1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) 45 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 46 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 47 } 48 49 /** 50 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 51 * @vsi: VSI that has netdev 52 * @q_vector: q_vector that has NAPI context 53 * @enable: true for enable, false for disable 54 */ 55 static void 56 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 57 bool enable) 58 { 59 if (!vsi->netdev || !q_vector) 60 return; 61 62 if (enable) 63 napi_enable(&q_vector->napi); 64 else 65 napi_disable(&q_vector->napi); 66 } 67 68 /** 69 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 70 * @vsi: the VSI that contains queue vector being un-configured 71 * @rx_ring: Rx ring that will have its IRQ disabled 72 * @q_vector: queue vector 73 */ 74 static void 75 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 76 struct ice_q_vector *q_vector) 77 { 78 struct ice_pf *pf = vsi->back; 79 struct ice_hw *hw = &pf->hw; 80 int base = vsi->base_vector; 81 u16 reg; 82 u32 val; 83 84 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 85 * here only QINT_RQCTL 86 */ 87 reg = rx_ring->reg_idx; 88 val = rd32(hw, QINT_RQCTL(reg)); 89 val &= ~QINT_RQCTL_CAUSE_ENA_M; 90 wr32(hw, QINT_RQCTL(reg), val); 91 92 if (q_vector) { 93 u16 v_idx = q_vector->v_idx; 94 95 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 96 ice_flush(hw); 97 synchronize_irq(pf->msix_entries[v_idx + base].vector); 98 } 99 } 100 101 /** 102 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 103 * @vsi: the VSI that contains queue vector 104 * @q_vector: queue vector 105 */ 106 static void 107 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 108 { 109 u16 reg_idx = q_vector->reg_idx; 110 struct ice_pf *pf = vsi->back; 111 struct ice_hw *hw = &pf->hw; 112 struct ice_tx_ring *tx_ring; 113 struct ice_rx_ring *rx_ring; 114 115 ice_cfg_itr(hw, q_vector); 116 117 ice_for_each_tx_ring(tx_ring, q_vector->tx) 118 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 119 q_vector->tx.itr_idx); 120 121 ice_for_each_rx_ring(rx_ring, q_vector->rx) 122 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 123 q_vector->rx.itr_idx); 124 125 ice_flush(hw); 126 } 127 128 /** 129 * ice_qvec_ena_irq - Enable IRQ for given queue vector 130 * @vsi: the VSI that contains queue vector 131 * @q_vector: queue vector 132 */ 133 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 134 { 135 struct ice_pf *pf = vsi->back; 136 struct ice_hw *hw = &pf->hw; 137 138 ice_irq_dynamic_ena(hw, vsi, q_vector); 139 140 ice_flush(hw); 141 } 142 143 /** 144 * ice_qp_dis - Disables a queue pair 145 * @vsi: VSI of interest 146 * @q_idx: ring index in array 147 * 148 * Returns 0 on success, negative on failure. 149 */ 150 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 151 { 152 struct ice_txq_meta txq_meta = { }; 153 struct ice_q_vector *q_vector; 154 struct ice_tx_ring *tx_ring; 155 struct ice_rx_ring *rx_ring; 156 int timeout = 50; 157 int err; 158 159 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 160 return -EINVAL; 161 162 tx_ring = vsi->tx_rings[q_idx]; 163 rx_ring = vsi->rx_rings[q_idx]; 164 q_vector = rx_ring->q_vector; 165 166 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 167 timeout--; 168 if (!timeout) 169 return -EBUSY; 170 usleep_range(1000, 2000); 171 } 172 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 173 174 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 175 176 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 177 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 178 if (err) 179 return err; 180 if (ice_is_xdp_ena_vsi(vsi)) { 181 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 182 183 memset(&txq_meta, 0, sizeof(txq_meta)); 184 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 186 &txq_meta); 187 if (err) 188 return err; 189 } 190 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 191 if (err) 192 return err; 193 194 ice_qvec_toggle_napi(vsi, q_vector, false); 195 ice_qp_clean_rings(vsi, q_idx); 196 ice_qp_reset_stats(vsi, q_idx); 197 198 return 0; 199 } 200 201 /** 202 * ice_qp_ena - Enables a queue pair 203 * @vsi: VSI of interest 204 * @q_idx: ring index in array 205 * 206 * Returns 0 on success, negative on failure. 