1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_vf_mbx.h" 6 7 /** 8 * ice_aq_send_msg_to_vf 9 * @hw: pointer to the hardware structure 10 * @vfid: VF ID to send msg 11 * @v_opcode: opcodes for VF-PF communication 12 * @v_retval: return error code 13 * @msg: pointer to the msg buffer 14 * @msglen: msg length 15 * @cd: pointer to command details 16 * 17 * Send message to VF driver (0x0802) using mailbox 18 * queue and asynchronously sending message via 19 * ice_sq_send_cmd() function 20 */ 21 int 22 ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval, 23 u8 *msg, u16 msglen, struct ice_sq_cd *cd) 24 { 25 struct ice_aqc_pf_vf_msg *cmd; 26 struct ice_aq_desc desc; 27 28 ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf); 29 30 cmd = &desc.params.virt; 31 cmd->id = cpu_to_le32(vfid); 32 33 desc.cookie_high = cpu_to_le32(v_opcode); 34 desc.cookie_low = cpu_to_le32(v_retval); 35 36 if (msglen) 37 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 38 39 return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd); 40 } 41 42 static const u32 ice_legacy_aq_to_vc_speed[] = { 43 VIRTCHNL_LINK_SPEED_100MB, /* BIT(0) */ 44 VIRTCHNL_LINK_SPEED_100MB, 45 VIRTCHNL_LINK_SPEED_1GB, 46 VIRTCHNL_LINK_SPEED_1GB, 47 VIRTCHNL_LINK_SPEED_1GB, 48 VIRTCHNL_LINK_SPEED_10GB, 49 VIRTCHNL_LINK_SPEED_20GB, 50 VIRTCHNL_LINK_SPEED_25GB, 51 VIRTCHNL_LINK_SPEED_40GB, 52 VIRTCHNL_LINK_SPEED_40GB, 53 VIRTCHNL_LINK_SPEED_40GB, 54 }; 55 56 /** 57 * ice_conv_link_speed_to_virtchnl 58 * @adv_link_support: determines the format of the returned link speed 59 * @link_speed: variable containing the link_speed to be converted 60 * 61 * Convert link speed supported by HW to link speed supported by virtchnl. 62 * If adv_link_support is true, then return link speed in Mbps. Else return 63 * link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller 64 * needs to cast back to an enum virtchnl_link_speed in the case where 65 * adv_link_support is false, but when adv_link_support is true the caller can 66 * expect the speed in Mbps. 67 */ 68 u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed) 69 { 70 /* convert a BIT() value into an array index */ 71 u32 index = fls(link_speed) - 1; 72 73 if (adv_link_support) 74 return ice_get_link_speed(index); 75 else if (index < ARRAY_SIZE(ice_legacy_aq_to_vc_speed)) 76 /* Virtchnl speeds are not defined for every speed supported in 77 * the hardware. To maintain compatibility with older AVF 78 * drivers, while reporting the speed the new speed values are 79 * resolved to the closest known virtchnl speeds 80 */ 81 return ice_legacy_aq_to_vc_speed[index]; 82 83 return VIRTCHNL_LINK_SPEED_UNKNOWN; 84 } 85 86 /* The mailbox overflow detection algorithm helps to check if there 87 * is a possibility of a malicious VF transmitting too many MBX messages to the 88 * PF. 89 * 1. The mailbox snapshot structure, ice_mbx_snapshot, is initialized during 90 * driver initialization in ice_init_hw() using ice_mbx_init_snapshot(). 91 * The struct ice_mbx_snapshot helps to track and traverse a static window of 92 * messages within the mailbox queue while looking for a malicious VF. 93 * 94 * 2. When the caller starts processing its mailbox queue in response to an 95 * interrupt, the structure ice_mbx_snapshot is expected to be cleared before 96 * the algorithm can be run for the first time for that interrupt. This can be 97 * done via ice_mbx_reset_snapshot(). 98 * 99 * 3. For every message read by the caller from the MBX Queue, the caller must 100 * call the detection algorithm's entry function ice_mbx_vf_state_handler(). 