xref: /linux/drivers/net/ethernet/intel/ice/ice_xsk.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (vsi->xdp_rings)
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (vsi->xdp_rings)
56 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58 }
59 
60 /**
61  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62  * @vsi: VSI that has netdev
63  * @q_vector: q_vector that has NAPI context
64  * @enable: true for enable, false for disable
65  */
66 static void
67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 		     bool enable)
69 {
70 	if (!vsi->netdev || !q_vector)
71 		return;
72 
73 	if (enable)
74 		napi_enable(&q_vector->napi);
75 	else
76 		napi_disable(&q_vector->napi);
77 }
78 
79 /**
80  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81  * @vsi: the VSI that contains queue vector being un-configured
82  * @rx_ring: Rx ring that will have its IRQ disabled
83  * @q_vector: queue vector
84  */
85 static void
86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 		 struct ice_q_vector *q_vector)
88 {
89 	struct ice_pf *pf = vsi->back;
90 	struct ice_hw *hw = &pf->hw;
91 	u16 reg;
92 	u32 val;
93 
94 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 	 * here only QINT_RQCTL
96 	 */
97 	reg = rx_ring->reg_idx;
98 	val = rd32(hw, QINT_RQCTL(reg));
99 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 	wr32(hw, QINT_RQCTL(reg), val);
101 
102 	if (q_vector) {
103 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 		ice_flush(hw);
105 		synchronize_irq(q_vector->irq.virq);
106 	}
107 }
108 
109 /**
110  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111  * @vsi: the VSI that contains queue vector
112  * @q_vector: queue vector
113  * @qid: queue index
114  */
115 static void
116 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector, u16 qid)
117 {
118 	u16 reg_idx = q_vector->reg_idx;
119 	struct ice_pf *pf = vsi->back;
120 	struct ice_hw *hw = &pf->hw;
121 	int q, _qid = qid;
122 
123 	ice_cfg_itr(hw, q_vector);
124 
125 	for (q = 0; q < q_vector->num_ring_tx; q++) {
126 		ice_cfg_txq_interrupt(vsi, _qid, reg_idx, q_vector->tx.itr_idx);
127 		_qid++;
128 	}
129 
130 	_qid = qid;
131 
132 	for (q = 0; q < q_vector->num_ring_rx; q++) {
133 		ice_cfg_rxq_interrupt(vsi, _qid, reg_idx, q_vector->rx.itr_idx);
134 		_qid++;
135 	}
136 
137 	ice_flush(hw);
138 }
139 
140 /**
141  * ice_qvec_ena_irq - Enable IRQ for given queue vector
142  * @vsi: the VSI that contains queue vector
143  * @q_vector: queue vector
144  */
145 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
146 {
147 	struct ice_pf *pf = vsi->back;
148 	struct ice_hw *hw = &pf->hw;
149 
150 	ice_irq_dynamic_ena(hw, vsi, q_vector);
151 
152 	ice_flush(hw);
153 }
154 
155 /**
156  * ice_qp_dis - Disables a queue pair
157  * @vsi: VSI of interest
158  * @q_idx: ring index in array
159  *
160  * Returns 0 on success, negative on failure.
161  */
162 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
163 {
164 	struct ice_txq_meta txq_meta = { };
165 	struct ice_q_vector *q_vector;
166 	struct ice_tx_ring *tx_ring;
167 	struct ice_rx_ring *rx_ring;
168 	int fail = 0;
169 	int err;
170 
171 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
172 		return -EINVAL;
173 
174 	tx_ring = vsi->tx_rings[q_idx];
175 	rx_ring = vsi->rx_rings[q_idx];
176 	q_vector = rx_ring->q_vector;
177 
178 	synchronize_net();
179 	netif_carrier_off(vsi->netdev);
180 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
181 
182 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
183 	ice_qvec_toggle_napi(vsi, q_vector, false);
184 
185 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
186 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
187 	if (!fail)
188 		fail = err;
189 	if (vsi->xdp_rings) {
190 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
191 
192 		memset(&txq_meta, 0, sizeof(txq_meta));
193 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
194 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
195 					   &txq_meta);
196 		if (!fail)
197 			fail = err;
198 	}
199 
200 	ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
201 	ice_qp_clean_rings(vsi, q_idx);
202 	ice_qp_reset_stats(vsi, q_idx);
203 
204 	return fail;
205 }
206 
207 /**
208  * ice_qp_ena - Enables a queue pair
209  * @vsi: VSI of interest
210  * @q_idx: ring index in array
211  *
212  * Returns 0 on success, negative on failure.
