1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/unroll.h> 6 #include <net/xdp_sock_drv.h> 7 #include <net/xdp.h> 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_type.h" 11 #include "ice_xsk.h" 12 #include "ice_txrx.h" 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 16 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 17 { 18 return &rx_ring->xdp_buf[idx]; 19 } 20 21 /** 22 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 23 * @vsi: VSI that has netdev 24 * @q_vector: q_vector that has NAPI context 25 * @enable: true for enable, false for disable 26 */ 27 void 28 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 29 bool enable) 30 { 31 if (!vsi->netdev || !q_vector) 32 return; 33 34 if (enable) 35 napi_enable(&q_vector->napi); 36 else 37 napi_disable(&q_vector->napi); 38 } 39 40 /** 41 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 42 * @vsi: the VSI that contains queue vector being un-configured 43 * @rx_ring: Rx ring that will have its IRQ disabled 44 * @q_vector: queue vector 45 */ 46 void 47 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 48 struct ice_q_vector *q_vector) 49 { 50 struct ice_pf *pf = vsi->back; 51 struct ice_hw *hw = &pf->hw; 52 u16 reg; 53 u32 val; 54 55 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 56 * here only QINT_RQCTL 57 */ 58 reg = rx_ring->reg_idx; 59 val = rd32(hw, QINT_RQCTL(reg)); 60 val &= ~QINT_RQCTL_CAUSE_ENA_M; 61 wr32(hw, QINT_RQCTL(reg), val); 62 63 if (q_vector) { 64 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 65 ice_flush(hw); 66 synchronize_irq(q_vector->irq.virq); 67 } 68 } 69 70 /** 71 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 72 * @vsi: the VSI that contains queue vector 73 * @q_vector: queue vector 74 * @qid: queue index 75 */ 76 void 77 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid) 78 { 79 u16 reg_idx = q_vector->reg_idx; 80 struct ice_pf *pf = vsi->back; 81 struct ice_hw *hw = &pf->hw; 82 int q, _qid = qid; 83 84 ice_cfg_itr(hw, q_vector); 85 86 for (q = 0; q < q_vector->num_ring_tx; q++) { 87 ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx); 88 _qid++; 89 } 90 91 _qid = qid; 92 93 for (q = 0; q < q_vector->num_ring_rx; q++) { 94 ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx); 95 _qid++; 96 } 97 98 ice_flush(hw); 99 } 100 101 /** 102 * ice_qvec_ena_irq - Enable IRQ for given queue vector 103 * @vsi: the VSI that contains queue vector 104 * @q_vector: queue vector 105 */ 106 void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 107 { 108 struct ice_pf *pf = vsi->back; 109 struct ice_hw *hw = &pf->hw; 110 111 ice_irq_dynamic_ena(hw, vsi, q_vector); 112 113 ice_flush(hw); 114 } 115 116 /** 117 * ice_xsk_pool_disable - disable a buffer pool region 118 * @vsi: Current VSI 119 * @qid: queue ID 120 * 121 * Returns 0 on success, negative on failure 122 */ 123 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 124 { 125 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 126 127 if (!pool) 128 return -EINVAL; 129 130 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 131 132 return 0; 133 } 134 135 /** 136 * ice_xsk_pool_enable - enable a buffer pool region 137 * @vsi: Current VSI 138 * @pool: pointer to a requested buffer pool region 139 * @qid: queue ID 140 * 141 * Returns 0 on success, negative on failure 142 */ 143 static int 144 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 145 { 146 int err; 147 148 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) 149 return -EINVAL; 150 151 if (qid >= vsi->netdev->real_num_rx_queues || 152 qid >= vsi->netdev->real_num_tx_queues) 153 return -EINVAL; 154 155 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 156 ICE_RX_DMA_ATTR); 157 if (err) 158 return err; 159 160 return 0; 161 } 162 163 /** 164 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 165 * @rx_ring: Rx ring 166 * @pool_present: is pool for XSK present 167 * 168 * Try allocating memory and return ENOMEM, if failed to allocate. 