1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 u16 reg; 94 u32 val; 95 96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 97 * here only QINT_RQCTL 98 */ 99 reg = rx_ring->reg_idx; 100 val = rd32(hw, QINT_RQCTL(reg)); 101 val &= ~QINT_RQCTL_CAUSE_ENA_M; 102 wr32(hw, QINT_RQCTL(reg), val); 103 104 if (q_vector) { 105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 106 ice_flush(hw); 107 synchronize_irq(q_vector->irq.virq); 108 } 109 } 110 111 /** 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 113 * @vsi: the VSI that contains queue vector 114 * @q_vector: queue vector 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 struct ice_tx_ring *tx_ring; 123 struct ice_rx_ring *rx_ring; 124 125 ice_cfg_itr(hw, q_vector); 126 127 ice_for_each_tx_ring(tx_ring, q_vector->tx) 128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 129 q_vector->tx.itr_idx); 130 131 ice_for_each_rx_ring(rx_ring, q_vector->rx) 132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 133 q_vector->rx.itr_idx); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector 140 * @vsi: the VSI that contains queue vector 141 * @q_vector: queue vector 142 */ 143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 144 { 145 struct ice_pf *pf = vsi->back; 146 struct ice_hw *hw = &pf->hw; 147 148 ice_irq_dynamic_ena(hw, vsi, q_vector); 149 150 ice_flush(hw); 151 } 152 153 /** 154 * ice_qp_dis - Disables a queue pair 155 * @vsi: VSI of interest 156 * @q_idx: ring index in array 157 * 158 * Returns 0 on success, negative on failure. 159 */ 160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 161 { 162 struct ice_txq_meta txq_meta = { }; 163 struct ice_q_vector *q_vector; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 int timeout = 50; 167 int err; 168 169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 170 return -EINVAL; 171 172 tx_ring = vsi->tx_rings[q_idx]; 173 rx_ring = vsi->rx_rings[q_idx]; 174 q_vector = rx_ring->q_vector; 175 176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 177 timeout--; 178 if (!timeout) 179 return -EBUSY; 180 usleep_range(1000, 2000); 181 } 182 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 183 184 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 186 if (err) 187 return err; 188 if (ice_is_xdp_ena_vsi(vsi)) { 189 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 190 191 memset(&txq_meta, 0, sizeof(txq_meta)); 192 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 193 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 194 &txq_meta); 195 if (err) 196 return err; 197 } 198 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 199 200 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 201 if (err) 202 return err; 203 204 ice_qvec_toggle_napi(vsi, q_vector, false); 205 ice_qp_clean_rings(vsi, q_idx); 206 ice_qp_reset_stats(vsi, q_idx); 207 208 return 0; 209 } 210 211 /** 212 * ice_qp_ena - Enables a queue pair 213 * @vsi: VSI of interest 214 * @q_idx: ring index in array 215 * 216 * Returns 0 on success, negative on failure. 217 */ 218 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 219 { 220 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 221 u16 size = __struct_size(qg_buf); 222 struct ice_q_vector *q_vector; 223 struct ice_tx_ring *tx_ring; 224 struct ice_rx_ring *rx_ring; 225 int err; 226 227 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 228 return -EINVAL; 229 230 qg_buf->num_txqs = 1; 231 232 tx_ring = vsi->tx_rings[q_idx]; 233 rx_ring = vsi->rx_rings[q_idx]; 234 q_vector = rx_ring->q_vector; 235 236 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 237 if (err) 238 return err; 239 240 if (ice_is_xdp_ena_vsi(vsi)) { 241 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 242 243 memset(qg_buf, 0, size); 244 qg_buf->num_txqs = 1; 245 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 246 if (err) 247 return err; 248 ice_set_ring_xdp(xdp_ring); 249 ice_tx_xsk_pool(vsi, q_idx); 250 } 251 252 err = ice_vsi_cfg_rxq(rx_ring); 253 if (err) 254 return err; 255 256 ice_qvec_cfg_msix(vsi, q_vector); 257 258 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 259 if (err) 260 return err; 261 262 clear_bit(ICE_CFG_BUSY, vsi->state); 263 ice_qvec_toggle_napi(vsi, q_vector, true); 264 ice_qvec_ena_irq(vsi, q_vector); 265 