xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx_lib.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/filter.h>
5 
6 #include "ice_txrx_lib.h"
7 #include "ice_eswitch.h"
8 #include "ice_lib.h"
9 
10 /**
11  * ice_release_rx_desc - Store the new tail and head values
12  * @rx_ring: ring to bump
13  * @val: new head index
14  */
15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
16 {
17 	u16 prev_ntu = rx_ring->next_to_use & ~0x7;
18 
19 	rx_ring->next_to_use = val;
20 
21 	/* update next to alloc since we have filled the ring */
22 	rx_ring->next_to_alloc = val;
23 
24 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
25 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
26 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
27 	 * the budget depending on the current traffic load.
28 	 */
29 	val &= ~0x7;
30 	if (prev_ntu != val) {
31 		/* Force memory writes to complete before letting h/w
32 		 * know there are new descriptors to fetch. (Only
33 		 * applicable for weak-ordered memory model archs,
34 		 * such as IA-64).
35 		 */
36 		wmb();
37 		writel(val, rx_ring->tail);
38 	}
39 }
40 
41 /**
42  * ice_ptype_to_htype - get a hash type
43  * @ptype: the ptype value from the descriptor
44  *
45  * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
46  * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
47  * Rx desc.
48  */
49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
50 {
51 	struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);
52 
53 	if (!decoded.known)
54 		return PKT_HASH_TYPE_NONE;
55 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
56 		return PKT_HASH_TYPE_L4;
57 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
58 		return PKT_HASH_TYPE_L3;
59 	if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
60 		return PKT_HASH_TYPE_L2;
61 
62 	return PKT_HASH_TYPE_NONE;
63 }
64 
65 /**
66  * ice_get_rx_hash - get RX hash value from descriptor
67  * @rx_desc: specific descriptor
68  *
69  * Returns hash, if present, 0 otherwise.
70  */
71 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc)
72 {
73 	const struct ice_32b_rx_flex_desc_nic *nic_mdid;
74 
75 	if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC))
76 		return 0;
77 
78 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
79 	return le32_to_cpu(nic_mdid->rss_hash);
80 }
81 
82 /**
83  * ice_rx_hash_to_skb - set the hash value in the skb
84  * @rx_ring: descriptor ring
85  * @rx_desc: specific descriptor
86  * @skb: pointer to current skb
87  * @rx_ptype: the ptype value from the descriptor
88  */
89 static void
90 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring,
91 		   const union ice_32b_rx_flex_desc *rx_desc,
92 		   struct sk_buff *skb, u16 rx_ptype)
93 {
94 	u32 hash;
95 
96 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
97 		return;
98 
99 	hash = ice_get_rx_hash(rx_desc);
100 	if (likely(hash))
101 		skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
102 }
103 
104 /**
105  * ice_rx_csum - Indicate in skb if checksum is good
106  * @ring: the ring we care about
107  * @skb: skb currently being received and modified
108  * @rx_desc: the receive descriptor
109  * @ptype: the packet type decoded by hardware
110  *
111  * skb->protocol must be set before this function is called
112  */
113 static void
114 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
115 	    union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
116 {
117 	struct ice_rx_ptype_decoded decoded;
118 	u16 rx_status0, rx_status1;
119 	bool ipv4, ipv6;
120 
121 	rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
122 	rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
123 
124 	decoded = ice_decode_rx_desc_ptype(ptype);
125 
126 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
127 	skb->ip_summed = CHECKSUM_NONE;
128 	skb_checksum_none_assert(skb);
129 
130 	/* check if Rx checksum is enabled */
131 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
132 		return;
133 
134 	/* check if HW has decoded the packet and checksum */
135 	if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
136 		return;
137 
138 	if (!(decoded.known && decoded.outer_ip))
139 		return;
140 
141 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
142 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
143 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
144 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
145 
146 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
147 				   BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
148 		goto checksum_fail;
149 
150 	if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
151 		goto checksum_fail;
152 
153 	/* check for L4 errors and handle packets that were not able to be
154 	 * checksummed due to arrival speed
155 	 */
156 	if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
157 		goto checksum_fail;
158 
159 	/* check for outer UDP checksum error in tunneled packets */
160 	if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
161 	    (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
162 		goto checksum_fail;
163 
164 	/* If there is an outer header present that might contain a checksum
165 	 * we need to bump the checksum level by 1 to reflect the fact that
166 	 * we are indicating we validated the inner checksum.
