xref: /linux/drivers/net/ethernet/intel/ice/ice_xsk.c (revision 4f05e82003d1c20da29fa593420b8d92e2c8d4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (ice_is_xdp_ena_vsi(vsi))
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (ice_is_xdp_ena_vsi(vsi)) {
56 		synchronize_rcu();
57 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 	}
59 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60 }
61 
62 /**
63  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64  * @vsi: VSI that has netdev
65  * @q_vector: q_vector that has NAPI context
66  * @enable: true for enable, false for disable
67  */
68 static void
69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 		     bool enable)
71 {
72 	if (!vsi->netdev || !q_vector)
73 		return;
74 
75 	if (enable)
76 		napi_enable(&q_vector->napi);
77 	else
78 		napi_disable(&q_vector->napi);
79 }
80 
81 /**
82  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83  * @vsi: the VSI that contains queue vector being un-configured
84  * @rx_ring: Rx ring that will have its IRQ disabled
85  * @q_vector: queue vector
86  */
87 static void
88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 		 struct ice_q_vector *q_vector)
90 {
91 	struct ice_pf *pf = vsi->back;
92 	struct ice_hw *hw = &pf->hw;
93 	u16 reg;
94 	u32 val;
95 
96 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
97 	 * here only QINT_RQCTL
98 	 */
99 	reg = rx_ring->reg_idx;
100 	val = rd32(hw, QINT_RQCTL(reg));
101 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
102 	wr32(hw, QINT_RQCTL(reg), val);
103 
104 	if (q_vector) {
105 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
106 		ice_flush(hw);
107 		synchronize_irq(q_vector->irq.virq);
108 	}
109 }
110 
111 /**
112  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
113  * @vsi: the VSI that contains queue vector
114  * @q_vector: queue vector
115  */
116 static void
117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
118 {
119 	u16 reg_idx = q_vector->reg_idx;
120 	struct ice_pf *pf = vsi->back;
121 	struct ice_hw *hw = &pf->hw;
122 	struct ice_tx_ring *tx_ring;
123 	struct ice_rx_ring *rx_ring;
124 
125 	ice_cfg_itr(hw, q_vector);
126 
127 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
128 		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
129 				      q_vector->tx.itr_idx);
130 
131 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
132 		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
133 				      q_vector->rx.itr_idx);
134 
135 	ice_flush(hw);
136 }
137 
138 /**
139  * ice_qvec_ena_irq - Enable IRQ for given queue vector
140  * @vsi: the VSI that contains queue vector
141  * @q_vector: queue vector
142  */
143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
144 {
145 	struct ice_pf *pf = vsi->back;
146 	struct ice_hw *hw = &pf->hw;
147 
148 	ice_irq_dynamic_ena(hw, vsi, q_vector);
149 
150 	ice_flush(hw);
151 }
152 
153 /**
154  * ice_qp_dis - Disables a queue pair
155  * @vsi: VSI of interest
156  * @q_idx: ring index in array
157  *
158  * Returns 0 on success, negative on failure.
159  */
160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
161 {
162 	struct ice_txq_meta txq_meta = { };
163 	struct ice_q_vector *q_vector;
164 	struct ice_tx_ring *tx_ring;
165 	struct ice_rx_ring *rx_ring;
166 	int timeout = 50;
167 	int err;
168 
169 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
170 		return -EINVAL;
171 
172 	tx_ring = vsi->tx_rings[q_idx];
173 	rx_ring = vsi->rx_rings[q_idx];
174 	q_vector = rx_ring->q_vector;
175 
176 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
177 		timeout--;
178 		if (!timeout)
179 			return -EBUSY;
180 		usleep_range(1000, 2000);
181 	}
182 
183 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
184 	ice_qvec_toggle_napi(vsi, q_vector, false);
185 
186 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
187 
188 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
189 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
190 	if (err)
191 		return err;
192 	if (ice_is_xdp_ena_vsi(vsi)) {
193 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
194 
195 		memset(&txq_meta, 0, sizeof(txq_meta));
196 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
197 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
198 					   &txq_meta);
199 		if (err)
200 			return err;
201 	}
202 	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
203 	if (err)
204 		return err;
205 
206 	ice_qp_clean_rings(vsi, q_idx);
207 	ice_qp_reset_stats(vsi, q_idx);
208 
209 	return 0;
210 }
211 
212 /**
213  * ice_qp_ena - Enables a queue pair
214  * @vsi: VSI of interest
215  * @q_idx: ring index in array
216  *
217  * Returns 0 on success, negative on failure.