207 */ 208 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 209 { 210 struct ice_aqc_add_tx_qgrp *qg_buf; 211 struct ice_q_vector *q_vector; 212 struct ice_tx_ring *tx_ring; 213 struct ice_rx_ring *rx_ring; 214 u16 size; 215 int err; 216 217 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 218 return -EINVAL; 219 220 size = struct_size(qg_buf, txqs, 1); 221 qg_buf = kzalloc(size, GFP_KERNEL); 222 if (!qg_buf) 223 return -ENOMEM; 224 225 qg_buf->num_txqs = 1; 226 227 tx_ring = vsi->tx_rings[q_idx]; 228 rx_ring = vsi->rx_rings[q_idx]; 229 q_vector = rx_ring->q_vector; 230 231 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 232 if (err) 233 goto free_buf; 234 235 if (ice_is_xdp_ena_vsi(vsi)) { 236 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 237 238 memset(qg_buf, 0, size); 239 qg_buf->num_txqs = 1; 240 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 241 if (err) 242 goto free_buf; 243 ice_set_ring_xdp(xdp_ring); 244 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 245 } 246 247 err = ice_vsi_cfg_rxq(rx_ring); 248 if (err) 249 goto free_buf; 250 251 ice_qvec_cfg_msix(vsi, q_vector); 252 253 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 254 if (err) 255 goto free_buf; 256 257 clear_bit(ICE_CFG_BUSY, vsi->state); 258 ice_qvec_toggle_napi(vsi, q_vector, true); 259 ice_qvec_ena_irq(vsi, q_vector); 260 261 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 262 free_buf: 263 kfree(qg_buf); 264 return err; 265 } 266 267 /** 268 * ice_xsk_pool_disable - disable a buffer pool region 269 * @vsi: Current VSI 270 * @qid: queue ID 271 * 272 * Returns 0 on success, negative on failure 273 */ 274 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 275 { 276 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 277 278 if (!pool) 279 return -EINVAL; 280 281 clear_bit(qid, vsi->af_xdp_zc_qps); 282 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 283 284 return 0; 285 } 286 287 /** 288 * ice_xsk_pool_enable - enable a buffer pool region 289 * @vsi: Current VSI 290 * @pool: pointer to a requested buffer pool region 291 * @qid: queue ID 292 * 293 * Returns 0 on success, negative on failure 294 */ 295 static int 296 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 297 { 298 int err; 299 300 if (vsi->type != ICE_VSI_PF) 301 return -EINVAL; 302 303 if (qid >= vsi->netdev->real_num_rx_queues || 304 qid >= vsi->netdev->real_num_tx_queues) 305 return -EINVAL; 306 307 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 308 ICE_RX_DMA_ATTR); 309 if (err) 310 return err; 311 312 set_bit(qid, vsi->af_xdp_zc_qps); 313 314 return 0; 315 } 316 317 /** 318 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 319 * @vsi: Current VSI 320 * @pool: buffer pool to enable/associate to a ring, NULL to disable 321 * @qid: queue ID 322 * 323 * Returns 0 on success, negative on failure 324 */ 325 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 326 { 327 bool if_running, pool_present = !!pool; 328 int ret = 0, pool_failure = 0; 329 330 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 331 332 if (if_running) { 333 ret = ice_qp_dis(vsi, qid); 334 if (ret) { 335 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 336 goto xsk_pool_if_up; 337 } 338 } 339 340 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 341 ice_xsk_pool_disable(vsi, qid); 342 343 xsk_pool_if_up: 344 if (if_running) { 345 ret = ice_qp_ena(vsi, qid); 346 if (!ret && pool_present) 347 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 348 else if (ret) 349 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 350 } 351 352 if (pool_failure) { 353 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 354 pool_present ? "en" : "dis", pool_failure); 355 return pool_failure; 356 } 357 358 return ret; 359 } 360 361 /** 362 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 363 * @rx_ring: Rx ring 364 * @count: The number of buffers to allocate 365 * 366 * This function allocates a number of Rx buffers from the fill ring 367 * or the internal recycle mechanism and places them on the Rx ring. 368 * 369 * Returns true if all allocations were successful, false if any fail. 370 */ 371 