167 	 */
168 	if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
169 		skb->csum_level = 1;
170 
171 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
172 	switch (decoded.inner_prot) {
173 	case ICE_RX_PTYPE_INNER_PROT_TCP:
174 	case ICE_RX_PTYPE_INNER_PROT_UDP:
175 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
176 		skb->ip_summed = CHECKSUM_UNNECESSARY;
177 		break;
178 	default:
179 		break;
180 	}
181 	return;
182 
183 checksum_fail:
184 	ring->vsi->back->hw_csum_rx_error++;
185 }
186 
187 /**
188  * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb
189  * @rx_ring: Ring to get the VSI info
190  * @rx_desc: Receive descriptor
191  * @skb: Particular skb to send timestamp with
192  *
193  * The timestamp is in ns, so we must convert the result first.
194  */
195 static void
196 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring,
197 		       const union ice_32b_rx_flex_desc *rx_desc,
198 		       struct sk_buff *skb)
199 {
200 	u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx);
201 
202 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns);
203 }
204 
205 /**
206  * ice_get_ptype - Read HW packet type from the descriptor
207  * @rx_desc: RX descriptor
208  */
209 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc)
210 {
211 	return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
212 	       ICE_RX_FLEX_DESC_PTYPE_M;
213 }
214 
215 /**
216  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
217  * @rx_ring: Rx descriptor ring packet is being transacted on
218  * @rx_desc: pointer to the EOP Rx descriptor
219  * @skb: pointer to current skb being populated
220  *
221  * This function checks the ring, descriptor, and packet information in
222  * order to populate the hash, checksum, VLAN, protocol, and
223  * other fields within the skb.
224  */
225 void
226 ice_process_skb_fields(struct ice_rx_ring *rx_ring,
227 		       union ice_32b_rx_flex_desc *rx_desc,
228 		       struct sk_buff *skb)
229 {
230 	u16 ptype = ice_get_ptype(rx_desc);
231 
232 	ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype);
233 
234 	/* modifies the skb - consumes the enet header */
235 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
236 
237 	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
238 
239 	if (rx_ring->ptp_rx)
240 		ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb);
241 }
242 
243 /**
244  * ice_receive_skb - Send a completed packet up the stack
245  * @rx_ring: Rx ring in play
246  * @skb: packet to send up
247  * @vlan_tci: VLAN TCI for packet
248  *
249  * This function sends the completed packet (via. skb) up the stack using
250  * gro receive functions (with/without VLAN tag)
251  */
252 void
253 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci)
254 {
255 	if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto)
256 		__vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto,
257 				       vlan_tci);
258 
259 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
260 }
261 
262 /**
263  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
264  * @dev: device for DMA mapping
265  * @tx_buf: Tx buffer to clean
266  * @bq: XDP bulk flush struct
267  */
268 static void
269 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf,
270 		     struct xdp_frame_bulk *bq)
271 {
272 	dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma),