101 * Before every call to ice_mbx_vf_state_handler() the struct ice_mbx_data is 102 * filled as it is required to be passed to the algorithm. 103 * 104 * 4. Every time a message is read from the MBX queue, a VFId is received which 105 * is passed to the state handler. The boolean output is_malvf of the state 106 * handler ice_mbx_vf_state_handler() serves as an indicator to the caller 107 * whether this VF is malicious or not. 108 * 109 * 5. When a VF is identified to be malicious, the caller can send a message 110 * to the system administrator. The caller can invoke ice_mbx_report_malvf() 111 * to help determine if a malicious VF is to be reported or not. This function 112 * requires the caller to maintain a global bitmap to track all malicious VFs 113 * and pass that to ice_mbx_report_malvf() along with the VFID which was identified 114 * to be malicious by ice_mbx_vf_state_handler(). 115 * 116 * 6. The global bitmap maintained by PF can be cleared completely if PF is in 117 * reset or the bit corresponding to a VF can be cleared if that VF is in reset. 118 * When a VF is shut down and brought back up, we assume that the new VF 119 * brought up is not malicious and hence report it if found malicious. 120 * 121 * 7. The function ice_mbx_reset_snapshot() is called to reset the information 122 * in ice_mbx_snapshot for every new mailbox interrupt handled. 123 * 124 * 8. The memory allocated for variables in ice_mbx_snapshot is de-allocated 125 * when driver is unloaded. 126 */ 127 #define ICE_RQ_DATA_MASK(rq_data) ((rq_data) & PF_MBX_ARQH_ARQH_M) 128 /* Using the highest value for an unsigned 16-bit value 0xFFFF to indicate that 129 * the max messages check must be ignored in the algorithm 130 */ 131 #define ICE_IGNORE_MAX_MSG_CNT 0xFFFF 132 133 /** 134 * ice_mbx_traverse - Pass through mailbox snapshot 135 * @hw: pointer to the HW struct 136 * @new_state: new algorithm state 137 * 138 * Traversing the mailbox static snapshot without checking 139 * for malicious VFs. 140 */ 141 static void 142 ice_mbx_traverse(struct ice_hw *hw, 143 enum ice_mbx_snapshot_state *new_state) 144 { 145 struct ice_mbx_snap_buffer_data *snap_buf; 146 u32 num_iterations; 147 148 snap_buf = &hw->mbx_snapshot.mbx_buf; 149 150 /* As mailbox buffer is circular, applying a mask 151 * on the incremented iteration count. 152 */ 153 num_iterations = ICE_RQ_DATA_MASK(++snap_buf->num_iterations); 154 155 /* Checking either of the below conditions to exit snapshot traversal: 156 * Condition-1: If the number of iterations in the mailbox is equal to 157 * the mailbox head which would indicate that we have reached the end 158 * of the static snapshot. 159 * Condition-2: If the maximum messages serviced in the mailbox for a 160 * given interrupt is the highest possible value then there is no need 161 * to check if the number of messages processed is equal to it. If not 162 * check if the number of messages processed is greater than or equal 163 * to the maximum number of mailbox entries serviced in current work item. 164 */ 165 if (num_iterations == snap_buf->head || 166 (snap_buf->max_num_msgs_mbx < ICE_IGNORE_MAX_MSG_CNT && 167 ++snap_buf->num_msg_proc >= snap_buf->max_num_msgs_mbx)) 168 *new_state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 169 } 170 171 /** 172 * ice_mbx_detect_malvf - Detect malicious VF in snapshot 173 * @hw: pointer to the HW struct 174 * @vf_id: relative virtual function ID 175 * @new_state: new algorithm state 176 * @is_malvf: boolean output to indicate if VF is malicious 177 * 178 * This function tracks the number of asynchronous messages 179 * sent per VF and marks the VF as malicious if it exceeds 180 * the permissible number of messages to send. 