213  */
214 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
215 {
216 	struct ice_q_vector *q_vector;
217 	int fail = 0;
218 	bool link_up;
219 	int err;
220 
221 	err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
222 	if (!fail)
223 		fail = err;
224 
225 	if (ice_is_xdp_ena_vsi(vsi)) {
226 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
227 
228 		err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
229 		if (!fail)
230 			fail = err;
231 		ice_set_ring_xdp(xdp_ring);
232 		ice_tx_xsk_pool(vsi, q_idx);
233 	}
234 
235 	err = ice_vsi_cfg_single_rxq(vsi, q_idx);
236 	if (!fail)
237 		fail = err;
238 
239 	q_vector = vsi->rx_rings[q_idx]->q_vector;
240 	ice_qvec_cfg_msix(vsi, q_vector, q_idx);
241 
242 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
243 	if (!fail)
244 		fail = err;
245 
246 	ice_qvec_toggle_napi(vsi, q_vector, true);
247 	ice_qvec_ena_irq(vsi, q_vector);
248 
249 	/* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */
250 	synchronize_net();
251 	ice_get_link_status(vsi->port_info, &link_up);
252 	if (link_up) {
253 		netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
254 		netif_carrier_on(vsi->netdev);
255 	}
256 
257 	return fail;
258 }
259 
260 /**
261  * ice_xsk_pool_disable - disable a buffer pool region
262  * @vsi: Current VSI
263  * @qid: queue ID
264  *
265  * Returns 0 on success, negative on failure
266  */
267 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
268 {
269 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
270 
271 	if (!pool)
272 		return -EINVAL;
273 
274 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
275 
276 	return 0;
277 }
278 
279 /**
280  * ice_xsk_pool_enable - enable a buffer pool region
281  * @vsi: Current VSI
282  * @pool: pointer to a requested buffer pool region
283  * @qid: queue ID
284  *
285  * Returns 0 on success, negative on failure
286  */
287 static int
288 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
289 {
290 	int err;
291 
292 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF)
293 		return -EINVAL;
294 
295 	if (qid >= vsi->netdev->real_num_rx_queues ||
296 	    qid >= vsi->netdev->real_num_tx_queues)
297 		return -EINVAL;
298 
299 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
300 			       ICE_RX_DMA_ATTR);
301 	if (err)
302 		return err;
303 
304 	return 0;
305 }
306 
307 /**
308  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
309  * @rx_ring: Rx ring
310  * @pool_present: is pool for XSK present
311  *
312  * Try allocating memory and return ENOMEM, if failed to allocate.
313  * If allocation was successful, substitute buffer with allocated one.
314  * Returns 0 on success, negative on failure
315  */
316 static int
317 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
318 {
319 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
320 					  sizeof(*rx_ring->rx_buf);
321 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
322 
323 	if (!sw_ring)
324 		return -ENOMEM;
325 
326 	if (pool_present) {
327 		kfree(rx_ring->rx_buf);
328 		rx_ring->rx_buf = NULL;
329 		rx_ring->xdp_buf = sw_ring;
330 	} else {
331 		kfree(rx_ring->xdp_buf);
332 		rx_ring->xdp_buf = NULL;
333 		rx_ring->rx_buf = sw_ring;
334 	}
335 
336 	return 0;
337 }
338 
339 /**
340  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
341  * @vsi: Current VSI
342  * @zc: is zero copy set
343  *
344  * Reallocate buffer for rx_rings that might be used by XSK.
345  * XDP requires more memory, than rx_buf provides.
