xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx_lib.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/filter.h>
5 
6 #include "ice_txrx_lib.h"
7 #include "ice_eswitch.h"
8 #include "ice_lib.h"
9 
10 /**
11  * ice_release_rx_desc - Store the new tail and head values
12  * @rx_ring: ring to bump
13  * @val: new head index
14  */
15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
16 {
17 	u16 prev_ntu = rx_ring->next_to_use & ~0x7;
18 
19 	rx_ring->next_to_use = val;
20 
21 	/* update next to alloc since we have filled the ring */
22 	rx_ring->next_to_alloc = val;
23 
24 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
25 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
26 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
27 	 * the budget depending on the current traffic load.
28 	 */
29 	val &= ~0x7;
30 	if (prev_ntu != val) {
31 		/* Force memory writes to complete before letting h/w
32 		 * know there are new descriptors to fetch. (Only
33 		 * applicable for weak-ordered memory model archs,
34 		 * such as IA-64).
35 		 */
36 		wmb();
37 		writel(val, rx_ring->tail);
38 	}
39 }
40 
41 /**
42  * ice_ptype_to_htype - get a hash type
43  * @ptype: the ptype value from the descriptor
44  *
45  * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
46  * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
47  * Rx desc.
48  */
49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
50 {
51 	struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);
52 
53 	if (!decoded.known)
54 		return PKT_HASH_TYPE_NONE;
55 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
56 		return PKT_HASH_TYPE_L4;
57 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
58 		return PKT_HASH_TYPE_L3;
59 	if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
60 		return PKT_HASH_TYPE_L2;
61 
62 	return PKT_HASH_TYPE_NONE;
63 }
64 
65 /**
66  * ice_get_rx_hash - get RX hash value from descriptor
67  * @rx_desc: specific descriptor
68  *
69  * Returns hash, if present, 0 otherwise.
70  */
71 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc)
72 {
73 	const struct ice_32b_rx_flex_desc_nic *nic_mdid;
74 
75 	if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC))
76 		return 0;
77 
78 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
79 	return le32_to_cpu(nic_mdid->rss_hash);
80 }
81 
82 /**
83  * ice_rx_hash_to_skb - set the hash value in the skb
84  * @rx_ring: descriptor ring
85  * @rx_desc: specific descriptor
86  * @skb: pointer to current skb
87  * @rx_ptype: the ptype value from the descriptor
88  */
89 static void
90 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring,
91 		   const union ice_32b_rx_flex_desc *rx_desc,
92 		   struct sk_buff *skb, u16 rx_ptype)
93 {
94 	u32 hash;
95 
96 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
97 		return;
98 
99 	hash = ice_get_rx_hash(rx_desc);
100 	if (likely(hash))
101 		skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
102 }
103 
104 /**
105  * ice_rx_csum - Indicate in skb if checksum is good
106  * @ring: the ring we care about
107  * @skb: skb currently being received and modified
108  * @rx_desc: the receive descriptor
109  * @ptype: the packet type decoded by hardware
110  *
111  * skb->protocol must be set before this function is called
112  */
113 static void
114 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
115 	    union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
116 {
117 	struct ice_rx_ptype_decoded decoded;
118 	u16 rx_status0, rx_status1;
119 	bool ipv4, ipv6;
120 
121 	rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
122 	rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
123 
124 	decoded = ice_decode_rx_desc_ptype(ptype);
125 
126 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
127 	skb->ip_summed = CHECKSUM_NONE;
128 	skb_checksum_none_assert(skb);
129 
130 	/* check if Rx checksum is enabled */
131 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
132 		return;
133 
134 	/* check if HW has decoded the packet and checksum */
135 	if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
136 		return;
137 
138 	if (!(decoded.known && decoded.outer_ip))
139 		return;
140 
141 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
142 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
143 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
144 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
145 
146 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) {
147 		ring->vsi->back->hw_rx_eipe_error++;
148 		return;
149 	}
150 
151 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S))))
152 		goto checksum_fail;
153 
154 	if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
155 		goto checksum_fail;
156 
157 	/* check for L4 errors and handle packets that were not able to be
158 	 * checksummed due to arrival speed
159 	 */
160 	if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
161 		goto checksum_fail;
162 
163 	/* check for outer UDP checksum error in tunneled packets */
164 	if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
165 	    (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
166 		goto checksum_fail;
167 
168 	/* If there is an outer header present that might contain a checksum
169 	 * we need to bump the checksum level by 1 to reflect the fact that
170 	 * we are indicating we validated the inner checksum.
