT_RQCTL(reg));
99 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 	wr32(hw, QINT_RQCTL(reg), val);
101 
102 	if (q_vector) {
103 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 		ice_flush(hw);
105 		synchronize_irq(q_vector->irq.virq);
106 	}
107 }
108 
109 /**
110  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111  * @vsi: the VSI that contains queue vector
112  * @q_vector: queue vector
113  * @qid: queue index
114  */
115 static void
116 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid)
117 {
118 	u16 reg_idx = q_vector->reg_idx;
119 	struct ice_pf *pf = vsi->back;
120 	struct ice_hw *hw = &pf->hw;
121 	int q, _qid = qid;
122 
123 	ice_cfg_itr(hw, q_vector);
124 
125 	for (q = 0; q < q_vector->num_ring_tx; q++) {
126 		ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx);
127 		_qid++;
128 	}
129 
130 	_qid = qid;
131 
132 	for (q = 0; q < q_vector->num_ring_rx; q++) {
133 		ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx);
134 		_qid++;
135 	}
136 
137 	ice_flush(hw);
138 }
139 
140 /**
141  * ice_qvec_ena_irq - Enable IRQ for given queue vector
142  * @vsi: the VSI that contains queue vector
143  * @q_vector: queue vector
144  */
145 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
146 {
147 	struct ice_pf *pf = vsi->back;
148 	struct ice_hw *hw = &pf->hw;
149 
150 	ice_irq_dynamic_ena(hw, vsi, q_vector);
151 
152 	ice_flush(hw);
153 }
154 
155 /**
156  * ice_qp_dis - Disables a queue pair
157  * @vsi: VSI of interest
158  * @q_idx: ring index in array
159  *
160  * Returns 0 on success, negative on failure.
161  */
162 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
163 {
164 	struct ice_txq_meta txq_meta = { };
165 	struct ice_q_vector *q_vector;
166 	struct ice_tx_ring *tx_ring;
167 	struct ice_rx_ring *rx_ring;
168 	int timeout = 50;
169 	int fail = 0;
170 	int err;
171 
172 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
173 		return -EINVAL;
174 
175 	tx_ring = vsi->tx_rings[q_idx];
176 	rx_ring = vsi->rx_rings[q_idx];
177 	q_vector = rx_ring->q_vector;
178 
179 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
180 		timeout--;
181 		if (!timeout)
182 			return -EBUSY;
183 		usleep_range(1000, 2000);
184 	}
185 
186 	synchronize_net();
187 	netif_carrier_off(vsi->netdev);
188 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
189 
190 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
191 	ice_qvec_toggle_napi(vsi, q_vector, false);
192 
193 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
194 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
195 	if (!fail)
196 		fail = err;
197 	if (ice_is_xdp_ena_vsi(vsi)) {
198 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
199 
200 		memset(&txq_meta, 0, sizeof(txq_meta));
201 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
202 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
203 					   &txq_meta);
204 		if (!fail)
205 			fail = err;
206 	}
207 
208 	ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
209 	ice_qp_clean_rings(vsi, q_idx);
210 	ice_qp_reset_stats(vsi, q_idx);
211 
212 	return fail;
213 }
214 
215 /**
216  * ice_qp_ena - Enables a queue pair
217  * @vsi: VSI of interest
218  * @q_idx: ring index in array
219  *
220  * Returns 0 on success, negative on failure.
