1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/filter.h> 5 6 #include "ice_txrx_lib.h" 7 #include "ice_eswitch.h" 8 #include "ice_lib.h" 9 10 /** 11 * ice_release_rx_desc - Store the new tail and head values 12 * @rx_ring: ring to bump 13 * @val: new head index 14 */ 15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) 16 { 17 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 18 19 rx_ring->next_to_use = val; 20 21 /* update next to alloc since we have filled the ring */ 22 rx_ring->next_to_alloc = val; 23 24 /* QRX_TAIL will be updated with any tail value, but hardware ignores 25 * the lower 3 bits. This makes it so we only bump tail on meaningful 26 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 27 * the budget depending on the current traffic load. 28 */ 29 val &= ~0x7; 30 if (prev_ntu != val) { 31 /* Force memory writes to complete before letting h/w 32 * know there are new descriptors to fetch. (Only 33 * applicable for weak-ordered memory model archs, 34 * such as IA-64). 35 */ 36 wmb(); 37 writel(val, rx_ring->tail); 38 } 39 } 40 41 /** 42 * ice_ptype_to_htype - get a hash type 43 * @ptype: the ptype value from the descriptor 44 * 45 * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by 46 * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of 47 * Rx desc. 48 */ 49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) 50 { 51 struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); 52 53 if (!decoded.known) 54 return PKT_HASH_TYPE_NONE; 55 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) 56 return PKT_HASH_TYPE_L4; 57 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) 58 return PKT_HASH_TYPE_L3; 59 if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) 60 return PKT_HASH_TYPE_L2; 61 62 return PKT_HASH_TYPE_NONE; 63 } 64 65 /** 66 * ice_get_rx_hash - get RX hash value from descriptor 67 * @rx_desc: specific descriptor 68 * 69 * Returns hash, if present, 0 otherwise. 70 */ 71 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc) 72 { 73 const struct ice_32b_rx_flex_desc_nic *nic_mdid; 74 75 if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)) 76 return 0; 77 78 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 79 return le32_to_cpu(nic_mdid->rss_hash); 80 } 81 82 /** 83 * ice_rx_hash_to_skb - set the hash value in the skb 84 * @rx_ring: descriptor ring 85 * @rx_desc: specific descriptor 86 * @skb: pointer to current skb 87 * @rx_ptype: the ptype value from the descriptor 88 */ 89 static void 90 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring, 91 const union ice_32b_rx_flex_desc *rx_desc, 92 struct sk_buff *skb, u16 rx_ptype) 93 { 94 u32 hash; 95 96 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 97 return; 98 99 hash = ice_get_rx_hash(rx_desc); 100 if (likely(hash)) 101 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 102 } 103 104 /** 105 * ice_rx_csum - Indicate in skb if checksum is good 106 * @ring: the ring we care about 107 * @skb: skb currently being received and modified 108 * @rx_desc: the receive descriptor 109 * @ptype: the packet type decoded by hardware 110 * 111 * skb->protocol must be set before this function is called 112 */ 113 static void 114 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, 115 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 116 { 117 struct ice_rx_ptype_decoded decoded; 118 u16 rx_status0, rx_status1; 119 bool ipv4, ipv6; 120 121 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 122 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 123 124 decoded = ice_decode_rx_desc_ptype(ptype); 125 126 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 127 skb->ip_summed = CHECKSUM_NONE; 128 skb_checksum_none_assert(skb); 129 130 /* check if Rx checksum is enabled */ 131 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 132 return; 133 134 /* check if HW has decoded the packet and checksum */ 135 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 136 return; 137 138 if (!