218  */
219 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
220 {
221 	struct ice_q_vector *q_vector;
222 	int err;
223 
224 	err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
225 	if (err)
226 		return err;
227 
228 	if (ice_is_xdp_ena_vsi(vsi)) {
229 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
230 
231 		err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
232 		if (err)
233 			return err;
234 		ice_set_ring_xdp(xdp_ring);
235 		ice_tx_xsk_pool(vsi, q_idx);
236 	}
237 
238 	err = ice_vsi_cfg_single_rxq(vsi, q_idx);
239 	if (err)
240 		return err;
241 
242 	q_vector = vsi->rx_rings[q_idx]->q_vector;
243 	ice_qvec_cfg_msix(vsi, q_vector);
244 
245 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
246 	if (err)
247 		return err;
248 
249 	ice_qvec_toggle_napi(vsi, q_vector, true);
250 	ice_qvec_ena_irq(vsi, q_vector);
251 
252 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
253 	clear_bit(ICE_CFG_BUSY, vsi->state);
254 
255 	return 0;
256 }
257 
258 /**
259  * ice_xsk_pool_disable - disable a buffer pool region
260  * @vsi: Current VSI
261  * @qid: queue ID
262  *
263  * Returns 0 on success, negative on failure
264  */
265 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
266 {
267 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
268 
269 	if (!pool)
270 		return -EINVAL;
271 
272 	clear_bit(qid, vsi->af_xdp_zc_qps);
273 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
274 
275 	return 0;
276 }
277 
278 /**
279  * ice_xsk_pool_enable - enable a buffer pool region
280  * @vsi: Current VSI
281  * @pool: pointer to a requested buffer pool region
282  * @qid: queue ID
283  *
284  * Returns 0 on success, negative on failure
285  */
286 static int
287 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
288 {
289 	int err;
290 
291 	if (vsi->type != ICE_VSI_PF)
292 		return -EINVAL;
293 
294 	if (qid >= vsi->netdev->real_num_rx_queues ||
295 	    qid >= vsi->netdev->real_num_tx_queues)
296 		return -EINVAL;
297 
298 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
299 			       ICE_RX_DMA_ATTR);
300 	if (err)
301 		return err;
302 
303 	set_bit(qid, vsi->af_xdp_zc_qps);
304 
305 	return 0;
306 }
307 
308 /**
309  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
310  * @rx_ring: Rx ring
311  * @pool_present: is pool for XSK present
312  *
313  * Try allocating memory and return ENOMEM, if failed to allocate.
314  * If allocation was successful, substitute buffer with allocated one.
315  * Returns 0 on success, negative on failure
316  */
317 static int
318 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
319 {
320 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
321 					  sizeof(*rx_ring->rx_buf);
322 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
323 
324 	if (!sw_ring)
325 		return -ENOMEM;
326 
327 	if (pool_present) {
328 		kfree(rx_ring->rx_buf);
329 		rx_ring->rx_buf = NULL;
330 		rx_ring->xdp_buf = sw_ring;
331 	} else {
332 		kfree(rx_ring->xdp_buf);
333 		rx_ring->xdp_buf = NULL;
334 		rx_ring->rx_buf = sw_ring;
335 	}
336 
337 	return 0;
338 }
339 
340 /**
341  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
342  * @vsi: Current VSI
343  * @zc: is zero copy set
344  *
345  * Reallocate buffer for rx_rings that might be used by XSK.