221  */
222 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
223 {
224 	struct ice_q_vector *q_vector;
225 	int fail = 0;
226 	bool link_up;
227 	int err;
228 
229 	err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
230 	if (!fail)
231 		fail = err;
232 
233 	if (ice_is_xdp_ena_vsi(vsi)) {
234 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
235 
236 		err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
237 		if (!fail)
238 			fail = err;
239 		ice_set_ring_xdp(xdp_ring);
240 		ice_tx_xsk_pool(vsi, q_idx);
241 	}
242 
243 	err = ice_vsi_cfg_single_rxq(vsi, q_idx);
244 	if (!fail)
245 		fail = err;
246 
247 	q_vector = vsi->rx_rings[q_idx]->q_vector;
248 	ice_qvec_cfg_msix(vsi, q_vector, q_idx);
249 
250 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
251 	if (!fail)
252 		fail = err;
253 
254 	ice_qvec_toggle_napi(vsi, q_vector, true);
255 	ice_qvec_ena_irq(vsi, q_vector);
256 
257 	/* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */
258 	synchronize_net();
259 	ice_get_link_status(vsi->port_info, &link_up);
260 	if (link_up) {
261 		netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
262 		netif_carrier_on(vsi->netdev);
263 	}
264 	clear_bit(ICE_CFG_BUSY, vsi->state);
265 
266 	return fail;
267 }
268 
269 /**
270  * ice_xsk_pool_disable - disable a buffer pool region
271  * @vsi: Current VSI
272  * @qid: queue ID
273  *
274  * Returns 0 on success, negative on failure
275  */
276 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
277 {
278 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
279 
280 	if (!pool)
281 		return -EINVAL;
282 
283 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
284 
285 	return 0;
286 }
287 
288 /**
289  * ice_xsk_pool_enable - enable a buffer pool region
290  * @vsi: Current VSI
291  * @pool: pointer to a requested buffer pool region
292  * @qid: queue ID
293  *
294  * Returns 0 on success, negative on failure
295  */
296 static int
297 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
298 {
299 	int err;
300 
301 	if (vsi->type != ICE_VSI_PF)
302 		return -EINVAL;
303 
304 	if (qid >= vsi->netdev->real_num_rx_queues ||
305 	    qid >= vsi->netdev->real_num_tx_queues)
306 		return -EINVAL;
307 
308 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
309 			       ICE_RX_DMA_ATTR);
310 	if (err)
311 		return err;
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
318  * @rx_ring: Rx ring
319  * @pool_present: is pool for XSK present
320  *
321  * Try allocating memory and return ENOMEM, if failed to allocate.
322  * If allocation was successful, substitute buffer with allocated one.
323  * Returns 0 on success, negative on failure
324  */
325 static int
326 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
327 {
328 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
329 					  sizeof(*rx_ring->rx_buf);
330 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
331 
332 	if (!sw_ring)
333 		return -ENOMEM;
334 
335 	if (pool_present) {
336 		kfree(rx_ring->rx_buf);
337 		rx_ring->rx_buf = NULL;
338 		rx_ring->xdp_buf = sw_ring;
339 	} else {
340 		kfree(rx_ring->xdp_buf);
341 		rx_ring->xdp_buf = NULL;
342 		rx_ring->rx_buf = sw_ring;
343 	}
344 
345 	return 0;
346 }
347 
348 /**
349  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
350  * @vsi: Current VSI
351  * @zc: is zero copy set
352  *
353  * Reallocate buffer for rx_rings that might be used by XSK.
354  * XDP requires more memory, than rx_buf provides.
355  * Returns 0 on success, negative on failure
356  */
357 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
358 {
359 	struct ice_rx_ring *rx_ring;
360 	uint i;
361 
362 	ice_for_each_rxq(vsi, i) {
363 		rx_ring = vsi->rx_rings[i];
364 		if (!rx_ring->xsk_pool)
365 			continue;
366 
367 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
368 			return -ENOMEM;
369 	}
370 
371 	return 0;
372 }
373 
374 /**
375  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
376  * @vsi: Current VSI
377  * @pool: buffer pool to enable/associate to a ring, NULL to disable
378  * @qid: queue ID
379  *
380  * Returns 0 on success, negative on failure
381  */
382 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
383 {
384 	bool if_running, pool_present = !!pool;
385 	int ret = 0, pool_failure = 0;
386 
387 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
388 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
389 		pool_failure = -EINVAL;
390 		goto failure;
391 	}
392 
393 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
394 
395 	if (if_running) {
396 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
397 
398 		ret = ice_qp_dis(vsi, qid);
399 		if (ret) {
400 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
401 			goto xsk_pool_if_up;
402 		}
403 
404 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
405 		if (ret)
406 			goto xsk_pool_if_up;
407 	}
408 
409 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
410 				      ice_xsk_pool_disable(vsi, qid);
411 
412 xsk_pool_if_up:
413 	if (if_running) {
414 		ret = ice_qp_ena(vsi, qid);
415 		if (!ret && pool_present)
416 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
417 		else if (ret)
418 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
419 	}
420 
421 failure:
422 	if (pool_failure) {
423 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
424 			   pool_present ? "en" : "dis", pool_failure);
425 		return pool_failure;
426 	}
427 
428 	return ret;
429 }
430 
431 /**
432  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
433  * @pool: XSK Buffer pool to pull the buffers from
434  * @xdp: SW ring of xdp_buff that will hold the buffers
435  * @rx_desc: Pointer to Rx descriptors that will be filled
436  * @count: The number of buffers to allocate
437  *
438  * This function allocates a number of Rx buffers from the fill ring
439  * or the internal recycle mechanism and places them on the Rx ring.
