1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 u16 reg; 94 u32 val; 95 96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 97 * here only QINT_RQCTL 98 */ 99 reg = rx_ring->reg_idx; 100 val = rd32(hw, QINT_RQCTL(reg)); 101 val &= ~QINT_RQCTL_CAUSE_ENA_M; 102 wr32(hw, QINT_RQCTL(reg), val); 103 104 if (q_vector) { 105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 106 ice_flush(hw); 107 synchronize_irq(q_vector->irq.virq); 108 } 109 } 110 111 /** 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 113 * @vsi: the VSI that contains queue vector 114 * @q_vector: queue vector 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 struct ice_tx_ring *tx_ring; 123 struct ice_rx_ring *rx_ring; 124 125 ice_cfg_itr(hw, q_vector); 126 127 ice_for_each_tx_ring(tx_ring, q_vector->tx) 128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 129 q_vector->tx.itr_idx); 130 131 ice_for_each_rx_ring(rx_ring, q_vector->rx) 132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 133 q_vector->rx.itr_idx); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector 140 * @vsi: the VSI that contains queue vector 141 * @q_vector: queue vector 142 */ 143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 144 { 145 struct ice_pf *pf = vsi->back; 146 struct ice_hw *hw = &pf->hw; 147 148 ice_irq_dynamic_ena(hw, vsi, q_vector); 149 150 ice_flush(hw); 151 } 152 153 /** 154 * ice_qp_dis - Disables a queue pair 155 * @vsi: VSI of interest 156 * @q_idx: ring index in array 157 * 158 * Returns 0 on success, negative on failure. 159 */ 160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 161 { 162 struct ice_txq_meta txq_meta = { }; 163 struct ice_q_vector *q_vector; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 int timeout = 50; 167 int err; 168 169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 170 return -EINVAL; 171 172 tx_ring = vsi->tx_rings[q_idx]; 173 rx_ring = vsi->rx_rings[q_idx]; 174 q_vector = rx_ring->q_vector; 175 176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 177 timeout--; 178 if (!timeout) 179 return -EBUSY; 180 usleep_range(1000, 2000); 181 } 182 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 183 184 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 186 if (err) 187 return err; 188 if (ice_is_xdp_ena_vsi(vsi)) { 189 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 190 191 memset(&txq_meta, 0, sizeof(txq_meta)); 192 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 193 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 194 &txq_meta); 195 if (err) 196 return err; 197 } 198 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 199 200 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 201 if (err) 202 return err; 203 204 ice_qvec_toggle_napi(vsi, q_vector, false); 205 ice_qp_clean_rings(vsi, q_idx); 206 ice_qp_reset_stats(vsi, q_idx); 207 208 return 0; 209 } 210 211 /** 212 * ice_qp_ena - Enables a queue pair 213 * @vsi: VSI of interest 214 * @q_idx: ring index in array 215 * 216 * Returns 0 on success, negative on failure. 217 */ 218 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 219 { 220 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 221 u16 size = __struct_size(qg_buf); 222 struct ice_q_vector *q_vector; 223 struct ice_tx_ring *tx_ring; 224 struct ice_rx_ring *rx_ring; 225 int err; 226 227 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 228 return -EINVAL; 229 230 qg_buf->num_txqs = 1; 231 232 tx_ring = vsi->tx_rings[q_idx]; 233 rx_ring = vsi->rx_rings[q_idx]; 234 q_vector = rx_ring->q_vector; 235 236 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 237 if (err) 238 return err; 239 240 if (ice_is_xdp_ena_vsi(vsi)) { 241 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 242 243 memset(qg_buf, 0, size); 244 qg_buf->num_txqs = 1; 245 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 246 if (err) 247 return err; 248 ice_set_ring_xdp(xdp_ring); 249 ice_tx_xsk_pool(vsi, q_idx); 250 } 251 252 err = ice_vsi_cfg_rxq(rx_ring); 253 if (err) 254 return err; 255 256 ice_qvec_cfg_msix(vsi, q_vector); 257 258 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 259 if (err) 260 return err; 261 262 clear_bit(ICE_CFG_BUSY, vsi->state); 263 ice_qvec_toggle_napi(vsi, q_vector, true); 264 ice_qvec_ena_irq(vsi, q_vector); 265 