273 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
274 	dma_unmap_len_set(tx_buf, len, 0);
275 
276 	switch (tx_buf->type) {
277 	case ICE_TX_BUF_XDP_TX:
278 		page_frag_free(tx_buf->raw_buf);
279 		break;
280 	case ICE_TX_BUF_XDP_XMIT:
281 		xdp_return_frame_bulk(tx_buf->xdpf, bq);
282 		break;
283 	}
284 
285 	tx_buf->type = ICE_TX_BUF_EMPTY;
286 }
287 
288 /**
289  * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
290  * @xdp_ring: XDP ring to clean
291  */
292 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
293 {
294 	int total_bytes = 0, total_pkts = 0;
295 	struct device *dev = xdp_ring->dev;
296 	u32 ntc = xdp_ring->next_to_clean;
297 	struct ice_tx_desc *tx_desc;
298 	u32 cnt = xdp_ring->count;
299 	struct xdp_frame_bulk bq;
300 	u32 frags, xdp_tx = 0;
301 	u32 ready_frames = 0;
302 	u32 idx;
303 	u32 ret;
304 
305 	idx = xdp_ring->tx_buf[ntc].rs_idx;
306 	tx_desc = ICE_TX_DESC(xdp_ring, idx);
307 	if (tx_desc->cmd_type_offset_bsz &
308 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
309 		if (idx >= ntc)
310 			ready_frames = idx - ntc + 1;
311 		else
312 			ready_frames = idx + cnt - ntc + 1;
313 	}
314 
315 	if (unlikely(!ready_frames))
316 		return 0;
317 	ret = ready_frames;
318 
319 	xdp_frame_bulk_init(&bq);
320 	rcu_read_lock(); /* xdp_return_frame_bulk() */
321 
322 	while (ready_frames) {
323 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
324 		struct ice_tx_buf *head = tx_buf;
325 
326 		/* bytecount holds size of head + frags */
327 		total_bytes += tx_buf->bytecount;
328 		frags = tx_buf->nr_frags;
329 		total_pkts++;
330 		/* count head + frags */
331 		ready_frames -= frags + 1;
332 		xdp_tx++;
333 
334 		ntc++;
335 		if (ntc == cnt)
336 			ntc = 0;
337 
338 		for (int i = 0; i < frags; i++) {
339 			tx_buf = &xdp_ring->tx_buf[ntc];
340 
341 			ice_clean_xdp_tx_buf(dev, tx_buf, &bq);
342 			ntc++;
343 			if (ntc == cnt)
344 				ntc = 0;
345 		}
346 
347 		ice_clean_xdp_tx_buf(dev, head, &bq);
348 	}
349 
350 	xdp_flush_frame_bulk(&bq);
351 	rcu_read_unlock();
352 
353 	tx_desc->cmd_type_offset_bsz = 0;
354 	xdp_ring->next_to_clean = ntc;
355 	xdp_ring->xdp_tx_active -= xdp_tx;
356 	ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
357 
358 	return ret;
359 }
360 
361 /**
362  * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
363  * @xdp: XDP buffer to be placed onto Tx descriptors
364  * @xdp_ring: XDP ring for transmission
365  * @frame: whether this comes from .ndo_xdp_xmit()
366  */
367 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring,
368 			bool frame)
369 {
370 	struct skb_shared_info *sinfo = NULL;
371 	u32 size = xdp->data_end - xdp->data;
372 	struct device *dev = xdp_ring->dev;
373 	u32 ntu = xdp_ring->next_to_use;
374 	struct ice_tx_desc *tx_desc;
375 	struct ice_tx_buf *tx_head;
376 	struct ice_tx_buf *tx_buf;
377 	u32 cnt = xdp_ring->count;
378 	void *data = xdp->data;
379 	u32 nr_frags = 0;
380 	u32 free_space;
381 	u32 frag = 0;
382 
383 	free_space = ICE_DESC_UNUSED(xdp_ring);
384 	if (free_space < ICE_RING_QUARTER(xdp_ring))
385 		free_space += ice_clean_xdp_irq(xdp_ring);
386 
387 	if (unlikely(!free_space))
388 		goto busy;
389 
390 	if (unlikely(xdp_buff_has_frags(xdp))) {
391 		sinfo = xdp_get_shared_info_from_buff(xdp);
392 		nr_frags = sinfo->nr_frags;