266 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 267 268 return 0; 269 } 270 271 /** 272 * ice_xsk_pool_disable - disable a buffer pool region 273 * @vsi: Current VSI 274 * @qid: queue ID 275 * 276 * Returns 0 on success, negative on failure 277 */ 278 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 279 { 280 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 281 282 if (!pool) 283 return -EINVAL; 284 285 clear_bit(qid, vsi->af_xdp_zc_qps); 286 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 287 288 return 0; 289 } 290 291 /** 292 * ice_xsk_pool_enable - enable a buffer pool region 293 * @vsi: Current VSI 294 * @pool: pointer to a requested buffer pool region 295 * @qid: queue ID 296 * 297 * Returns 0 on success, negative on failure 298 */ 299 static int 300 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 301 { 302 int err; 303 304 if (vsi->type != ICE_VSI_PF) 305 return -EINVAL; 306 307 if (qid >= vsi->netdev->real_num_rx_queues || 308 qid >= vsi->netdev->real_num_tx_queues) 309 return -EINVAL; 310 311 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 312 ICE_RX_DMA_ATTR); 313 if (err) 314 return err; 315 316 set_bit(qid, vsi->af_xdp_zc_qps); 317 318 return 0; 319 } 320 321 /** 322 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 323 * @rx_ring: Rx ring 324 * @pool_present: is pool for XSK present 325 * 326 * Try allocating memory and return ENOMEM, if failed to allocate. 327 * If allocation was successful, substitute buffer with allocated one. 328 * Returns 0 on success, negative on failure 329 */ 330 static int 331 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 332 { 333 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 334 sizeof(*rx_ring->rx_buf); 335 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 336 337 if (!sw_ring) 338 return -ENOMEM; 339 340 if (pool_present) { 341 kfree(rx_ring->rx_buf); 342 rx_ring->rx_buf = NULL; 343 rx_ring->xdp_buf = sw_ring; 344 } else { 345 kfree(rx_ring->xdp_buf); 346 rx_ring->xdp_buf = NULL; 347 rx_ring->rx_buf = sw_ring; 348 } 349 350 return 0; 351 } 352 353 /** 354 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 355 * @vsi: Current VSI 356 * @zc: is zero copy set 357 * 358 * Reallocate buffer for rx_rings that might be used by XSK. 359 * XDP requires more memory, than rx_buf provides. 360 * Returns 0 on success, negative on failure 361 */ 362 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 363 { 364 struct ice_rx_ring *rx_ring; 365 unsigned long q; 366 367 for_each_set_bit(q, vsi->af_xdp_zc_qps, 368 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 369 rx_ring = vsi->rx_rings[q]; 370 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 371 return -ENOMEM; 372 } 373 374 return 0; 375 } 376 377 /** 378 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 379 * @vsi: Current VSI 380 * @pool: buffer pool to enable/associate to a ring, NULL to disable 381 * @qid: queue ID 382 * 383 * Returns 0 on success, negative on failure 384 */ 385 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 386 { 387 bool if_running, pool_present = !!pool; 388 int ret = 0, pool_failure = 0; 389 390 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 391 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 392 pool_failure = -EINVAL; 393 goto failure; 394 } 395 396 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 397 398 if (if_running) { 399 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 400 401 ret = ice_qp_dis(vsi, qid); 402 if (ret) { 403 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 404 goto xsk_pool_if_up; 405 } 406 407 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 408 if (ret) 409 goto xsk_pool_if_up; 410 } 411 412 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 413 ice_xsk_pool_disable(vsi, qid); 414 415 xsk_pool_if_up: 416 if (if_running) { 417 ret = ice_qp_ena(vsi, qid); 418 if (!ret && pool_present) 419 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 420 else if (ret) 421 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 422 } 423 424 failure: 425 if (pool_failure) { 426 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 427 pool_present ? "en" : "dis", pool_failure); 428 return pool_failure; 429 } 430 431 return ret; 432 } 433 434 /** 435 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 436 * @pool: XSK Buffer pool to pull the buffers from 437 * @xdp: SW ring of xdp_buff that will hold the buffers 438 * @rx_desc: Pointer to Rx descriptors that will be filled 439 * @count: The number of buffers to allocate 440 * 441 * This function allocates a number of Rx buffers from the fill ring 442 * or the internal recycle mechanism and places them on the Rx ring. 443 * 444 * Note that ring wrap should be handled by caller of this function. 