346  * Returns 0 on success, negative on failure
347  */
348 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
349 {
350 	struct ice_rx_ring *rx_ring;
351 	uint i;
352 
353 	ice_for_each_rxq(vsi, i) {
354 		rx_ring = vsi->rx_rings[i];
355 		if (!rx_ring->xsk_pool)
356 			continue;
357 
358 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
359 			return -ENOMEM;
360 	}
361 
362 	return 0;
363 }
364 
365 /**
366  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
367  * @vsi: Current VSI
368  * @pool: buffer pool to enable/associate to a ring, NULL to disable
369  * @qid: queue ID
370  *
371  * Returns 0 on success, negative on failure
372  */
373 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
374 {
375 	bool if_running, pool_present = !!pool;
376 	int ret = 0, pool_failure = 0;
377 
378 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
379 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
380 		pool_failure = -EINVAL;
381 		goto failure;
382 	}
383 
384 	if_running = !test_bit(ICE_VSI_DOWN, vsi->state) &&
385 		     ice_is_xdp_ena_vsi(vsi);
386 
387 	if (if_running) {
388 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
389 
390 		ret = ice_qp_dis(vsi, qid);
391 		if (ret) {
392 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
393 			goto xsk_pool_if_up;
394 		}
395 
396 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
397 		if (ret)
398 			goto xsk_pool_if_up;
399 	}
400 
401 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
402 				      ice_xsk_pool_disable(vsi, qid);
403 
404 xsk_pool_if_up:
405 	if (if_running) {
406 		ret = ice_qp_ena(vsi, qid);
407 		if (!ret && pool_present)
408 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
409 		else if (ret)
410 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
411 	}
412 
413 failure:
414 	if (pool_failure) {
415 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
416 			   pool_present ? "en" : "dis", pool_failure);
417 		return pool_failure;
418 	}
419 
420 	return ret;
421 }
422 
423 /**
424  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
425  * @pool: XSK Buffer pool to pull the buffers from
426  * @xdp: SW ring of xdp_buff that will hold the buffers
427  * @rx_desc: Pointer to Rx descriptors that will be filled
428  * @count: The number of buffers to allocate
429  *
430  * This function allocates a number of Rx buffers from the fill ring
431  * or the internal recycle mechanism and places them on the Rx ring.
432  *
433  * Note that ring wrap should be handled by caller of this function.
434  *
435  * Returns the amount of allocated Rx descriptors
436  */
437 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
438 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
439 {
440 	dma_addr_t dma;
441 	u16 buffs;
442 	int i;
443 
444 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
445 	for (i = 0; i < buffs; i++) {
446 		dma = xsk_buff_xdp_get_dma(*xdp);
447 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
448 		rx_desc->wb.status_error0 = 0;
449 
450 		/* Put private info that changes on a per-packet basis
451 		 * into xdp_buff_xsk->cb.
452 		 */
453 		ice_xdp_meta_set_desc(*xdp, rx_desc);
454 
455 		rx_desc++;
456 		xdp++;
457 	}
458 
459 	return buffs;
460 }
461 
462 /**
463  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
464  * @rx_ring: Rx ring
465  * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
466  * @count: The number of buffers to allocate
467  *
468  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
469  * for case where space from next_to_use up to the end of ring is less
470  * than @count. Finally do a tail bump.
471  *
472  * Returns true if all allocations were successful, false if any fail.
473  */
474 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
475 				   struct xsk_buff_pool *xsk_pool, u16 count)
476 {
477 	u32 nb_buffs_extra = 0, nb_buffs = 0;
478 	union ice_32b_rx_flex_desc *rx_desc;
479 	u16 ntu = rx_ring->next_to_use;
480 	u16 total_count = count;
481 	struct xdp_buff **xdp;
482 
483 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
484 	xdp = ice_xdp_buf(rx_ring, ntu);
485 
486 	if (ntu + count >= rx_ring->count) {
487 		nb_buffs_extra = ice_fill_rx_descs(xsk_pool, xdp, rx_desc,
488 						   rx_ring->count - ntu);
489 		if (nb_buffs_extra != rx_ring->count - ntu) {
490 			ntu += nb_buffs_extra;
491 			goto exit;
492 		}
493 		rx_desc = ICE_RX_DESC(rx_ring, 0);
494 		xdp = ice_xdp_buf(rx_ring, 0);
495 		ntu = 0;
496 		count -= nb_buffs_extra;
497 		ice_release_rx_desc(rx_ring, 0);
498 	}
499 
500 	nb_buffs = ice_fill_rx_descs(xsk_pool, xdp, rx_desc, count);
501 
502 	ntu += nb_buffs;
503 	if (ntu == rx_ring->count)
504 		ntu = 0;
505 
506 exit:
507 	if (rx_ring->next_to_use != ntu)
508 		ice_release_rx_desc(rx_ring, ntu);
509 
510 	return total_count == (nb_buffs_extra + nb_buffs);
511 }
512 
513 /**
514  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
515  * @rx_ring: Rx ring
516  * @xsk_pool: XSK buffer pool to pick buffers to be filled by HW
517  * @count: The number of buffers to allocate
518  *
519  * Wrapper for internal allocation routine; figure out how many tail
520  * bumps should take place based on the given threshold
521  *
522  * Returns true if all calls to internal alloc routine succeeded
523  */
524 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring,
525 			  struct xsk_buff_pool *xsk_pool, u16 count)
526 {
527 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
528 	u16 leftover, i, tail_bumps;
529 
530 	tail_bumps = count / rx_thresh;
531 	leftover = count - (tail_bumps * rx_thresh);
532 
533 	for (i = 0; i < tail_bumps; i++)
534 		if (!__ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, rx_thresh))
535 			return false;
536 	return __ice_alloc_rx_bufs_zc(rx_ring, xsk_pool, leftover);
537 }
538 
539 /**
540  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
541  * @rx_ring: Rx ring
542  * @xdp: Pointer to XDP buffer
543  *
544  * This function allocates a new skb from a zero-copy Rx buffer.
