1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 int base = vsi->base_vector; 94 u16 reg; 95 u32 val; 96 97 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 98 * here only QINT_RQCTL 99 */ 100 reg = rx_ring->reg_idx; 101 val = rd32(hw, QINT_RQCTL(reg)); 102 val &= ~QINT_RQCTL_CAUSE_ENA_M; 103 wr32(hw, QINT_RQCTL(reg), val); 104 105 if (q_vector) { 106 u16 v_idx = q_vector->v_idx; 107 108 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 109 ice_flush(hw); 110 synchronize_irq(pf->msix_entries[v_idx + base].vector); 111 } 112 } 113 114 /** 115 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 116 * @vsi: the VSI that contains queue vector 117 * @q_vector: queue vector 118 */ 119 static void 120 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 121 { 122 u16 reg_idx = q_vector->reg_idx; 123 struct ice_pf *pf = vsi->back; 124 struct ice_hw *hw = &pf->hw; 125 struct ice_tx_ring *tx_ring; 126 struct ice_rx_ring *rx_ring; 127 128 ice_cfg_itr(hw, q_vector); 129 130 ice_for_each_tx_ring(tx_ring, q_vector->tx) 131 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 132 q_vector->tx.itr_idx); 133 134 ice_for_each_rx_ring(rx_ring, q_vector->rx) 135 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 136 q_vector->rx.itr_idx); 137 138 ice_flush(hw); 139 } 140 141 /** 142 * ice_qvec_ena_irq - Enable IRQ for given queue vector 143 * @vsi: the VSI that contains queue vector 144 * @q_vector: queue vector 145 */ 146 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 147 { 148 struct ice_pf *pf = vsi->back; 149 struct ice_hw *hw = &pf->hw; 150 151 ice_irq_dynamic_ena(hw, vsi, q_vector); 152 153 ice_flush(hw); 154 } 155 156 /** 157 * ice_qp_dis - Disables a queue pair 158 * @vsi: VSI of interest 159 * @q_idx: ring index in array 160 * 161 * Returns 0 on success, negative on failure. 162 */ 163 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 164 { 165 struct ice_txq_meta txq_meta = { }; 166 struct ice_q_vector *q_vector; 167 struct ice_tx_ring *tx_ring; 168 struct ice_rx_ring *rx_ring; 169 int timeout = 50; 170 int err; 171 172 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 173 return -EINVAL; 174 175 tx_ring = vsi->tx_rings[q_idx]; 176 rx_ring = vsi->rx_rings[q_idx]; 177 q_vector = rx_ring->q_vector; 178 179 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 180 timeout--; 181 if (!timeout) 182 return -EBUSY; 183 usleep_range(1000, 2000); 184 } 185 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 186 187 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 188 189 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 190 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 191 if (err) 192 return err; 193 if (ice_is_xdp_ena_vsi(vsi)) { 194 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 195 196 memset(&txq_meta, 0, sizeof(txq_meta)); 197 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 198 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 199 &txq_meta); 200 if (err) 201 return err; 202 } 203 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 204 if (err) 205 return err; 206 ice_clean_rx_ring(rx_ring); 207 208 ice_qvec_toggle_napi(vsi, q_vector, false); 209 ice_qp_clean_rings(vsi, q_idx); 210 ice_qp_reset_stats(vsi, q_idx); 211 212 return 0; 213 } 214 215 /** 216 * ice_qp_ena - Enables a queue pair 217 * @vsi: VSI of interest 218 * @q_idx: ring index in array 219 * 220 * Returns 0 on success, negative on failure. 221 */ 222 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 223 { 224 struct ice_aqc_add_tx_qgrp *qg_buf; 225 struct ice_q_vector *q_vector; 226 struct ice_tx_ring *tx_ring; 227 struct ice_rx_ring *rx_ring; 228 u16 size; 229 int err; 230 231 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 232 return -EINVAL; 233 234 size = struct_size(qg_buf, txqs, 1); 235 qg_buf = kzalloc(size, GFP_KERNEL); 236 if (!qg_buf) 237 return -ENOMEM; 238 239 qg_buf->num_txqs = 1; 240 241 tx_ring = vsi->tx_rings[q_idx]; 242 rx_ring = vsi->rx_rings[q_idx]; 243 q_vector = rx_ring->q_vector; 244 245 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 246 if (err) 247 goto free_buf; 248 249 if (ice_is_xdp_ena_vsi(vsi)) { 250 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 251 252 memset(qg_buf, 0, size); 253 qg_buf->num_txqs = 1; 254 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 255 if (err) 256 goto free_buf; 257 ice_set_ring_xdp(xdp_ring); 258 ice_tx_xsk_pool(vsi, q_idx); 259 } 260 261 err = ice_vsi_cfg_rxq(rx_ring); 262 if (err) 263 goto free_buf; 264 265 ice_qvec_cfg_msix(vsi, q_vector); 266 267 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 268 if (err) 269 goto free_buf; 270 271 clear_bit(ICE_CFG_BUSY, vsi->state); 272 