346  * XDP requires more memory, than rx_buf provides.
347  * Returns 0 on success, negative on failure
348  */
349 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
350 {
351 	struct ice_rx_ring *rx_ring;
352 	unsigned long q;
353 
354 	for_each_set_bit(q, vsi->af_xdp_zc_qps,
355 			 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
356 		rx_ring = vsi->rx_rings[q];
357 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
358 			return -ENOMEM;
359 	}
360 
361 	return 0;
362 }
363 
364 /**
365  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
366  * @vsi: Current VSI
367  * @pool: buffer pool to enable/associate to a ring, NULL to disable
368  * @qid: queue ID
369  *
370  * Returns 0 on success, negative on failure
371  */
372 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
373 {
374 	bool if_running, pool_present = !!pool;
375 	int ret = 0, pool_failure = 0;
376 
377 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
378 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
379 		pool_failure = -EINVAL;
380 		goto failure;
381 	}
382 
383 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
384 
385 	if (if_running) {
386 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
387 
388 		ret = ice_qp_dis(vsi, qid);
389 		if (ret) {
390 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
391 			goto xsk_pool_if_up;
392 		}
393 
394 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
395 		if (ret)
396 			goto xsk_pool_if_up;
397 	}
398 
399 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
400 				      ice_xsk_pool_disable(vsi, qid);
401 
402 xsk_pool_if_up:
403 	if (if_running) {
404 		ret = ice_qp_ena(vsi, qid);
405 		if (!ret && pool_present)
406 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
407 		else if (ret)
408 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
409 	}
410 
411 failure:
412 	if (pool_failure) {
413 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
414 			   pool_present ? "en" : "dis", pool_failure);
415 		return pool_failure;
416 	}
417 
418 	return ret;
419 }
420 
421 /**
422  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
423  * @pool: XSK Buffer pool to pull the buffers from
424  * @xdp: SW ring of xdp_buff that will hold the buffers
425  * @rx_desc: Pointer to Rx descriptors that will be filled
426  * @count: The number of buffers to allocate
427  *
428  * This function allocates a number of Rx buffers from the fill ring
429  * or the internal recycle mechanism and places them on the Rx ring.
430  *
431  * Note that ring wrap should be handled by caller of this function.
432  *
433  * Returns the amount of allocated Rx descriptors
434  */
435 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
436 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
437 {
438 	dma_addr_t dma;
439 	u16 buffs;
440 	int i;
441 
442 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
443 	for (i = 0; i < buffs; i++) {
444 		dma = xsk_buff_xdp_get_dma(*xdp);
445 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
446 		rx_desc->wb.status_error0 = 0;
447 
448 		/* Put private info that changes on a per-packet basis
449 		 * into xdp_buff_xsk->cb.
450 		 */
451 		ice_xdp_meta_set_desc(*xdp, rx_desc);
452 
453 		rx_desc++;
454 		xdp++;
455 	}
456 
457 	return buffs;
458 }
459 
460 /**
461  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
462  * @rx_ring: Rx ring
463  * @count: The number of buffers to allocate
464  *
465  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
466  * for case where space from next_to_use up to the end of ring is less
467  * than @count. Finally do a tail bump.
468  *
469  * Returns true if all allocations were successful, false if any fail.