266 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 267 268 return 0; 269 } 270 271 /** 272 * ice_xsk_pool_disable - disable a buffer pool region 273 * @vsi: Current VSI 274 * @qid: queue ID 275 * 276 * Returns 0 on success, negative on failure 277 */ 278 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 279 { 280 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 281 282 if (!pool) 283 return -EINVAL; 284 285 clear_bit(qid, vsi->af_xdp_zc_qps); 286 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 287 288 return 0; 289 } 290 291 /** 292 * ice_xsk_pool_enable - enable a buffer pool region 293 * @vsi: Current VSI 294 * @pool: pointer to a requested buffer pool region 295 * @qid: queue ID 296 * 297 * Returns 0 on success, negative on failure 298 */ 299 static int 300 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 301 { 302 int err; 303 304 if (vsi->type != ICE_VSI_PF) 305 return -EINVAL; 306 307 if (qid >= vsi->netdev->real_num_rx_queues || 308 qid >= vsi->netdev->real_num_tx_queues) 309 return -EINVAL; 310 311 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 312 ICE_RX_DMA_ATTR); 313 if (err) 314 return err; 315 316 set_bit(qid, vsi->af_xdp_zc_qps); 317 318 return 0; 319 } 320 321 /** 322 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 323 * @rx_ring: Rx ring 324 * @pool_present: is pool for XSK present 325 * 326 * Try allocating memory and return ENOMEM, if failed to allocate. 327 * If allocation was successful, substitute buffer with allocated one. 328 * Returns 0 on success, negative on failure 329 */ 330 static int 331 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 332 { 333 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 334 sizeof(*rx_ring->rx_buf); 335 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 336 337 if (!sw_ring) 338 return -ENOMEM; 339 340 if (pool_present) { 341 kfree(rx_ring->rx_buf); 342 rx_ring->rx_buf = NULL; 343 rx_ring->xdp_buf = sw_ring; 344 } else { 345 kfree(rx_ring->xdp_buf); 346 rx_ring->xdp_buf = NULL; 347 rx_ring->rx_buf = sw_ring; 348 } 349 350 return 0; 351 } 352 353 /** 354 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 355 * @vsi: Current VSI 356 * @zc: is zero copy set 357 * 358 * Reallocate buffer for rx_rings that might be used by XSK. 359 * XDP requires more memory, than rx_buf provides. 360 * Returns 0 on success, negative on failure 361 */ 362 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 363 { 364 struct ice_rx_ring *rx_ring; 365 unsigned long q; 366 367 for_each_set_bit(q, vsi->af_xdp_zc_qps, 368 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 369 rx_ring = vsi->rx_rings[q]; 370 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 371 return -ENOMEM; 372 } 373 374 return 0; 375 } 376 377 /** 378 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 379 * @vsi: Current VSI 380 * @pool: buffer pool to enable/associate to a ring, NULL to disable 381 * @qid: queue ID 382 * 383 * Returns 0 on success, negative on failure 384 */ 385 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 386 { 387 bool if_running, pool_present = !!pool; 388 int ret = 0, pool_failure = 0; 389 390 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 391 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 392 pool_failure = -EINVAL; 393 goto failure; 394 } 395 396 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 397 398 if (if_running) { 399 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 400 401 ret = ice_qp_dis(vsi, qid); 402 if (ret) { 403 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 404 goto xsk_pool_if_up; 405 } 406 407 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 408 if (ret) 409 goto xsk_pool_if_up; 410 } 411 412 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 413 ice_xsk_pool_disable(vsi, qid); 414 415 xsk_pool_if_up: 416 if (if_running) { 417 ret = ice_qp_ena(vsi, qid); 418 if (!ret && pool_present) 419 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 420 else if (ret) 421 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 422 } 423 424 failure: 425 if (pool_failure) { 426 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 427 pool_present ? "en" : "dis", pool_failure); 428 return pool_failure; 429 } 430 431 return ret; 432 } 433 434 /** 435 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 436 * @pool: XSK Buffer pool to pull the buffers from 437 * @xdp: SW ring of xdp_buff that will hold the buffers 438 * @rx_desc: Pointer to Rx descriptors that will be filled 439 * @count: The number of buffers to allocate 440 * 441 * This function allocates a number of Rx buffers from the fill ring 442 * or the internal recycle mechanism and places them on the Rx ring. 443 * 444 * Note that ring wrap should be handled by caller of this function. 