1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 u16 reg; 94 u32 val; 95 96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 97 * here only QINT_RQCTL 98 */ 99 reg = rx_ring->reg_idx; 100 val = rd32(hw, QINT_RQCTL(reg)); 101 val &= ~QINT_RQCTL_CAUSE_ENA_M; 102 wr32(hw, QINT_RQCTL(reg), val); 103 104 if (q_vector) { 105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 106 ice_flush(hw); 107 synchronize_irq(q_vector->irq.virq); 108 } 109 } 110 111 /** 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 113 * @vsi: the VSI that contains queue vector 114 * @q_vector: queue vector 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 struct ice_tx_ring *tx_ring; 123 struct ice_rx_ring *rx_ring; 124 125 ice_cfg_itr(hw, q_vector); 126 127 ice_for_each_tx_ring(tx_ring, q_vector->tx) 128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 129 q_vector->tx.itr_idx); 130 131 ice_for_each_rx_ring(rx_ring, q_vector->rx) 132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 133 q_vector->rx.itr_idx); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector 140 * @vsi: the VSI that contains queue vector 141 * @q_vector: queue vector 142 */ 143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 144 { 145 struct ice_pf *pf = vsi->back; 146 struct ice_hw *hw = &pf->hw; 147 148 ice_irq_dynamic_ena(hw, vsi, q_vector); 149 150 ice_flush(hw); 151 } 152 153 /** 154 * ice_qp_dis - Disables a queue pair 155 * @vsi: VSI of interest 156 * @q_idx: ring index in array 157 * 158 * Returns 0 on success, negative on failure. 159 */ 160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 161 { 162 struct ice_txq_meta txq_meta = { }; 163 struct ice_q_vector *q_vector; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 int timeout = 50; 167 int err; 168 169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 170 return -EINVAL; 171 172 tx_ring = vsi->tx_rings[q_idx]; 173 rx_ring = vsi->rx_rings[q_idx]; 174 q_vector = rx_ring->q_vector; 175 176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 177 timeout--; 178 if (!timeout) 179 return -EBUSY; 180 usleep_range(1000, 2000); 181 } 182 183 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 184 ice_qvec_toggle_napi(vsi, q_vector, false); 185 186 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 187 188 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 189 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 190 if (err) 191 return err; 192 if (ice_is_xdp_ena_vsi(vsi)) { 193 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 194 195 memset(&txq_meta, 0, sizeof(txq_meta)); 196 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 197 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 198 &txq_meta); 199 if (err) 200 return err; 201 } 202 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 203 if (err) 204 return err; 205 206 ice_qp_clean_rings(vsi, q_idx); 207 ice_qp_reset_stats(vsi, q_idx); 208 209 return 0; 210 } 211 212 /** 213 * ice_qp_ena - Enables a queue pair 214 * @vsi: VSI of interest 215 * @q_idx: ring index in array 216 * 217 * Returns 0 on success, negative on failure. 218 */ 219 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 220 { 221 struct ice_q_vector *q_vector; 222 int err; 223 224 err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx); 225 if (err) 226 return err; 227 228 if (ice_is_xdp_ena_vsi(vsi)) { 229 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 230 231 err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx); 232 if (err) 233 return err; 234 ice_set_ring_xdp(xdp_ring); 235 ice_tx_xsk_pool(vsi, q_idx); 236 } 237 238 err = ice_vsi_cfg_single_rxq(vsi, q_idx); 239 if (err) 240 return err; 241 242 q_vector = vsi->rx_rings[q_idx]->q_vector; 243 ice_qvec_cfg_msix(vsi, q_vector); 244 245 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 246 if (err) 247 return err; 248 249 ice_qvec_toggle_napi(vsi, q_vector, true); 250 ice_qvec_ena_irq(vsi, q_vector); 251 252 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 253 clear_bit(ICE_CFG_BUSY, vsi->state); 254 255 return 0; 256 } 257 258 /** 259 * ice_xsk_pool_disable - disable a buffer pool region 260 * @vsi: Current VSI 261 * @qid: queue ID 262 * 263 * Returns 0 on success, negative