545  *
546  * Returns the skb on success, NULL on failure.
547  */
548 static struct sk_buff *
549 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
550 {
551 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
552 	unsigned int metasize = xdp->data - xdp->data_meta;
553 	struct skb_shared_info *sinfo = NULL;
554 	struct sk_buff *skb;
555 	u32 nr_frags = 0;
556 
557 	if (unlikely(xdp_buff_has_frags(xdp))) {
558 		sinfo = xdp_get_shared_info_from_buff(xdp);
559 		nr_frags = sinfo->nr_frags;
560 	}
561 	net_prefetch(xdp->data_meta);
562 
563 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
564 	if (unlikely(!skb))
565 		return NULL;
566 
567 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
568 	       ALIGN(totalsize, sizeof(long)));
569 
570 	if (metasize) {
571 		skb_metadata_set(skb, metasize);
572 		__skb_pull(skb, metasize);
573 	}
574 
575 	if (likely(!xdp_buff_has_frags(xdp)))
576 		goto out;
577 
578 	for (int i = 0; i < nr_frags; i++) {
579 		struct skb_shared_info *skinfo = skb_shinfo(skb);
580 		skb_frag_t *frag = &sinfo->frags[i];
581 		struct page *page;
582 		void *addr;
583 
584 		page = dev_alloc_page();
585 		if (!page) {
586 			dev_kfree_skb(skb);
587 			return NULL;
588 		}
589 		addr = page_to_virt(page);
590 
591 		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
592 
593 		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
594 					   addr, 0, skb_frag_size(frag));
595 	}
596 
597 out:
598 	xsk_buff_free(xdp);
599 	return skb;
600 }
601 
602 /**
603  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
604  * @xdp_ring: XDP Tx ring
605  * @xsk_pool: AF_XDP buffer pool pointer
606  */
607 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring,
608 				struct xsk_buff_pool *xsk_pool)
609 {
610 	u16 ntc = xdp_ring->next_to_clean;
611 	struct ice_tx_desc *tx_desc;
612 	u16 cnt = xdp_ring->count;
613 	struct ice_tx_buf *tx_buf;
614 	u16 completed_frames = 0;
615 	u16 xsk_frames = 0;
616 	u16 last_rs;
617 	int i;
618 
619 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
620 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
621 	if (tx_desc->cmd_type_offset_bsz &
622 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
623 		if (last_rs >= ntc)
624 			completed_frames = last_rs - ntc + 1;
625 		else
626 			completed_frames = last_rs + cnt - ntc + 1;
627 	}
628 
629 	if (!completed_frames)
630 		return 0;
631 
632 	if (likely(!xdp_ring->xdp_tx_active)) {
633 		xsk_frames = completed_frames;
634 		goto skip;
635 	}
636 
637 	ntc = xdp_ring->next_to_clean;
638 	for (i = 0; i < completed_frames; i++) {
639 		tx_buf = &xdp_ring->tx_buf[ntc];
640 
641 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
642 			tx_buf->type = ICE_TX_BUF_EMPTY;
643 			xsk_buff_free(tx_buf->xdp);
644 			xdp_ring->xdp_tx_active--;
645 		} else {
646 			xsk_frames++;
647 		}
648 
649 		ntc++;
650 		if (ntc >= xdp_ring->count)
651 			ntc = 0;
652 	}
653 skip:
654 	tx_desc->cmd_type_offset_bsz = 0;
655 	xdp_ring->next_to_clean += completed_frames;
656 	if (xdp_ring->next_to_clean >= cnt)
657 		xdp_ring->next_to_clean -= cnt;
658 	if (xsk_frames)
659 		xsk_tx_completed(xsk_pool, xsk_frames);
660 
661 	return completed_frames;
662 }
663 
664 /**
665  * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
666  * @xdp: XDP buffer to xmit
667  * @xdp_ring: XDP ring to produce descriptor onto
668  * @xsk_pool: AF_XDP buffer pool pointer
669  *
670  * note that this function works directly on xdp_buff, no need to convert
671  * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
672  * side will be able to xsk_buff_free() it.