445 * 446 * Returns the amount of allocated Rx descriptors 447 */ 448 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 449 union ice_32b_rx_flex_desc *rx_desc, u16 count) 450 { 451 dma_addr_t dma; 452 u16 buffs; 453 int i; 454 455 buffs = xsk_buff_alloc_batch(pool, xdp, count); 456 for (i = 0; i < buffs; i++) { 457 dma = xsk_buff_xdp_get_dma(*xdp); 458 rx_desc->read.pkt_addr = cpu_to_le64(dma); 459 rx_desc->wb.status_error0 = 0; 460 461 rx_desc++; 462 xdp++; 463 } 464 465 return buffs; 466 } 467 468 /** 469 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 470 * @rx_ring: Rx ring 471 * @count: The number of buffers to allocate 472 * 473 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 474 * for case where space from next_to_use up to the end of ring is less 475 * than @count. Finally do a tail bump. 476 * 477 * Returns true if all allocations were successful, false if any fail. 478 */ 479 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 480 { 481 u32 nb_buffs_extra = 0, nb_buffs = 0; 482 union ice_32b_rx_flex_desc *rx_desc; 483 u16 ntu = rx_ring->next_to_use; 484 u16 total_count = count; 485 struct xdp_buff **xdp; 486 487 rx_desc = ICE_RX_DESC(rx_ring, ntu); 488 xdp = ice_xdp_buf(rx_ring, ntu); 489 490 if (ntu + count >= rx_ring->count) { 491 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 492 rx_desc, 493 rx_ring->count - ntu); 494 if (nb_buffs_extra != rx_ring->count - ntu) { 495 ntu += nb_buffs_extra; 496 goto exit; 497 } 498 rx_desc = ICE_RX_DESC(rx_ring, 0); 499 xdp = ice_xdp_buf(rx_ring, 0); 500 ntu = 0; 501 count -= nb_buffs_extra; 502 ice_release_rx_desc(rx_ring, 0); 503 } 504 505 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 506 507 ntu += nb_buffs; 508 if (ntu == rx_ring->count) 509 ntu = 0; 510 511 exit: 512 if (rx_ring->next_to_use != ntu) 513 ice_release_rx_desc(rx_ring, ntu); 514 515 return total_count == (nb_buffs_extra + nb_buffs); 516 } 517 518 /** 519 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 520 * @rx_ring: Rx ring 521 * @count: The number of buffers to allocate 522 * 523 * Wrapper for internal allocation routine; figure out how many tail 524 * bumps should take place based on the given threshold 525 * 526 * Returns true if all calls to internal alloc routine succeeded 527 */ 528 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 529 { 530 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 531 u16 leftover, i, tail_bumps; 532 533 tail_bumps = count / rx_thresh; 534 leftover = count - (tail_bumps * rx_thresh); 535 536 for (i = 0; i < tail_bumps; i++) 537 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 538 return false; 539 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 540 } 541 542 /** 543 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 544 * @rx_ring: Rx ring 545 * @xdp: Pointer to XDP buffer 546 * 547 * This function allocates a new skb from a zero-copy Rx buffer. 548 * 549 * Returns the skb on success, NULL on failure. 550 */ 551 static struct sk_buff * 552 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 553 { 554 unsigned int totalsize = xdp->data_end - xdp->data_meta; 555 unsigned int metasize = xdp->data - xdp->data_meta; 556 struct skb_shared_info *sinfo = NULL; 557 struct sk_buff *skb; 558 u32 nr_frags = 0; 559 560 if (unlikely(xdp_buff_has_frags(xdp))) { 561 sinfo = xdp_get_shared_info_from_buff(xdp); 562 nr_frags = sinfo->nr_frags; 563 } 564 net_prefetch(xdp->data_meta); 565 566 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 567 GFP_ATOMIC | __GFP_NOWARN); 568 if (unlikely(!skb)) 569 return NULL; 570 571 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 572 ALIGN(totalsize, sizeof(long))); 573 574 if (metasize) { 575 skb_metadata_set(skb, metasize); 576 __skb_pull(skb, metasize); 577 } 578 579 if (likely(!xdp_buff_has_frags(xdp))) 580 goto out; 581 582 for (int i = 0; i < nr_frags; i++) { 583 struct skb_shared_info *skinfo = skb_shinfo(skb); 584 skb_frag_t *frag = &sinfo->frags[i]; 585 struct page *page; 586 void *addr; 587 588 page = dev_alloc_page(); 589 if (!page) { 590 dev_kfree_skb(skb); 591 return NULL; 592 } 593 addr = page_to_virt(page); 594 595 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 596 597 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 598 addr, 0, skb_frag_size(frag)); 599 } 600 601 out: 602 xsk_buff_free(xdp); 603 return skb; 604 } 605 606 /** 607 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 608 * @xdp_ring: XDP Tx ring 609 */ 610 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 611 { 612 u16 ntc = xdp_ring->next_to_clean; 613 struct ice_tx_desc *tx_desc; 614 u16 cnt = xdp_ring->count; 615 struct ice_tx_buf *tx_buf; 616 u16 completed_frames = 0; 617 u16 xsk_frames = 0; 618 u16 last_rs; 619 int i; 620 621 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 622 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 623 if (tx_desc->cmd_type_offset_bsz & 624 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 625 if (last_rs >= ntc) 626 completed_frames = last_rs - ntc + 1; 627 else 628 completed_frames = last_rs + cnt - ntc + 1; 629 } 630 631 if (!completed_frames) 632 return 0; 633 634 if (likely(!xdp_ring->xdp_tx_active)) { 635 xsk_frames = completed_frames; 636 goto skip; 637 } 638 639 ntc = xdp_ring->next_to_clean; 640 for (i = 0; i < completed_frames; i++) { 641 tx_buf = &xdp_ring->tx_buf[ntc]; 642 643 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 644 tx_buf->type = ICE_TX_BUF_EMPTY; 645 xsk_buff_free(tx_buf->xdp); 646 xdp_ring->xdp_tx_active--; 647 } else { 648 xsk_frames++; 649 } 650 651 ntc++; 652 if (ntc >= xdp_ring->count) 653 ntc = 0; 654 } 655 skip: 656 tx_desc->cmd_type_offset_bsz = 0; 657 xdp_ring->next_to_clean += completed_frames; 658 if (xdp_ring->next_to_clean >= cnt) 659 xdp_ring->next_to_clean -= cnt; 660 if (xsk_frames) 661 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 662 663 return completed_frames; 664 } 665 666 /** 667 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 668 * @xdp: XDP buffer to xmit 669 * @xdp_ring: XDP ring to produce descriptor onto 670 * 671 * note that this function works directly on xdp_buff, no need to convert 672 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 673 * side will be able to xsk_buff_free() it. 674 * 675 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 676 * was not enough space on XDP ring 677 */ 678 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 679 struct ice_tx_ring *xdp_ring) 680 { 681 struct skb_shared_info *sinfo = NULL; 682 u32 size = xdp->data_end - xdp->data; 683 u32 ntu = xdp_ring->next_to_use; 684 struct ice_tx_desc *tx_desc; 685 struct ice_tx_buf *tx_buf; 686 struct xdp_buff *head; 687 u32 nr_frags = 0; 688 u32 free_space; 689 u32 frag = 0; 690 691 free_space = ICE_DESC_UNUSED(xdp_ring); 692 if (free_space < ICE_RING_QUARTER(xdp_ring)) 693 free_space += ice_clean_xdp_irq_zc(xdp_ring); 694 695 if (unlikely(!free_space)) 696 goto busy; 697 698 if (unlikely(xdp_buff_has_frags(xdp))) { 699 sinfo = xdp_get_shared_info_from_buff(xdp); 700 nr_frags = sinfo->nr_frags; 701 if (free_space < nr_frags + 1) 702 goto busy; 703 } 704 705 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 706 tx_buf = &xdp_ring->tx_buf[ntu]; 707 head = xdp; 708 709 for (;;) { 710 dma_addr_t dma; 711 712 dma = xsk_buff_xdp_get_dma(xdp); 713 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 714 715 tx_buf->xdp = xdp; 716 tx_buf->type = ICE_TX_BUF_XSK_TX; 717 tx_desc->buf_addr = cpu_to_le64(dma); 718 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 719 /* account for each xdp_buff from xsk_buff_pool */ 720 xdp_ring->xdp_tx_active++; 721 722 if (++ntu == xdp_ring->count) 723 ntu = 0; 724 725 if (frag == nr_frags) 726 break; 727 728 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 729 tx_buf = &xdp_ring->tx_buf[ntu]; 730 731 xdp = xsk_buff_get_frag(head); 732 size = skb_frag_size(&sinfo->frags[frag]); 733 frag++; 734 } 735 736 xdp_ring->next_to_use = ntu; 737 /* update last descriptor from a frame with EOP */ 738 tx_desc->cmd_type_offset_bsz |= 739 