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 372 { 373 union ice_32b_rx_flex_desc *rx_desc; 374 u16 ntu = rx_ring->next_to_use; 375 struct xdp_buff **xdp; 376 u32 nb_buffs, i; 377 dma_addr_t dma; 378 379 rx_desc = ICE_RX_DESC(rx_ring, ntu); 380 xdp = ice_xdp_buf(rx_ring, ntu); 381 382 nb_buffs = min_t(u16, count, rx_ring->count - ntu); 383 nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs); 384 if (!nb_buffs) 385 return false; 386 387 i = nb_buffs; 388 while (i--) { 389 dma = xsk_buff_xdp_get_dma(*xdp); 390 rx_desc->read.pkt_addr = cpu_to_le64(dma); 391 rx_desc->wb.status_error0 = 0; 392 393 rx_desc++; 394 xdp++; 395 } 396 397 ntu += nb_buffs; 398 if (ntu == rx_ring->count) 399 ntu = 0; 400 401 ice_release_rx_desc(rx_ring, ntu); 402 403 return count == nb_buffs; 404 } 405 406 /** 407 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 408 * @rx_ring: Rx ring 409 */ 410 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 411 { 412 int ntc = rx_ring->next_to_clean + 1; 413 414 ntc = (ntc < rx_ring->count) ? ntc : 0; 415 rx_ring->next_to_clean = ntc; 416 prefetch(ICE_RX_DESC(rx_ring, ntc)); 417 } 418 419 /** 420 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 421 * @rx_ring: Rx ring 422 * @xdp: Pointer to XDP buffer 423 * 424 * This function allocates a new skb from a zero-copy Rx buffer. 425 * 426 * Returns the skb on success, NULL on failure. 427 */ 428 static struct sk_buff * 429 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 430 { 431 unsigned int totalsize = xdp->data_end - xdp->data_meta; 432 unsigned int metasize = xdp->data - xdp->data_meta; 433 struct sk_buff *skb; 434 435 net_prefetch(xdp->data_meta); 436 437 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 438 GFP_ATOMIC | __GFP_NOWARN); 439 if (unlikely(!skb)) 440 return NULL; 441 442 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 443 ALIGN(totalsize, sizeof(long))); 444 445 if (metasize) { 446 skb_metadata_set(skb, metasize); 447 __skb_pull(skb, metasize); 448 } 449 450 xsk_buff_free(xdp); 451 return skb; 452 } 453 454 /** 455 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 456 * @rx_ring: Rx ring 457 * @xdp: xdp_buff used as input to the XDP program 458 * @xdp_prog: XDP program to run 459 * @xdp_ring: ring to be used for XDP_TX action 460 * 461 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 462 */ 463 static int 464 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 465 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 466 { 467 int err, result = ICE_XDP_PASS; 468 u32 act; 469 470 act = bpf_prog_run_xdp(xdp_prog, xdp); 471 472 if (likely(act == XDP_REDIRECT)) { 473 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 474 if (err) 475 goto out_failure; 476 return ICE_XDP_REDIR; 477 } 478 479 switch (act) { 480 case XDP_PASS: 481 break; 482 case XDP_TX: 483 result = ice_xmit_xdp_buff(xdp, xdp_ring); 484 if (result == ICE_XDP_CONSUMED) 485 goto out_failure; 486 break; 487 default: 488 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 489 fallthrough; 490 case XDP_ABORTED: 491 out_failure: 492 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 493 fallthrough; 494 case XDP_DROP: 495 result = ICE_XDP_CONSUMED; 496 break; 497 } 498 499 return result; 500 } 501 502 /** 503 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 504 * @rx_ring: AF_XDP Rx ring 505 * @budget: NAPI budget 506 * 507 * Returns number of processed packets on success, remaining budget on failure. 508 */ 509 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 510 { 511 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 512 struct ice_tx_ring *xdp_ring; 513 unsigned int xdp_xmit = 0; 514 struct bpf_prog *xdp_prog; 515 bool failure = false; 516 517 /* ZC patch is enabled only when XDP program is set, 518 * so here it can not be NULL 519 */ 520 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 521 xdp_ring = rx_ring->xdp_ring; 522 523 while (likely(total_rx_packets < (unsigned int)budget)) { 524 union ice_32b_rx_flex_desc *rx_desc; 525 unsigned int size, xdp_res = 0; 526 struct xdp_buff *xdp; 527 struct sk_buff *skb; 528 u16 stat_err_bits; 529 u16 vlan_tag = 0; 530 u16 rx_ptype; 531 532 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 533 534 