445 * 446 * Returns the amount of allocated Rx descriptors 447 */ 448 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 449 union ice_32b_rx_flex_desc *rx_desc, u16 count) 450 { 451 dma_addr_t dma; 452 u16 buffs; 453 int i; 454 455 buffs = xsk_buff_alloc_batch(pool, xdp, count); 456 for (i = 0; i < buffs; i++) { 457 dma = xsk_buff_xdp_get_dma(*xdp); 458 rx_desc->read.pkt_addr = cpu_to_le64(dma); 459 rx_desc->wb.status_error0 = 0; 460 461 /* Put private info that changes on a per-packet basis 462 * into xdp_buff_xsk->cb. 463 */ 464 ice_xdp_meta_set_desc(*xdp, rx_desc); 465 466 rx_desc++; 467 xdp++; 468 } 469 470 return buffs; 471 } 472 473 /** 474 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 475 * @rx_ring: Rx ring 476 * @count: The number of buffers to allocate 477 * 478 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 479 * for case where space from next_to_use up to the end of ring is less 480 * than @count. Finally do a tail bump. 481 * 482 * Returns true if all allocations were successful, false if any fail. 483 */ 484 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 485 { 486 u32 nb_buffs_extra = 0, nb_buffs = 0; 487 union ice_32b_rx_flex_desc *rx_desc; 488 u16 ntu = rx_ring->next_to_use; 489 u16 total_count = count; 490 struct xdp_buff **xdp; 491 492 rx_desc = ICE_RX_DESC(rx_ring, ntu); 493 xdp = ice_xdp_buf(rx_ring, ntu); 494 495 if (ntu + count >= rx_ring->count) { 496 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 497 rx_desc, 498 rx_ring->count - ntu); 499 if (nb_buffs_extra != rx_ring->count - ntu) { 500 ntu += nb_buffs_extra; 501 goto exit; 502 } 503 rx_desc = ICE_RX_DESC(rx_ring, 0); 504 xdp = ice_xdp_buf(rx_ring, 0); 505 ntu = 0; 506 count -= nb_buffs_extra; 507 ice_release_rx_desc(rx_ring, 0); 508 } 509 510 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 511 512 ntu += nb_buffs; 513 if (ntu == rx_ring->count) 514 ntu = 0; 515 516 exit: 517 if (rx_ring->next_to_use != ntu) 518 ice_release_rx_desc(rx_ring, ntu); 519 520 return total_count == (nb_buffs_extra + nb_buffs); 521 } 522 523 /** 524 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 525 * @rx_ring: Rx ring 526 * @count: The number of buffers to allocate 527 * 528 * Wrapper for internal allocation routine; figure out how many tail 529 * bumps should take place based on the given threshold 530 * 531 * Returns true if all calls to internal alloc routine succeeded 532 */ 533 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 534 { 535 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 536 u16 leftover, i, tail_bumps; 537 538 tail_bumps = count / rx_thresh; 539 leftover = count - (tail_bumps * rx_thresh); 540 541 for (i = 0; i < tail_bumps; i++) 542 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 543 return false; 544 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 545 } 546 547 /** 548 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 549 * @rx_ring: Rx ring 550 * @xdp: Pointer to XDP buffer 551 * 552 * This function allocates a new skb from a zero-copy Rx buffer. 553 * 554 * Returns the skb on success, NULL on failure. 555 */ 556 static struct sk_buff * 557 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 558 { 559 unsigned int totalsize = xdp->data_end - xdp->data_meta; 560 unsigned int metasize = xdp->data - xdp->data_meta; 561 struct skb_shared_info *sinfo = NULL; 562 struct sk_buff *skb; 563 u32 nr_frags = 0; 564 565 if (unlikely(xdp_buff_has_frags(xdp))) { 566 sinfo = xdp_get_shared_info_from_buff(xdp); 567 nr_frags = sinfo->nr_frags; 568 } 569 net_prefetch(xdp->data_meta); 570 571 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 572 GFP_ATOMIC | __GFP_NOWARN); 573 if (unlikely(!skb)) 574 return NULL; 575 576 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 577 