1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/unroll.h> 6 #include <net/xdp_sock_drv.h> 7 #include <net/xdp.h> 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_type.h" 11 #include "ice_xsk.h" 12 #include "ice_txrx.h" 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 16 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 17 { 18 return &rx_ring->xdp_buf[idx]; 19 } 20 21 /** 22 * ice_qp_reset_stats - Resets all stats for rings of given index 23 * @vsi: VSI that contains rings of interest 24 * @q_idx: ring index in array 25 */ 26 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 27 { 28 struct ice_vsi_stats *vsi_stat; 29 struct ice_pf *pf; 30 31 pf = vsi->back; 32 if (!pf->vsi_stats) 33 return; 34 35 vsi_stat = pf->vsi_stats[vsi->idx]; 36 if (!vsi_stat) 37 return; 38 39 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 40 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 41 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 42 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 43 if (vsi->xdp_rings) 44 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 45 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 46 } 47 48 /** 49 * ice_qp_clean_rings - Cleans all the rings of a given index 50 * @vsi: VSI that contains rings of interest 51 * @q_idx: ring index in array 52 */ 53 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 54 { 55 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 56 if (vsi->xdp_rings) 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 59 } 60 61 /** 62 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 63 * @vsi: VSI that has netdev 64 * @q_vector: q_vector that has NAPI context 65 * @enable: true for enable, false for disable 66 */ 67 static void 68 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 69 bool enable) 70 { 71 if (!vsi->netdev || !q_vector) 72 return; 73 74 if (enable) 75 napi_enable(&q_vector->napi); 76 else 77 napi_disable(&q_vector->napi); 78 } 79 80 /** 81 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 82 * @vsi: the VSI that contains queue vector being un-configured 83 * @rx_ring: Rx ring that will have its IRQ disabled 84 * @q_vector: queue vector 85 */ 86 static void 87 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 88 struct ice_q_vector *q_vector) 89 { 90 struct ice_pf *pf = vsi->back; 91 struct ice_hw *hw = &pf->hw; 92 u16 reg; 93 u32 val; 94 95 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 96 * here only QINT_RQCTL 97 */ 98 reg = rx_ring->reg_idx; 99 val = rd32(hw, QINT_RQCTL(reg)); 100 val &= ~QINT_RQCTL_CAUSE_ENA_M; 101 wr32(hw, QINT_RQCTL(reg), val); 102 103 if (q_vector) { 104 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 105 ice_flush(hw); 106 synchronize_irq(q_vector->irq.virq); 107 } 108 } 109 110 /** 111 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 112 * @vsi: the VSI that contains queue vector 113 * @q_vector: queue vector 114 * @qid: queue index 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 int q, _qid = qid; 123 124 ice_cfg_itr(hw, q_vector); 125 126 for (q = 0; q < q_vector->num_ring_tx; q++) { 127 ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx); 128 _qid++; 129 } 130 131 _qid = qid; 132 133 for (q = 0; q < q_vector->num_ring_rx; q++) { 134 ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx); 135 _qid++; 136 } 137 138 ice_flush(hw); 139 } 140 141 /** 142 * ice_qvec_ena_irq - Enable IRQ for given queue vector 143 * @vsi: the VSI that contains queue vector 144 * @q_vector: queue vector 145 */ 146 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 147 { 148 struct ice_pf *pf = vsi->back; 149 struct ice_hw *hw = &pf->hw; 150 151 ice_irq_dynamic_ena(hw, vsi, q_vector); 152 153 ice_flush(hw); 154 } 155 156 /** 157 * ice_qp_dis - Disables a queue pair 158 * @vsi: VSI of interest 159 * @q_idx: ring index in array 160 * 161 * Returns 0 on success, negative on failure. 