440  *
441  * Note that ring wrap should be handled by caller of this function.
442  *
443  * Returns the amount of allocated Rx descriptors
444  */
445 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
446 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
447 {
448 	dma_addr_t dma;
449 	u16 buffs;
450 	int i;
451 
452 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
453 	for (i = 0; i < buffs; i++) {
454 		dma = xsk_buff_xdp_get_dma(*xdp);
455 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
456 		rx_desc->wb.status_error0 = 0;
457 
458 		/* Put private info that changes on a per-packet basis
459 		 * into xdp_buff_xsk->cb.
460 		 */
461 		ice_xdp_meta_set_desc(*xdp, rx_desc);
462 
463 		rx_desc++;
464 		xdp++;
465 	}
466 
467 	return buffs;
468 }
469 
470 /**
471  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
472  * @rx_ring: Rx ring
473  * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
474  * @count: The number of buffers to allocate
475  *
476  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
477  * for case where space from next_to_use up to the end of ring is less
478  * than @count. Finally do a tail bump.
479  *
480  * Returns true if all allocations were successful, false if any fail.
481  */
482 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
483 				   struct xsk_buff_pool *xsk_pool, u16 count)
484 {
485 	u32 nb_buffs_extra = 0, nb_buffs = 0;
486 	union ice_32b_rx_flex_desc *rx_desc;
487 	u16 ntu = rx_ring->next_to_use;
488 	u16 total_count = count;
489 	struct xdp_buff **xdp;
490 
491 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
492 	xdp = ice_xdp_buf(rx_ring, ntu);
493 
494 	if (ntu + count >= rx_ring->count) {
495 		nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc,
496 						   rx_ring->count - ntu);
497 		if (nb_buffs_extra != rx_ring->count - ntu) {
498 			ntu += nb_buffs_extra;
499 			goto exit;
500 		}
501 		rx_desc = ICE_RX_DESC(rx_ring, 0);
502 		xdp = ice_xdp_buf(rx_ring, 0);
503 		ntu = 0;
504 		count -= nb_buffs_extra;
505 		ice_release_rx_desc(rx_ring, 0);
506 	}
507 
508 	nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count);
509 
510 	ntu += nb_buffs;
511 	if (ntu == rx_ring->count)
512 		ntu = 0;
513 
514 exit:
515 	if (rx_ring->next_to_use != ntu)
516 		ice_release_rx_desc(rx_ring, ntu);
517 
518 	return total_count == (nb_buffs_extra + nb_buffs);
519 }
520 
521 /**
522  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
523  * @rx_ring: Rx ring
524  * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
525  * @count: The number of buffers to allocate
526  *
527  * Wrapper for internal allocation routine; figure out how many tail
528  * bumps should take place based on the given threshold
529  *
530  * Returns true if all calls to internal alloc routine succeeded
531  */
532 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
533 			  struct xsk_buff_pool *xsk_pool, u16 count)
534 {
535 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
536 	u16 leftover, i, tail_bumps;
537 
538 	tail_bumps = count / rx_thresh;
539 	leftover = count - (tail_bumps * rx_thresh);
540 
541 	for (i = 0; i < tail_bumps; i++)
542 		if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh))
543 			return false;
544 	return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover);
545 }
546 
547 /**
548  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
549  * @rx_ring: Rx ring
550  * @xdp: Pointer to XDP buffer
551  *
552  * This function allocates a new skb from a zero-copy Rx buffer.