ALIGN(totalsize, sizeof(long))); 578 579 if (metasize) { 580 skb_metadata_set(skb, metasize); 581 __skb_pull(skb, metasize); 582 } 583 584 if (likely(!xdp_buff_has_frags(xdp))) 585 goto out; 586 587 for (int i = 0; i < nr_frags; i++) { 588 struct skb_shared_info *skinfo = skb_shinfo(skb); 589 skb_frag_t *frag = &sinfo->frags[i]; 590 struct page *page; 591 void *addr; 592 593 page = dev_alloc_page(); 594 if (!page) { 595 dev_kfree_skb(skb); 596 return NULL; 597 } 598 addr = page_to_virt(page); 599 600 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 601 602 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 603 addr, 0, skb_frag_size(frag)); 604 } 605 606 out: 607 xsk_buff_free(xdp); 608 return skb; 609 } 610 611 /** 612 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 613 * @xdp_ring: XDP Tx ring 614 */ 615 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 616 { 617 u16 ntc = xdp_ring->next_to_clean; 618 struct ice_tx_desc *tx_desc; 619 u16 cnt = xdp_ring->count; 620 struct ice_tx_buf *tx_buf; 621 u16 completed_frames = 0; 622 u16 xsk_frames = 0; 623 u16 last_rs; 624 int i; 625 626 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 627 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 628 if (tx_desc->cmd_type_offset_bsz & 629 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 630 if (last_rs >= ntc) 631 completed_frames = last_rs - ntc + 1; 632 else 633 completed_frames = last_rs + cnt - ntc + 1; 634 } 635 636 if (!completed_frames) 637 return 0; 638 639 if (likely(!xdp_ring->xdp_tx_active)) { 640 xsk_frames = completed_frames; 641 goto skip; 642 } 643 644 ntc = xdp_ring->next_to_clean; 645 for (i = 0; i < completed_frames; i++) { 646 tx_buf = &xdp_ring->tx_buf[ntc]; 647 648 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 649 tx_buf->type = ICE_TX_BUF_EMPTY; 650 xsk_buff_free(tx_buf->xdp); 651 xdp_ring->xdp_tx_active--; 652 } else { 653 xsk_frames++; 654 } 655 656 ntc++; 657 if (ntc >= xdp_ring->count) 658 ntc = 0; 659 } 660 skip: 661 tx_desc->cmd_type_offset_bsz = 0; 662 xdp_ring->next_to_clean += completed_frames; 663 if (xdp_ring->next_to_clean >= cnt) 664 xdp_ring->next_to_clean -= cnt; 665 if (xsk_frames) 666 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 667 668 return completed_frames; 669 } 670 671 /** 672 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 673 * @xdp: XDP buffer to xmit 674 * @xdp_ring: XDP ring to produce descriptor onto 675 * 676 * note that this function works directly on xdp_buff, no need to convert 677 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 678 * side will be able to xsk_buff_free() it. 679 * 680 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 681 * was not enough space on XDP ring 682 */ 683 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 684 struct ice_tx_ring *xdp_ring) 685 { 686 struct skb_shared_info *sinfo = NULL; 687 u32 size = xdp->data_end - xdp->data; 688 u32 ntu = xdp_ring->next_to_use; 689 struct ice_tx_desc *tx_desc; 690 struct ice_tx_buf *tx_buf; 691 struct xdp_buff *head; 692 u32 nr_frags = 0; 693 u32 free_space; 694 u32 frag = 0; 695 696 free_space = ICE_DESC_UNUSED(xdp_ring); 697 if (free_space < ICE_RING_QUARTER(xdp_ring)) 698 free_space += ice_clean_xdp_irq_zc(xdp_ring); 699 700 if (unlikely(!free_space)) 701 goto busy; 702 703 if (unlikely(xdp_buff_has_frags(xdp))) { 704 sinfo = xdp_get_shared_info_from_buff(xdp); 705 nr_frags = sinfo->nr_frags; 706 if (free_space < nr_frags + 1) 707 goto busy; 708 } 709 710 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 711 tx_buf = &xdp_ring->tx_buf[ntu]; 712 head = xdp; 713 714 for (;;) { 715 dma_addr_t dma; 716 717 dma = xsk_buff_xdp_get_dma(xdp); 718 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 719 720 tx_buf->xdp = xdp; 721 tx_buf->type = ICE_TX_BUF_XSK_TX; 722 tx_desc->buf_addr = cpu_to_le64(dma); 723 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 724 /* account for each xdp_buff from xsk_buff_pool */ 725 xdp_ring->xdp_tx_active++; 726 727 if (++ntu == xdp_ring->count) 728 ntu = 0; 729 730 if (frag == nr_frags) 731 break; 732 733 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 734 tx_buf = &xdp_ring->tx_buf[ntu]; 735 736 xdp = xsk_buff_get_frag(head); 737 size = skb_frag_size(&sinfo->frags[frag]); 738 frag++; 