162 */ 163 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 164 { 165 struct ice_txq_meta txq_meta = { }; 166 struct ice_q_vector *q_vector; 167 struct ice_tx_ring *tx_ring; 168 struct ice_rx_ring *rx_ring; 169 int fail = 0; 170 int err; 171 172 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 173 return -EINVAL; 174 175 tx_ring = vsi->tx_rings[q_idx]; 176 rx_ring = vsi->rx_rings[q_idx]; 177 q_vector = rx_ring->q_vector; 178 179 synchronize_net(); 180 netif_carrier_off(vsi->netdev); 181 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 182 183 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 184 ice_qvec_toggle_napi(vsi, q_vector, false); 185 186 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 187 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 188 if (!fail) 189 fail = err; 190 if (vsi->xdp_rings) { 191 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 192 193 memset(&txq_meta, 0, sizeof(txq_meta)); 194 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 195 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 196 &txq_meta); 197 if (!fail) 198 fail = err; 199 } 200 201 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false); 202 ice_qp_clean_rings(vsi, q_idx); 203 ice_qp_reset_stats(vsi, q_idx); 204 205 return fail; 206 } 207 208 /** 209 * ice_qp_ena - Enables a queue pair 210 * @vsi: VSI of interest 211 * @q_idx: ring index in array 212 * 213 * Returns 0 on success, negative on failure. 214 */ 215 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 216 { 217 struct ice_q_vector *q_vector; 218 int fail = 0; 219 bool link_up; 220 int err; 221 222 err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx); 223 if (!fail) 224 fail = err; 225 226 if (ice_is_xdp_ena_vsi(vsi)) { 227 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 228 229 err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx); 230 if (!fail) 231 fail = err; 232 ice_set_ring_xdp(xdp_ring); 233 ice_tx_xsk_pool(vsi, q_idx); 234 } 235 236 err = ice_vsi_cfg_single_rxq(vsi, q_idx); 237 if (!fail) 238 fail = err; 239 240 q_vector = vsi->rx_rings[q_idx]->q_vector; 241 ice_qvec_cfg_msix(vsi, q_vector, q_idx); 242 243 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 244 if (!fail) 245 fail = err; 246 247 ice_qvec_toggle_napi(vsi, q_vector, true); 248 ice_qvec_ena_irq(vsi, q_vector); 249 250 /* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */ 251 synchronize_net(); 252 ice_get_link_status(vsi->port_info, &link_up); 253 if (link_up) { 254 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 255 netif_carrier_on(vsi->netdev); 256 } 257 258 return fail; 259 } 260 261 /** 262 * ice_xsk_pool_disable - disable a buffer pool region 263 * @vsi: Current VSI 264 * @qid: queue ID 265 * 266 * Returns 0 on success, negative on failure 267 */ 268 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 269 { 270 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 271 272 if (!pool) 273 return -EINVAL; 274 275 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 276 277 return 0; 278 } 279 280 /** 281 * ice_xsk_pool_enable - enable a buffer pool region 282 * @vsi: Current VSI 283 * @pool: pointer to a requested buffer pool region 284 * @qid: queue ID 285 * 286 * Returns 0 on success, negative on failure 287 */ 288 static int 289 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 290 { 291 int err; 292 293 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) 294 return -EINVAL; 295 296 if (qid >= vsi->netdev->real_num_rx_queues || 297 qid >= vsi->netdev->real_num_tx_queues) 298 return -EINVAL; 299 300 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 301 ICE_RX_DMA_ATTR); 302 if (err) 303 return err; 304 305 return 0; 306 } 307 308 /** 309 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 310 * @rx_ring: Rx ring 311 * @pool_present: is pool for XSK present 312 * 313 * Try allocating memory and return ENOMEM, if failed to allocate. 