(decoded.known && decoded.outer_ip)) 139 return; 140 141 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 142 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 143 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 144 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 145 146 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | 147 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) 148 goto checksum_fail; 149 150 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 151 goto checksum_fail; 152 153 /* check for L4 errors and handle packets that were not able to be 154 * checksummed due to arrival speed 155 */ 156 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 157 goto checksum_fail; 158 159 /* check for outer UDP checksum error in tunneled packets */ 160 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 161 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 162 goto checksum_fail; 163 164 /* If there is an outer header present that might contain a checksum 165 * we need to bump the checksum level by 1 to reflect the fact that 166 * we are indicating we validated the inner checksum. 167 */ 168 if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) 169 skb->csum_level = 1; 170 171 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 172 switch (decoded.inner_prot) { 173 case ICE_RX_PTYPE_INNER_PROT_TCP: 174 case ICE_RX_PTYPE_INNER_PROT_UDP: 175 case ICE_RX_PTYPE_INNER_PROT_SCTP: 176 skb->ip_summed = CHECKSUM_UNNECESSARY; 177 break; 178 default: 179 break; 180 } 181 return; 182 183 checksum_fail: 184 ring->vsi->back->hw_csum_rx_error++; 185 } 186 187 /** 188 * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb 189 * @rx_ring: Ring to get the VSI info 190 * @rx_desc: Receive descriptor 191 * @skb: Particular skb to send timestamp with 192 * 193 * The timestamp is in ns, so we must convert the result first. 194 */ 195 static void 196 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring, 197 const union ice_32b_rx_flex_desc *rx_desc, 198 struct sk_buff *skb) 199 { 200 u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx); 201 202 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns); 203 } 204 205 /** 206 * ice_get_ptype - Read HW packet type from the descriptor 207 * @rx_desc: RX descriptor 208 */ 209 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc) 210 { 211 return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 212 ICE_RX_FLEX_DESC_PTYPE_M; 213 } 214 215 /** 216 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 217 * @rx_ring: Rx descriptor ring packet is being transacted on 218 * @rx_desc: pointer to the EOP Rx descriptor 219 * @skb: pointer to current skb being populated 220 * 221 * This function checks the ring, descriptor, and packet information in 222 * order to populate the hash, checksum, VLAN, protocol, and 223 * other fields within the skb. 224 */ 225 void 226 ice_process_skb_fields(struct ice_rx_ring *rx_ring, 227 union ice_32b_rx_flex_desc *rx_desc, 228 struct sk_buff *skb) 229 { 230 u16 ptype = ice_get_ptype(rx_desc); 231 232 ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype); 233 234 /* modifies the skb - consumes the enet header */ 235 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 236 237 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 238 239 if (rx_ring->ptp_rx) 240 ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb); 241 } 242 243 /** 244 * ice_receive_skb - Send a completed packet up the stack 245 * @rx_ring: Rx ring in play 246 * @skb: packet to send up 247 * @vlan_tci: VLAN TCI for packet 248 * 249 * This function sends the completed packet (via. skb) up the stack using 250 * gro receive functions (with/without VLAN tag) 251 */ 252 void 253 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci) 254 { 255 if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto) 256 __vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto, 257 vlan_tci); 258 259 napi_gro_receive(&rx_ring->q_vector->napi, skb); 260 } 261 262 /** 263 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 264 * @dev: device for DMA mapping 265 * @tx_buf: Tx buffer to clean 266 * @bq: XDP bulk flush struct 267 */ 268 static void 269 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf, 270 struct xdp_frame_bulk *bq) 271 { 272 dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma), 273 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 274 dma_unmap_len_set(tx_buf, len, 0); 275 276 switch (tx_buf->type) { 277 case ICE_TX_BUF_XDP_TX: 278 page_frag_free(tx_buf->raw_buf); 279 break; 280 case ICE_TX_BUF_XDP_XMIT: 281 xdp_return_frame_bulk(tx_buf->xdpf, bq); 282 break; 283 } 284 285 tx_buf->type = ICE_TX_BUF_EMPTY; 286 } 287 288 /** 289 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring 290 * @xdp_ring: XDP ring to clean 291 */ 292 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) 293 { 294 int total_bytes = 0, total_pkts = 0; 295 struct device *dev = xdp_ring->dev; 296 u32 ntc = xdp_ring->next_to_clean; 297 struct ice_tx_desc *tx_desc; 298 u32 cnt = xdp_ring->count; 299 struct xdp_frame_bulk bq; 300 u32 frags, xdp_tx = 0; 301 u32 ready_frames = 0; 302 u32 idx; 303 u32 ret; 304 305 idx = xdp_ring->tx_buf[ntc].rs_idx; 306 tx_desc = ICE_TX_DESC(xdp_ring, idx); 307 if (tx_desc->cmd_type_offset_bsz & 308 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 309 if (idx >= ntc) 310 ready_frames = idx - ntc + 1; 311 else 312 ready_frames = idx + cnt - ntc + 1; 313 } 314 315 if (unlikely(!ready_frames)) 316 return 0; 317 ret = ready_frames; 318 319 xdp_frame_bulk_init(&bq); 320 rcu_read_lock(); /* xdp_return_frame_bulk() */ 321 322 while (ready_frames) { 323 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 324 struct ice_tx_buf *head = tx_buf; 325 326 /* bytecount holds size of head + frags */ 327 total_bytes += tx_buf->bytecount; 328 frags = tx_buf->nr_frags; 329 total_pkts++; 330 /* count head + frags */ 331 ready_frames -= frags + 1; 332 xdp_tx++; 333 334 ntc++; 335 if (ntc == cnt) 336 ntc = 0; 337 338 for (int i = 0; i < frags; i++) { 339 tx_buf = &xdp_ring->tx_buf[ntc]; 340 341 ice_clean_xdp_tx_buf(dev, tx_buf, &bq); 342 ntc++; 343 if (ntc == cnt) 344 ntc = 0; 345 } 346 347 ice_clean_xdp_tx_buf(dev, head, &bq); 348 } 349 350 xdp_flush_frame_bulk(&bq); 351 rcu_read_unlock(); 352 353 tx_desc->cmd_type_offset_bsz = 0; 354 xdp_ring->next_to_clean = ntc; 355 xdp_ring->xdp_tx_active -= xdp_tx; 356 ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); 357 358 return ret; 359 } 360 361 /** 362 * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission 363 * @xdp: XDP buffer to be placed onto Tx descriptors 364 * @xdp_ring: XDP ring for transmission 365 * @frame: whether this comes from .ndo_xdp_xmit() 366 */ 367 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring, 368 bool frame) 369 { 370 struct skb_shared_info *sinfo = NULL; 371 u32 size = xdp->data_end - xdp->data; 372 struct device *dev = xdp_ring->dev; 373 u32 ntu = xdp_ring->next_to_use; 374 struct ice_tx_desc *tx_desc; 375 struct ice_tx_buf *tx_head; 376 struct ice_tx_buf *tx_buf; 377 u32 cnt = xdp_ring->count; 378 void *data = xdp->data; 379 u32 nr_frags = 0; 380 u32 free_space; 381 u32 frag = 0; 382 383 free_space = ICE_DESC_UNUSED(xdp_ring); 384 if (free_space < ICE_RING_QUARTER(xdp_ring)) 385 free_space += ice_clean_xdp_irq(xdp_ring); 386 387 if (unlikely(!free_space)) 388 goto busy; 389 390 if (unlikely(xdp_buff_has_frags(xdp))) { 391 sinfo = xdp_get_shared_info_from_buff(xdp); 392 nr_frags = sinfo->nr_frags; 393 if (free_space < nr_frags + 1) 394 goto busy; 395 } 396 397 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 398 tx_head = &xdp_ring->tx_buf[ntu]; 399 tx_buf = tx_head; 400 401 for (;;) { 402 dma_addr_t dma; 403 404 dma = dma_map_single(dev, data, size, DMA_TO_DEVICE); 405 if (dma_mapping_error(dev, dma)) 406 goto dma_unmap; 407 408 /* record length, and DMA address */ 409 dma_unmap_len_set(tx_buf, len, size); 410 dma_unmap_addr_set(tx_buf, dma, dma); 411 412 if (frame) { 413 tx_buf->type = ICE_TX_BUF_FRAG; 414 } else { 415 tx_buf->type = ICE_TX_BUF_XDP_TX; 416 tx_buf->raw_buf = data; 417 } 418 419 tx_desc->buf_addr = cpu_to_le64(dma); 420 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 421 422 ntu++; 423 if (ntu == cnt) 424 ntu = 0; 425 426 if (frag == nr_frags) 427 break; 428 429 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 430 tx_buf = &xdp_ring->tx_buf[ntu]; 431 432 data = skb_frag_address(&sinfo->frags[frag]); 433 size = skb_frag_size(&sinfo->frags[frag]); 434 frag++; 435 } 436 437 /* store info about bytecount and frag count in first desc */ 438 tx_head->bytecount = xdp_get_buff_len(xdp); 439 tx_head->nr_frags = nr_frags; 440 441 if (frame) { 442 tx_head->type = ICE_TX_BUF_XDP_XMIT; 443 tx_head->xdpf = xdp->data_hard_start; 444 } 445 446 /* update last descriptor from a frame with EOP */ 447 tx_desc->cmd_type_offset_bsz |= 448 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 449 450 xdp_ring->xdp_tx_active++; 451 xdp_ring->next_to_use = ntu; 452 453 return ICE_XDP_TX; 454 455 dma_unmap: 456 for (;;) { 457 tx_buf = &xdp_ring->tx_buf[ntu]; 458 dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma), 459 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 460 dma_unmap_len_set(tx_buf, len, 0); 461 if (tx_buf == tx_head) 462 break; 463 464 if (!ntu) 465 ntu += cnt; 466 ntu--; 467 } 468 return ICE_XDP_CONSUMED; 469 470 busy: 471 xdp_ring->ring_stats->tx_stats.tx_busy++; 472 473 return ICE_XDP_CONSUMED; 474 } 475 476 /** 477 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 