739 } 740 741 xdp_ring->next_to_use = ntu; 742 /* update last descriptor from a frame with EOP */ 743 tx_desc->cmd_type_offset_bsz |= 744 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 745 746 return ICE_XDP_TX; 747 748 busy: 749 xdp_ring->ring_stats->tx_stats.tx_busy++; 750 751 return ICE_XDP_CONSUMED; 752 } 753 754 /** 755 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 756 * @rx_ring: Rx ring 757 * @xdp: xdp_buff used as input to the XDP program 758 * @xdp_prog: XDP program to run 759 * @xdp_ring: ring to be used for XDP_TX action 760 * 761 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 762 */ 763 static int 764 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 765 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 766 { 767 int err, result = ICE_XDP_PASS; 768 u32 act; 769 770 act = bpf_prog_run_xdp(xdp_prog, xdp); 771 772 if (likely(act == XDP_REDIRECT)) { 773 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 774 if (!err) 775 return ICE_XDP_REDIR; 776 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 777 result = ICE_XDP_EXIT; 778 else 779 result = ICE_XDP_CONSUMED; 780 goto out_failure; 781 } 782 783 switch (act) { 784 case XDP_PASS: 785 break; 786 case XDP_TX: 787 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 788 if (result == ICE_XDP_CONSUMED) 789 goto out_failure; 790 break; 791 case XDP_DROP: 792 result = ICE_XDP_CONSUMED; 793 break; 794 default: 795 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 796 fallthrough; 797 case XDP_ABORTED: 798 result = ICE_XDP_CONSUMED; 799 out_failure: 800 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 801 break; 802 } 803 804 return result; 805 } 806 807 static int 808 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 809 struct xdp_buff *xdp, const unsigned int size) 810 { 811 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 812 813 if (!size) 814 return 0; 815 816 if (!xdp_buff_has_frags(first)) { 817 sinfo->nr_frags = 0; 818 sinfo->xdp_frags_size = 0; 819 xdp_buff_set_frags_flag(first); 820 } 821 822 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 823 xsk_buff_free(first); 824 return -ENOMEM; 825 } 826 827 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 828 virt_to_page(xdp->data_hard_start), 0, size); 829 sinfo->xdp_frags_size += size; 830 xsk_buff_add_frag(xdp); 831 832 return 0; 833 } 834 835 /** 836 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 837 * @rx_ring: AF_XDP Rx ring 838 * @budget: NAPI budget 839 * 840 * Returns number of processed packets on success, remaining budget on failure. 841 */ 842 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 843 { 844 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 845 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; 846 u32 ntc = rx_ring->next_to_clean; 847 u32 ntu = rx_ring->next_to_use; 848 struct xdp_buff *first = NULL; 849 struct ice_tx_ring *xdp_ring; 850 unsigned int xdp_xmit = 0; 851 struct bpf_prog *xdp_prog; 852 u32 cnt = rx_ring->count; 853 bool failure = false; 854 int entries_to_alloc; 855 856 /* ZC patch is enabled only when XDP program is set, 857 * so here it can not be NULL 858 */ 859 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 860 xdp_ring = rx_ring->xdp_ring; 861 862 if (ntc != rx_ring->first_desc) 863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 864 865 while (likely(total_rx_packets < (unsigned int)budget)) { 866 union ice_32b_rx_flex_desc *rx_desc; 867 unsigned int size, xdp_res = 0; 868 struct xdp_buff *xdp; 869 struct sk_buff *skb; 870 u16 stat_err_bits; 871 u16 vlan_tci; 872 873 rx_desc = ICE_RX_DESC(rx_ring, ntc); 874 875 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 876 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 877 break; 878 879 /* This memory barrier is needed to keep us from reading 880 * any other fields out of the rx_desc until we have 881 * verified the descriptor has been written back. 882 */ 883 dma_rmb(); 884 885 if (unlikely(ntc == ntu)) 886 break; 887 888 xdp = *ice_xdp_buf(rx_ring, ntc); 889 890 size = le16_to_cpu(rx_desc->wb.pkt_len) & 891 ICE_RX_FLX_DESC_PKT_LEN_M; 892 893 xsk_buff_set_size(xdp, size); 894 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool); 895 896 if (!first) { 897 first = xdp; 898 xdp_buff_clear_frags_flag(first); 