673  *
674  * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
675  * was not enough space on XDP ring
676  */
677 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
678 			      struct ice_tx_ring *xdp_ring,
679 			      struct xsk_buff_pool *xsk_pool)
680 {
681 	struct skb_shared_info *sinfo = NULL;
682 	u32 size = xdp->data_end - xdp->data;
683 	u32 ntu = xdp_ring->next_to_use;
684 	struct ice_tx_desc *tx_desc;
685 	struct ice_tx_buf *tx_buf;
686 	struct xdp_buff *head;
687 	u32 nr_frags = 0;
688 	u32 free_space;
689 	u32 frag = 0;
690 
691 	free_space = ICE_DESC_UNUSED(xdp_ring);
692 	if (free_space < ICE_RING_QUARTER(xdp_ring))
693 		free_space += ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
694 
695 	if (unlikely(!free_space))
696 		goto busy;
697 
698 	if (unlikely(xdp_buff_has_frags(xdp))) {
699 		sinfo = xdp_get_shared_info_from_buff(xdp);
700 		nr_frags = sinfo->nr_frags;
701 		if (free_space < nr_frags + 1)
702 			goto busy;
703 	}
704 
705 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
706 	tx_buf = &xdp_ring->tx_buf[ntu];
707 	head = xdp;
708 
709 	for (;;) {
710 		dma_addr_t dma;
711 
712 		dma = xsk_buff_xdp_get_dma(xdp);
713 		xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, size);
714 
715 		tx_buf->xdp = xdp;
716 		tx_buf->type = ICE_TX_BUF_XSK_TX;
717 		tx_desc->buf_addr = cpu_to_le64(dma);
718 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
719 		/* account for each xdp_buff from xsk_buff_pool */
720 		xdp_ring->xdp_tx_active++;
721 
722 		if (++ntu == xdp_ring->count)
723 			ntu = 0;
724 
725 		if (frag == nr_frags)
726 			break;
727 
728 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
729 		tx_buf = &xdp_ring->tx_buf[ntu];
730 
731 		xdp = xsk_buff_get_frag(head);
732 		size = skb_frag_size(&sinfo->frags[frag]);
733 		frag++;
734 	}
735 
736 	xdp_ring->next_to_use = ntu;
737 	/* update last descriptor from a frame with EOP */
738 	tx_desc->cmd_type_offset_bsz |=
739 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
740 
741 	return ICE_XDP_TX;
742 
743 busy:
744 	xdp_ring->ring_stats->tx_stats.tx_busy++;
745 
746 	return ICE_XDP_CONSUMED;
747 }
748 
749 /**
750  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
751  * @rx_ring: Rx ring
752  * @xdp: xdp_buff used as input to the XDP program
753  * @xdp_prog: XDP program to run
754  * @xdp_ring: ring to be used for XDP_TX action
755  * @xsk_pool: AF_XDP buffer pool pointer
756  *
757  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
758  */
759 static int
760 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
761 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
762 	       struct xsk_buff_pool *xsk_pool)
763 {
764 	int err, result = ICE_XDP_PASS;
765 	u32 act;
766 
767 	act = bpf_prog_run_xdp(xdp_prog, xdp);
768 
769 	if (likely(act == XDP_REDIRECT)) {
770 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
771 		if (!err)
772 			return ICE_XDP_REDIR;
773 		if (xsk_uses_need_wakeup(xsk_pool) && err == -ENOBUFS)
774 			result = ICE_XDP_EXIT;
775 		else