ice_qvec_toggle_napi(vsi, q_vector, true); 273 ice_qvec_ena_irq(vsi, q_vector); 274 275 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 276 free_buf: 277 kfree(qg_buf); 278 return err; 279 } 280 281 /** 282 * ice_xsk_pool_disable - disable a buffer pool region 283 * @vsi: Current VSI 284 * @qid: queue ID 285 * 286 * Returns 0 on success, negative on failure 287 */ 288 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 289 { 290 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 291 292 if (!pool) 293 return -EINVAL; 294 295 clear_bit(qid, vsi->af_xdp_zc_qps); 296 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 297 298 return 0; 299 } 300 301 /** 302 * ice_xsk_pool_enable - enable a buffer pool region 303 * @vsi: Current VSI 304 * @pool: pointer to a requested buffer pool region 305 * @qid: queue ID 306 * 307 * Returns 0 on success, negative on failure 308 */ 309 static int 310 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 311 { 312 int err; 313 314 if (vsi->type != ICE_VSI_PF) 315 return -EINVAL; 316 317 if (qid >= vsi->netdev->real_num_rx_queues || 318 qid >= vsi->netdev->real_num_tx_queues) 319 return -EINVAL; 320 321 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 322 ICE_RX_DMA_ATTR); 323 if (err) 324 return err; 325 326 set_bit(qid, vsi->af_xdp_zc_qps); 327 328 return 0; 329 } 330 331 /** 332 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 333 * @rx_ring: Rx ring 334 * @pool_present: is pool for XSK present 335 * 336 * Try allocating memory and return ENOMEM, if failed to allocate. 337 * If allocation was successful, substitute buffer with allocated one. 338 * Returns 0 on success, negative on failure 339 */ 340 static int 341 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 342 { 343 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 344 sizeof(*rx_ring->rx_buf); 345 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 346 347 if (!sw_ring) 348 return -ENOMEM; 349 350 if (pool_present) { 351 kfree(rx_ring->rx_buf); 352 rx_ring->rx_buf = NULL; 353 rx_ring->xdp_buf = sw_ring; 354 } else { 355 kfree(rx_ring->xdp_buf); 356 rx_ring->xdp_buf = NULL; 357 rx_ring->rx_buf = sw_ring; 358 } 359 360 return 0; 361 } 362 363 /** 364 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 365 * @vsi: Current VSI 366 * @zc: is zero copy set 367 * 368 * Reallocate buffer for rx_rings that might be used by XSK. 369 * XDP requires more memory, than rx_buf provides. 370 * Returns 0 on success, negative on failure 371 */ 372 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 373 { 374 struct ice_rx_ring *rx_ring; 375 unsigned long q; 376 377 for_each_set_bit(q, vsi->af_xdp_zc_qps, 378 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 379 rx_ring = vsi->rx_rings[q]; 380 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 381 return -ENOMEM; 382 } 383 384 return 0; 385 } 386 387 /** 388 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 389 * @vsi: Current VSI 390 * @pool: buffer pool to enable/associate to a ring, NULL to disable 391 * @qid: queue ID 392 * 393 * Returns 0 on success, negative on failure 394 */ 395 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 396 { 397 bool if_running, pool_present = !!pool; 398 int ret = 0, pool_failure = 0; 399 400 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 401 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 402 pool_failure = -EINVAL; 403 goto failure; 404 } 405 406 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 407 408 if (if_running) { 409 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 410 411 ret = ice_qp_dis(vsi, qid); 412 if (ret) { 413 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 414 goto xsk_pool_if_up; 415 } 416 417 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 418 if (ret) 419 goto xsk_pool_if_up; 420 } 421 422 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 423 ice_xsk_pool_disable(vsi, qid); 424 425 xsk_pool_if_up: 426 if (if_running) { 427 ret = ice_qp_ena(vsi, qid); 428 if (!ret && pool_present) 429 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 430 else if (ret) 431 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 432 } 433 434 failure: 435 if (pool_failure) { 436 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 437 pool_present ? "en" : "dis", pool_failure); 438 return pool_failure; 439 } 440 441 return ret; 442 } 443 444 /** 445 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 446 * @pool: XSK Buffer pool to pull the buffers from 447 * @xdp: SW ring of xdp_buff that will hold the buffers 448 * @rx_desc: Pointer to Rx descriptors that will be filled 449 * @count: The number of buffers to allocate 450 * 451 * This function allocates a number of Rx buffers from the fill ring 452 * or the internal recycle mechanism and places them on the Rx ring. 453 * 454 * Note that ring wrap should be handled by caller of this function. 