171 	 */
172 	if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
173 		skb->csum_level = 1;
174 
175 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
176 	switch (decoded.inner_prot) {
177 	case ICE_RX_PTYPE_INNER_PROT_TCP:
178 	case ICE_RX_PTYPE_INNER_PROT_UDP:
179 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
180 		skb->ip_summed = CHECKSUM_UNNECESSARY;
181 		break;
182 	default:
183 		break;
184 	}
185 	return;
186 
187 checksum_fail:
188 	ring->vsi->back->hw_csum_rx_error++;
189 }
190 
191 /**
192  * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb
193  * @rx_ring: Ring to get the VSI info
194  * @rx_desc: Receive descriptor
195  * @skb: Particular skb to send timestamp with
196  *
197  * The timestamp is in ns, so we must convert the result first.
198  */
199 static void
200 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring,
201 		       const union ice_32b_rx_flex_desc *rx_desc,
202 		       struct sk_buff *skb)
203 {
204 	u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx);
205 
206 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns);
207 }
208 
209 /**
210  * ice_get_ptype - Read HW packet type from the descriptor
211  * @rx_desc: RX descriptor
212  */
213 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc)
214 {
215 	return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
216 	       ICE_RX_FLEX_DESC_PTYPE_M;
217 }
218 
219 /**
220  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
221  * @rx_ring: Rx descriptor ring packet is being transacted on
222  * @rx_desc: pointer to the EOP Rx descriptor
223  * @skb: pointer to current skb being populated
224  *
225  * This function checks the ring, descriptor, and packet information in
226  * order to populate the hash, checksum, VLAN, protocol, and
227  * other fields within the skb.
228  */
229 void
230 ice_process_skb_fields(struct ice_rx_ring *rx_ring,
231 		       union ice_32b_rx_flex_desc *rx_desc,
232 		       struct sk_buff *skb)
233 {
234 	u16 ptype = ice_get_ptype(rx_desc);
235 
236 	ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype);
237 
238 	/* modifies the skb - consumes the enet header */
239 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
240 
241 	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
242 
243 	if (rx_ring->ptp_rx)
244 		ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb);
245 }
246 
247 /**
248  * ice_receive_skb - Send a completed packet up the stack
249  * @rx_ring: Rx ring in play
250  * @skb: packet to send up
251  * @vlan_tci: VLAN TCI for packet
252  *
253  * This function sends the completed packet (via. skb) up the stack using
254  * gro receive functions (with/without VLAN tag)
255  */
256 void
257 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci)
258 {
259 	if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto)
260 		__vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto,
261 				       vlan_tci);
262 
263 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
264 }
265 
266 /**
267  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
268  * @dev: device for DMA mapping
269  * @tx_buf: Tx buffer to clean
270  * @bq: XDP bulk flush struct
271  */
272 static void
273 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf,
274 		     struct xdp_frame_bulk *bq)
275 {
276 	dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma),
277 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
278 	dma_unmap_len_set(tx_buf, len, 0);
279 
280 	switch (tx_buf->type) {
281 	case ICE_TX_BUF_XDP_TX:
282 		page_frag_free(tx_buf->raw_buf);
283 		break;
284 	case ICE_TX_BUF_XDP_XMIT:
285 		xdp_return_frame_bulk(tx_buf->xdpf, bq);
286 		break;
287 	}
288 
289 	tx_buf->type = ICE_TX_BUF_EMPTY;
290 }
291 
292 /**
293  * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
294  * @xdp_ring: XDP ring to clean
295  */
296 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
297 {
298 	int total_bytes = 0, total_pkts = 0;
299 	struct device *dev = xdp_ring->dev;
300 	u32 ntc = xdp_ring->next_to_clean;
301 	struct ice_tx_desc *tx_desc;
302 	u32 cnt = xdp_ring->count;
303 	struct xdp_frame_bulk bq;
304 	u32 frags, xdp_tx = 0;
305 	u32 ready_frames = 0;
306 	u32 idx;
307 	u32 ret;
308 
309 	idx = xdp_ring->tx_buf[ntc].rs_idx;
310 	tx_desc = ICE_TX_DESC(xdp_ring, idx);
311 	if (tx_desc->cmd_type_offset_bsz &