776 			result = ICE_XDP_CONSUMED;
777 		goto out_failure;
778 	}
779 
780 	switch (act) {
781 	case XDP_PASS:
782 		break;
783 	case XDP_TX:
784 		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring, xsk_pool);
785 		if (result == ICE_XDP_CONSUMED)
786 			goto out_failure;
787 		break;
788 	case XDP_DROP:
789 		result = ICE_XDP_CONSUMED;
790 		break;
791 	default:
792 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
793 		fallthrough;
794 	case XDP_ABORTED:
795 		result = ICE_XDP_CONSUMED;
796 out_failure:
797 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
798 		break;
799 	}
800 
801 	return result;
802 }
803 
804 static int
805 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
806 		 struct xdp_buff *xdp, const unsigned int size)
807 {
808 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
809 
810 	if (!size)
811 		return 0;
812 
813 	if (!xdp_buff_has_frags(first)) {
814 		sinfo->nr_frags = 0;
815 		sinfo->xdp_frags_size = 0;
816 		xdp_buff_set_frags_flag(first);
817 	}
818 
819 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
820 		xsk_buff_free(first);
821 		return -ENOMEM;
822 	}
823 
824 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
825 				   virt_to_page(xdp->data_hard_start),
826 				   XDP_PACKET_HEADROOM, size);
827 	sinfo->xdp_frags_size += size;
828 	xsk_buff_add_frag(xdp);
829 
830 	return 0;
831 }
832 
833 /**
834  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
835  * @rx_ring: AF_XDP Rx ring
836  * @xsk_pool: AF_XDP buffer pool pointer
837  * @budget: NAPI budget
838  *
839  * Returns number of processed packets on success, remaining budget on failure.
840  */
841 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring,
842 			struct xsk_buff_pool *xsk_pool,
843 			int budget)
844 {
845 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
846 	u32 ntc = rx_ring->next_to_clean;
847 	u32 ntu = rx_ring->next_to_use;
848 	struct xdp_buff *first = NULL;
849 	struct ice_tx_ring *xdp_ring;
850 	unsigned int xdp_xmit = 0;
851 	struct bpf_prog *xdp_prog;
852 	u32 cnt = rx_ring->count;
853 	bool failure = false;
854 	int entries_to_alloc;
855 
856 	/* ZC patch is enabled only when XDP program is set,
857 	 * so here it can not be NULL
858 	 */
859 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
860 	xdp_ring = rx_ring->xdp_ring;
861 
862 	if (ntc != rx_ring->first_desc)
863 		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
864 
865 	while (likely(total_rx_packets < (unsigned int)budget)) {
866 		union ice_32b_rx_flex_desc *rx_desc;
867 		unsigned int size, xdp_res = 0;
868 		struct xdp_buff *xdp;
869 		struct sk_buff *skb;
870 		u16 stat_err_bits;
871 		u16 vlan_tci;
872 
873 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
874 
875 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
876 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
877 			break;
878 
879 		/* This memory barrier is needed to keep us from reading
880 		 * any other fields out of the rx_desc until we have
881 		 * verified the descriptor has been written back.