455 * 456 * Returns the amount of allocated Rx descriptors 457 */ 458 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 459 union ice_32b_rx_flex_desc *rx_desc, u16 count) 460 { 461 dma_addr_t dma; 462 u16 buffs; 463 int i; 464 465 buffs = xsk_buff_alloc_batch(pool, xdp, count); 466 for (i = 0; i < buffs; i++) { 467 dma = xsk_buff_xdp_get_dma(*xdp); 468 rx_desc->read.pkt_addr = cpu_to_le64(dma); 469 rx_desc->wb.status_error0 = 0; 470 471 rx_desc++; 472 xdp++; 473 } 474 475 return buffs; 476 } 477 478 /** 479 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 480 * @rx_ring: Rx ring 481 * @count: The number of buffers to allocate 482 * 483 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 484 * for case where space from next_to_use up to the end of ring is less 485 * than @count. Finally do a tail bump. 486 * 487 * Returns true if all allocations were successful, false if any fail. 488 */ 489 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 490 { 491 u32 nb_buffs_extra = 0, nb_buffs = 0; 492 union ice_32b_rx_flex_desc *rx_desc; 493 u16 ntu = rx_ring->next_to_use; 494 u16 total_count = count; 495 struct xdp_buff **xdp; 496 497 rx_desc = ICE_RX_DESC(rx_ring, ntu); 498 xdp = ice_xdp_buf(rx_ring, ntu); 499 500 if (ntu + count >= rx_ring->count) { 501 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 502 rx_desc, 503 rx_ring->count - ntu); 504 if (nb_buffs_extra != rx_ring->count - ntu) { 505 ntu += nb_buffs_extra; 506 goto exit; 507 } 508 rx_desc = ICE_RX_DESC(rx_ring, 0); 509 xdp = ice_xdp_buf(rx_ring, 0); 510 ntu = 0; 511 count -= nb_buffs_extra; 512 ice_release_rx_desc(rx_ring, 0); 513 } 514 515 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 516 517 ntu += nb_buffs; 518 if (ntu == rx_ring->count) 519 ntu = 0; 520 521 exit: 522 if (rx_ring->next_to_use != ntu) 523 ice_release_rx_desc(rx_ring, ntu); 524 525 return total_count == (nb_buffs_extra + nb_buffs); 526 } 527 528 /** 529 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 530 * @rx_ring: Rx ring 531 * @count: The number of buffers to allocate 532 * 533 * Wrapper for internal allocation routine; figure out how many tail 534 * bumps should take place based on the given threshold 535 * 536 * Returns true if all calls to internal alloc routine succeeded 537 */ 538 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 539 { 540 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 541 u16 leftover, i, tail_bumps; 542 543 tail_bumps = count / rx_thresh; 544 leftover = count - (tail_bumps * rx_thresh); 545 546 for (i = 0; i < tail_bumps; i++) 547 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 548 return false; 549 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 550 } 551 552 /** 553 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 554 * @rx_ring: Rx ring 555 */ 556 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 557 { 558 int ntc = rx_ring->next_to_clean + 1; 559 560 ntc = (ntc < rx_ring->count) ? ntc : 0; 561 rx_ring->next_to_clean = ntc; 562 prefetch(ICE_RX_DESC(rx_ring, ntc)); 563 } 564 565 /** 566 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 567 * @rx_ring: Rx ring 568 * @xdp: Pointer to XDP buffer 569 * 570 * This function allocates a new skb from a zero-copy Rx buffer. 571 * 572 * Returns the skb on success, NULL on failure. 573 */ 574 static struct sk_buff * 575 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 576 { 577 unsigned int totalsize = xdp->data_end - xdp->data_meta; 578 unsigned int metasize = xdp->data - xdp->data_meta; 579 struct sk_buff *skb; 580 581 net_prefetch(xdp->data_meta); 582 583 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 584 GFP_ATOMIC | __GFP_NOWARN); 585 if (unlikely(!skb)) 586 return NULL; 587 588 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 589 ALIGN(totalsize, sizeof(long))); 590 591 if (metasize) { 592 skb_metadata_set(skb, metasize); 593 __skb_pull(skb, metasize); 594 } 595 596 xsk_buff_free(xdp); 597 return skb; 598 } 599 600 /** 601 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 602 * @xdp_ring: XDP Tx ring 603 * @tx_buf: Tx buffer to clean 604 */ 605 static void 606 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 607 { 608 page_frag_free(tx_buf->raw_buf); 609 xdp_ring->xdp_tx_active--; 610 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 611 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 612 dma_unmap_len_set(tx_buf, len, 0); 613 } 614 615 /** 616 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 617 * @xdp_ring: XDP Tx ring 618 */ 619 