470  */
471 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
472 {
473 	u32 nb_buffs_extra = 0, nb_buffs = 0;
474 	union ice_32b_rx_flex_desc *rx_desc;
475 	u16 ntu = rx_ring->next_to_use;
476 	u16 total_count = count;
477 	struct xdp_buff **xdp;
478 
479 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
480 	xdp = ice_xdp_buf(rx_ring, ntu);
481 
482 	if (ntu + count >= rx_ring->count) {
483 		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
484 						   rx_desc,
485 						   rx_ring->count - ntu);
486 		if (nb_buffs_extra != rx_ring->count - ntu) {
487 			ntu += nb_buffs_extra;
488 			goto exit;
489 		}
490 		rx_desc = ICE_RX_DESC(rx_ring, 0);
491 		xdp = ice_xdp_buf(rx_ring, 0);
492 		ntu = 0;
493 		count -= nb_buffs_extra;
494 		ice_release_rx_desc(rx_ring, 0);
495 	}
496 
497 	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
498 
499 	ntu += nb_buffs;
500 	if (ntu == rx_ring->count)
501 		ntu = 0;
502 
503 exit:
504 	if (rx_ring->next_to_use != ntu)
505 		ice_release_rx_desc(rx_ring, ntu);
506 
507 	return total_count == (nb_buffs_extra + nb_buffs);
508 }
509 
510 /**
511  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
512  * @rx_ring: Rx ring
513  * @count: The number of buffers to allocate
514  *
515  * Wrapper for internal allocation routine; figure out how many tail
516  * bumps should take place based on the given threshold
517  *
518  * Returns true if all calls to internal alloc routine succeeded
519  */
520 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
521 {
522 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
523 	u16 leftover, i, tail_bumps;
524 
525 	tail_bumps = count / rx_thresh;
526 	leftover = count - (tail_bumps * rx_thresh);
527 
528 	for (i = 0; i < tail_bumps; i++)
529 		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
530 			return false;
531 	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
532 }
533 
534 /**
535  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
536  * @rx_ring: Rx ring
537  * @xdp: Pointer to XDP buffer
538  *
539  * This function allocates a new skb from a zero-copy Rx buffer.
540  *
541  * Returns the skb on success, NULL on failure.
542  */
543 static struct sk_buff *
544 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
545 {
546 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
547 	unsigned int metasize = xdp->data - xdp->data_meta;
548 	struct skb_shared_info *sinfo = NULL;
549 	struct sk_buff *skb;
550 	u32 nr_frags = 0;
551 
552 	if (unlikely(xdp_buff_has_frags(xdp))) {
553 		sinfo = xdp_get_shared_info_from_buff(xdp);
554 		nr_frags = sinfo->nr_frags;
555 	}
556 	net_prefetch(xdp->data_meta);
557 
558 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
559 	if (unlikely(!skb))
560 		return NULL;
561 
562 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
563 	       ALIGN(totalsize, sizeof(long)));
564 
565 	if (metasize) {
566 		skb_metadata_set(skb, metasize);
567 		__skb_pull(skb, metasize);
568 	}
569 
570 	if (likely(!xdp_buff_has_frags(xdp)))
571 		goto out;
572 
573 	for (int i = 0; i < nr_frags; i++) {
574 		struct skb_shared_info *skinfo = skb_shinfo(skb);
575 		skb_frag_t *frag = &sinfo->frags[i];
576 		struct page *page;
577 		void *addr;
578 
579 		page = dev_alloc_page();
580 		if (!page) {
581 			dev_kfree_skb(skb);
582 			return NULL;
583 		}
584 		addr = page_to_virt(page);
585 
586 		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
587 
588 		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
589 					   addr, 0, skb_frag_size(frag));
590 	}
591 
592 out:
593 	xsk_buff_free(xdp);
594 	return skb;
595 }
596 
597 /**
598  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
599  * @xdp_ring: XDP Tx ring
600  */
601 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
602 {
603 	u16 ntc = xdp_ring->next_to_clean;