on failure 264 */ 265 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 266 { 267 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 268 269 if (!pool) 270 return -EINVAL; 271 272 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 273 274 return 0; 275 } 276 277 /** 278 * ice_xsk_pool_enable - enable a buffer pool region 279 * @vsi: Current VSI 280 * @pool: pointer to a requested buffer pool region 281 * @qid: queue ID 282 * 283 * Returns 0 on success, negative on failure 284 */ 285 static int 286 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 287 { 288 int err; 289 290 if (vsi->type != ICE_VSI_PF) 291 return -EINVAL; 292 293 if (qid >= vsi->netdev->real_num_rx_queues || 294 qid >= vsi->netdev->real_num_tx_queues) 295 return -EINVAL; 296 297 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 298 ICE_RX_DMA_ATTR); 299 if (err) 300 return err; 301 302 return 0; 303 } 304 305 /** 306 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 307 * @rx_ring: Rx ring 308 * @pool_present: is pool for XSK present 309 * 310 * Try allocating memory and return ENOMEM, if failed to allocate. 311 * If allocation was successful, substitute buffer with allocated one. 312 * Returns 0 on success, negative on failure 313 */ 314 static int 315 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 316 { 317 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 318 sizeof(*rx_ring->rx_buf); 319 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 320 321 if (!sw_ring) 322 return -ENOMEM; 323 324 if (pool_present) { 325 kfree(rx_ring->rx_buf); 326 rx_ring->rx_buf = NULL; 327 rx_ring->xdp_buf = sw_ring; 328 } else { 329 kfree(rx_ring->xdp_buf); 330 rx_ring->xdp_buf = NULL; 331 rx_ring->rx_buf = sw_ring; 332 } 333 334 return 0; 335 } 336 337 /** 338 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 339 * @vsi: Current VSI 340 * @zc: is zero copy set 341 * 342 * Reallocate buffer for rx_rings that might be used by XSK. 343 * XDP requires more memory, than rx_buf provides. 344 * Returns 0 on success, negative on failure 345 */ 346 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 347 { 348 struct ice_rx_ring *rx_ring; 349 uint i; 350 351 ice_for_each_rxq(vsi, i) { 352 rx_ring = vsi->rx_rings[i]; 353 if (!rx_ring->xsk_pool) 354 continue; 355 356 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 357 return -ENOMEM; 358 } 359 360 return 0; 361 } 362 363 /** 364 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 365 * @vsi: Current VSI 366 * @pool: buffer pool to enable/associate to a ring, NULL to disable 367 * @qid: queue ID 368 * 369 * Returns 0 on success, negative on failure 370 */ 371 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 372 { 373 bool if_running, pool_present = !!pool; 374 int ret = 0, pool_failure = 0; 375 376 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 377 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 378 pool_failure = -EINVAL; 379 goto failure; 380 } 381 382 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 383 384 if (if_running) { 385 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 386 387 ret = ice_qp_dis(vsi, qid); 388 if (ret) { 389 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 390 goto xsk_pool_if_up; 391 } 392 393 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 394 if (ret) 395 goto xsk_pool_if_up; 396 } 397 398 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 399 ice_xsk_pool_disable(vsi, qid); 400 401 xsk_pool_if_up: 402 if (if_running) { 403 ret = ice_qp_ena(vsi, qid); 404 if (!ret && pool_present) 405 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 406 else if (ret) 407 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 408 } 409 410 failure: 411 if (pool_failure) { 412 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 413 pool_present ? "en" : "dis", pool_failure); 414 return pool_failure; 415 } 416 417 return ret; 418 } 419 420 /** 421 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 422 * @pool: XSK Buffer pool to pull the buffers from 423 * @xdp: SW ring of xdp_buff that will hold the buffers 424 * @rx_desc: Pointer to Rx descriptors that will be filled 425 * @count: The number of buffers to allocate 426 * 427 * This function allocates a number of Rx buffers from the fill ring 428 * or the internal recycle mechanism and places them on the Rx ring. 429 * 430 * Note that ring wrap should be handled by caller of this function. 