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 620 { 621 u16 ntc = xdp_ring->next_to_clean; 622 struct ice_tx_desc *tx_desc; 623 u16 cnt = xdp_ring->count; 624 struct ice_tx_buf *tx_buf; 625 u16 completed_frames = 0; 626 u16 xsk_frames = 0; 627 u16 last_rs; 628 int i; 629 630 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 631 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 632 if ((tx_desc->cmd_type_offset_bsz & 633 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) { 634 if (last_rs >= ntc) 635 completed_frames = last_rs - ntc + 1; 636 else 637 completed_frames = last_rs + cnt - ntc + 1; 638 } 639 640 if (!completed_frames) 641 return; 642 643 if (likely(!xdp_ring->xdp_tx_active)) { 644 xsk_frames = completed_frames; 645 goto skip; 646 } 647 648 ntc = xdp_ring->next_to_clean; 649 for (i = 0; i < completed_frames; i++) { 650 tx_buf = &xdp_ring->tx_buf[ntc]; 651 652 if (tx_buf->raw_buf) { 653 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 654 tx_buf->raw_buf = NULL; 655 } else { 656 xsk_frames++; 657 } 658 659 ntc++; 660 if (ntc >= xdp_ring->count) 661 ntc = 0; 662 } 663 skip: 664 tx_desc->cmd_type_offset_bsz = 0; 665 xdp_ring->next_to_clean += completed_frames; 666 if (xdp_ring->next_to_clean >= cnt) 667 xdp_ring->next_to_clean -= cnt; 668 if (xsk_frames) 669 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 670 } 671 672 /** 673 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 674 * @xdp: XDP buffer to xmit 675 * @xdp_ring: XDP ring to produce descriptor onto 676 * 677 * note that this function works directly on xdp_buff, no need to convert 678 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 679 * side will be able to xsk_buff_free() it. 680 * 681 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 682 * was not enough space on XDP ring 683 */ 684 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 685 struct ice_tx_ring *xdp_ring) 686 { 687 u32 size = xdp->data_end - xdp->data; 688 u32 ntu = xdp_ring->next_to_use; 689 struct ice_tx_desc *tx_desc; 690 struct ice_tx_buf *tx_buf; 691 dma_addr_t dma; 692 693 if (ICE_DESC_UNUSED(xdp_ring) < ICE_RING_QUARTER(xdp_ring)) { 694 ice_clean_xdp_irq_zc(xdp_ring); 695 if (!ICE_DESC_UNUSED(xdp_ring)) { 696 xdp_ring->ring_stats->tx_stats.tx_busy++; 697 return ICE_XDP_CONSUMED; 698 } 699 } 700 701 dma = xsk_buff_xdp_get_dma(xdp); 702 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 703 704 tx_buf = &xdp_ring->tx_buf[ntu]; 705 tx_buf->xdp = xdp; 706 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 707 tx_desc->buf_addr = cpu_to_le64(dma); 708 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 709 0, size, 0); 710 xdp_ring->xdp_tx_active++; 711 712 if (++ntu == xdp_ring->count) 713 ntu = 0; 714 xdp_ring->next_to_use = ntu; 715 716 return ICE_XDP_TX; 717 } 718 719 /** 720 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 721 * @rx_ring: Rx ring 722 * @xdp: xdp_buff used as input to the XDP program 723 * @xdp_prog: XDP program to run 724 * @xdp_ring: ring to be used for XDP_TX action 725 * 726 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 727 */ 728 static int 729 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 730 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 731 { 732 int err, result = ICE_XDP_PASS; 733 u32 act; 734 735 act = bpf_prog_run_xdp(xdp_prog, xdp); 736 737 if (likely(act == XDP_REDIRECT)) { 738 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 739 if (!err) 740 return ICE_XDP_REDIR; 741 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 742 result = ICE_XDP_EXIT; 743 else 744 result = ICE_XDP_CONSUMED; 745 goto out_failure; 746 } 747 748 switch (act) { 749 case XDP_PASS: 750 break; 751 case XDP_TX: 752 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 753 if (result == ICE_XDP_CONSUMED) 754 goto out_failure; 755 break; 756 case XDP_DROP: 757 result = ICE_XDP_CONSUMED; 758 break; 759 default: 760 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 761 fallthrough; 762 case XDP_ABORTED: 763 result = ICE_XDP_CONSUMED; 764 out_failure: 765 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 766 break; 767 } 768 769 return result; 770 } 771 772 /** 773 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 774 * @rx_ring: AF_XDP Rx ring 775 * @budget: NAPI budget 776 * 777 * Returns number of processed packets on success, remaining budget on failure. 