899 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 900 break; 901 } 902 903 if (++ntc == cnt) 904 ntc = 0; 905 906 if (ice_is_non_eop(rx_ring, rx_desc)) 907 continue; 908 909 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); 910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 911 xdp_xmit |= xdp_res; 912 } else if (xdp_res == ICE_XDP_EXIT) { 913 failure = true; 914 first = NULL; 915 rx_ring->first_desc = ntc; 916 break; 917 } else if (xdp_res == ICE_XDP_CONSUMED) { 918 xsk_buff_free(first); 919 } else if (xdp_res == ICE_XDP_PASS) { 920 goto construct_skb; 921 } 922 923 total_rx_bytes += xdp_get_buff_len(first); 924 total_rx_packets++; 925 926 first = NULL; 927 rx_ring->first_desc = ntc; 928 continue; 929 930 construct_skb: 931 /* XDP_PASS path */ 932 skb = ice_construct_skb_zc(rx_ring, first); 933 if (!skb) { 934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 935 break; 936 } 937 938 first = NULL; 939 rx_ring->first_desc = ntc; 940 941 if (eth_skb_pad(skb)) { 942 skb = NULL; 943 continue; 944 } 945 946 total_rx_bytes += skb->len; 947 total_rx_packets++; 948 949 vlan_tci = ice_get_vlan_tci(rx_desc); 950 951 ice_process_skb_fields(rx_ring, rx_desc, skb); 952 ice_receive_skb(rx_ring, skb, vlan_tci); 953 } 954 955 rx_ring->next_to_clean = ntc; 956 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 957 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 958 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 959 960 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 961 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 962 963 if (xsk_uses_need_wakeup(xsk_pool)) { 964 /* ntu could have changed when allocating entries above, so 965 * use rx_ring value instead of stack based one 966 */ 967 if (failure || ntc == rx_ring->next_to_use) 968 xsk_set_rx_need_wakeup(xsk_pool); 969 else 970 xsk_clear_rx_need_wakeup(xsk_pool); 971 972 return (int)total_rx_packets; 973 } 974 975 return failure ? budget : (int)total_rx_packets; 976 } 977 978 /** 979 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 980 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 981 * @desc: AF_XDP descriptor to pull the DMA address and length from 982 * @total_bytes: bytes accumulator that will be used for stats update 983 */ 984 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 985 unsigned int *total_bytes) 986 { 987 struct ice_tx_desc *tx_desc; 988 dma_addr_t dma; 989 990 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 991 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 992 993 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 994 tx_desc->buf_addr = cpu_to_le64(dma); 995 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 996 0, desc->len, 0); 997 998 *total_bytes += desc->len; 999 } 1000 1001 /** 1002 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 1003 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1004 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1005 * @total_bytes: bytes accumulator that will be used for stats update 1006 */ 1007 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1008 unsigned int *total_bytes) 1009 { 1010 u16 ntu = xdp_ring->next_to_use; 1011 struct ice_tx_desc *tx_desc; 1012 u32 i; 1013 1014 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1015 dma_addr_t dma; 1016 1017 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 1018 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 1019 1020 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1021 tx_desc->buf_addr = cpu_to_le64(dma); 1022 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1023 0, descs[i].len, 0); 1024 1025 *total_bytes += descs[i].len; 1026 } 1027 1028 xdp_ring->next_to_use = ntu; 1029 } 1030 1031 /** 1032 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1033 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1034 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1035 * @nb_pkts: count of packets to be send 1036 * @total_bytes: bytes accumulator that will be used for stats update 1037 */ 1038 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1039 u32 nb_pkts, unsigned int *total_bytes) 1040 { 1041 u32 batched, leftover, i; 1042 1043 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1044 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1045 