604 	struct ice_tx_desc *tx_desc;
605 	u16 cnt = xdp_ring->count;
606 	struct ice_tx_buf *tx_buf;
607 	u16 completed_frames = 0;
608 	u16 xsk_frames = 0;
609 	u16 last_rs;
610 	int i;
611 
612 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
613 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
614 	if (tx_desc->cmd_type_offset_bsz &
615 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
616 		if (last_rs >= ntc)
617 			completed_frames = last_rs - ntc + 1;
618 		else
619 			completed_frames = last_rs + cnt - ntc + 1;
620 	}
621 
622 	if (!completed_frames)
623 		return 0;
624 
625 	if (likely(!xdp_ring->xdp_tx_active)) {
626 		xsk_frames = completed_frames;
627 		goto skip;
628 	}
629 
630 	ntc = xdp_ring->next_to_clean;
631 	for (i = 0; i < completed_frames; i++) {
632 		tx_buf = &xdp_ring->tx_buf[ntc];
633 
634 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
635 			tx_buf->type = ICE_TX_BUF_EMPTY;
636 			xsk_buff_free(tx_buf->xdp);
637 			xdp_ring->xdp_tx_active--;
638 		} else {
639 			xsk_frames++;
640 		}
641 
642 		ntc++;
643 		if (ntc >= xdp_ring->count)
644 			ntc = 0;
645 	}
646 skip:
647 	tx_desc->cmd_type_offset_bsz = 0;
648 	xdp_ring->next_to_clean += completed_frames;
649 	if (xdp_ring->next_to_clean >= cnt)
650 		xdp_ring->next_to_clean -= cnt;
651 	if (xsk_frames)
652 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
653 
654 	return completed_frames;
655 }
656 
657 /**
658  * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
659  * @xdp: XDP buffer to xmit
660  * @xdp_ring: XDP ring to produce descriptor onto
661  *
662  * note that this function works directly on xdp_buff, no need to convert
663  * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
664  * side will be able to xsk_buff_free() it.
665  *
666  * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
667  * was not enough space on XDP ring
668  */
669 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
670 			      struct ice_tx_ring *xdp_ring)
671 {
672 	struct skb_shared_info *sinfo = NULL;
673 	u32 size = xdp->data_end - xdp->data;
674 	u32 ntu = xdp_ring->next_to_use;
675 	struct ice_tx_desc *tx_desc;
676 	struct ice_tx_buf *tx_buf;
677 	struct xdp_buff *head;
678 	u32 nr_frags = 0;
679 	u32 free_space;
680 	u32 frag = 0;
681 
682 	free_space = ICE_DESC_UNUSED(xdp_ring);
683 	if (free_space < ICE_RING_QUARTER(xdp_ring))
684 		free_space += ice_clean_xdp_irq_zc(xdp_ring);
685 
686 	if (unlikely(!free_space))
687 		goto busy;
688 
689 	if (unlikely(xdp_buff_has_frags(xdp))) {
690 		sinfo = xdp_get_shared_info_from_buff(xdp);
691 		nr_frags = sinfo->nr_frags;
692 		if (free_space < nr_frags + 1)
693 			goto busy;
694 	}
695 
696 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
697 	tx_buf = &xdp_ring->tx_buf[ntu];
698 	head = xdp;
699 
700 	for (;;) {
701 		dma_addr_t dma;
702 
703 		dma = xsk_buff_xdp_get_dma(xdp);
704 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
705 
706 		tx_buf->xdp = xdp;
707 		tx_buf->type = ICE_TX_BUF_XSK_TX;
708 		tx_desc->buf_addr = cpu_to_le64(dma);
709 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
710 		/* account for each xdp_buff from xsk_buff_pool */
711 		xdp_ring->xdp_tx_active++;
712 
713 		if (++ntu == xdp_ring->count)
714 			ntu = 0;
715 
716 		if (frag == nr_frags)
717 			break;
718 
719 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
720 		tx_buf = &xdp_ring->tx_buf[ntu];
721 
722 		xdp = xsk_buff_get_frag(head);
723 		size = skb_frag_size(&sinfo->frags[frag]);
724 		frag++;
725 	}
726 
727 	xdp_ring->next_to_use = ntu;
728 	/* update last descriptor from a frame with EOP */
729 	tx_desc->cmd_type_offset_bsz |=
730 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
731 
732 	return ICE_XDP_TX;
733 
734 busy:
735 	xdp_ring->ring_stats->tx_stats.tx_busy++;
736 
737 	return ICE_XDP_CONSUMED;