169 * If allocation was successful, substitute buffer with allocated one. 170 * Returns 0 on success, negative on failure 171 */ 172 static int 173 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 174 { 175 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 176 sizeof(*rx_ring->rx_buf); 177 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 178 179 if (!sw_ring) 180 return -ENOMEM; 181 182 if (pool_present) { 183 kfree(rx_ring->rx_buf); 184 rx_ring->rx_buf = NULL; 185 rx_ring->xdp_buf = sw_ring; 186 } else { 187 kfree(rx_ring->xdp_buf); 188 rx_ring->xdp_buf = NULL; 189 rx_ring->rx_buf = sw_ring; 190 } 191 192 return 0; 193 } 194 195 /** 196 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 197 * @vsi: Current VSI 198 * @zc: is zero copy set 199 * 200 * Reallocate buffer for rx_rings that might be used by XSK. 201 * XDP requires more memory, than rx_buf provides. 202 * Returns 0 on success, negative on failure 203 */ 204 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 205 { 206 struct ice_rx_ring *rx_ring; 207 uint i; 208 209 ice_for_each_rxq(vsi, i) { 210 rx_ring = vsi->rx_rings[i]; 211 if (!rx_ring->xsk_pool) 212 continue; 213 214 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 215 return -ENOMEM; 216 } 217 218 return 0; 219 } 220 221 /** 222 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 223 * @vsi: Current VSI 224 * @pool: buffer pool to enable/associate to a ring, NULL to disable 225 * @qid: queue ID 226 * 227 * Returns 0 on success, negative on failure 228 */ 229 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 230 { 231 bool if_running, pool_present = !!pool; 232 int ret = 0, pool_failure = 0; 233 234 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 235 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 236 pool_failure = -EINVAL; 237 goto failure; 238 } 239 240 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) && 241 ice_is_xdp_ena_vsi(vsi); 242 243 if (if_running) { 244 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 245 246 ret = ice_qp_dis(vsi, qid); 247 if (ret) { 248 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 249 goto xsk_pool_if_up; 250 } 251 252 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 253 if (ret) 254 goto xsk_pool_if_up; 255 } 256 257 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 258 ice_xsk_pool_disable(vsi, qid); 259 260 xsk_pool_if_up: 261 if (if_running) { 262 ret = ice_qp_ena(vsi, qid); 263 if (!ret && pool_present) 264 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 265 else if (ret) 266 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 267 } 268 269 failure: 270 if (pool_failure) { 271 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 272 pool_present ? "en" : "dis", pool_failure); 273 return pool_failure; 274 } 275 276 return ret; 277 } 278 279 /** 280 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 281 * @pool: XSK Buffer pool to pull the buffers from 282 * @xdp: SW ring of xdp_buff that will hold the buffers 283 * @rx_desc: Pointer to Rx descriptors that will be filled 284 * @count: The number of buffers to allocate 285 * 286 * This function allocates a number of Rx buffers from the fill ring 287 * or the internal recycle mechanism and places them on the Rx ring. 288 * 289 * Note that ring wrap should be handled by caller of this function. 290 * 291 * Returns the amount of allocated Rx descriptors 292 */ 293 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 294 union ice_32b_rx_flex_desc *rx_desc, u16 count) 295 { 296 dma_addr_t dma; 297 u16 buffs; 298 int i; 299 300 buffs = xsk_buff_alloc_batch(pool, xdp, count); 301 for (i = 0; i < buffs; i++) { 302 dma = xsk_buff_xdp_get_dma(*xdp); 303 rx_desc->read.pkt_addr = cpu_to_le64(dma); 304 rx_desc->wb.status_error0 = 0; 305 306 /* Put private info that changes on a per-packet basis 307 * into xdp_buff_xsk->cb. 308 */ 309 ice_xdp_meta_set_desc(*xdp, rx_desc); 310 311 rx_desc++; 312 xdp++; 313 } 314 315 return buffs; 316 } 317 318 /** 319 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 320 * @rx_ring: Rx ring 321 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 322 * @count: The number of buffers to allocate 323 * 324 