553  *
554  * Returns the skb on success, NULL on failure.
555  */
556 static struct sk_buff *
557 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
558 {
559 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
560 	unsigned int metasize = xdp->data - xdp->data_meta;
561 	struct skb_shared_info *sinfo = NULL;
562 	struct sk_buff *skb;
563 	u32 nr_frags = 0;
564 
565 	if (unlikely(xdp_buff_has_frags(xdp))) {
566 		sinfo = xdp_get_shared_info_from_buff(xdp);
567 		nr_frags = sinfo->nr_frags;
568 	}
569 	net_prefetch(xdp->data_meta);
570 
571 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
572 	if (unlikely(!skb))
573 		return NULL;
574 
575 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
576 	       ALIGN(totalsize, sizeof(long)));
577 
578 	if (metasize) {
579 		skb_metadata_set(skb, metasize);
580 		__skb_pull(skb, metasize);
581 	}
582 
583 	if (likely(!xdp_buff_has_frags(xdp)))
584 		goto out;
585 
586 	for (int i = 0; i < nr_frags; i++) {
587 		struct skb_shared_info *skinfo = skb_shinfo(skb);
588 		skb_frag_t *frag = &sinfo->frags[i];
589 		struct page *page;
590 		void *addr;
591 
592 		page = dev_alloc_page();
593 		if (!page) {
594 			dev_kfree_skb(skb);
595 			return NULL;
596 		}
597 		addr = page_to_virt(page);
598 
599 		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
600 
601 		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
602 					   addr, 0, skb_frag_size(frag));
603 	}
604 
605 out:
606 	xsk_buff_free(xdp);
607 	return skb;
608 }
609 
610 /**
611  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
612  * @xdp_ring: XDP Tx ring
613  * @xsk_pool: AF_XDP buffer pool pointer
614  */
615 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring,
616 				struct xsk_buff_pool *xsk_pool)
617 {
618 	u16 ntc = xdp_ring->next_to_clean;
619 	struct ice_tx_desc *tx_desc;
620 	u16 cnt = xdp_ring->count;
621 	struct ice_tx_buf *tx_buf;
622 	u16 completed_frames = 0;
623 	u16 xsk_frames = 0;
624 	u16 last_rs;
625 	int i;
626 
627 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
628 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
629 	if (tx_desc->cmd_type_offset_bsz &
630 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
631 		if (last_rs >= ntc)
632 			completed_frames = last_rs - ntc + 1;
633 		else
634 			completed_frames = last_rs + cnt - ntc + 1;
635 	}
636 
637 	if (!completed_frames)
638 		return 0;
639 
640 	if (likely(!xdp_ring->xdp_tx_active)) {
641 		xsk_frames = completed_frames;
642 		goto skip;
643 	}
644 
645 	ntc = xdp_ring->next_to_clean;
646 	for (i = 0; i < completed_frames; i++) {
647 		tx_buf = &xdp_ring->tx_buf[ntc];
648 
649 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
650 			tx_buf->type = ICE_TX_BUF_EMPTY;
651 			xsk_buff_free(tx_buf->xdp);
652 			xdp_ring->xdp_tx_active--;
653 		} else {
654 			xsk_frames++;
655 		}
656 
657 		ntc++;
658 		if (ntc >= xdp_ring->count)
659 			ntc = 0;
660 	}
661 skip:
662 	tx_desc->cmd_type_offset_bsz = 0;
663 	xdp_ring->next_to_clean += completed_frames;
664 	if (xdp_ring->next_to_clean >= cnt)
665 		xdp_ring->next_to_clean -= cnt;
666 	if (xsk_frames)
667 		xsk_tx_completed(xsk_pool, xsk_frames);
668 
669 	return completed_frames;
670 }
671 
672 /**
673  * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
674  * @xdp: XDP buffer to xmit
675  * @xdp_ring: XDP ring to produce descriptor onto
676  * @xsk_pool: AF_XDP buffer pool pointer
677  *
678  * note that this function works directly on xdp_buff, no need to convert
679  * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
680  * side will be able to xsk_buff_free() it.