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1046 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 1047 for (; i < batched + leftover; i++) 1048 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 1049 } 1050 1051 /** 1052 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1053 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1054 * 1055 * Returns true if there is no more work that needs to be done, false otherwise 1056 */ 1057 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 1058 { 1059 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 1060 u32 nb_pkts, nb_processed = 0; 1061 unsigned int total_bytes = 0; 1062 int budget; 1063 1064 ice_clean_xdp_irq_zc(xdp_ring); 1065 1066 budget = ICE_DESC_UNUSED(xdp_ring); 1067 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1068 1069 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 1070 if (!nb_pkts) 1071 return true; 1072 1073 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1074 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1075 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 1076 xdp_ring->next_to_use = 0; 1077 } 1078 1079 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 1080 &total_bytes); 1081 1082 ice_set_rs_bit(xdp_ring); 1083 ice_xdp_ring_update_tail(xdp_ring); 1084 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1085 1086 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1087 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1088 1089 return nb_pkts < budget; 1090 } 1091 1092 /** 1093 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1094 * @netdev: net_device 1095 * @queue_id: queue to wake up 1096 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1097 * 1098 * Returns negative on error, zero otherwise. 1099 */ 1100 int 1101 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1102 u32 __always_unused flags) 1103 { 1104 struct ice_netdev_priv *np = netdev_priv(netdev); 1105 struct ice_q_vector *q_vector; 1106 struct ice_vsi *vsi = np->vsi; 1107 struct ice_tx_ring *ring; 1108 1109 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1110 return -ENETDOWN; 1111 1112 if (!ice_is_xdp_ena_vsi(vsi)) 1113 return -EINVAL; 1114 1115 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1116 return -EINVAL; 1117 1118 ring = vsi->rx_rings[queue_id]->xdp_ring; 1119 1120 if (!ring->xsk_pool) 1121 return -EINVAL; 1122 1123 /* The idea here is that if NAPI is running, mark a miss, so 1124 * it will run again. If not, trigger an interrupt and 1125 * schedule the NAPI from interrupt context. If NAPI would be 1126 * scheduled here, the interrupt affinity would not be 1127 * honored. 1128 */ 1129 q_vector = ring->q_vector; 1130 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1131 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1138 * @vsi: VSI to be checked 1139 * 1140 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1141 */ 1142 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1143 { 1144 int i; 1145 1146 ice_for_each_rxq(vsi, i) { 1147 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1148 return true; 1149 } 1150 1151 return false; 1152 } 1153 1154 /** 1155 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1156 * @rx_ring: ring to be cleaned 1157 */ 1158 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1159 { 1160 u16 ntc = rx_ring->next_to_clean; 1161 u16 ntu = rx_ring->next_to_use; 1162 1163 while (ntc != ntu) { 1164 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1165 1166 xsk_buff_free(xdp); 1167 ntc++; 1168 if (ntc >= rx_ring->count) 1169 ntc = 0; 1170 } 1171 } 1172 1173 /** 1174 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1175 * @xdp_ring: XDP_Tx ring 1176 */ 1177 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1178 { 1179 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1180 u32 xsk_frames = 0; 1181 1182 while (ntc != ntu) { 1183 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1184 1185 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1186 tx_buf->type = ICE_TX_BUF_EMPTY; 1187 xsk_buff_free(tx_buf->xdp); 1188 } else { 1189 xsk_frames++; 1190 } 1191 1192 ntc++; 1193 if (ntc >= xdp_ring->count) 1194 ntc = 0; 1195 } 1196 1197 if (xsk_frames) 1198 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1199 } 1200