778 */ 779 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 780 { 781 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 782 struct ice_tx_ring *xdp_ring; 783 unsigned int xdp_xmit = 0; 784 struct bpf_prog *xdp_prog; 785 bool failure = false; 786 int entries_to_alloc; 787 788 /* ZC patch is enabled only when XDP program is set, 789 * so here it can not be NULL 790 */ 791 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 792 xdp_ring = rx_ring->xdp_ring; 793 794 while (likely(total_rx_packets < (unsigned int)budget)) { 795 union ice_32b_rx_flex_desc *rx_desc; 796 unsigned int size, xdp_res = 0; 797 struct xdp_buff *xdp; 798 struct sk_buff *skb; 799 u16 stat_err_bits; 800 u16 vlan_tag = 0; 801 u16 rx_ptype; 802 803 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 804 805 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 806 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 807 break; 808 809 /* This memory barrier is needed to keep us from reading 810 * any other fields out of the rx_desc until we have 811 * verified the descriptor has been written back. 812 */ 813 dma_rmb(); 814 815 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 816 break; 817 818 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 819 820 size = le16_to_cpu(rx_desc->wb.pkt_len) & 821 ICE_RX_FLX_DESC_PKT_LEN_M; 822 if (!size) { 823 xdp->data = NULL; 824 xdp->data_end = NULL; 825 xdp->data_hard_start = NULL; 826 xdp->data_meta = NULL; 827 goto construct_skb; 828 } 829 830 xsk_buff_set_size(xdp, size); 831 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 832 833 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 834 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 835 xdp_xmit |= xdp_res; 836 } else if (xdp_res == ICE_XDP_EXIT) { 837 failure = true; 838 break; 839 } else if (xdp_res == ICE_XDP_CONSUMED) { 840 xsk_buff_free(xdp); 841 } else if (xdp_res == ICE_XDP_PASS) { 842 goto construct_skb; 843 } 844 845 total_rx_bytes += size; 846 total_rx_packets++; 847 848 ice_bump_ntc(rx_ring); 849 continue; 850 851 construct_skb: 852 /* XDP_PASS path */ 853 skb = ice_construct_skb_zc(rx_ring, xdp); 854 if (!skb) { 855 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 856 break; 857 } 858 859 ice_bump_ntc(rx_ring); 860 861 if (eth_skb_pad(skb)) { 862 skb = NULL; 863 continue; 864 } 865 866 total_rx_bytes += skb->len; 867 total_rx_packets++; 868 869 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 870 871 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 872 ICE_RX_FLEX_DESC_PTYPE_M; 873 874 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 875 ice_receive_skb(rx_ring, skb, vlan_tag); 876 } 877 878 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 879 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 880 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 881 882 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 883 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 884 885 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 886 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 887 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 888 else 889 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 890 891 return (int)total_rx_packets; 892 } 893 894 return failure ? budget : (int)total_rx_packets; 895 } 896 897 /** 898 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 899 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 900 * @desc: AF_XDP descriptor to pull the DMA address and length from 901 * @total_bytes: bytes accumulator that will be used for stats update 902 */ 903 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 904 unsigned int *total_bytes) 905 { 906 struct ice_tx_desc *tx_desc; 907 dma_addr_t dma; 908 909 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 910 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 911 912 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 913 tx_desc->buf_addr = cpu_to_le64(dma); 914 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 915 0, desc->len, 0); 916 917 *total_bytes += desc->len; 918 } 919 920 /** 921 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 922 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 923 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 924 * @total_bytes: bytes accumulator that will be used for stats update 925 */ 926 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 927 unsigned int *total_bytes) 928 { 929 u16 ntu = xdp_ring->next_to_use; 930 struct ice_tx_desc *tx_desc; 931 u32 i; 932 933 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 934 dma_addr_t dma; 935 936 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 937 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 938 939 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 940 tx_desc->buf_addr = cpu_to_le64(dma); 941 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 942 0, descs[i].len, 0); 943 944 *total_bytes += descs[i].len; 945 } 946 947 xdp_ring->next_to_use = ntu; 948 } 949 950 /** 951 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 