431 * 432 * Returns the amount of allocated Rx descriptors 433 */ 434 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 435 union ice_32b_rx_flex_desc *rx_desc, u16 count) 436 { 437 dma_addr_t dma; 438 u16 buffs; 439 int i; 440 441 buffs = xsk_buff_alloc_batch(pool, xdp, count); 442 for (i = 0; i < buffs; i++) { 443 dma = xsk_buff_xdp_get_dma(*xdp); 444 rx_desc->read.pkt_addr = cpu_to_le64(dma); 445 rx_desc->wb.status_error0 = 0; 446 447 /* Put private info that changes on a per-packet basis 448 * into xdp_buff_xsk->cb. 449 */ 450 ice_xdp_meta_set_desc(*xdp, rx_desc); 451 452 rx_desc++; 453 xdp++; 454 } 455 456 return buffs; 457 } 458 459 /** 460 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 461 * @rx_ring: Rx ring 462 * @count: The number of buffers to allocate 463 * 464 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 465 * for case where space from next_to_use up to the end of ring is less 466 * than @count. Finally do a tail bump. 467 * 468 * Returns true if all allocations were successful, false if any fail. 469 */ 470 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 471 { 472 u32 nb_buffs_extra = 0, nb_buffs = 0; 473 union ice_32b_rx_flex_desc *rx_desc; 474 u16 ntu = rx_ring->next_to_use; 475 u16 total_count = count; 476 struct xdp_buff **xdp; 477 478 rx_desc = ICE_RX_DESC(rx_ring, ntu); 479 xdp = ice_xdp_buf(rx_ring, ntu); 480 481 if (ntu + count >= rx_ring->count) { 482 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 483 rx_desc, 484 rx_ring->count - ntu); 485 if (nb_buffs_extra != rx_ring->count - ntu) { 486 ntu += nb_buffs_extra; 487 goto exit; 488 } 489 rx_desc = ICE_RX_DESC(rx_ring, 0); 490 xdp = ice_xdp_buf(rx_ring, 0); 491 ntu = 0; 492 count -= nb_buffs_extra; 493 ice_release_rx_desc(rx_ring, 0); 494 } 495 496 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 497 498 ntu += nb_buffs; 499 if (ntu == rx_ring->count) 500 ntu = 0; 501 502 exit: 503 if (rx_ring->next_to_use != ntu) 504 ice_release_rx_desc(rx_ring, ntu); 505 506 return total_count == (nb_buffs_extra + nb_buffs); 507 } 508 509 /** 510 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 511 * @rx_ring: Rx ring 512 * @count: The number of buffers to allocate 513 * 514 * Wrapper for internal allocation routine; figure out how many tail 515 * bumps should take place based on the given threshold 516 * 517 * Returns true if all calls to internal alloc routine succeeded 518 */ 519 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 520 { 521 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 522 u16 leftover, i, tail_bumps; 523 524 tail_bumps = count / rx_thresh; 525 leftover = count - (tail_bumps * rx_thresh); 526 527 for (i = 0; i < tail_bumps; i++) 528 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 529 return false; 530 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 531 } 532 533 /** 534 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 535 * @rx_ring: Rx ring 536 * @xdp: Pointer to XDP buffer 537 * 538 * This function allocates a new skb from a zero-copy Rx buffer. 539 * 540 * Returns the skb on success, NULL on failure. 541 */ 542 static struct sk_buff * 543 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 544 { 545 unsigned int totalsize = xdp->data_end - xdp->data_meta; 546 unsigned int metasize = xdp->data - xdp->data_meta; 547 struct skb_shared_info *sinfo = NULL; 548 struct sk_buff *skb; 549 u32 nr_frags = 0; 550 551 if (unlikely(xdp_buff_has_frags(xdp))) { 552 sinfo = xdp_get_shared_info_from_buff(xdp); 553 nr_frags = sinfo->nr_frags; 554 } 555 net_prefetch(xdp->data_meta); 556 557 skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize); 558 if (unlikely(!skb)) 559 return NULL; 560 561 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 562 ALIGN(totalsize, sizeof(long))); 563 564 if (metasize) { 565 skb_metadata_set(skb, metasize); 566 __skb_pull(skb, metasize); 567 } 568 569 if (likely(!xdp_buff_has_frags(xdp))) 570 goto out; 571 572 for (int i = 0; i < nr_frags; i++) { 