314 * If allocation was successful, substitute buffer with allocated one. 315 * Returns 0 on success, negative on failure 316 */ 317 static int 318 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 319 { 320 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 321 sizeof(*rx_ring->rx_buf); 322 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 323 324 if (!sw_ring) 325 return -ENOMEM; 326 327 if (pool_present) { 328 kfree(rx_ring->rx_buf); 329 rx_ring->rx_buf = NULL; 330 rx_ring->xdp_buf = sw_ring; 331 } else { 332 kfree(rx_ring->xdp_buf); 333 rx_ring->xdp_buf = NULL; 334 rx_ring->rx_buf = sw_ring; 335 } 336 337 return 0; 338 } 339 340 /** 341 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 342 * @vsi: Current VSI 343 * @zc: is zero copy set 344 * 345 * Reallocate buffer for rx_rings that might be used by XSK. 346 * XDP requires more memory, than rx_buf provides. 347 * Returns 0 on success, negative on failure 348 */ 349 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 350 { 351 struct ice_rx_ring *rx_ring; 352 uint i; 353 354 ice_for_each_rxq(vsi, i) { 355 rx_ring = vsi->rx_rings[i]; 356 if (!rx_ring->xsk_pool) 357 continue; 358 359 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 360 return -ENOMEM; 361 } 362 363 return 0; 364 } 365 366 /** 367 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 368 * @vsi: Current VSI 369 * @pool: buffer pool to enable/associate to a ring, NULL to disable 370 * @qid: queue ID 371 * 372 * Returns 0 on success, negative on failure 373 */ 374 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 375 { 376 bool if_running, pool_present = !!pool; 377 int ret = 0, pool_failure = 0; 378 379 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 380 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 381 pool_failure = -EINVAL; 382 goto failure; 383 } 384 385 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) && 386 ice_is_xdp_ena_vsi(vsi); 387 388 if (if_running) { 389 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 390 391 ret = ice_qp_dis(vsi, qid); 392 if (ret) { 393 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 394 goto xsk_pool_if_up; 395 } 396 397 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 398 if (ret) 399 goto xsk_pool_if_up; 400 } 401 402 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 403 ice_xsk_pool_disable(vsi, qid); 404 405 xsk_pool_if_up: 406 if (if_running) { 407 ret = ice_qp_ena(vsi, qid); 408 if (!ret && pool_present) 409 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 410 else if (ret) 411 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 412 } 413 414 failure: 415 if (pool_failure) { 416 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 417 pool_present ? "en" : "dis", pool_failure); 418 return pool_failure; 419 } 420 421 return ret; 422 } 423 424 /** 425 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 426 * @pool: XSK Buffer pool to pull the buffers from 427 * @xdp: SW ring of xdp_buff that will hold the buffers 428 * @rx_desc: Pointer to Rx descriptors that will be filled 429 * @count: The number of buffers to allocate 430 * 431 * This function allocates a number of Rx buffers from the fill ring 432 * or the internal recycle mechanism and places them on the Rx ring. 433 * 434 * Note that ring wrap should be handled by caller of this function. 435 * 436 * Returns the amount of allocated Rx descriptors 437 */ 438 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 439 union ice_32b_rx_flex_desc *rx_desc, u16 count) 440 { 441 dma_addr_t dma; 442 u16 buffs; 443 int i; 444 445 buffs = xsk_buff_alloc_batch(pool, xdp, count); 446 for (i = 0; i < buffs; i++) { 447 dma = xsk_buff_xdp_get_dma(*xdp); 448 rx_desc->read.pkt_addr = cpu_to_le64(dma); 449 rx_desc->wb.status_error0 = 0; 450 451 /* Put private info that changes on a per-packet basis 452 * into xdp_buff_xsk->cb. 453 */ 454 ice_xdp_meta_set_desc(*xdp, rx_desc); 455 456 rx_desc++; 457 xdp++; 458 } 459 460 return buffs; 461 } 462 463 /** 464 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 465 * @rx_ring: Rx ring 466 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 467 * @count: The number of buffers to allocate 468 * 469 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 470 * for case where space from next_to_use up to the end of ring is less 471 * than @count. Finally do a tail bump. 472 * 473 * Returns true if all allocations were successful, false if any fail. 474 */ 475 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 476 struct xsk_buff_pool *xsk_pool, u16 count) 477 { 478 u32 nb_buffs_extra = 0, nb_buffs = 0; 479 union ice_32b_rx_flex_desc *rx_desc; 480 u16 ntu = rx_ring->next_to_use; 481 u16 total_count = count; 482 struct xdp_buff **xdp; 483 484 rx_desc = ICE_RX_DESC(rx_ring, ntu); 485 xdp = ice_xdp_buf(rx_ring, ntu); 486 487 if (ntu + count >= rx_ring->count) { 488 nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, 489 rx_ring->count - ntu); 490 if (nb_buffs_extra != rx_ring->count - ntu) { 491 ntu += nb_buffs_extra; 492 goto exit; 493 } 494 rx_desc = ICE_RX_DESC(rx_ring, 0); 495 xdp = ice_xdp_buf(rx_ring, 0); 496 ntu = 0; 497 count -= nb_buffs_extra; 498 ice_release_rx_desc(rx_ring, 0); 499 } 500 501 nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count); 502 503 ntu += nb_buffs; 504 if (ntu == rx_ring->count) 505 ntu = 0; 506 507 exit: 508 if (rx_ring->next_to_use != ntu) 509 ice_release_rx_desc(rx_ring, ntu); 510 511 return total_count == (nb_buffs_extra + nb_buffs); 512 } 513 514 /** 515 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 516 * @rx_ring: Rx ring 517 * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW 518 * @count: The number of buffers to allocate 519 * 520 * Wrapper for internal allocation routine; figure out how many tail 521 * bumps should take place based on the given threshold 522 * 523 * Returns true if all calls to internal alloc routine succeeded 524 */ 525 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, 526 struct xsk_buff_pool *xsk_pool, u16 count) 527 { 528 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 529 u16 leftover, i, tail_bumps; 530 531 tail_bumps = count / rx_thresh; 532 leftover = count - (tail_bumps * rx_thresh); 533 534 for (i = 0; i < tail_bumps; i++) 535 if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh)) 536 return false; 537 return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover); 538 } 539 540 /** 541 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 542 * @rx_ring: Rx ring 543 * @xdp: Pointer to XDP buffer 544 * 545 * This function allocates a new skb from a zero-copy Rx buffer. 546 * 547 * Returns the skb on success, NULL on failure. 548 */ 549 static struct sk_buff * 550 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 551 { 552 unsigned int totalsize = xdp->data_end - xdp->data_meta; 553 unsigned int metasize = xdp->data - xdp->data_meta; 554 struct skb_shared_info *sinfo = NULL; 555 struct sk_buff *skb; 556 u32 nr_frags = 0; 557 558 if (unlikely(xdp_buff_has_frags(xdp))) { 559 sinfo = xdp_get_shared_info_from_buff(xdp); 560 nr_frags = sinfo->nr_frags; 561 } 562 net_prefetch(xdp->data_meta); 563 564 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize); 565 if (unlikely(!skb)) 566 return NULL; 567 568 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 569 ALIGN(totalsize, sizeof(long))); 570 571 if (metasize) { 572 skb_metadata_set(skb, metasize); 573 __skb_pull(skb, metasize); 574 } 575 576 if (likely(!xdp_buff_has_frags(xdp))) 577 goto out; 578 579 for (int i = 0; i < nr_frags; i++) { 580 struct skb_shared_info *skinfo = skb_shinfo(skb); 581 skb_frag_t *frag = &sinfo->frags[i]; 582 struct page *page; 583 void *addr; 584 585 page = dev_alloc_page(); 586 if (!page) { 587 dev_kfree_skb(skb); 588 return NULL; 589 } 590 addr = page_to_virt(page); 591 592 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 593 594 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 595 addr, 0, skb_frag_size(frag)); 596 } 597 598 out: 599 xsk_buff_free(xdp); 600 return skb; 601 } 602 603 /** 604 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 605 * @xdp_ring: XDP Tx ring 606 * @xsk_pool: AF_XDP buffer pool pointer 607 */ 608 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, 609 struct xsk_buff_pool *xsk_pool) 610 { 611 u16 ntc = xdp_ring->next_to_clean; 612 struct ice_tx_desc *tx_desc; 613 u16 cnt = xdp_ring->count; 614 struct ice_tx_buf *tx_buf; 