882 		 */
883 		dma_rmb();
884 
885 		if (unlikely(ntc == ntu))
886 			break;
887 
888 		xdp = *ice_xdp_buf(rx_ring, ntc);
889 
890 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
891 				   ICE_RX_FLX_DESC_PKT_LEN_M;
892 
893 		xsk_buff_set_size(xdp, size);
894 		xsk_buff_dma_sync_for_cpu(xdp);
895 
896 		if (!first) {
897 			first = xdp;
898 		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
899 			break;
900 		}
901 
902 		if (++ntc == cnt)
903 			ntc = 0;
904 
905 		if (ice_is_non_eop(rx_ring, rx_desc))
906 			continue;
907 
908 		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring,
909 					 xsk_pool);
910 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
911 			xdp_xmit |= xdp_res;
912 		} else if (xdp_res == ICE_XDP_EXIT) {
913 			failure = true;
914 			first = NULL;
915 			rx_ring->first_desc = ntc;
916 			break;
917 		} else if (xdp_res == ICE_XDP_CONSUMED) {
918 			xsk_buff_free(first);
919 		} else if (xdp_res == ICE_XDP_PASS) {
920 			goto construct_skb;
921 		}
922 
923 		total_rx_bytes += xdp_get_buff_len(first);
924 		total_rx_packets++;
925 
926 		first = NULL;
927 		rx_ring->first_desc = ntc;
928 		continue;
929 
930 construct_skb:
931 		/* XDP_PASS path */
932 		skb = ice_construct_skb_zc(rx_ring, first);
933 		if (!skb) {
934 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
935 			break;
936 		}
937 
938 		first = NULL;
939 		rx_ring->first_desc = ntc;
940 
941 		if (eth_skb_pad(skb)) {
942 			skb = NULL;
943 			continue;
944 		}
945 
946 		total_rx_bytes += skb->len;
947 		total_rx_packets++;
948 
949 		vlan_tci = ice_get_vlan_tci(rx_desc);
950 
951 		ice_process_skb_fields(rx_ring, rx_desc, skb);
952 		ice_receive_skb(rx_ring, skb, vlan_tci);
953 	}
954 
955 	rx_ring->next_to_clean = ntc;
956 	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
957 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
958 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, xsk_pool,
959 						 entries_to_alloc);
960 
961 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
962 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
963 
964 	if (xsk_uses_need_wakeup(xsk_pool)) {
965 		/* ntu could have changed when allocating entries above, so
966 		 * use rx_ring value instead of stack based one
967 		 */
968 		if (failure || ntc == rx_ring->next_to_use)
969 			xsk_set_rx_need_wakeup(xsk_pool);
970 		else
971 			xsk_clear_rx_need_wakeup(xsk_pool);
972 
973 		return (int)total_rx_packets;
974 	}
975 
976 	return failure ? budget : (int)total_rx_packets;
977 }
978 
979 /**
980  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
981  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
982  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
983  * @desc: AF_XDP descriptor to pull the DMA address and length from
984  * @total_bytes: bytes accumulator that will be used for stats update
985  */
986 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring,
987 			 struct xsk_buff_pool *xsk_pool, struct xdp_desc *desc,
988 			 unsigned int *total_bytes)
989 {
990 	struct ice_tx_desc *tx_desc;
991 	dma_addr_t dma;
992 
993 	dma = xsk_buff_raw_get_dma(xsk_pool, desc->addr);
994 	xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, desc->len);
995 
996 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
997 	tx_desc->buf_addr = cpu_to_le64(dma);
998 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
999 						      0, desc->len, 0);
1000 
1001 	*total_bytes += desc->len;
1002 }
1003 
1004 /**
1005  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1006  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1007  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1008  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1009  * @total_bytes: bytes accumulator that will be used for stats update
1010  */
1011 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring,
1012 			       struct xsk_buff_pool *xsk_pool,
1013 			       struct xdp_desc *descs,
1014 			       unsigned int *total_bytes)
1015 {
1016 	u16 ntu = xdp_ring->next_to_use;
1017 	struct ice_tx_desc *tx_desc;
1018 	u32 i;
1019 
1020 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021 		dma_addr_t dma;
1022 
1023 		dma = xsk_buff_raw_get_dma(xsk_pool, descs[i].addr);
1024 		xsk_buff_raw_dma_sync_for_device(xsk_pool, dma, descs[i].len);
1025 
1026 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027 		tx_desc->buf_addr = cpu_to_le64(dma);
1028 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029 							      0, descs[i].len, 0);
1030 
1031 		*total_bytes += descs[i].len;
1032 	}
1033 
1034 	xdp_ring->next_to_use = ntu;
1035 }
1036 
1037 /**
1038  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040  * @xsk_pool: XSK buffer pool to pick buffers to be consumed by HW
1041  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1042  * @nb_pkts: count of packets to be send
1043  * @total_bytes: bytes accumulator that will be used for stats update
1044  */
1045 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring,