573 struct skb_shared_info *skinfo = skb_shinfo(skb); 574 skb_frag_t *frag = &sinfo->frags[i]; 575 struct page *page; 576 void *addr; 577 578 page = dev_alloc_page(); 579 if (!page) { 580 dev_kfree_skb(skb); 581 return NULL; 582 } 583 addr = page_to_virt(page); 584 585 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 586 587 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 588 addr, 0, skb_frag_size(frag)); 589 } 590 591 out: 592 xsk_buff_free(xdp); 593 return skb; 594 } 595 596 /** 597 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 598 * @xdp_ring: XDP Tx ring 599 */ 600 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 601 { 602 u16 ntc = xdp_ring->next_to_clean; 603 struct ice_tx_desc *tx_desc; 604 u16 cnt = xdp_ring->count; 605 struct ice_tx_buf *tx_buf; 606 u16 completed_frames = 0; 607 u16 xsk_frames = 0; 608 u16 last_rs; 609 int i; 610 611 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 612 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 613 if (tx_desc->cmd_type_offset_bsz & 614 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 615 if (last_rs >= ntc) 616 completed_frames = last_rs - ntc + 1; 617 else 618 completed_frames = last_rs + cnt - ntc + 1; 619 } 620 621 if (!completed_frames) 622 return 0; 623 624 if (likely(!xdp_ring->xdp_tx_active)) { 625 xsk_frames = completed_frames; 626 goto skip; 627 } 628 629 ntc = xdp_ring->next_to_clean; 630 for (i = 0; i < completed_frames; i++) { 631 tx_buf = &xdp_ring->tx_buf[ntc]; 632 633 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 634 tx_buf->type = ICE_TX_BUF_EMPTY; 635 xsk_buff_free(tx_buf->xdp); 636 xdp_ring->xdp_tx_active--; 637 } else { 638 xsk_frames++; 639 } 640 641 ntc++; 642 if (ntc >= xdp_ring->count) 643 ntc = 0; 644 } 645 skip: 646 tx_desc->cmd_type_offset_bsz = 0; 647 xdp_ring->next_to_clean += completed_frames; 648 if (xdp_ring->next_to_clean >= cnt) 649 xdp_ring->next_to_clean -= cnt; 650 if (xsk_frames) 651 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 652 653 return completed_frames; 654 } 655 656 /** 657 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 658 * @xdp: XDP buffer to xmit 659 * @xdp_ring: XDP ring to produce descriptor onto 660 * 661 * note that this function works directly on xdp_buff, no need to convert 662 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 663 * side will be able to xsk_buff_free() it. 664 * 665 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 666 * was not enough space on XDP ring 667 */ 668 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 669 struct ice_tx_ring *xdp_ring) 670 { 671 struct skb_shared_info *sinfo = NULL; 672 u32 size = xdp->data_end - xdp->data; 673 u32 ntu = xdp_ring->next_to_use; 674 struct ice_tx_desc *tx_desc; 675 struct ice_tx_buf *tx_buf; 676 struct xdp_buff *head; 677 u32 nr_frags = 0; 678 u32 free_space; 679 u32 frag = 0; 680 681 free_space = ICE_DESC_UNUSED(xdp_ring); 682 if (free_space < ICE_RING_QUARTER(xdp_ring)) 683 free_space += ice_clean_xdp_irq_zc(xdp_ring); 684 685 if (unlikely(!free_space)) 686 goto busy; 687 688 if (unlikely(xdp_buff_has_frags(xdp))) { 689 sinfo = xdp_get_shared_info_from_buff(xdp); 690 nr_frags = sinfo->nr_frags; 691 if (free_space < nr_frags + 1) 692 goto busy; 693 } 694 695 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 696 tx_buf = &xdp_ring->tx_buf[ntu]; 697 head = xdp; 698 699 for (;;) { 700 dma_addr_t dma; 701 702 dma = xsk_buff_xdp_get_dma(xdp); 703 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 704 705 tx_buf->xdp = xdp; 706 tx_buf->type = ICE_TX_BUF_XSK_TX; 707 tx_desc->buf_addr = cpu_to_le64(dma); 708 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 709 /* account for each xdp_buff from xsk_buff_pool */ 710 xdp_ring->xdp_tx_active++; 711 712 if (++ntu == xdp_ring->count) 713 ntu = 0; 714 715 if (frag == nr_frags) 716 break; 717 718 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 719 tx_buf = &xdp_ring->tx_buf[ntu]; 720 721 xdp = xsk_buff_get_frag(head); 722 size = skb_frag_size(&sinfo->frags[frag]); 723 frag++; 724 } 725 726 xdp_ring->next_to_use = ntu; 727 /* update last descriptor from a frame with EOP */ 728 tx_desc->cmd_type_offset_bsz |= 729 