615 u16 completed_frames = 0; 616 u16 xsk_frames = 0; 617 u16 last_rs; 618 int i; 619 620 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 621 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 622 if (tx_desc->cmd_type_offset_bsz & 623 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 624 if (last_rs >= ntc) 625 completed_frames = last_rs - ntc + 1; 626 else 627 completed_frames = last_rs + cnt - ntc + 1; 628 } 629 630 if (!completed_frames) 631 return 0; 632 633 if (likely(!xdp_ring->xdp_tx_active)) { 634 xsk_frames = completed_frames; 635 goto skip; 636 } 637 638 ntc = xdp_ring->next_to_clean; 639 for (i = 0; i < completed_frames; i++) { 640 tx_buf = &xdp_ring->tx_buf[ntc]; 641 642 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 643 tx_buf->type = ICE_TX_BUF_EMPTY; 644 xsk_buff_free(tx_buf->xdp); 645 xdp_ring->xdp_tx_active--; 646 } else { 647 xsk_frames++; 648 } 649 650 ntc++; 651 if (ntc >= xdp_ring->count) 652 ntc = 0; 653 } 654 skip: 655 tx_desc->cmd_type_offset_bsz = 0; 656 xdp_ring->next_to_clean += completed_frames; 657 if (xdp_ring->next_to_clean >= cnt) 658 xdp_ring->next_to_clean -= cnt; 659 if (xsk_frames) 660 xsk_tx_completed(xsk_pool, xsk_frames); 661 662 return completed_frames; 663 } 664 665 /** 666 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 667 * @xdp: XDP buffer to xmit 668 * @xdp_ring: XDP ring to produce descriptor onto 669 * @xsk_pool: AF_XDP buffer pool pointer 670 * 671 * note that this function works directly on xdp_buff, no need to convert 672 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 673 * side will be able to xsk_buff_free() it. 674 * 675 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 676 * was not enough space on XDP ring 677 */ 678 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 679 struct ice_tx_ring *xdp_ring, 680 struct xsk_buff_pool *xsk_pool) 681 { 682 struct skb_shared_info *sinfo = NULL; 683 u32 size = xdp->data_end - xdp->data; 684 u32 ntu = xdp_ring->next_to_use; 685 struct ice_tx_desc *tx_desc; 686 struct ice_tx_buf *tx_buf; 687 struct xdp_buff *head; 688 u32 nr_frags = 0; 689 u32 free_space; 690 u32 frag = 0; 691 692 free_space = ICE_DESC_UNUSED(xdp_ring); 693 if (free_space < ICE_RING_QUARTER(xdp_ring)) 694 free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 695 696 if (unlikely(!free_space)) 697 goto busy; 698 699 if (unlikely(xdp_buff_has_frags(xdp))) { 700 sinfo = xdp_get_shared_info_from_buff(xdp); 701 nr_frags = sinfo->nr_frags; 702 if (free_space < nr_frags + 1) 703 goto busy; 704 } 705 706 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 707 tx_buf = &xdp_ring->tx_buf[ntu]; 708 head = xdp; 709 710 for (;;) { 711 dma_addr_t dma; 712 713 dma = xsk_buff_xdp_get_dma(xdp); 714 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size); 715 716 tx_buf->xdp = xdp; 717 tx_buf->type = ICE_TX_BUF_XSK_TX; 718 tx_desc->buf_addr = cpu_to_le64(dma); 719 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 720 /* account for each xdp_buff from xsk_buff_pool */ 721 xdp_ring->xdp_tx_active++; 722 723 if (++ntu == xdp_ring->count) 724 ntu = 0; 725 726 if (frag == nr_frags) 727 break; 728 729 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 730 tx_buf = &xdp_ring->tx_buf[ntu]; 731 732 xdp = xsk_buff_get_frag(head); 733 size = skb_frag_size(&sinfo->frags[frag]); 734 frag++; 735 } 736 737 xdp_ring->next_to_use = ntu; 738 /* update last descriptor from a frame with EOP */ 739 tx_desc->cmd_type_offset_bsz |= 740 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 741 742 return ICE_XDP_TX; 743 744 busy: 745 xdp_ring->ring_stats->tx_stats.tx_busy++; 746 747 return ICE_XDP_CONSUMED; 748 } 749 750 /** 751 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 752 * @rx_ring: Rx ring 753 * @xdp: xdp_buff used as input to the XDP program 754 * @xdp_prog: XDP program to run 755 * @xdp_ring: ring to be used for XDP_TX action 756 * @xsk_pool: AF_XDP buffer pool pointer 757 * 758 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 759 */ 760 static int 761 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 