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 325 * for case where space from next_to_use up to the end of ring is less 326 * than @count. Finally do a tail bump. 327 * 328 * Returns true if all allocations were successful, false if any fail. 329 */ 330 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 331 struct xsk_buff_pool *xsk_pool, u16 count) 332 { 333 u32 nb_buffs_extra = 0, nb_buffs = 0; 334 union ice_32b_rx_flex_desc *rx_desc; 335 u16 ntu = rx_ring->next_to_use; 336 u16 total_count = count; 337 struct xdp_buff **xdp; 338 339 rx_desc = ICE_RX_DESC(rx_ring, ntu); 340 xdp = ice_xdp_buf(rx_ring, ntu); 341 342 if (ntu + count >= rx_ring->count) { 343 nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, 344 rx_ring->count - ntu); 345 if (nb_buffs_extra != rx_ring->count - ntu) { 346 ntu += nb_buffs_extra; 347 goto exit; 348 } 349 rx_desc = ICE_RX_DESC(rx_ring, 0); 350 xdp = ice_xdp_buf(rx_ring, 0); 351 ntu = 0; 352 count -= nb_buffs_extra; 353 ice_release_rx_desc(rx_ring, 0); 354 } 355 356 nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count); 357 358 ntu += nb_buffs; 359 if (ntu == rx_ring->count) 360 ntu = 0; 361 362 exit: 363 if (rx_ring->next_to_use != ntu) 364 ice_release_rx_desc(rx_ring, ntu); 365 366 return total_count == (nb_buffs_extra + nb_buffs); 367 } 368 369 /** 370 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 371 * @rx_ring: Rx ring 372 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 373 * @count: The number of buffers to allocate 374 * 375 * Wrapper for internal allocation routine; figure out how many tail 376 * bumps should take place based on the given threshold 377 * 378 * Returns true if all calls to internal alloc routine succeeded 379 */ 380 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 381 struct xsk_buff_pool *xsk_pool, u16 count) 382 { 383 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 384 u16 leftover, i, tail_bumps; 385 386 tail_bumps = count / rx_thresh; 387 leftover = count - (tail_bumps * rx_thresh); 388 389 for (i = 0; i < tail_bumps; i++) 390 if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh)) 391 return false; 392 return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover); 393 } 394 395 /** 396 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 397 * @rx_ring: Rx ring 398 * @xdp: Pointer to XDP buffer 399 * 400 * This function allocates a new skb from a zero-copy Rx buffer. 401 * 402 * Returns the skb on success, NULL on failure. 403 */ 404 static struct sk_buff * 405 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 406 { 407 unsigned int totalsize = xdp->data_end - xdp->data_meta; 408 unsigned int metasize = xdp->data - xdp->data_meta; 409 struct skb_shared_info *sinfo = NULL; 410 struct sk_buff *skb; 411 u32 nr_frags = 0; 412 413 if (unlikely(xdp_buff_has_frags(xdp))) { 414 sinfo = xdp_get_shared_info_from_buff(xdp); 415 nr_frags = sinfo->nr_frags; 416 } 417 net_prefetch(xdp->data_meta); 418 419 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize); 420 if (unlikely(!skb)) 421 return NULL; 422 423 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 424 ALIGN(totalsize, sizeof(long))); 425 426 if (metasize) { 427 skb_metadata_set(skb, metasize); 428 __skb_pull(skb, metasize); 429 } 430 431 if (likely(!xdp_buff_has_frags(xdp))) 432 goto out; 433 434 for (int i = 0; i < nr_frags; i++) { 435 struct skb_shared_info *skinfo = skb_shinfo(skb); 436 skb_frag_t *frag = &sinfo->frags[i]; 437 struct page *page; 438 void *addr; 439 440 page = dev_alloc_page(); 441 if (!page) { 442 dev_kfree_skb(skb); 443 return NULL; 444 } 445 addr = page_to_virt(page); 446 447 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 448 449 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 450 addr, 0, skb_frag_size(frag)); 451 } 452 453 out: 454 xsk_buff_free(xdp); 455 return skb; 456 } 457 458 /** 459 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 460 * @xdp_ring: XDP Tx ring 461 * @xsk_pool: AF_XDP buffer pool pointer 462 */ 463 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, 464 struct xsk_buff_pool *xsk_pool) 465 { 