181 */ 182 static int 183 ice_mbx_detect_malvf(struct ice_hw *hw, u16 vf_id, 184 enum ice_mbx_snapshot_state *new_state, 185 bool *is_malvf) 186 { 187 struct ice_mbx_snapshot *snap = &hw->mbx_snapshot; 188 189 if (vf_id >= snap->mbx_vf.vfcntr_len) 190 return -EIO; 191 192 /* increment the message count in the VF array */ 193 snap->mbx_vf.vf_cntr[vf_id]++; 194 195 if (snap->mbx_vf.vf_cntr[vf_id] >= ICE_ASYNC_VF_MSG_THRESHOLD) 196 *is_malvf = true; 197 198 /* continue to iterate through the mailbox snapshot */ 199 ice_mbx_traverse(hw, new_state); 200 201 return 0; 202 } 203 204 /** 205 * ice_mbx_reset_snapshot - Reset mailbox snapshot structure 206 * @snap: pointer to mailbox snapshot structure in the ice_hw struct 207 * 208 * Reset the mailbox snapshot structure and clear VF counter array. 209 */ 210 static void ice_mbx_reset_snapshot(struct ice_mbx_snapshot *snap) 211 { 212 u32 vfcntr_len; 213 214 if (!snap || !snap->mbx_vf.vf_cntr) 215 return; 216 217 /* Clear VF counters. */ 218 vfcntr_len = snap->mbx_vf.vfcntr_len; 219 if (vfcntr_len) 220 memset(snap->mbx_vf.vf_cntr, 0, 221 (vfcntr_len * sizeof(*snap->mbx_vf.vf_cntr))); 222 223 /* Reset mailbox snapshot for a new capture. */ 224 memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf)); 225 snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 226 } 227 228 /** 229 * ice_mbx_vf_state_handler - Handle states of the overflow algorithm 230 * @hw: pointer to the HW struct 231 * @mbx_data: pointer to structure containing mailbox data 232 * @vf_id: relative virtual function (VF) ID 233 * @is_malvf: boolean output to indicate if VF is malicious 234 * 235 * The function serves as an entry point for the malicious VF 236 * detection algorithm by handling the different states and state 237 * transitions of the algorithm: 238 * New snapshot: This state is entered when creating a new static 239 * snapshot. The data from any previous mailbox snapshot is 240 * cleared and a new capture of the mailbox head and tail is 241 * logged. This will be the new static snapshot to detect 242 * asynchronous messages sent by VFs. On capturing the snapshot 243 * and depending on whether the number of pending messages in that 244 * snapshot exceed the watermark value, the state machine enters 245 * traverse or detect states. 246 * Traverse: If pending message count is below watermark then iterate 247 * through the snapshot without any action on VF. 248 * Detect: If pending message count exceeds watermark traverse 249 * the static snapshot and look for a malicious VF. 250 */ 251 int 252 ice_mbx_vf_state_handler(struct ice_hw *hw, 253 struct ice_mbx_data *mbx_data, u16 vf_id, 254 bool *is_malvf) 255 { 256 struct ice_mbx_snapshot *snap = &hw->mbx_snapshot; 257 struct ice_mbx_snap_buffer_data *snap_buf; 258 struct ice_ctl_q_info *cq = &hw->mailboxq; 259 enum ice_mbx_snapshot_state new_state; 260 int status = 0; 261 262 if (!is_malvf || !mbx_data) 263 return -EINVAL; 264 265 /* When entering the mailbox state machine assume that the VF 266 * is not malicious until detected. 267 */ 268 *is_malvf = false; 269 270 /* Checking if max messages allowed to be processed while servicing current 271 * interrupt is not less than the defined AVF message threshold. 272 */ 273 if (mbx_data->max_num_msgs_mbx <= ICE_ASYNC_VF_MSG_THRESHOLD) 274 return -EINVAL; 275 276 /* The watermark value should not be lesser than the threshold limit 277 * set for the number of asynchronous messages a VF can send to mailbox 278 * nor should it be greater than the maximum number of messages in the 279 * mailbox serviced in current interrupt. 