681  *
682  * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
683  * was not enough space on XDP ring
684  */
685 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
686 			      struct ice_tx_ring *xdp_ring,
687 			      struct xsk_buff_pool *xsk_pool)
688 {
689 	struct skb_shared_info *sinfo = NULL;
690 	u32 size = xdp->data_end - xdp->data;
691 	u32 ntu = xdp_ring->next_to_use;
692 	struct ice_tx_desc *tx_desc;
693 	struct ice_tx_buf *tx_buf;
694 	struct xdp_buff *head;
695 	u32 nr_frags = 0;
696 	u32 free_space;
697 	u32 frag = 0;
698 
699 	free_space = ICE_DESC_UNUSED(xdp_ring);
700 	if (free_space < ICE_RING_QUARTER(xdp_ring))
701 		free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
702 
703 	if (unlikely(!free_space))
704 		goto busy;
705 
706 	if (unlikely(xdp_buff_has_frags(xdp))) {
707 		sinfo = xdp_get_shared_info_from_buff(xdp);
708 		nr_frags = sinfo->nr_frags;
709 		if (free_space < nr_frags + 1)
710 			goto busy;
711 	}
712 
713 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
714 	tx_buf = &xdp_ring->tx_buf[ntu];
715 	head = xdp;
716 
717 	for (;;) {
718 		dma_addr_t dma;
719 
720 		dma = xsk_buff_xdp_get_dma(xdp);
721 		xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size);
722 
723 		tx_buf->xdp = xdp;
724 		tx_buf->type = ICE_TX_BUF_XSK_TX;
725 		tx_desc->buf_addr = cpu_to_le64(dma);
726 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
727 		/* account for each xdp_buff from xsk_buff_pool */
728 		xdp_ring->xdp_tx_active++;
729 
730 		if (++ntu == xdp_ring->count)
731 			ntu = 0;
732 
733 		if (frag == nr_frags)
734 			break;
735 
736 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
737 		tx_buf = &xdp_ring->tx_buf[ntu];
738 
739 		xdp = xsk_buff_get_frag(head);
740 		size = skb_frag_size(&sinfo->frags[frag]);
741 		frag++;
742 	}
743 
744 	xdp_ring->next_to_use = ntu;
745 	/* update last descriptor from a frame with EOP */
746 	tx_desc->cmd_type_offset_bsz |=
747 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
748 
749 	return ICE_XDP_TX;
750 
751 busy:
752 	xdp_ring->ring_stats->tx_stats.tx_busy++;
753 
754 	return ICE_XDP_CONSUMED;
755 }
756 
757 /**
758  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
759  * @rx_ring: Rx ring
760  * @xdp: xdp_buff used as input to the XDP program
761  * @xdp_prog: XDP program to run
762  * @xdp_ring: ring to be used for XDP_TX action
763  * @xsk_pool: AF_XDP buffer pool pointer
764  *
765  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
766  */
767 static int
768 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
769 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
770 	       struct xsk_buff_pool *xsk_pool)
771 {
772 	int err, result = ICE_XDP_PASS;
773 	u32 act;
774 
775 	act = bpf_prog_run_xdp(xdp_prog, xdp);
776 
777 	if (likely(act == XDP_REDIRECT)) {
778 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
779 		if (!err)
780 			return ICE_XDP_REDIR;
781 		if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS)
782 			result = ICE_XDP_EXIT;
783 		else