466 u16 ntc = xdp_ring->next_to_clean; 467 struct ice_tx_desc *tx_desc; 468 u16 cnt = xdp_ring->count; 469 struct ice_tx_buf *tx_buf; 470 u16 completed_frames = 0; 471 u16 xsk_frames = 0; 472 u16 last_rs; 473 int i; 474 475 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 476 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 477 if (tx_desc->cmd_type_offset_bsz & 478 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 479 if (last_rs >= ntc) 480 completed_frames = last_rs - ntc + 1; 481 else 482 completed_frames = last_rs + cnt - ntc + 1; 483 } 484 485 if (!completed_frames) 486 return 0; 487 488 if (likely(!xdp_ring->xdp_tx_active)) { 489 xsk_frames = completed_frames; 490 goto skip; 491 } 492 493 ntc = xdp_ring->next_to_clean; 494 for (i = 0; i < completed_frames; i++) { 495 tx_buf = &xdp_ring->tx_buf[ntc]; 496 497 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 498 tx_buf->type = ICE_TX_BUF_EMPTY; 499 xsk_buff_free(tx_buf->xdp); 500 xdp_ring->xdp_tx_active--; 501 } else { 502 xsk_frames++; 503 } 504 505 ntc++; 506 if (ntc >= xdp_ring->count) 507 ntc = 0; 508 } 509 skip: 510 tx_desc->cmd_type_offset_bsz = 0; 511 xdp_ring->next_to_clean += completed_frames; 512 if (xdp_ring->next_to_clean >= cnt) 513 xdp_ring->next_to_clean -= cnt; 514 if (xsk_frames) 515 xsk_tx_completed(xsk_pool, xsk_frames); 516 517 return completed_frames; 518 } 519 520 /** 521 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 522 * @xdp: XDP buffer to xmit 523 * @xdp_ring: XDP ring to produce descriptor onto 524 * @xsk_pool: AF_XDP buffer pool pointer 525 * 526 * note that this function works directly on xdp_buff, no need to convert 527 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 528 * side will be able to xsk_buff_free() it. 529 * 530 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 531 * was not enough space on XDP ring 532 */ 533 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 534 struct ice_tx_ring *xdp_ring, 535 struct xsk_buff_pool *xsk_pool) 536 { 537 struct skb_shared_info *sinfo = NULL; 538 u32 size = xdp->data_end - xdp->data; 539 u32 ntu = xdp_ring->next_to_use; 540 struct ice_tx_desc *tx_desc; 541 struct ice_tx_buf *tx_buf; 542 struct xdp_buff *head; 543 u32 nr_frags = 0; 544 u32 free_space; 545 u32 frag = 0; 546 547 free_space = ICE_DESC_UNUSED(xdp_ring); 548 if (free_space < ICE_RING_QUARTER(xdp_ring)) 549 free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 550 551 if (unlikely(!free_space)) 552 goto busy; 553 554 if (unlikely(xdp_buff_has_frags(xdp))) { 555 sinfo = xdp_get_shared_info_from_buff(xdp); 556 nr_frags = sinfo->nr_frags; 557 if (free_space < nr_frags + 1) 558 goto busy; 559 } 560 561 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 562 tx_buf = &xdp_ring->tx_buf[ntu]; 563 head = xdp; 564 565 for (;;) { 566 dma_addr_t dma; 567 568 dma = xsk_buff_xdp_get_dma(xdp); 569 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size); 570 571 tx_buf->xdp = xdp; 572 tx_buf->type = ICE_TX_BUF_XSK_TX; 573 tx_desc->buf_addr = cpu_to_le64(dma); 574 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 575 /* account for each xdp_buff from xsk_buff_pool */ 576 xdp_ring->xdp_tx_active++; 577 578 if (++ntu == xdp_ring->count) 579 ntu = 0; 580 581 if (frag == nr_frags) 582 break; 583 584 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 585 tx_buf = &xdp_ring->tx_buf[ntu]; 586 587 xdp = xsk_buff_get_frag(head); 588 size = skb_frag_size(&sinfo->frags[frag]); 589 frag++; 590 } 591 592 xdp_ring->next_to_use = ntu; 593 /* update last descriptor from a frame with EOP */ 594 tx_desc->cmd_type_offset_bsz |= 595 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 596 597 return ICE_XDP_TX; 598 599 busy: 600 xdp_ring->ring_stats->tx_stats.tx_busy++; 601 602 return ICE_XDP_CONSUMED; 603 } 604 605 /** 606 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 607 * @rx_ring: Rx ring 608 * @xdp: xdp_buff used as input to the XDP program 609 * @xdp_prog: XDP program to run 610 * @xdp_ring: ring to be used for XDP_TX action 611 * @xsk_pool: AF_XDP buffer pool pointer 612 * 613 