393 		if (free_space < nr_frags + 1)
394 			goto busy;
395 	}
396 
397 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
398 	tx_head = &xdp_ring->tx_buf[ntu];
399 	tx_buf = tx_head;
400 
401 	for (;;) {
402 		dma_addr_t dma;
403 
404 		dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
405 		if (dma_mapping_error(dev, dma))
406 			goto dma_unmap;
407 
408 		/* record length, and DMA address */
409 		dma_unmap_len_set(tx_buf, len, size);
410 		dma_unmap_addr_set(tx_buf, dma, dma);
411 
412 		if (frame) {
413 			tx_buf->type = ICE_TX_BUF_FRAG;
414 		} else {
415 			tx_buf->type = ICE_TX_BUF_XDP_TX;
416 			tx_buf->raw_buf = data;
417 		}
418 
419 		tx_desc->buf_addr = cpu_to_le64(dma);
420 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
421 
422 		ntu++;
423 		if (ntu == cnt)
424 			ntu = 0;
425 
426 		if (frag == nr_frags)
427 			break;
428 
429 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
430 		tx_buf = &xdp_ring->tx_buf[ntu];
431 
432 		data = skb_frag_address(&sinfo->frags[frag]);
433 		size = skb_frag_size(&sinfo->frags[frag]);
434 		frag++;
435 	}
436 
437 	/* store info about bytecount and frag count in first desc */
438 	tx_head->bytecount = xdp_get_buff_len(xdp);
439 	tx_head->nr_frags = nr_frags;
440 
441 	if (frame) {
442 		tx_head->type = ICE_TX_BUF_XDP_XMIT;
443 		tx_head->xdpf = xdp->data_hard_start;
444 	}
445 
446 	/* update last descriptor from a frame with EOP */
447 	tx_desc->cmd_type_offset_bsz |=
448 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
449 
450 	xdp_ring->xdp_tx_active++;
451 	xdp_ring->next_to_use = ntu;
452 
453 	return ICE_XDP_TX;
454 
455 dma_unmap:
456 	for (;;) {
457 		tx_buf = &xdp_ring->tx_buf[ntu];
458 		dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
459 			       dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
460 		dma_unmap_len_set(tx_buf, len, 0);
461 		if (tx_buf == tx_head)
462 			break;
463 
464 		if (!ntu)
465 			ntu += cnt;
466 		ntu--;
467 	}
468 	return ICE_XDP_CONSUMED;
469 
470 busy:
471 	xdp_ring->ring_stats->tx_stats.tx_busy++;
472 
473 	return ICE_XDP_CONSUMED;
474 }
475 
476 /**
477  * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
478  * @xdp_ring: XDP ring
479  * @xdp_res: Result of the receive batch
480  * @first_idx: index to write from caller
481  *
482  * This function bumps XDP Tx tail and/or flush redirect map, and
483  * should be called when a batch of packets has been processed in the
484  * napi loop.
485  */
486 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
487 			 u32 first_idx)
488 {
489 	struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
490 
491 	if (xdp_res & ICE_XDP_REDIR)
492 		xdp_do_flush();
493 
494 	if (xdp_res & ICE_XDP_TX) {
495 		if (static_branch_unlikely(&ice_xdp_locking_key))
496 			spin_lock(&xdp_ring->tx_lock);
497 		/* store index of descriptor with RS bit set in the first
498 		 * ice_tx_buf of given NAPI batch
499 		 */
500 		tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
501 		ice_xdp_ring_update_tail(xdp_ring);
502 		if (static_branch_unlikely(&ice_xdp_locking_key))
503 			spin_unlock(&xdp_ring->tx_lock);
504 	}
505 }
506 
507 /**
508  * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler
509  * @ctx: XDP buff pointer
510  * @ts_ns: destination address
511  *
512  * Copy HW timestamp (if available) to the destination address.