784 			result = ICE_XDP_CONSUMED;
785 		goto out_failure;
786 	}
787 
788 	switch (act) {
789 	case XDP_PASS:
790 		break;
791 	case XDP_TX:
792 		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool);
793 		if (result == ICE_XDP_CONSUMED)
794 			goto out_failure;
795 		break;
796 	case XDP_DROP:
797 		result = ICE_XDP_CONSUMED;
798 		break;
799 	default:
800 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
801 		fallthrough;
802 	case XDP_ABORTED:
803 		result = ICE_XDP_CONSUMED;
804 out_failure:
805 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
806 		break;
807 	}
808 
809 	return result;
810 }
811 
812 static int
813 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
814 		 struct xdp_buff *xdp, const unsigned int size)
815 {
816 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
817 
818 	if (!size)
819 		return 0;
820 
821 	if (!xdp_buff_has_frags(first)) {
822 		sinfo->nr_frags = 0;
823 		sinfo->xdp_frags_size = 0;
824 		xdp_buff_set_frags_flag(first);
825 	}
826 
827 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
828 		xsk_buff_free(first);
829 		return -ENOMEM;
830 	}
831 
832 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
833 				   virt_to_page(xdp->data_hard_start),
834 				   XDP_PACKET_HEADROOM, size);
835 	sinfo->xdp_frags_size += size;
836 	xsk_buff_add_frag(xdp);
837 
838 	return 0;
839 }
840 
841 /**
842  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
843  * @rx_ring: AF_XDP Rx ring
844  * @xsk_pool: AF_XDP buffer pool pointer
845  * @budget: NAPI budget
846  *
847  * Returns number of processed packets on success, remaining budget on failure.
848  */
849 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring,
850 			struct xsk_buff_pool *xsk_pool,
851 			int budget)
852 {
853 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
854 	u32 ntc = rx_ring->next_to_clean;
855 	u32 ntu = rx_ring->next_to_use;
856 	struct xdp_buff *first = NULL;
857 	struct ice_tx_ring *xdp_ring;
858 	unsigned int xdp_xmit = 0;
859 	struct bpf_prog *xdp_prog;
860 	u32 cnt = rx_ring->count;
861 	bool failure = false;
862 	int entries_to_alloc;
863 
864 	/* ZC patch is enabled only when XDP program is set,
865 	 * so here it can not be NULL
866 	 */
867 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
868 	xdp_ring = rx_ring->xdp_ring;
869 
870 	if (ntc != rx_ring->first_desc)
871 		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
872 
873 	while (likely(total_rx_packets < (unsigned int)budget)) {
874 		union ice_32b_rx_flex_desc *rx_desc;
875 		unsigned int size, xdp_res = 0;
876 		struct xdp_buff *xdp;
877 		struct sk_buff *skb;
878 		u16 stat_err_bits;
879 		u16 vlan_tci;
880 
881 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
882 
883 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
884 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
885 			break;
886 
887 		/* This memory barrier is needed to keep us from reading
888 		 * any other fields out of the rx_desc until we have
889 		 * verified the descriptor has been written back.