280 */ 281 if (mbx_data->async_watermark_val < ICE_ASYNC_VF_MSG_THRESHOLD || 282 mbx_data->async_watermark_val > mbx_data->max_num_msgs_mbx) 283 return -EINVAL; 284 285 new_state = ICE_MAL_VF_DETECT_STATE_INVALID; 286 snap_buf = &snap->mbx_buf; 287 288 switch (snap_buf->state) { 289 case ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT: 290 /* Clear any previously held data in mailbox snapshot structure. */ 291 ice_mbx_reset_snapshot(snap); 292 293 /* Collect the pending ARQ count, number of messages processed and 294 * the maximum number of messages allowed to be processed from the 295 * Mailbox for current interrupt. 296 */ 297 snap_buf->num_pending_arq = mbx_data->num_pending_arq; 298 snap_buf->num_msg_proc = mbx_data->num_msg_proc; 299 snap_buf->max_num_msgs_mbx = mbx_data->max_num_msgs_mbx; 300 301 /* Capture a new static snapshot of the mailbox by logging the 302 * head and tail of snapshot and set num_iterations to the tail 303 * value to mark the start of the iteration through the snapshot. 304 */ 305 snap_buf->head = ICE_RQ_DATA_MASK(cq->rq.next_to_clean + 306 mbx_data->num_pending_arq); 307 snap_buf->tail = ICE_RQ_DATA_MASK(cq->rq.next_to_clean - 1); 308 snap_buf->num_iterations = snap_buf->tail; 309 310 /* Pending ARQ messages returned by ice_clean_rq_elem 311 * is the difference between the head and tail of the 312 * mailbox queue. Comparing this value against the watermark 313 * helps to check if we potentially have malicious VFs. 314 */ 315 if (snap_buf->num_pending_arq >= 316 mbx_data->async_watermark_val) { 317 new_state = ICE_MAL_VF_DETECT_STATE_DETECT; 318 status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf); 319 } else { 320 new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE; 321 ice_mbx_traverse(hw, &new_state); 322 } 323 break; 324 325 case ICE_MAL_VF_DETECT_STATE_TRAVERSE: 326 new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE; 327 ice_mbx_traverse(hw, &new_state); 328 break; 329 330 case ICE_MAL_VF_DETECT_STATE_DETECT: 331 new_state = ICE_MAL_VF_DETECT_STATE_DETECT; 332 status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf); 333 break; 334 335 default: 336 new_state = ICE_MAL_VF_DETECT_STATE_INVALID; 337 status = -EIO; 338 } 339 340 snap_buf->state = new_state; 341 342 return status; 343 } 344 345 /** 346 * ice_mbx_report_malvf - Track and note malicious VF 347 * @hw: pointer to the HW struct 348 * @all_malvfs: all malicious VFs tracked by PF 349 * @bitmap_len: length of bitmap in bits 350 * @vf_id: relative virtual function ID of the malicious VF 351 * @report_malvf: boolean to indicate if malicious VF must be reported 352 * 353 * This function will update a bitmap that keeps track of the malicious 354 * VFs attached to the PF. A malicious VF must be reported only once if 355 * discovered between VF resets or loading so the function checks 356 * the input vf_id against the bitmap to verify if the VF has been 357 * detected in any previous mailbox iterations. 358 */ 359 int 360 ice_mbx_report_malvf(struct ice_hw *hw, unsigned long *all_malvfs, 361 u16 bitmap_len, u16 vf_id, bool *report_malvf) 362 { 363 if (!all_malvfs || !report_malvf) 364 return -EINVAL; 365 366 *report_malvf = false; 367 368 if (bitmap_len < hw->mbx_snapshot.mbx_vf.vfcntr_len) 369 return -EINVAL; 370 371 if (vf_id >= bitmap_len) 372 return -EIO; 373 374 /* If the vf_id is found in the bitmap set bit and boolean to true */ 375 if (!test_and_set_bit(vf_id, all_malvfs)) 376 *report_malvf = true; 377 378 return 0; 379 } 380 381 /** 382 * ice_mbx_clear_malvf - Clear VF bitmap and counter for VF ID 383 * @snap: pointer to the mailbox snapshot structure 384 * @all_malvfs: all malicious VFs tracked by PF 385 * @bitmap_len: length of bitmap in bits 386 * @vf_id: relative virtual function ID of the malicious VF 387 * 388 * In case of a VF reset, this function can be called to clear 389 * the bit corresponding to the VF ID in the bitmap tracking all 390 * malicious VFs attached to the PF. The function also clears the 391 * VF counter array at the index of the VF ID. This is to ensure 392 * that the new VF loaded is not considered malicious before going 393 * through the overflow detection algorithm. 