513  */
514 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns)
515 {
516 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
517 
518 	*ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc,
519 				     xdp_ext->pkt_ctx);
520 	if (!*ts_ns)
521 		return -ENODATA;
522 
523 	return 0;
524 }
525 
526 /* Define a ptype index -> XDP hash type lookup table.
527  * It uses the same ptype definitions as ice_decode_rx_desc_ptype[],
528  * avoiding possible copy-paste errors.
529  */
530 #undef ICE_PTT
531 #undef ICE_PTT_UNUSED_ENTRY
532 
533 #define ICE_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
534 	[PTYPE] = XDP_RSS_L3_##OUTER_IP_VER | XDP_RSS_L4_##I | XDP_RSS_TYPE_##PL
535 
536 #define ICE_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = 0
537 
538 /* A few supplementary definitions for when XDP hash types do not coincide
539  * with what can be generated from ptype definitions
540  * by means of preprocessor concatenation.
541  */
542 #define XDP_RSS_L3_NONE		XDP_RSS_TYPE_NONE
543 #define XDP_RSS_L4_NONE		XDP_RSS_TYPE_NONE
544 #define XDP_RSS_TYPE_PAY2	XDP_RSS_TYPE_L2
545 #define XDP_RSS_TYPE_PAY3	XDP_RSS_TYPE_NONE
546 #define XDP_RSS_TYPE_PAY4	XDP_RSS_L4
547 
548 static const enum xdp_rss_hash_type
549 ice_ptype_to_xdp_hash[ICE_NUM_DEFINED_PTYPES] = {
550 	ICE_PTYPES
551 };
552 
553 #undef XDP_RSS_L3_NONE
554 #undef XDP_RSS_L4_NONE
555 #undef XDP_RSS_TYPE_PAY2
556 #undef XDP_RSS_TYPE_PAY3
557 #undef XDP_RSS_TYPE_PAY4
558 
559 #undef ICE_PTT
560 #undef ICE_PTT_UNUSED_ENTRY
561 
562 /**
563  * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor
564  * @eop_desc: End of Packet descriptor
565  */
566 static enum xdp_rss_hash_type
567 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc)
568 {
569 	u16 ptype = ice_get_ptype(eop_desc);
570 
571 	if (unlikely(ptype >= ICE_NUM_DEFINED_PTYPES))
572 		return 0;
573 
574 	return ice_ptype_to_xdp_hash[ptype];
575 }
576 
577 /**
578  * ice_xdp_rx_hash - RX hash XDP hint handler
579  * @ctx: XDP buff pointer
580  * @hash: hash destination address
581  * @rss_type: XDP hash type destination address
582  *
583  * Copy RX hash (if available) and its type to the destination address.
584  */
585 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
586 			   enum xdp_rss_hash_type *rss_type)
587 {
588 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
589 
590 	*hash = ice_get_rx_hash(xdp_ext->eop_desc);
591 	*rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc);
592 	if (!likely(*hash))
593 		return -ENODATA;
594 
595 	return 0;
596 }
597 
598 /**
599  * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler
600  * @ctx: XDP buff pointer
601  * @vlan_proto: destination address for VLAN protocol
602  * @vlan_tci: destination address for VLAN TCI
603  *
604  * Copy VLAN tag (if was stripped) and corresponding protocol
605  * to the destination address.
606  */
607 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto,
608 			       u16 *vlan_tci)
609 {
610 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
611 
612 	*vlan_proto = xdp_ext->pkt_ctx->vlan_proto;
613 	if (!*vlan_proto)
614 		return -ENODATA;
615 
616 	*vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc);
617 	if (!*vlan_tci)
618 		return -ENODATA;
619 
620 	return 0;
621 }
622 
623 const struct xdp_metadata_ops ice_xdp_md_ops = {
624 	.xmo_rx_timestamp		= ice_xdp_rx_hw_ts,
625 	.xmo_rx_hash			= ice_xdp_rx_hash,
626 	.xmo_rx_vlan_tag		= ice_xdp_rx_vlan_tag,
627 };
628