890 		 */
891 		dma_rmb();
892 
893 		if (unlikely(ntc == ntu))
894 			break;
895 
896 		xdp = *ice_xdp_buf(rx_ring, ntc);
897 
898 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
899 				   ICE_RX_FLX_DESC_PKT_LEN_M;
900 
901 		xsk_buff_set_size(xdp, size);
902 		xsk_buff_dma_sync_for_cpu(xdp);
903 
904 		if (!first) {
905 			first = xdp;
906 		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
907 			break;
908 		}
909 
910 		if (++ntc == cnt)
911 			ntc = 0;
912 
913 		if (ice_is_non_eop(rx_ring, rx_desc))
914 			continue;
915 
916 		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring,
917 					 xsk_pool);
918 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
919 			xdp_xmit |= xdp_res;
920 		} else if (xdp_res == ICE_XDP_EXIT) {
921 			failure = true;
922 			first = NULL;
923 			rx_ring->first_desc = ntc;
924 			break;
925 		} else if (xdp_res == ICE_XDP_CONSUMED) {
926 			xsk_buff_free(first);
927 		} else if (xdp_res == ICE_XDP_PASS) {
928 			goto construct_skb;
929 		}
930 
931 		total_rx_bytes += xdp_get_buff_len(first);
932 		total_rx_packets++;
933 
934 		first = NULL;
935 		rx_ring->first_desc = ntc;
936 		continue;
937 
938 construct_skb:
939 		/* XDP_PASS path */
940 		skb = ice_construct_skb_zc(rx_ring, first);
941 		if (!skb) {
942 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
943 			break;
944 		}
945 
946 		first = NULL;
947 		rx_ring->first_desc = ntc;
948 
949 		if (eth_skb_pad(skb)) {
950 			skb = NULL;
951 			continue;
952 		}
953 
954 		total_rx_bytes += skb->len;
955 		total_rx_packets++;
956 
957 		vlan_tci = ice_get_vlan_tci(rx_desc);
958 
959 		ice_process_skb_fields(rx_ring, rx_desc, skb);
960 		ice_receive_skb(rx_ring, skb, vlan_tci);
961 	}
962 
963 	rx_ring->next_to_clean = ntc;
964 	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
965 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
966 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool,
967 						 entries_to_alloc);
968 
969 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
970 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
971 
972 	if (xsk_uses_need_wakeup(xsk_pool)) {
973 		/* ntu could have changed when allocating entries above, so
974 		 * use rx_ring value instead of stack based one
975 		 */
976 		if (failure || ntc == rx_ring->next_to_use)
977 			xsk_set_rx_need_wakeup(xsk_pool);
978 		else
979 			xsk_clear_rx_need_wakeup(xsk_pool);
980 
981 		return (int)total_rx_packets;
982 	}
983 
984 	return failure ? budget : (int)total_rx_packets;
985 }
986 
987 /**
988  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
989  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
990  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
991  * @desc: AF_XDP descriptor to pull the DMA address and length from
992  * @total_bytes: bytes accumulator that will be used for stats update
993  */
994 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring,
995 			 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc,
996 			 unsigned int *total_bytes)
997 {
998 	struct ice_tx_desc *tx_desc;
999 	dma_addr_t dma;
1000 
1001 	dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr);
1002 	xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len);
1003 
1004 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
1005 	tx_desc->buf_addr = cpu_to_le64(dma);
1006 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
1007 						      0, desc->len, 0);
1008 
1009 	*total_bytes += desc->len;
1010 }
1011 
1012 /**
1013  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1014  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1015  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1016  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1017  * @total_bytes: bytes accumulator that will be used for stats update
1018  */
1019 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring,
1020 			       struct xsk_buff_pool *xsk_pool,
1021 			       struct xdp_desc *descs,
1022 			       unsigned int *total_bytes)
1023 {
1024 	u16 ntu = xdp_ring->next_to_use;
1025 	struct ice_tx_desc *tx_desc;
1026 	u32 i;
1027 
1028 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1029 		dma_addr_t dma;
1030 
1031 		dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr);
1032 		xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len);
1033 
1034 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1035 		tx_desc->buf_addr = cpu_to_le64(dma);
1036 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1037 							      0, descs[i].len, 0);
1038 
1039 		*total_bytes += descs[i].len;
1040 	}
1041 
1042 	xdp_ring->next_to_use = ntu;
1043 }
1044 
1045 /**
1046  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1047  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1048  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1049  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1050  * @nb_pkts: count of packets to be send
1051  * @total_bytes: bytes accumulator that will be used for stats update
1052  */