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 730 731 return ICE_XDP_TX; 732 733 busy: 734 xdp_ring->ring_stats->tx_stats.tx_busy++; 735 736 return ICE_XDP_CONSUMED; 737 } 738 739 /** 740 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 741 * @rx_ring: Rx ring 742 * @xdp: xdp_buff used as input to the XDP program 743 * @xdp_prog: XDP program to run 744 * @xdp_ring: ring to be used for XDP_TX action 745 * 746 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 747 */ 748 static int 749 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 750 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 751 { 752 int err, result = ICE_XDP_PASS; 753 u32 act; 754 755 act = bpf_prog_run_xdp(xdp_prog, xdp); 756 757 if (likely(act == XDP_REDIRECT)) { 758 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 759 if (!err) 760 return ICE_XDP_REDIR; 761 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 762 result = ICE_XDP_EXIT; 763 else 764 result = ICE_XDP_CONSUMED; 765 goto out_failure; 766 } 767 768 switch (act) { 769 case XDP_PASS: 770 break; 771 case XDP_TX: 772 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 773 if (result == ICE_XDP_CONSUMED) 774 goto out_failure; 775 break; 776 case XDP_DROP: 777 result = ICE_XDP_CONSUMED; 778 break; 779 default: 780 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 781 fallthrough; 782 case XDP_ABORTED: 783 result = ICE_XDP_CONSUMED; 784 out_failure: 785 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 786 break; 787 } 788 789 return result; 790 } 791 792 static int 793 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 794 struct xdp_buff *xdp, const unsigned int size) 795 { 796 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 797 798 if (!size) 799 return 0; 800 801 if (!xdp_buff_has_frags(first)) { 802 sinfo->nr_frags = 0; 803 sinfo->xdp_frags_size = 0; 804 xdp_buff_set_frags_flag(first); 805 } 806 807 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 808 xsk_buff_free(first); 809 return -ENOMEM; 810 } 811 812 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 813 virt_to_page(xdp->data_hard_start), 814 XDP_PACKET_HEADROOM, size); 815 sinfo->xdp_frags_size += size; 816 xsk_buff_add_frag(xdp); 817 818 return 0; 819 } 820 821 /** 822 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 823 * @rx_ring: AF_XDP Rx ring 824 * @budget: NAPI budget 825 * 826 * Returns number of processed packets on success, remaining budget on failure. 827 */ 828 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 829 { 830 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 831 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; 832 u32 ntc = rx_ring->next_to_clean; 833 u32 ntu = rx_ring->next_to_use; 834 struct xdp_buff *first = NULL; 835 struct ice_tx_ring *xdp_ring; 836 unsigned int xdp_xmit = 0; 837 struct bpf_prog *xdp_prog; 838 u32 cnt = rx_ring->count; 839 bool failure = false; 840 int entries_to_alloc; 841 842 /* ZC patch is enabled only when XDP program is set, 843 * so here it can not be NULL 844 */ 845 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 846 xdp_ring = rx_ring->xdp_ring; 847 848 if (ntc != rx_ring->first_desc) 849 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 850 851 while (likely(total_rx_packets < (unsigned int)budget)) { 852 union ice_32b_rx_flex_desc *rx_desc; 853 unsigned int size, xdp_res = 0; 854 struct xdp_buff *xdp; 855 struct sk_buff *skb; 856 u16 stat_err_bits; 857 u16 vlan_tci; 858 859 rx_desc = ICE_RX_DESC(rx_ring, ntc); 860 861 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 862 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 863 break; 864 865 /* This memory barrier is needed to keep us from reading 866 * any other fields out of the rx_desc until we have 867 * verified the descriptor has been written back. 868 */ 869 dma_rmb(); 870 871 if (unlikely(ntc == ntu)) 872 break; 873 874 xdp = *ice_xdp_buf(rx_ring, ntc); 875 876 size = le16_to_cpu(rx_desc->wb.pkt_len) & 877 ICE_RX_FLX_DESC_PKT_LEN_M; 878 879 xsk_buff_set_size(xdp, size); 880 xsk_buff_dma_sync_for_cpu(xdp); 881 882 if (!first) { 883 first = xdp; 884 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 885 break; 886 } 887 888 if (++ntc == cnt) 889 ntc = 0; 890 891 if (ice_is_non_eop(rx_ring, rx_desc)) 892 continue; 893 894 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); 895 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 896 xdp_xmit |= xdp_res; 897 } else if (xdp_res == ICE_XDP_EXIT) { 898 failure = true; 899 first = NULL; 900 rx_ring->first_desc = ntc; 901 break; 902 } else if (xdp_res == ICE_XDP_CONSUMED) { 903 xsk_buff_free(first); 904 } else if (xdp_res == ICE_XDP_PASS) { 905 goto construct_skb; 906 } 907 908 total_rx_bytes += xdp_get_buff_len(first); 909 total_rx_packets++; 910 911 first = NULL; 912 rx_ring->first_desc = ntc; 913 continue; 914 915 construct_skb: 916 /* XDP_PASS path */ 917 skb = ice_construct_skb_zc(rx_ring, first); 918 if (!skb) { 919 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 920 break; 921 } 922 923 first = NULL; 924 rx_ring->first_desc = ntc; 925 926 if (eth_skb_pad(skb)) { 927 skb = NULL; 928 continue; 929 } 930 931 total_rx_bytes += skb->len; 932 total_rx_packets++; 933 934 vlan_tci = ice_get_vlan_tci(rx_desc); 935 936 ice_process_skb_fields(rx_ring, rx_desc, skb); 937 ice_receive_skb(rx_ring, skb, vlan_tci); 938 } 939 940 rx_ring->next_to_clean = ntc; 941 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 942 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 943 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 944 945 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 946 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 947 948 if (xsk_uses_need_wakeup(xsk_pool)) { 949 /* ntu could have changed when allocating entries above, so 950 * use rx_ring value instead of stack based one 951 */ 952 if (failure || ntc == rx_ring->next_to_use) 953 xsk_set_rx_need_wakeup(xsk_pool); 954 else 955 xsk_clear_rx_need_wakeup(xsk_pool); 956 957 return (int)total_rx_packets; 958 } 959 960 return failure ? budget : (int)total_rx_packets; 961 } 962 963 /** 964 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 965 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 966 * @desc: AF_XDP descriptor to pull the DMA address and length from 967 * @total_bytes: bytes accumulator that will be used for stats update 968 */ 969 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 970 unsigned int *total_bytes) 971 { 972 struct ice_tx_desc *tx_desc; 973 dma_addr_t dma; 974 975 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 976 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 977 978 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 979 tx_desc->buf_addr = cpu_to_le64(dma); 980 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 981 0, desc->len, 0); 982 983 *total_bytes += desc->len; 984 } 985 986 /** 987 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 988 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 989 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 990 * @total_bytes: bytes accumulator that will be used for stats update 991 */ 992 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 993 unsigned int *total_bytes) 994 { 995 u16 ntu = xdp_ring->next_to_use; 996 struct ice_tx_desc *tx_desc; 997 u32 i; 998 999 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1000 dma_addr_t dma; 1001 1002 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 1003 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 1004 1005 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1006 tx_desc->buf_addr = cpu_to_le64(dma); 1007 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1008 0, descs[i].len, 0); 1009 1010 *total_bytes += descs[i].len; 1011 } 1012 1013 xdp_ring->next_to_use = ntu; 1014 } 1015 1016 /** 1017 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1018 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1019 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1020 * @nb_pkts: count of packets to be send 1021 * @total_bytes: bytes accumulator that will be used for stats update 1022 */ 1023 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1024 u32 nb_pkts, unsigned int *total_bytes) 1025 { 1026 u32 batched, leftover, i; 1027 1028 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1029 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1030 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1031 