1046 				struct xsk_buff_pool *xsk_pool,
1047 				struct xdp_desc *descs, u32 nb_pkts,
1048 				unsigned int *total_bytes)
1049 {
1050 	u32 batched, leftover, i;
1051 
1052 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1053 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1054 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1055 		ice_xmit_pkt_batch(xdp_ring, xsk_pool, &descs[i], total_bytes);
1056 	for (; i < batched + leftover; i++)
1057 		ice_xmit_pkt(xdp_ring, xsk_pool, &descs[i], total_bytes);
1058 }
1059 
1060 /**
1061  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1062  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1063  * @xsk_pool: AF_XDP buffer pool pointer
1064  *
1065  * Returns true if there is no more work that needs to be done, false otherwise
1066  */
1067 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, struct xsk_buff_pool *xsk_pool)
1068 {
1069 	struct xdp_desc *descs = xsk_pool->tx_descs;
1070 	u32 nb_pkts, nb_processed = 0;
1071 	unsigned int total_bytes = 0;
1072 	int budget;
1073 
1074 	ice_clean_xdp_irq_zc(xdp_ring, xsk_pool);
1075 
1076 	if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1077 	    !netif_running(xdp_ring->vsi->netdev))
1078 		return true;
1079 
1080 	budget = ICE_DESC_UNUSED(xdp_ring);
1081 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1082 
1083 	nb_pkts = xsk_tx_peek_release_desc_batch(xsk_pool, budget);
1084 	if (!nb_pkts)
1085 		return true;
1086 
1087 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1088 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1089 		ice_fill_tx_hw_ring(xdp_ring, xsk_pool, descs, nb_processed,
1090 				    &total_bytes);
1091 		xdp_ring->next_to_use = 0;
1092 	}
1093 
1094 	ice_fill_tx_hw_ring(xdp_ring, xsk_pool, &descs[nb_processed],
1095 			    nb_pkts - nb_processed, &total_bytes);
1096 
1097 	ice_set_rs_bit(xdp_ring);
1098 	ice_xdp_ring_update_tail(xdp_ring);
1099 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1100 
1101 	if (xsk_uses_need_wakeup(xsk_pool))
1102 		xsk_set_tx_need_wakeup(xsk_pool);
1103 
1104 	return nb_pkts < budget;
1105 }
1106 
1107 /**
1108  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1109  * @netdev: net_device
1110  * @queue_id: queue to wake up
1111  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1112  *
1113  * Returns negative on error, zero otherwise.
1114  */
1115 int
1116 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1117 	       u32 __always_unused flags)
1118 {
1119 	struct ice_netdev_priv *np = netdev_priv(netdev);
1120 	struct ice_q_vector *q_vector;
1121 	struct ice_vsi *vsi = np->vsi;
1122 	struct ice_tx_ring *ring;
1123 
1124 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1125 		return -ENETDOWN;
1126 
1127 	if (!ice_is_xdp_ena_vsi(vsi))
1128 		return -EINVAL;
1129 
1130 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1131 		return -EINVAL;
1132 
1133 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1134 
1135 	if (!READ_ONCE(ring->xsk_pool))
1136 		return -EINVAL;
1137 
1138 	/* The idea here is that if NAPI is running, mark a miss, so
1139 	 * it will run again. If not, trigger an interrupt and
1140 	 * schedule the NAPI from interrupt context. If NAPI would be
1141 	 * scheduled here, the interrupt affinity would not be
1142 	 * honored.
1143 	 */
1144 	q_vector = ring->q_vector;
1145 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1146 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1153  * @vsi: VSI to be checked
1154  *
1155  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1156  */
1157 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1158 {
1159 	int i;
1160 
1161 	ice_for_each_rxq(vsi, i) {
1162 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1163 			return true;
1164 	}
1165 
1166 	return false;
1167 }
1168 
1169 /**
1170  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1171  * @rx_ring: ring to be cleaned
1172  */
1173 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1174 {
1175 	u16 ntc = rx_ring->next_to_clean;
1176 	u16 ntu = rx_ring->next_to_use;
1177 
1178 	while (ntc != ntu) {
1179 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1180 
1181 		xsk_buff_free(xdp);
1182 		ntc++;
1183 		if (ntc >= rx_ring->count)
1184 			ntc = 0;
1185 	}
1186 }
1187 
1188 /**
1189  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1190  * @xdp_ring: XDP_Tx ring
1191  */
1192 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1193 {
1194 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1195 	u32 xsk_frames = 0;
1196 
1197 	while (ntc != ntu) {
1198 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1199 
1200 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1201 			tx_buf->type = ICE_TX_BUF_EMPTY;
1202 			xsk_buff_free(tx_buf->xdp);
1203 		} else {
1204 			xsk_frames++;
1205 		}
1206 
1207 		ntc++;
1208 		if (ntc >= xdp_ring->count)
1209 			ntc = 0;
1210 	}
1211 
1212 	if (xsk_frames)
1213 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1214 }
1215