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 614 */ 615 static int 616 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 617 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 618 struct xsk_buff_pool *xsk_pool) 619 { 620 int err, result = ICE_XDP_PASS; 621 u32 act; 622 623 act = bpf_prog_run_xdp(xdp_prog, xdp); 624 625 if (likely(act == XDP_REDIRECT)) { 626 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 627 if (!err) 628 return ICE_XDP_REDIR; 629 if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS) 630 result = ICE_XDP_EXIT; 631 else 632 result = ICE_XDP_CONSUMED; 633 goto out_failure; 634 } 635 636 switch (act) { 637 case XDP_PASS: 638 break; 639 case XDP_TX: 640 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool); 641 if (result == ICE_XDP_CONSUMED) 642 goto out_failure; 643 break; 644 case XDP_DROP: 645 result = ICE_XDP_CONSUMED; 646 break; 647 default: 648 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 649 fallthrough; 650 case XDP_ABORTED: 651 result = ICE_XDP_CONSUMED; 652 out_failure: 653 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 654 break; 655 } 656 657 return result; 658 } 659 660 /** 661 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 662 * @rx_ring: AF_XDP Rx ring 663 * @xsk_pool: AF_XDP buffer pool pointer 664 * @budget: NAPI budget 665 * 666 * Returns number of processed packets on success, remaining budget on failure. 667 */ 668 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, 669 struct xsk_buff_pool *xsk_pool, 670 int budget) 671 { 672 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 673 u32 ntc = rx_ring->next_to_clean; 674 u32 ntu = rx_ring->next_to_use; 675 struct xdp_buff *first = NULL; 676 struct ice_tx_ring *xdp_ring; 677 unsigned int xdp_xmit = 0; 678 struct bpf_prog *xdp_prog; 679 u32 cnt = rx_ring->count; 680 bool failure = false; 681 int entries_to_alloc; 682 683 /* ZC patch is enabled only when XDP program is set, 684 * so here it can not be NULL 685 */ 686 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 687 xdp_ring = rx_ring->xdp_ring; 688 689 if (ntc != rx_ring->first_desc) 690 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 691 692 while (likely(total_rx_packets < (unsigned int)budget)) { 693 union ice_32b_rx_flex_desc *rx_desc; 694 unsigned int size, xdp_res = 0; 695 struct xdp_buff *xdp; 696 struct sk_buff *skb; 697 u16 stat_err_bits; 698 u16 vlan_tci; 699 700 rx_desc = ICE_RX_DESC(rx_ring, ntc); 701 702 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 703 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 704 break; 705 706 /* This memory barrier is needed to keep us from reading 707 * any other fields out of the rx_desc until we have 708 * verified the descriptor has been written back. 709 */ 710 dma_rmb(); 711 712 if (unlikely(ntc == ntu)) 713 break; 714 715 xdp = *ice_xdp_buf(rx_ring, ntc); 716 717 size = le16_to_cpu(rx_desc->wb.pkt_len) & 718 ICE_RX_FLX_DESC_PKT_LEN_M; 719 720 xsk_buff_set_size(xdp, size); 721 xsk_buff_dma_sync_for_cpu(xdp); 722 723 if (!first) { 724 first = xdp; 725 } else if (likely(size) && !xsk_buff_add_frag(first, xdp)) { 726 xsk_buff_free(first); 727 break; 728 } 729 730 if (++ntc == cnt) 731 ntc = 0; 732 733 if (ice_is_non_eop(rx_ring, rx_desc)) 734 continue; 735 736 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring, 737 xsk_pool); 738 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 739 xdp_xmit |= xdp_res; 740 } else if (xdp_res == ICE_XDP_EXIT) { 741 failure = true; 742 first = NULL; 743 rx_ring->first_desc = ntc; 744 break; 745 } else if (xdp_res == ICE_XDP_CONSUMED) { 746 xsk_buff_free(first); 747 } else if (xdp_res == ICE_XDP_PASS) { 748 goto construct_skb; 749 } 750 751 total_rx_bytes += xdp_get_buff_len(first); 752 total_rx_packets++; 753 754 first = NULL; 755 rx_ring->first_desc = ntc; 756 continue; 757 758 construct_skb: 759 /* XDP_PASS path */ 760 skb = ice_construct_skb_zc(rx_ring, first); 761 if (!skb) { 762 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 763 break; 764 } 765 766 first = NULL; 767 rx_ring->first_desc = ntc; 768 769 if (eth_skb_pad(skb)) { 770 skb = NULL; 771 continue; 772 } 773 774 total_rx_bytes += skb->len; 775 total_rx_packets++; 776 777 vlan_tci = ice_get_vlan_tci(rx_desc); 778 779 ice_process_skb_fields(rx_ring, rx_desc, skb); 780 ice_receive_skb(rx_ring, skb, vlan_tci); 781 } 782 783 rx_ring->next_to_clean = ntc; 784 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 785 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 786 failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, 787 entries_to_alloc); 788 789 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 790 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 791 792 if (xsk_uses_need_wakeup(xsk_pool)) { 793 /* ntu could have changed when allocating entries above, so 794 * use rx_ring value instead of stack based one 795 */ 796 if (failure || ntc == rx_ring->next_to_use) 797 xsk_set_rx_need_wakeup(xsk_pool); 798 else 799 xsk_clear_rx_need_wakeup(xsk_pool); 800 801 return (int)total_rx_packets; 802 } 803 804 return failure ? budget : (int)total_rx_packets; 805 } 806 807 /** 808 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 809 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 810 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 811 * @desc: AF_XDP descriptor to pull the DMA address and length from 812 * @total_bytes: bytes accumulator that will be used for stats update 813 */ 814 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, 815 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc, 816 unsigned int *total_bytes) 817 { 818 struct ice_tx_desc *tx_desc; 819 dma_addr_t dma; 820 821 dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr); 822 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len); 823 824 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 825 tx_desc->buf_addr = cpu_to_le64(dma); 826 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 827 0, desc->len, 0); 828 829 *total_bytes += desc->len; 830 } 831 832 /** 833 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 834 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 835 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 836 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 837 * @total_bytes: bytes accumulator that will be used for stats update 838 */ 839 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, 840 struct xsk_buff_pool *xsk_pool, 841 struct xdp_desc *descs, 842 unsigned int *total_bytes) 843 { 844 u16 ntu = xdp_ring->next_to_use; 845 struct ice_tx_desc *tx_desc; 846 u32 i; 847 848 unrolled_count(PKTS_PER_BATCH) 849 for (i = 0; i < PKTS_PER_BATCH; i++) { 850 dma_addr_t dma; 851 852 dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr); 853 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len); 854 855 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 856 tx_desc->buf_addr = cpu_to_le64(dma); 857 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 858 0, descs[i].len, 0); 859 860 *total_bytes += descs[i].len; 861 } 862 863 xdp_ring->next_to_use = ntu; 864 } 865 866 /** 867 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 868 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 869 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 870 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 871 * @nb_pkts: count of packets to be send 872 * @total_bytes: bytes accumulator that will be used for stats update 873 */ 874 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, 875 struct xsk_buff_pool *xsk_pool, 876 struct xdp_desc *descs, u32 nb_pkts, 877 unsigned int *total_bytes) 878 { 879 u32 batched, leftover, i; 880 881 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 882 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 883 for (i = 0; i < batched; i += PKTS_PER_BATCH) 884 ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes); 885 for (; i < batched + leftover; i++) 886 ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes); 887 } 888 889 /** 890 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 891 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 892 * @xsk_pool: AF_XDP buffer pool