762 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 763 struct xsk_buff_pool *xsk_pool) 764 { 765 int err, result = ICE_XDP_PASS; 766 u32 act; 767 768 act = bpf_prog_run_xdp(xdp_prog, xdp); 769 770 if (likely(act == XDP_REDIRECT)) { 771 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 772 if (!err) 773 return ICE_XDP_REDIR; 774 if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS) 775 result = ICE_XDP_EXIT; 776 else 777 result = ICE_XDP_CONSUMED; 778 goto out_failure; 779 } 780 781 switch (act) { 782 case XDP_PASS: 783 break; 784 case XDP_TX: 785 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool); 786 if (result == ICE_XDP_CONSUMED) 787 goto out_failure; 788 break; 789 case XDP_DROP: 790 result = ICE_XDP_CONSUMED; 791 break; 792 default: 793 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 794 fallthrough; 795 case XDP_ABORTED: 796 result = ICE_XDP_CONSUMED; 797 out_failure: 798 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 799 break; 800 } 801 802 return result; 803 } 804 805 /** 806 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 807 * @rx_ring: AF_XDP Rx ring 808 * @xsk_pool: AF_XDP buffer pool pointer 809 * @budget: NAPI budget 810 * 811 * Returns number of processed packets on success, remaining budget on failure. 812 */ 813 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, 814 struct xsk_buff_pool *xsk_pool, 815 int budget) 816 { 817 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 818 u32 ntc = rx_ring->next_to_clean; 819 u32 ntu = rx_ring->next_to_use; 820 struct xdp_buff *first = NULL; 821 struct ice_tx_ring *xdp_ring; 822 unsigned int xdp_xmit = 0; 823 struct bpf_prog *xdp_prog; 824 u32 cnt = rx_ring->count; 825 bool failure = false; 826 int entries_to_alloc; 827 828 /* ZC patch is enabled only when XDP program is set, 829 * so here it can not be NULL 830 */ 831 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 832 xdp_ring = rx_ring->xdp_ring; 833 834 if (ntc != rx_ring->first_desc) 835 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 836 837 while (likely(total_rx_packets < (unsigned int)budget)) { 838 union ice_32b_rx_flex_desc *rx_desc; 839 unsigned int size, xdp_res = 0; 840 struct xdp_buff *xdp; 841 struct sk_buff *skb; 842 u16 stat_err_bits; 843 u16 vlan_tci; 844 845 rx_desc = ICE_RX_DESC(rx_ring, ntc); 846 847 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 848 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 849 break; 850 851 /* This memory barrier is needed to keep us from reading 852 * any other fields out of the rx_desc until we have 853 * verified the descriptor has been written back. 854 */ 855 dma_rmb(); 856 857 if (unlikely(ntc == ntu)) 858 break; 859 860 xdp = *ice_xdp_buf(rx_ring, ntc); 861 862 size = le16_to_cpu(rx_desc->wb.pkt_len) & 863 ICE_RX_FLX_DESC_PKT_LEN_M; 864 865 xsk_buff_set_size(xdp, size); 866 xsk_buff_dma_sync_for_cpu(xdp); 867 868 if (!first) { 869 first = xdp; 870 } else if (likely(size) && !xsk_buff_add_frag(first, xdp)) { 871 xsk_buff_free(first); 872 break; 873 } 874 875 if (++ntc == cnt) 876 ntc = 0; 877 878 if (ice_is_non_eop(rx_ring, rx_desc)) 879 continue; 880 881 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring, 882 xsk_pool); 883 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 884 xdp_xmit |= xdp_res; 885 } else if (xdp_res == ICE_XDP_EXIT) { 886 failure = true; 887 first = NULL; 888 rx_ring->first_desc = ntc; 889 break; 890 } else if (xdp_res == ICE_XDP_CONSUMED) { 891 xsk_buff_free(first); 892 } else if (xdp_res == ICE_XDP_PASS) { 893 goto construct_skb; 894 } 895 896 total_rx_bytes += xdp_get_buff_len(first); 897 total_rx_packets++; 898 899 first = NULL; 900 rx_ring->first_desc = ntc; 901 continue; 902 903 construct_skb: 904 /* XDP_PASS path */ 905 skb = ice_construct_skb_zc(rx_ring, first); 906 if (!skb) { 907 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 908 break; 909 } 910 911 first = NULL; 912 rx_ring->first_desc = ntc; 913 914 if (eth_skb_pad(skb)) { 915 skb = NULL; 916 continue; 917 } 918 919 total_rx_bytes += skb->len; 920 total_rx_packets++; 921 922 vlan_tci = ice_get_vlan_tci(rx_desc); 923 924 ice_process_skb_fields(rx_ring, rx_desc, skb); 925 ice_receive_skb(rx_ring, skb, vlan_tci); 926 } 927 928 rx_ring->next_to_clean = ntc; 929 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 930 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 931 failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, 932 entries_to_alloc); 933 934 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 935 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 936 937 if (xsk_uses_need_wakeup(xsk_pool)) { 938 /* ntu could have changed when allocating entries above, so 939 * use rx_ring value instead of stack based one 940 */ 941 if (failure || ntc == rx_ring->next_to_use) 942 xsk_set_rx_need_wakeup(xsk_pool); 943 else 944 xsk_clear_rx_need_wakeup(xsk_pool); 945 946 return (int)total_rx_packets; 947 } 948 949 return failure ? budget : (int)total_rx_packets; 950 } 951 952 /** 953 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 954 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 955 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 956 * @desc: AF_XDP descriptor to pull the DMA address and length from 957 * @total_bytes: bytes accumulator that will be used for stats update 958 */ 959 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, 960 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc, 961 unsigned int *total_bytes) 962 { 963 struct ice_tx_desc *tx_desc; 964 dma_addr_t dma; 965 966 dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr); 967 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len); 968 969 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 970 tx_desc->buf_addr = cpu_to_le64(dma); 971 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 972 0, desc->len, 0); 973 974 *total_bytes += desc->len; 975 } 976 977 /** 978 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 979 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 980 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 981 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 982 * @total_bytes: bytes accumulator that will be used for stats update 983 */ 984 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, 985 struct xsk_buff_pool *xsk_pool, 986 struct xdp_desc *descs, 987 unsigned int *total_bytes) 988 { 989 u16 ntu = xdp_ring->next_to_use; 990 struct ice_tx_desc *tx_desc; 991 u32 i; 992 993 unrolled_count(PKTS_PER_BATCH) 994 for (i = 0; i < PKTS_PER_BATCH; i++) { 995 dma_addr_t dma; 996 997 dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr); 998 xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len); 999 1000 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1001 tx_desc->buf_addr = cpu_to_le64(dma); 1002 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1003 0, descs[i].len, 0); 1004 1005 *total_bytes += descs[i].len; 1006 } 1007 1008 xdp_ring->next_to_use = ntu; 1009 } 1010 1011 /** 1012 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1013 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1014 * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW 1015 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1016 * @nb_pkts: count of packets to be send 1017 * @total_bytes: bytes accumulator that will be used for stats update 1018 */ 1019 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, 1020 struct xsk_buff_pool *xsk_pool, 1021 struct xdp_desc *descs, u32 nb_pkts, 1022 unsigned int *total_bytes) 1023 { 1024 u32 batched, leftover, i; 1025 1026 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1027 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1028 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1029 ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes); 1030 for (; i < batched + leftover; i++) 1031 ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes); 1032 } 1033 1034 /** 1035 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1036 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1037 * @xsk_pool: AF_XDP buffer pool pointer 1038 * 1039 * Returns true if there is no more work that needs to be done, false otherwise 1040 */ 1041 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool) 1042 { 1043 struct xdp_desc *descs = xsk_pool->tx_descs; 1044 u32 nb_pkts, nb_processed = 0; 1045 unsigned int total_bytes = 0; 1046 int budget; 1047 1048 ice_clean_xdp_irq_zc(xdp_ring, xsk_pool); 1049 1050 if (!netif_carrier_ok(xdp_ring->vsi->netdev) || 1051 !netif_running(xdp_ring->vsi->netdev)) 1052 return true; 1053 1054 budget = ICE_DESC_UNUSED(xdp_ring); 1055 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1056 1057 nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget); 1058 if (!nb_pkts) 1059 return true; 1060 1061 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1062 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1063 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed, 1064 &total_bytes); 1065 xdp_ring->next_to_use = 0; 1066 } 1067 1068 ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed], 1069 nb_pkts - nb_processed, &total_bytes); 1070 1071 ice_set_rs_bit(xdp_ring); 1072 ice_xdp_ring_update_tail(xdp_ring); 1073 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1074 1075 if (xsk_uses_need_wakeup(xsk_pool)) 1076 xsk_set_tx_need_wakeup(xsk_pool); 1077 1078 return nb_pkts < budget; 1079 } 1080 1081 /** 1082 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1083 * @netdev: net_device 1084 * @queue_id: queue to wake up 1085 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1086 * 1087 * Returns negative on error, zero otherwise. 1088 */ 1089 int 1090 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1091 u32 __always_unused flags) 1092 { 1093 struct ice_netdev_priv *np = netdev_priv(netdev); 1094 struct ice_q_vector *q_vector; 1095 struct ice_vsi *vsi = np->vsi; 1096 struct ice_tx_ring *ring; 1097 1098 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev)) 1099 return -ENETDOWN; 1100 1101 if (!ice_is_xdp_ena_vsi(vsi)) 1102 return -EINVAL; 1103 1104 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1105 return -EINVAL; 1106 1107 ring = vsi->rx_rings[queue_id]->xdp_ring; 1108 1109 if (!READ_ONCE(ring->xsk_pool)) 1110 return -EINVAL; 1111 1112 /* The idea here is that if NAPI is running, mark a miss, so 1113 * it will run again. If not, trigger an interrupt and 1114 * schedule the NAPI from interrupt context. If NAPI would be 1115 * scheduled here, the interrupt affinity would not be 1116 * honored. 1117 */ 1118 q_vector = ring->q_vector; 1119 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1120 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1127 * @vsi: VSI to be checked 1128 * 1129 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1130 */ 1131 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1132 { 1133 int i; 1134 1135 ice_for_each_rxq(vsi, i) { 1136 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1137 return true; 1138 } 1139 1140 return false; 1141 } 1142 1143 /** 1144 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1145 * @rx_ring: ring to be cleaned 1146 */ 1147 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1148 { 1149 u16 ntc = rx_ring->next_to_clean; 1150 u16 ntu = rx_ring->next_to_use; 1151 1152 while (ntc != ntu) { 1153 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1154 1155 xsk_buff_free(xdp); 1156 ntc++; 1157 if (ntc >= rx_ring->count) 1158 ntc = 0; 1159 } 1160 } 1161 1162 /** 1163 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1164 * @xdp_ring: XDP_Tx ring 1165 */ 1166 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1167 { 1168 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1169 u32 xsk_frames = 0; 1170 1171 while (ntc != ntu) { 1172 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1173 1174 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1175 tx_buf->type = ICE_TX_BUF_EMPTY; 1176 xsk_buff_free(tx_buf->xdp); 1177 } else { 1178 xsk_frames++; 1179 } 1180 1181 ntc++; 1182 if (ntc >= xdp_ring->count) 1183 ntc = 0; 1184 } 1185 1186 if (xsk_frames) 1187 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1188 } 1189