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 740 741 return ICE_XDP_TX; 742 743 busy: 744 xdp_ring->ring_stats->tx_stats.tx_busy++; 745 746 return ICE_XDP_CONSUMED; 747 } 748 749 /** 750 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 751 * @rx_ring: Rx ring 752 * @xdp: xdp_buff used as input to the XDP program 753 * @xdp_prog: XDP program to run 754 * @xdp_ring: ring to be used for XDP_TX action 755 * 756 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 757 */ 758 static int 759 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 760 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 761 { 762 int err, result = ICE_XDP_PASS; 763 u32 act; 764 765 act = bpf_prog_run_xdp(xdp_prog, xdp); 766 767 if (likely(act == XDP_REDIRECT)) { 768 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 769 if (!err) 770 return ICE_XDP_REDIR; 771 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 772 result = ICE_XDP_EXIT; 773 else 774 result = ICE_XDP_CONSUMED; 775 goto out_failure; 776 } 777 778 switch (act) { 779 case XDP_PASS: 780 break; 781 case XDP_TX: 782 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 783 if (result == ICE_XDP_CONSUMED) 784 goto out_failure; 785 break; 786 case XDP_DROP: 787 result = ICE_XDP_CONSUMED; 788 break; 789 default: 790 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 791 fallthrough; 792 case XDP_ABORTED: 793 result = ICE_XDP_CONSUMED; 794 out_failure: 795 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 796 break; 797 } 798 799 return result; 800 } 801 802 static int 803 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 804 struct xdp_buff *xdp, const unsigned int size) 805 { 806 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 807 808 if (!size) 809 return 0; 810 811 if (!xdp_buff_has_frags(first)) { 812 sinfo->nr_frags = 0; 813 sinfo->xdp_frags_size = 0; 814 xdp_buff_set_frags_flag(first); 815 } 816 817 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 818 xsk_buff_free(first); 819 return -ENOMEM; 820 } 821 822 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 823 virt_to_page(xdp->data_hard_start), 0, size); 824 sinfo->xdp_frags_size += size; 825 xsk_buff_add_frag(xdp); 826 827 return 0; 828 } 829 830 /** 831 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 832 * @rx_ring: AF_XDP Rx ring 833 * @budget: NAPI budget 834 * 835 * Returns number of processed packets on success, remaining budget on failure. 836 */ 837 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 838 { 839 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 840 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; 841 u32 ntc = rx_ring->next_to_clean; 842 u32 ntu = rx_ring->next_to_use; 843 struct xdp_buff *first = NULL; 844 struct ice_tx_ring *xdp_ring; 845 unsigned int xdp_xmit = 0; 846 struct bpf_prog *xdp_prog; 847 u32 cnt = rx_ring->count; 848 bool failure = false; 849 int entries_to_alloc; 850 851 /* ZC patch is enabled only when XDP program is set, 852 * so here it can not be NULL 853 */ 854 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 855 xdp_ring = rx_ring->xdp_ring; 856 857 if (ntc != rx_ring->first_desc) 858 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 859 860 while (likely(total_rx_packets < (unsigned int)budget)) { 861 union ice_32b_rx_flex_desc *rx_desc; 862 unsigned int size, xdp_res = 0; 863 struct xdp_buff *xdp; 864 struct sk_buff *skb; 865 u16 stat_err_bits; 866 u16 vlan_tag = 0; 867 u16 rx_ptype; 868 869 rx_desc = ICE_RX_DESC(rx_ring, ntc); 870 871 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 872 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 873 break; 874 875 /* This memory barrier is needed to keep us from reading 876 * any other fields out of the rx_desc until we have 877 * verified the descriptor has been written back. 878 */ 879 dma_rmb(); 880 881 if (unlikely(ntc == ntu)) 882 break; 883 884 xdp = *ice_xdp_buf(rx_ring, ntc); 885 886 size = le16_to_cpu(rx_desc->wb.pkt_len) & 887 ICE_RX_FLX_DESC_PKT_LEN_M; 888 889 xsk_buff_set_size(xdp, size); 890 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool); 891 892 if (!first) { 893 first = xdp; 894 xdp_buff_clear_frags_flag(first); 895 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 896 break; 897 } 898 899 if (++ntc == cnt) 900 ntc = 0; 901 902 if (ice_is_non_eop(rx_ring, rx_desc)) 903 continue; 904 905 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); 906 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 907 xdp_xmit |= xdp_res; 908 } else if (xdp_res == ICE_XDP_EXIT) { 909 failure = true; 910 first = NULL; 911 rx_ring->first_desc = ntc; 912 break; 913 } else if (xdp_res == ICE_XDP_CONSUMED) { 914 xsk_buff_free(first); 915 } else if (xdp_res == ICE_XDP_PASS) { 916 goto construct_skb; 917 } 918 919 total_rx_bytes += xdp_get_buff_len(first); 920 total_rx_packets++; 921 922 first = NULL; 923 rx_ring->first_desc = ntc; 924 continue; 925 926 construct_skb: 927 /* XDP_PASS path */ 928 skb = ice_construct_skb_zc(rx_ring, first); 929 if (!skb) { 930 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 931 break; 932 } 933 934 first = NULL; 935 rx_ring->first_desc = ntc; 936 937 if (eth_skb_pad(skb)) { 938 skb = NULL; 939 continue; 940 } 941 942 total_rx_bytes += skb->len; 943 total_rx_packets++; 944 945 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 946 947 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 948 ICE_RX_FLEX_DESC_PTYPE_M; 949 950 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 951 ice_receive_skb(rx_ring, skb, vlan_tag); 952 } 953 954 rx_ring->next_to_clean = ntc; 955 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 956 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 957 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 958 959 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 960 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 961 962 if (xsk_uses_need_wakeup(xsk_pool)) { 963 /* ntu could have changed when allocating entries above, so 964 * use rx_ring value instead of stack based one 965 */ 966 if (failure || ntc == rx_ring->next_to_use) 967 xsk_set_rx_need_wakeup(xsk_pool); 968 else 969 xsk_clear_rx_need_wakeup(xsk_pool); 970 971 return (int)total_rx_packets; 972 } 973 974 return failure ? budget : (int)total_rx_packets; 975 } 976 977 /** 978 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 979 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 980 * @desc: AF_XDP descriptor to pull the DMA address and length from 981 * @total_bytes: bytes accumulator that will be used for stats update 982 */ 983 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 984 unsigned int *total_bytes) 985 { 986 struct ice_tx_desc *tx_desc; 987 dma_addr_t dma; 988 989 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 990 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 991 992 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 993 tx_desc->buf_addr = cpu_to_le64(dma); 994 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 995 0, desc->len, 0); 996 997 *total_bytes += desc->len; 998 } 999 1000 /** 1001 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 1002 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1003 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1004 * @total_bytes: bytes accumulator that will be used for stats update 1005 */ 1006 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1007 unsigned int *total_bytes) 1008 { 1009 u16 ntu = xdp_ring->next_to_use; 1010 struct ice_tx_desc *tx_desc; 1011 u32 i; 1012 1013 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1014 dma_addr_t dma; 1015 1016 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 1017 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 1018 1019 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1020 tx_desc->buf_addr = cpu_to_le64(dma); 1021 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1022 0, descs[i].len, 0); 1023 1024 *total_bytes += descs[i].len; 1025 } 1026 1027 xdp_ring->next_to_use = ntu; 1028 } 1029 1030 /** 1031 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1032 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1033 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1034 * @nb_pkts: count of packets to be send 1035 * @total_bytes: bytes accumulator that will be used for stats update 1036 */ 1037 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1038 u32 nb_pkts, unsigned int *total_bytes) 1039 { 1040 u32 batched, leftover, i; 1041 1042 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1043 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1044 