pointer 893 * 894 * Returns true if there is no more work that needs to be done, false otherwise 895 */ 896 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool) 897 { 898 struct xdp_desc *descs = xsk_pool->tx_descs; 899 u32 nb_pkts, nb_processed = 0; 900 unsigned int total_bytes = 0; 901 int budget; 902 903 ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 904 905 if (!netif_carrier_ok(xdp_ring->vsi->netdev) || 906 !netif_running(xdp_ring->vsi->netdev)) 907 return true; 908 909 budget = ICE_DESC_UNUSED(xdp_ring); 910 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 911 912 nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget); 913 if (!nb_pkts) 914 return true; 915 916 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 917 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 918 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed, 919 &total_bytes); 920 xdp_ring->next_to_use = 0; 921 } 922 923 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed], 924 nb_pkts - nb_processed, &total_bytes); 925 926 ice_set_rs_bit(xdp_ring); 927 ice_xdp_ring_update_tail(xdp_ring); 928 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 929 930 if (xsk_uses_need_wakeup(xsk_pool)) 931 xsk_set_tx_need_wakeup(xsk_pool); 932 933 return nb_pkts < budget; 934 } 935 936 /** 937 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 938 * @netdev: net_device 939 * @queue_id: queue to wake up 940 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 941 * 942 * Returns negative on error, zero otherwise. 943 */ 944 int 945 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 946 u32 __always_unused flags) 947 { 948 struct ice_netdev_priv *np = netdev_priv(netdev); 949 struct ice_q_vector *q_vector; 950 struct ice_vsi *vsi = np->vsi; 951 struct ice_tx_ring *ring; 952 953 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev)) 954 return -ENETDOWN; 955 956 if (!ice_is_xdp_ena_vsi(vsi)) 957 return -EINVAL; 958 959 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 960 return -EINVAL; 961 962 ring = vsi->rx_rings[queue_id]->xdp_ring; 963 964 if (!READ_ONCE(ring->xsk_pool)) 965 return -EINVAL; 966 967 /* The idea here is that if NAPI is running, mark a miss, so 968 * it will run again. If not, trigger an interrupt and 969 * schedule the NAPI from interrupt context. If NAPI would be 970 * scheduled here, the interrupt affinity would not be 971 * honored. 972 */ 973 q_vector = ring->q_vector; 974 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 975 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 976 977 return 0; 978 } 979 980 /** 981 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 982 * @vsi: VSI to be checked 983 * 984 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 985 */ 986 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 987 { 988 int i; 989 990 ice_for_each_rxq(vsi, i) { 991 if (xsk_get_pool_from_qid(vsi->netdev, i)) 992 return true; 993 } 994 995 return false; 996 } 997 998 /** 999 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1000 * @rx_ring: ring to be cleaned 1001 */ 1002 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1003 { 1004 u16 ntc = rx_ring->next_to_clean; 1005 u16 ntu = rx_ring->next_to_use; 1006 1007 while (ntc != ntu) { 1008 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1009 1010 xsk_buff_free(xdp); 1011 ntc++; 1012 if (ntc >= rx_ring->count) 1013 ntc = 0; 1014 } 1015 } 1016 1017 /** 1018 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1019 * @xdp_ring: XDP_Tx ring 1020 */ 1021 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1022 { 1023 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1024 u32 xsk_frames = 0; 1025 1026 while (ntc != ntu) { 1027 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1028 1029 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1030 tx_buf->type = ICE_TX_BUF_EMPTY; 1031 xsk_buff_free(tx_buf->xdp); 1032 } else { 1033 xsk_frames++; 1034 } 1035 1036 ntc++; 1037 if (ntc >= xdp_ring->count) 1038 ntc = 0; 1039 } 1040 1041 if (xsk_frames) 1042 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1043 } 1044