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 535 if (!ice_test_staterr(rx_desc, stat_err_bits)) 536 break; 537 538 /* This memory barrier is needed to keep us from reading 539 * any other fields out of the rx_desc until we have 540 * verified the descriptor has been written back. 541 */ 542 dma_rmb(); 543 544 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 545 546 size = le16_to_cpu(rx_desc->wb.pkt_len) & 547 ICE_RX_FLX_DESC_PKT_LEN_M; 548 if (!size) { 549 xdp->data = NULL; 550 xdp->data_end = NULL; 551 xdp->data_hard_start = NULL; 552 xdp->data_meta = NULL; 553 goto construct_skb; 554 } 555 556 xsk_buff_set_size(xdp, size); 557 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 558 559 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 560 if (xdp_res) { 561 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 562 xdp_xmit |= xdp_res; 563 else 564 xsk_buff_free(xdp); 565 566 total_rx_bytes += size; 567 total_rx_packets++; 568 569 ice_bump_ntc(rx_ring); 570 continue; 571 } 572 construct_skb: 573 /* XDP_PASS path */ 574 skb = ice_construct_skb_zc(rx_ring, xdp); 575 if (!skb) { 576 rx_ring->rx_stats.alloc_buf_failed++; 577 break; 578 } 579 580 ice_bump_ntc(rx_ring); 581 582 if (eth_skb_pad(skb)) { 583 skb = NULL; 584 continue; 585 } 586 587 total_rx_bytes += skb->len; 588 total_rx_packets++; 589 590 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 591 if (ice_test_staterr(rx_desc, stat_err_bits)) 592 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 593 594 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 595 ICE_RX_FLEX_DESC_PTYPE_M; 596 597 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 598 ice_receive_skb(rx_ring, skb, vlan_tag); 599 } 600 601 failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring)); 602 603 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 604 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 605 606 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 607 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 608 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 609 else 610 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 611 612 return (int)total_rx_packets; 613 } 614 615 return failure ? budget : (int)total_rx_packets; 616 } 617 618 /** 619 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 620 * @xdp_ring: XDP Tx ring 621 * @budget: max number of frames to xmit 622 * 623 * Returns true if cleanup/transmission is done. 624 */ 625 static bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, int budget) 626 { 627 struct ice_tx_desc *tx_desc = NULL; 628 bool work_done = true; 629 struct xdp_desc desc; 630 dma_addr_t dma; 631 632 while (likely(budget-- > 0)) { 633 struct ice_tx_buf *tx_buf; 634 635 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 636 xdp_ring->tx_stats.tx_busy++; 637 work_done = false; 638 break; 639 } 640 641 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 642 643 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc)) 644 break; 645 646 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr); 647 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, 648 desc.len); 649 650 tx_buf->bytecount = desc.len; 651 652 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 653 tx_desc->buf_addr = cpu_to_le64(dma); 654 tx_desc->cmd_type_offset_bsz = 655 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 656 657 xdp_ring->next_to_use++; 658 if (xdp_ring->next_to_use == xdp_ring->count) 659 xdp_ring->next_to_use = 0; 660 } 661 662 if (tx_desc) { 663 ice_xdp_ring_update_tail(xdp_ring); 664 xsk_tx_release(xdp_ring->xsk_pool); 665 } 666 667 return budget > 0 && work_done; 668 } 669 670 /** 671 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 672 * @xdp_ring: XDP Tx ring 673 * @tx_buf: Tx buffer to clean 674 */ 675 static void 676 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 677 { 678 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 679 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 680 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 681 dma_unmap_len_set(tx_buf, len, 0); 682 } 683 684 /** 685 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 686 * @xdp_ring: XDP Tx ring 687 * @budget: NAPI budget 688 * 689 * Returns true if cleanup/tranmission is done. 690 */ 691 bool ice_clean_tx_irq_zc(struct ice_tx_ring *xdp_ring, int budget) 692 { 693 int total_packets = 0, total_bytes = 0; 694 s16 ntc = xdp_ring->next_to_clean; 695 struct ice_tx_desc *tx_desc; 696 struct ice_tx_buf *tx_buf; 697 u32 xsk_frames = 0; 698 bool xmit_done; 699 700 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 701 tx_buf = &xdp_ring->tx_buf[ntc]; 702 ntc -= xdp_ring->count; 703 704 do { 705 if (!