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 1032 for (; i < batched + leftover; i++) 1033 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 1034 } 1035 1036 /** 1037 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1038 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1039 * 1040 * Returns true if there is no more work that needs to be done, false otherwise 1041 */ 1042 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 1043 { 1044 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 1045 u32 nb_pkts, nb_processed = 0; 1046 unsigned int total_bytes = 0; 1047 int budget; 1048 1049 ice_clean_xdp_irq_zc(xdp_ring); 1050 1051 budget = ICE_DESC_UNUSED(xdp_ring); 1052 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1053 1054 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 1055 if (!nb_pkts) 1056 return true; 1057 1058 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1059 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1060 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 1061 xdp_ring->next_to_use = 0; 1062 } 1063 1064 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 1065 &total_bytes); 1066 1067 ice_set_rs_bit(xdp_ring); 1068 ice_xdp_ring_update_tail(xdp_ring); 1069 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1070 1071 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1072 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1073 1074 return nb_pkts < budget; 1075 } 1076 1077 /** 1078 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1079 * @netdev: net_device 1080 * @queue_id: queue to wake up 1081 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1082 * 1083 * Returns negative on error, zero otherwise. 1084 */ 1085 int 1086 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1087 u32 __always_unused flags) 1088 { 1089 struct ice_netdev_priv *np = netdev_priv(netdev); 1090 struct ice_q_vector *q_vector; 1091 struct ice_vsi *vsi = np->vsi; 1092 struct ice_tx_ring *ring; 1093 1094 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1095 return -ENETDOWN; 1096 1097 if (!ice_is_xdp_ena_vsi(vsi)) 1098 return -EINVAL; 1099 1100 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1101 return -EINVAL; 1102 1103 ring = vsi->rx_rings[queue_id]->xdp_ring; 1104 1105 if (!ring->xsk_pool) 1106 return -EINVAL; 1107 1108 /* The idea here is that if NAPI is running, mark a miss, so 1109 * it will run again. If not, trigger an interrupt and 1110 * schedule the NAPI from interrupt context. If NAPI would be 1111 * scheduled here, the interrupt affinity would not be 1112 * honored. 1113 */ 1114 q_vector = ring->q_vector; 1115 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1116 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1123 * @vsi: VSI to be checked 1124 * 1125 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1126 */ 1127 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1128 { 1129 int i; 1130 1131 ice_for_each_rxq(vsi, i) { 1132 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1133 return true; 1134 } 1135 1136 return false; 1137 } 1138 1139 /** 1140 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1141 * @rx_ring: ring to be cleaned 1142 */ 1143 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1144 { 1145 u16 ntc = rx_ring->next_to_clean; 1146 u16 ntu = rx_ring->next_to_use; 1147 1148 while (ntc != ntu) { 1149 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1150 1151 xsk_buff_free(xdp); 1152 ntc++; 1153 if (ntc >= rx_ring->count) 1154 ntc = 0; 1155 } 1156 } 1157 1158 /** 1159 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1160 * @xdp_ring: XDP_Tx ring 1161 */ 1162 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1163 { 1164 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1165 u32 xsk_frames = 0; 1166 1167 while (ntc != ntu) { 1168 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1169 1170 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1171 tx_buf->type = ICE_TX_BUF_EMPTY; 1172 xsk_buff_free(tx_buf->xdp); 1173 } else { 1174 xsk_frames++; 1175 } 1176 1177 ntc++; 1178 if (ntc >= xdp_ring->count) 1179 ntc = 0; 1180 } 1181 1182 if (xsk_frames) 1183 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1184 } 1185