738 }
739 
740 /**
741  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
742  * @rx_ring: Rx ring
743  * @xdp: xdp_buff used as input to the XDP program
744  * @xdp_prog: XDP program to run
745  * @xdp_ring: ring to be used for XDP_TX action
746  *
747  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
748  */
749 static int
750 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
751 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
752 {
753 	int err, result = ICE_XDP_PASS;
754 	u32 act;
755 
756 	act = bpf_prog_run_xdp(xdp_prog, xdp);
757 
758 	if (likely(act == XDP_REDIRECT)) {
759 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
760 		if (!err)
761 			return ICE_XDP_REDIR;
762 		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
763 			result = ICE_XDP_EXIT;
764 		else
765 			result = ICE_XDP_CONSUMED;
766 		goto out_failure;
767 	}
768 
769 	switch (act) {
770 	case XDP_PASS:
771 		break;
772 	case XDP_TX:
773 		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
774 		if (result == ICE_XDP_CONSUMED)
775 			goto out_failure;
776 		break;
777 	case XDP_DROP:
778 		result = ICE_XDP_CONSUMED;
779 		break;
780 	default:
781 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
782 		fallthrough;
783 	case XDP_ABORTED:
784 		result = ICE_XDP_CONSUMED;
785 out_failure:
786 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
787 		break;
788 	}
789 
790 	return result;
791 }
792 
793 static int
794 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
795 		 struct xdp_buff *xdp, const unsigned int size)
796 {
797 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
798 
799 	if (!size)
800 		return 0;
801 
802 	if (!xdp_buff_has_frags(first)) {
803 		sinfo->nr_frags = 0;
804 		sinfo->xdp_frags_size = 0;
805 		xdp_buff_set_frags_flag(first);
806 	}
807 
808 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
809 		xsk_buff_free(first);
810 		return -ENOMEM;
811 	}
812 
813 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
814 				   virt_to_page(xdp->data_hard_start),
815 				   XDP_PACKET_HEADROOM, size);
816 	sinfo->xdp_frags_size += size;
817 	xsk_buff_add_frag(xdp);
818 
819 	return 0;
820 }
821 
822 /**
823  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
824  * @rx_ring: AF_XDP Rx ring
825  * @budget: NAPI budget
826  *
827  * Returns number of processed packets on success, remaining budget on failure.
828  */
829 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
830 {
831 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
832 	struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
833 	u32 ntc = rx_ring->next_to_clean;
834 	u32 ntu = rx_ring->next_to_use;
835 	struct xdp_buff *first = NULL;
836 	struct ice_tx_ring *xdp_ring;
837 	unsigned int xdp_xmit = 0;
838 	struct bpf_prog *xdp_prog;
839 	u32 cnt = rx_ring->count;
840 	bool failure = false;
841 	int entries_to_alloc;
842 
843 	/* ZC patch is enabled only when XDP program is set,
844 	 * so here it can not be NULL
845 	 */
846 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
847 	xdp_ring = rx_ring->xdp_ring;
848 
849 	if (ntc != rx_ring->first_desc)
850 		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
851 
852 	while (likely(total_rx_packets < (unsigned int)budget)) {
853 		union ice_32b_rx_flex_desc *rx_desc;
854 		unsigned int size, xdp_res = 0;
855 		struct xdp_buff *xdp;
856 		struct sk_buff *skb;
857 		u16 stat_err_bits;
858 		u16 vlan_tci;
859 
860 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
861 
862 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
863 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
864 			break;
865 
866 		/* This memory barrier is needed to keep us from reading
867 		 * any other fields out of the rx_desc until we have
868 		 * verified the descriptor has been written back.