(tx_desc->cmd_type_offset_bsz & 706 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 707 break; 708 709 total_bytes += tx_buf->bytecount; 710 total_packets++; 711 712 if (tx_buf->raw_buf) { 713 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 714 tx_buf->raw_buf = NULL; 715 } else { 716 xsk_frames++; 717 } 718 719 tx_desc->cmd_type_offset_bsz = 0; 720 tx_buf++; 721 tx_desc++; 722 ntc++; 723 724 if (unlikely(!ntc)) { 725 ntc -= xdp_ring->count; 726 tx_buf = xdp_ring->tx_buf; 727 tx_desc = ICE_TX_DESC(xdp_ring, 0); 728 } 729 730 prefetch(tx_desc); 731 732 } while (likely(--budget)); 733 734 ntc += xdp_ring->count; 735 xdp_ring->next_to_clean = ntc; 736 737 if (xsk_frames) 738 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 739 740 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 741 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 742 743 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 744 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 745 746 return budget > 0 && xmit_done; 747 } 748 749 /** 750 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 751 * @netdev: net_device 752 * @queue_id: queue to wake up 753 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 754 * 755 * Returns negative on error, zero otherwise. 756 */ 757 int 758 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 759 u32 __always_unused flags) 760 { 761 struct ice_netdev_priv *np = netdev_priv(netdev); 762 struct ice_q_vector *q_vector; 763 struct ice_vsi *vsi = np->vsi; 764 struct ice_tx_ring *ring; 765 766 if (test_bit(ICE_DOWN, vsi->state)) 767 return -ENETDOWN; 768 769 if (!ice_is_xdp_ena_vsi(vsi)) 770 return -ENXIO; 771 772 if (queue_id >= vsi->num_txq) 773 return -ENXIO; 774 775 if (!vsi->xdp_rings[queue_id]->xsk_pool) 776 return -ENXIO; 777 778 ring = vsi->xdp_rings[queue_id]; 779 780 /* The idea here is that if NAPI is running, mark a miss, so 781 * it will run again. If not, trigger an interrupt and 782 * schedule the NAPI from interrupt context. If NAPI would be 783 * scheduled here, the interrupt affinity would not be 784 * honored. 785 */ 786 q_vector = ring->q_vector; 787 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 788 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 789 790 return 0; 791 } 792 793 /** 794 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 795 * @vsi: VSI to be checked 796 * 797 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 798 */ 799 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 800 { 801 int i; 802 803 ice_for_each_rxq(vsi, i) { 804 if (xsk_get_pool_from_qid(vsi->netdev, i)) 805 return true; 806 } 807 808 return false; 809 } 810 811 /** 812 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 813 * @rx_ring: ring to be cleaned 814 */ 815 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 816 { 817 u16 count_mask = rx_ring->count - 1; 818 u16 ntc = rx_ring->next_to_clean; 819 u16 ntu = rx_ring->next_to_use; 820 821 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 822 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 823 824 xsk_buff_free(xdp); 825 } 826 } 827 828 /** 829 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 830 * @xdp_ring: XDP_Tx ring 831 */ 832 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 833 { 834 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 835 u32 xsk_frames = 0; 836 837 while (ntc != ntu) { 838 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 839 840 if (tx_buf->raw_buf) 841 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 842 else 843 xsk_frames++; 844 845 tx_buf->raw_buf = NULL; 846 847 ntc++; 848 if (ntc >= xdp_ring->count) 849 ntc = 0; 850 } 851 852 if (xsk_frames) 853 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 854 } 855