478 * @xdp_ring: XDP ring 479 * @xdp_res: Result of the receive batch 480 * @first_idx: index to write from caller 481 * 482 * This function bumps XDP Tx tail and/or flush redirect map, and 483 * should be called when a batch of packets has been processed in the 484 * napi loop. 485 */ 486 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res, 487 u32 first_idx) 488 { 489 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx]; 490 491 if (xdp_res & ICE_XDP_REDIR) 492 xdp_do_flush(); 493 494 if (xdp_res & ICE_XDP_TX) { 495 if (static_branch_unlikely(&ice_xdp_locking_key)) 496 spin_lock(&xdp_ring->tx_lock); 497 /* store index of descriptor with RS bit set in the first 498 * ice_tx_buf of given NAPI batch 499 */ 500 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 501 ice_xdp_ring_update_tail(xdp_ring); 502 if (static_branch_unlikely(&ice_xdp_locking_key)) 503 spin_unlock(&xdp_ring->tx_lock); 504 } 505 } 506 507 /** 508 * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler 509 * @ctx: XDP buff pointer 510 * @ts_ns: destination address 511 * 512 * Copy HW timestamp (if available) to the destination address. 513 */ 514 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns) 515 { 516 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 517 518 *ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc, 519 xdp_ext->pkt_ctx); 520 if (!*ts_ns) 521 return -ENODATA; 522 523 return 0; 524 } 525 526 /* Define a ptype index -> XDP hash type lookup table. 527 * It uses the same ptype definitions as ice_decode_rx_desc_ptype[], 528 * avoiding possible copy-paste errors. 529 */ 530 #undef ICE_PTT 531 #undef ICE_PTT_UNUSED_ENTRY 532 533 #define ICE_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\ 534 [PTYPE] = XDP_RSS_L3_##OUTER_IP_VER | XDP_RSS_L4_##I | XDP_RSS_TYPE_##PL 535 536 #define ICE_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = 0 537 538 /* A few supplementary definitions for when XDP hash types do not coincide 539 * with what can be generated from ptype definitions 540 * by means of preprocessor concatenation. 541 */ 542 #define XDP_RSS_L3_NONE XDP_RSS_TYPE_NONE 543 #define XDP_RSS_L4_NONE XDP_RSS_TYPE_NONE 544 #define XDP_RSS_TYPE_PAY2 XDP_RSS_TYPE_L2 545 #define XDP_RSS_TYPE_PAY3 XDP_RSS_TYPE_NONE 546 #define XDP_RSS_TYPE_PAY4 XDP_RSS_L4 547 548 static const enum xdp_rss_hash_type 549 ice_ptype_to_xdp_hash[ICE_NUM_DEFINED_PTYPES] = { 550 ICE_PTYPES 551 }; 552 553 #undef XDP_RSS_L3_NONE 554 #undef XDP_RSS_L4_NONE 555 #undef XDP_RSS_TYPE_PAY2 556 #undef XDP_RSS_TYPE_PAY3 557 #undef XDP_RSS_TYPE_PAY4 558 559 #undef ICE_PTT 560 #undef ICE_PTT_UNUSED_ENTRY 561 562 /** 563 * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor 564 * @eop_desc: End of Packet descriptor 565 */ 566 static enum xdp_rss_hash_type 567 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc) 568 { 569 u16 ptype = ice_get_ptype(eop_desc); 570 571 if (unlikely(ptype >= ICE_NUM_DEFINED_PTYPES)) 572 return 0; 573 574 return ice_ptype_to_xdp_hash[ptype]; 575 } 576 577 /** 578 * ice_xdp_rx_hash - RX hash XDP hint handler 579 * @ctx: XDP buff pointer 580 * @hash: hash destination address 581 * @rss_type: XDP hash type destination address 582 * 583 * Copy RX hash (if available) and its type to the destination address. 584 */ 585 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, 586 enum xdp_rss_hash_type *rss_type) 587 { 588 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 589 590 *hash = ice_get_rx_hash(xdp_ext->eop_desc); 591 *rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc); 592 if (!likely(*hash)) 593 return -ENODATA; 594 595 return 0; 596 } 597 598 /** 599 * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler 600 * @ctx: XDP buff pointer 601 * @vlan_proto: destination address for VLAN protocol 602 * @vlan_tci: destination address for VLAN TCI 603 * 604 * Copy VLAN tag (if was stripped) and corresponding protocol 605 * to the destination address. 606 */ 607 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto, 608 u16 *vlan_tci) 609 { 610 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 611 612 *vlan_proto = xdp_ext->pkt_ctx->vlan_proto; 613 if (!*vlan_proto) 614 return -ENODATA; 615 616 *vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc); 617 if (!*vlan_tci) 618 return -ENODATA; 619 620 return 0; 621 } 622 623 const struct xdp_metadata_ops ice_xdp_md_ops = { 624 .xmo_rx_timestamp = ice_xdp_rx_hw_ts, 625 .xmo_rx_hash = ice_xdp_rx_hash, 626 .xmo_rx_vlan_tag = ice_xdp_rx_vlan_tag, 627 }; 628