1053 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring,
1054 				struct xsk_buff_pool *xsk_pool,
1055 				struct xdp_desc *descs, u32 nb_pkts,
1056 				unsigned int *total_bytes)
1057 {
1058 	u32 batched, leftover, i;
1059 
1060 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1061 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1062 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1063 		ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes);
1064 	for (; i < batched + leftover; i++)
1065 		ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes);
1066 }
1067 
1068 /**
1069  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1070  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1071  * @xsk_pool: AF_XDP buffer pool pointer
1072  *
1073  * Returns true if there is no more work that needs to be done, false otherwise
1074  */
1075 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool)
1076 {
1077 	struct xdp_desc *descs = xsk_pool->tx_descs;
1078 	u32 nb_pkts, nb_processed = 0;
1079 	unsigned int total_bytes = 0;
1080 	int budget;
1081 
1082 	ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
1083 
1084 	if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1085 	    !netif_running(xdp_ring->vsi->netdev))
1086 		return true;
1087 
1088 	budget = ICE_DESC_UNUSED(xdp_ring);
1089 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1090 
1091 	nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget);
1092 	if (!nb_pkts)
1093 		return true;
1094 
1095 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1096 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1097 		ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed,
1098 				    &total_bytes);
1099 		xdp_ring->next_to_use = 0;
1100 	}
1101 
1102 	ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed],
1103 			    nb_pkts - nb_processed, &total_bytes);
1104 
1105 	ice_set_rs_bit(xdp_ring);
1106 	ice_xdp_ring_update_tail(xdp_ring);
1107 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1108 
1109 	if (xsk_uses_need_wakeup(xsk_pool))
1110 		xsk_set_tx_need_wakeup(xsk_pool);
1111 
1112 	return nb_pkts < budget;
1113 }
1114 
1115 /**
1116  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1117  * @netdev: net_device
1118  * @queue_id: queue to wake up
1119  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1120  *
1121  * Returns negative on error, zero otherwise.
1122  */
1123 int
1124 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1125 	       u32 __always_unused flags)
1126 {
1127 	struct ice_netdev_priv *np = netdev_priv(netdev);
1128 	struct ice_q_vector *q_vector;
1129 	struct ice_vsi *vsi = np->vsi;
1130 	struct ice_tx_ring *ring;
1131 
1132 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1133 		return -ENETDOWN;
1134 
1135 	if (!ice_is_xdp_ena_vsi(vsi))
1136 		return -EINVAL;
1137 
1138 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1139 		return -EINVAL;
1140 
1141 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1142 
1143 	if (!READ_ONCE(ring->xsk_pool))
1144 		return -EINVAL;
1145 
1146 	/* The idea here is that if NAPI is running, mark a miss, so
1147 	 * it will run again. If not, trigger an interrupt and
1148 	 * schedule the NAPI from interrupt context. If NAPI would be
1149 	 * scheduled here, the interrupt affinity would not be
1150 	 * honored.
1151 	 */
1152 	q_vector = ring->q_vector;
1153 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1154 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1161  * @vsi: VSI to be checked
1162  *
1163  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1164  */
1165 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1166 {
1167 	int i;
1168 
1169 	ice_for_each_rxq(vsi, i) {
1170 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1171 			return true;
1172 	}
1173 
1174 	return false;
1175 }
1176 
1177 /**
1178  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1179  * @rx_ring: ring to be cleaned
1180  */
1181 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1182 {
1183 	u16 ntc = rx_ring->next_to_clean;
1184 	u16 ntu = rx_ring->next_to_use;
1185 
1186 	while (ntc != ntu) {
1187 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1188 
1189 		xsk_buff_free(xdp);
1190 		ntc++;
1191 		if (ntc >= rx_ring->count)
1192 			ntc = 0;
1193 	}
1194 }
1195 
1196 /**
1197  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1198  * @xdp_ring: XDP_Tx ring
1199  */
1200 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1201 {
1202 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1203 	u32 xsk_frames = 0;
1204 
1205 	while (ntc != ntu) {
1206 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1207 
1208 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1209 			tx_buf->type = ICE_TX_BUF_EMPTY;
1210 			xsk_buff_free(tx_buf->xdp);
1211 		} else {
1212 			xsk_frames++;
1213 		}
1214 
1215 		ntc++;
1216 		if (ntc >= xdp_ring->count)
1217 			ntc = 0;
1218 	}
1219 
1220 	if (xsk_frames)
1221 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1222 }
1223