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1045 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 1046 for (; i < batched + leftover; i++) 1047 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 1048 } 1049 1050 /** 1051 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1052 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1053 * 1054 * Returns true if there is no more work that needs to be done, false otherwise 1055 */ 1056 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 1057 { 1058 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 1059 u32 nb_pkts, nb_processed = 0; 1060 unsigned int total_bytes = 0; 1061 int budget; 1062 1063 ice_clean_xdp_irq_zc(xdp_ring); 1064 1065 budget = ICE_DESC_UNUSED(xdp_ring); 1066 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1067 1068 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 1069 if (!nb_pkts) 1070 return true; 1071 1072 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1073 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1074 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 1075 xdp_ring->next_to_use = 0; 1076 } 1077 1078 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 1079 &total_bytes); 1080 1081 ice_set_rs_bit(xdp_ring); 1082 ice_xdp_ring_update_tail(xdp_ring); 1083 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1084 1085 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1086 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1087 1088 return nb_pkts < budget; 1089 } 1090 1091 /** 1092 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1093 * @netdev: net_device 1094 * @queue_id: queue to wake up 1095 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1096 * 1097 * Returns negative on error, zero otherwise. 1098 */ 1099 int 1100 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1101 u32 __always_unused flags) 1102 { 1103 struct ice_netdev_priv *np = netdev_priv(netdev); 1104 struct ice_q_vector *q_vector; 1105 struct ice_vsi *vsi = np->vsi; 1106 struct ice_tx_ring *ring; 1107 1108 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1109 return -ENETDOWN; 1110 1111 if (!ice_is_xdp_ena_vsi(vsi)) 1112 return -EINVAL; 1113 1114 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1115 return -EINVAL; 1116 1117 ring = vsi->rx_rings[queue_id]->xdp_ring; 1118 1119 if (!ring->xsk_pool) 1120 return -EINVAL; 1121 1122 /* The idea here is that if NAPI is running, mark a miss, so 1123 * it will run again. If not, trigger an interrupt and 1124 * schedule the NAPI from interrupt context. If NAPI would be 1125 * scheduled here, the interrupt affinity would not be 1126 * honored. 1127 */ 1128 q_vector = ring->q_vector; 1129 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1130 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1137 * @vsi: VSI to be checked 1138 * 1139 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1140 */ 1141 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1142 { 1143 int i; 1144 1145 ice_for_each_rxq(vsi, i) { 1146 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1147 return true; 1148 } 1149 1150 return false; 1151 } 1152 1153 /** 1154 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1155 * @rx_ring: ring to be cleaned 1156 */ 1157 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1158 { 1159 u16 ntc = rx_ring->next_to_clean; 1160 u16 ntu = rx_ring->next_to_use; 1161 1162 while (ntc != ntu) { 1163 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1164 1165 xsk_buff_free(xdp); 1166 ntc++; 1167 if (ntc >= rx_ring->count) 1168 ntc = 0; 1169 } 1170 } 1171 1172 /** 1173 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1174 * @xdp_ring: XDP_Tx ring 1175 */ 1176 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1177 { 1178 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1179 u32 xsk_frames = 0; 1180 1181 while (ntc != ntu) { 1182 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1183 1184 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1185 tx_buf->type = ICE_TX_BUF_EMPTY; 1186 xsk_buff_free(tx_buf->xdp); 1187 } else { 1188 xsk_frames++; 1189 } 1190 1191 ntc++; 1192 if (ntc >= xdp_ring->count) 1193 ntc = 0; 1194 } 1195 1196 if (xsk_frames) 1197 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1198 } 1199