394 */ 395 int 396 ice_mbx_clear_malvf(struct ice_mbx_snapshot *snap, unsigned long *all_malvfs, 397 u16 bitmap_len, u16 vf_id) 398 { 399 if (!snap || !all_malvfs) 400 return -EINVAL; 401 402 if (bitmap_len < snap->mbx_vf.vfcntr_len) 403 return -EINVAL; 404 405 /* Ensure VF ID value is not larger than bitmap or VF counter length */ 406 if (vf_id >= bitmap_len || vf_id >= snap->mbx_vf.vfcntr_len) 407 return -EIO; 408 409 /* Clear VF ID bit in the bitmap tracking malicious VFs attached to PF */ 410 clear_bit(vf_id, all_malvfs); 411 412 /* Clear the VF counter in the mailbox snapshot structure for that VF ID. 413 * This is to ensure that if a VF is unloaded and a new one brought back 414 * up with the same VF ID for a snapshot currently in traversal or detect 415 * state the counter for that VF ID does not increment on top of existing 416 * values in the mailbox overflow detection algorithm. 417 */ 418 snap->mbx_vf.vf_cntr[vf_id] = 0; 419 420 return 0; 421 } 422 423 /** 424 * ice_mbx_init_snapshot - Initialize mailbox snapshot structure 425 * @hw: pointer to the hardware structure 426 * @vf_count: number of VFs allocated on a PF 427 * 428 * Clear the mailbox snapshot structure and allocate memory 429 * for the VF counter array based on the number of VFs allocated 430 * on that PF. 431 * 432 * Assumption: This function will assume ice_get_caps() has already been 433 * called to ensure that the vf_count can be compared against the number 434 * of VFs supported as defined in the functional capabilities of the device. 435 */ 436 int ice_mbx_init_snapshot(struct ice_hw *hw, u16 vf_count) 437 { 438 struct ice_mbx_snapshot *snap = &hw->mbx_snapshot; 439 440 /* Ensure that the number of VFs allocated is non-zero and 441 * is not greater than the number of supported VFs defined in 442 * the functional capabilities of the PF. 443 */ 444 if (!vf_count || vf_count > hw->func_caps.num_allocd_vfs) 445 return -EINVAL; 446 447 snap->mbx_vf.vf_cntr = devm_kcalloc(ice_hw_to_dev(hw), vf_count, 448 sizeof(*snap->mbx_vf.vf_cntr), 449 GFP_KERNEL); 450 if (!snap->mbx_vf.vf_cntr) 451 return -ENOMEM; 452 453 /* Setting the VF counter length to the number of allocated 454 * VFs for given PF's functional capabilities. 455 */ 456 snap->mbx_vf.vfcntr_len = vf_count; 457 458 /* Clear mbx_buf in the mailbox snaphot structure and setting the 459 * mailbox snapshot state to a new capture. 460 */ 461 memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf)); 462 snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 463 464 return 0; 465 } 466 467 /** 468 * ice_mbx_deinit_snapshot - Free mailbox snapshot structure 469 * @hw: pointer to the hardware structure 470 * 471 * Clear the mailbox snapshot structure and free the VF counter array. 472 */ 473 void ice_mbx_deinit_snapshot(struct ice_hw *hw) 474 { 475 struct ice_mbx_snapshot *snap = &hw->mbx_snapshot; 476 477 /* Free VF counter array and reset VF counter length */ 478 devm_kfree(ice_hw_to_dev(hw), snap->mbx_vf.vf_cntr); 479 snap->mbx_vf.vfcntr_len = 0; 480 481 /* Clear mbx_buf in the mailbox snaphot structure */ 482 memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf)); 483 } 484