869 		 */
870 		dma_rmb();
871 
872 		if (unlikely(ntc == ntu))
873 			break;
874 
875 		xdp = *ice_xdp_buf(rx_ring, ntc);
876 
877 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
878 				   ICE_RX_FLX_DESC_PKT_LEN_M;
879 
880 		xsk_buff_set_size(xdp, size);
881 		xsk_buff_dma_sync_for_cpu(xdp);
882 
883 		if (!first) {
884 			first = xdp;
885 		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
886 			break;
887 		}
888 
889 		if (++ntc == cnt)
890 			ntc = 0;
891 
892 		if (ice_is_non_eop(rx_ring, rx_desc))
893 			continue;
894 
895 		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
896 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
897 			xdp_xmit |= xdp_res;
898 		} else if (xdp_res == ICE_XDP_EXIT) {
899 			failure = true;
900 			first = NULL;
901 			rx_ring->first_desc = ntc;
902 			break;
903 		} else if (xdp_res == ICE_XDP_CONSUMED) {
904 			xsk_buff_free(first);
905 		} else if (xdp_res == ICE_XDP_PASS) {
906 			goto construct_skb;
907 		}
908 
909 		total_rx_bytes += xdp_get_buff_len(first);
910 		total_rx_packets++;
911 
912 		first = NULL;
913 		rx_ring->first_desc = ntc;
914 		continue;
915 
916 construct_skb:
917 		/* XDP_PASS path */
918 		skb = ice_construct_skb_zc(rx_ring, first);
919 		if (!skb) {
920 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
921 			break;
922 		}
923 
924 		first = NULL;
925 		rx_ring->first_desc = ntc;
926 
927 		if (eth_skb_pad(skb)) {
928 			skb = NULL;
929 			continue;
930 		}
931 
932 		total_rx_bytes += skb->len;
933 		total_rx_packets++;
934 
935 		vlan_tci = ice_get_vlan_tci(rx_desc);
936 
937 		ice_process_skb_fields(rx_ring, rx_desc, skb);
938 		ice_receive_skb(rx_ring, skb, vlan_tci);
939 	}
940 
941 	rx_ring->next_to_clean = ntc;
942 	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
943 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
944 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
945 
946 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
947 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
948 
949 	if (xsk_uses_need_wakeup(xsk_pool)) {
950 		/* ntu could have changed when allocating entries above, so
951 		 * use rx_ring value instead of stack based one
952 		 */
953 		if (failure || ntc == rx_ring->next_to_use)
954 			xsk_set_rx_need_wakeup(xsk_pool);
955 		else
956 			xsk_clear_rx_need_wakeup(xsk_pool);
957 
958 		return (int)total_rx_packets;
959 	}
960 
961 	return failure ? budget : (int)total_rx_packets;
962 }
963 
964 /**
965  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
966  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
967  * @desc: AF_XDP descriptor to pull the DMA address and length from
968  * @total_bytes: bytes accumulator that will be used for stats update
969  */
970 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
971 			 unsigned int *total_bytes)
972 {
973 	struct ice_tx_desc *tx_desc;
974 	dma_addr_t dma;
975 
976 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
977 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
978 
979 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
980 	tx_desc->buf_addr = cpu_to_le64(dma);
981 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
982 						      0, desc->len, 0);
983 
984 	*total_bytes += desc->len;
985 }
986 
987 /**
988  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
989  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
990  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
991  * @total_bytes: bytes accumulator that will be used for stats update
992  */
993 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
994 			       unsigned int *total_bytes)
995 {
996 	u16 ntu = xdp_ring->next_to_use;
997 	struct ice_tx_desc *tx_desc;
998 	u32 i;
999 
1000 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1001 		dma_addr_t dma;
1002 
1003 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1004 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1005 
1006 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1007 		tx_desc->buf_addr = cpu_to_le64(dma);
1008 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1009 							      0, descs[i].len, 0);
1010 
1011 		*total_bytes += descs[i].len;
1012 	}
1013 
1014 	xdp_ring->next_to_use = ntu;
1015 }
1016 
1017 /**
1018  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1019  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1020  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1021  * @nb_pkts: count of packets to be send
1022  * @total_bytes: bytes accumulator that will be used for stats update
1023  */
1024 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1025 				u32 nb_pkts, unsigned int *total_bytes)