952 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 953 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 954 * @nb_pkts: count of packets to be send 955 * @total_bytes: bytes accumulator that will be used for stats update 956 */ 957 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 958 u32 nb_pkts, unsigned int *total_bytes) 959 { 960 u32 batched, leftover, i; 961 962 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 963 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 964 for (i = 0; i < batched; i += PKTS_PER_BATCH) 965 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 966 for (; i < batched + leftover; i++) 967 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 968 } 969 970 /** 971 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 972 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 973 * 974 * Returns true if there is no more work that needs to be done, false otherwise 975 */ 976 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 977 { 978 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 979 u32 nb_pkts, nb_processed = 0; 980 unsigned int total_bytes = 0; 981 int budget; 982 983 ice_clean_xdp_irq_zc(xdp_ring); 984 985 budget = ICE_DESC_UNUSED(xdp_ring); 986 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 987 988 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 989 if (!nb_pkts) 990 return true; 991 992 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 993 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 994 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 995 xdp_ring->next_to_use = 0; 996 } 997 998 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 999 &total_bytes); 1000 1001 ice_set_rs_bit(xdp_ring); 1002 ice_xdp_ring_update_tail(xdp_ring); 1003 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1004 1005 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1006 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1007 1008 return nb_pkts < budget; 1009 } 1010 1011 /** 1012 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1013 * @netdev: net_device 1014 * @queue_id: queue to wake up 1015 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1016 * 1017 * Returns negative on error, zero otherwise. 1018 */ 1019 int 1020 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1021 u32 __always_unused flags) 1022 { 1023 struct ice_netdev_priv *np = netdev_priv(netdev); 1024 struct ice_q_vector *q_vector; 1025 struct ice_vsi *vsi = np->vsi; 1026 struct ice_tx_ring *ring; 1027 1028 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1029 return -ENETDOWN; 1030 1031 if (!ice_is_xdp_ena_vsi(vsi)) 1032 return -EINVAL; 1033 1034 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1035 return -EINVAL; 1036 1037 ring = vsi->rx_rings[queue_id]->xdp_ring; 1038 1039 if (!ring->xsk_pool) 1040 return -EINVAL; 1041 1042 /* The idea here is that if NAPI is running, mark a miss, so 1043 * it will run again. If not, trigger an interrupt and 1044 * schedule the NAPI from interrupt context. If NAPI would be 1045 * scheduled here, the interrupt affinity would not be 1046 * honored. 1047 */ 1048 q_vector = ring->q_vector; 1049 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1050 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1057 * @vsi: VSI to be checked 1058 * 1059 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1060 */ 1061 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1062 { 1063 int i; 1064 1065 ice_for_each_rxq(vsi, i) { 1066 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1067 return true; 1068 } 1069 1070 return false; 1071 } 1072 1073 /** 1074 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1075 * @rx_ring: ring to be cleaned 1076 */ 1077 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1078 { 1079 u16 ntc = rx_ring->next_to_clean; 1080 u16 ntu = rx_ring->next_to_use; 1081 1082 while (ntc != ntu) { 1083 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1084 1085 xsk_buff_free(xdp); 1086 ntc++; 1087 if (ntc >= rx_ring->count) 1088 ntc = 0; 1089 } 1090 } 1091 1092 /** 1093 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1094 * @xdp_ring: XDP_Tx ring 1095 */ 1096 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1097 { 1098 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1099 u32 xsk_frames = 0; 1100 1101 while (ntc != ntu) { 1102 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1103 1104 if (tx_buf->xdp) 1105 xsk_buff_free(tx_buf->xdp); 1106 else 1107 xsk_frames++; 1108 1109 tx_buf->raw_buf = NULL; 1110 1111 ntc++; 1112 if (ntc >= xdp_ring->count) 1113 ntc = 0; 1114 } 1115 1116 if (xsk_frames) 1117 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1118 } 1119