1026 {
1027 	u32 batched, leftover, i;
1028 
1029 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1030 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1031 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1032 		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1033 	for (; i < batched + leftover; i++)
1034 		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1035 }
1036 
1037 /**
1038  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1039  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040  *
1041  * Returns true if there is no more work that needs to be done, false otherwise
1042  */
1043 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1044 {
1045 	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1046 	u32 nb_pkts, nb_processed = 0;
1047 	unsigned int total_bytes = 0;
1048 	int budget;
1049 
1050 	ice_clean_xdp_irq_zc(xdp_ring);
1051 
1052 	budget = ICE_DESC_UNUSED(xdp_ring);
1053 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1054 
1055 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1056 	if (!nb_pkts)
1057 		return true;
1058 
1059 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1060 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1061 		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1062 		xdp_ring->next_to_use = 0;
1063 	}
1064 
1065 	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1066 			    &total_bytes);
1067 
1068 	ice_set_rs_bit(xdp_ring);
1069 	ice_xdp_ring_update_tail(xdp_ring);
1070 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1071 
1072 	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1073 		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1074 
1075 	return nb_pkts < budget;
1076 }
1077 
1078 /**
1079  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1080  * @netdev: net_device
1081  * @queue_id: queue to wake up
1082  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1083  *
1084  * Returns negative on error, zero otherwise.
1085  */
1086 int
1087 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1088 	       u32 __always_unused flags)
1089 {
1090 	struct ice_netdev_priv *np = netdev_priv(netdev);
1091 	struct ice_q_vector *q_vector;
1092 	struct ice_vsi *vsi = np->vsi;
1093 	struct ice_tx_ring *ring;
1094 
1095 	if (test_bit(ICE_VSI_DOWN, vsi->state))
1096 		return -ENETDOWN;
1097 
1098 	if (!ice_is_xdp_ena_vsi(vsi))
1099 		return -EINVAL;
1100 
1101 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1102 		return -EINVAL;
1103 
1104 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1105 
1106 	if (!ring->xsk_pool)
1107 		return -EINVAL;
1108 
1109 	/* The idea here is that if NAPI is running, mark a miss, so
1110 	 * it will run again. If not, trigger an interrupt and
1111 	 * schedule the NAPI from interrupt context. If NAPI would be
1112 	 * scheduled here, the interrupt affinity would not be
1113 	 * honored.
1114 	 */
1115 	q_vector = ring->q_vector;
1116 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1117 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1124  * @vsi: VSI to be checked
1125  *
1126  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1127  */
1128 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1129 {
1130 	int i;
1131 
1132 	ice_for_each_rxq(vsi, i) {
1133 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1134 			return true;
1135 	}
1136 
1137 	return false;
1138 }
1139 
1140 /**
1141  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1142  * @rx_ring: ring to be cleaned
1143  */
1144 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1145 {
1146 	u16 ntc = rx_ring->next_to_clean;
1147 	u16 ntu = rx_ring->next_to_use;
1148 
1149 	while (ntc != ntu) {
1150 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1151 
1152 		xsk_buff_free(xdp);
1153 		ntc++;
1154 		if (ntc >= rx_ring->count)
1155 			ntc = 0;
1156 	}
1157 }
1158 
1159 /**
1160  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1161  * @xdp_ring: XDP_Tx ring
1162  */
1163 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1164 {
1165 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1166 	u32 xsk_frames = 0;
1167 
1168 	while (ntc != ntu) {
1169 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1170 
1171 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1172 			tx_buf->type = ICE_TX_BUF_EMPTY;
1173 			xsk_buff_free(tx_buf->xdp);
1174 		} else {
1175 			xsk_frames++;
1176 		}
1177 
1178 		ntc++;
1179 		if (ntc >= xdp_ring->count)
1180 			ntc = 0;
1181 	}
1182 
1183 	if (xsk_frames)
1184 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1185 }
1186