312 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
313 		if (idx >= ntc)
314 			ready_frames = idx - ntc + 1;
315 		else
316 			ready_frames = idx + cnt - ntc + 1;
317 	}
318 
319 	if (unlikely(!ready_frames))
320 		return 0;
321 	ret = ready_frames;
322 
323 	xdp_frame_bulk_init(&bq);
324 	rcu_read_lock(); /* xdp_return_frame_bulk() */
325 
326 	while (ready_frames) {
327 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
328 		struct ice_tx_buf *head = tx_buf;
329 
330 		/* bytecount holds size of head + frags */
331 		total_bytes += tx_buf->bytecount;
332 		frags = tx_buf->nr_frags;
333 		total_pkts++;
334 		/* count head + frags */
335 		ready_frames -= frags + 1;
336 		xdp_tx++;
337 
338 		ntc++;
339 		if (ntc == cnt)
340 			ntc = 0;
341 
342 		for (int i = 0; i < frags; i++) {
343 			tx_buf = &xdp_ring->tx_buf[ntc];
344 
345 			ice_clean_xdp_tx_buf(dev, tx_buf, &bq);
346 			ntc++;
347 			if (ntc == cnt)
348 				ntc = 0;
349 		}
350 
351 		ice_clean_xdp_tx_buf(dev, head, &bq);
352 	}
353 
354 	xdp_flush_frame_bulk(&bq);
355 	rcu_read_unlock();
356 
357 	tx_desc->cmd_type_offset_bsz = 0;
358 	xdp_ring->next_to_clean = ntc;
359 	xdp_ring->xdp_tx_active -= xdp_tx;
360 	ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
361 
362 	return ret;
363 }
364 
365 /**
366  * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
367  * @xdp: XDP buffer to be placed onto Tx descriptors
368  * @xdp_ring: XDP ring for transmission
369  * @frame: whether this comes from .ndo_xdp_xmit()
370  */
371 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring,
372 			bool frame)
373 {
374 	struct skb_shared_info *sinfo = NULL;
375 	u32 size = xdp->data_end - xdp->data;
376 	struct device *dev = xdp_ring->dev;
377 	u32 ntu = xdp_ring->next_to_use;
378 	struct ice_tx_desc *tx_desc;
379 	struct ice_tx_buf *tx_head;
380 	struct ice_tx_buf *tx_buf;
381 	u32 cnt = xdp_ring->count;
382 	void *data = xdp->data;
383 	u32 nr_frags = 0;
384 	u32 free_space;
385 	u32 frag = 0;
386 
387 	free_space = ICE_DESC_UNUSED(xdp_ring);
388 	if (free_space < ICE_RING_QUARTER(xdp_ring))
389 		free_space += ice_clean_xdp_irq(xdp_ring);
390 
391 	if (unlikely(!free_space))
392 		goto busy;
393 
394 	if (unlikely(xdp_buff_has_frags(xdp))) {
395 		sinfo = xdp_get_shared_info_from_buff(xdp);
396 		nr_frags = sinfo->nr_frags;
397 		if (free_space < nr_frags + 1)
398 			goto busy;
399 	}
400 
401 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
402 	tx_head = &xdp_ring->tx_buf[ntu];
403 	tx_buf = tx_head;
404 
405 	for (;;) {
406 		dma_addr_t dma;
407 
408 		dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
409 		if (dma_mapping_error(dev, dma))
410 			goto dma_unmap;
411 
412 		/* record length, and DMA address */
413 		dma_unmap_len_set(tx_buf, len, size);
414 		dma_unmap_addr_set(tx_buf, dma, dma);
415 
416 		if (frame) {
417 			tx_buf->type = ICE_TX_BUF_FRAG;
418 		} else {
419 			tx_buf->type = ICE_TX_BUF_XDP_TX;
420 			tx_buf->raw_buf = data;
421 		}
422 
423 		tx_desc->buf_addr = cpu_to_le64(dma);
424 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
425 
426 		ntu++;
427 		if (ntu == cnt)
428 			ntu = 0;
429 
430 		if (frag == nr_frags)
431 			break;
432 
433 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
434 		tx_buf = &xdp_ring->tx_buf[ntu];
435 
436 		data = skb_frag_address(&sinfo->frags[frag]);
437 		size = skb_frag_size(&sinfo->frags[frag]);
438 		frag++;
439 	}
440 
441 	/* store info about bytecount and frag count in first desc */
442 	tx_head->bytecount = xdp_get_buff_len(xdp);
443 	tx_head->nr_frags = nr_frags;
444 
445 	if (frame) {
446 		tx_head->type = ICE_TX_BUF_XDP_XMIT;
447 		tx_head->xdpf = xdp->data_hard_start;
448 	}
449 
450 	/* update last descriptor from a frame with EOP */
451 	tx_desc->cmd_type_offset_bsz |=
452 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
453 
454 	xdp_ring->xdp_tx_active++;
455 	xdp_ring->next_to_use = ntu;
456 
457 	return ICE_XDP_TX;
458 
459 dma_unmap:
460 	for (;;) {
461 		tx_buf = &xdp_ring->tx_buf[ntu];
462 		dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
463 			       dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
464 		dma_unmap_len_set(tx_buf, len, 0);
465 		if (tx_buf == tx_head)
466 			break;
467 
468 		if (!ntu)
469 			ntu += cnt;
470 		ntu--;
471 	}
472 	return ICE_XDP_CONSUMED;
473 
474 busy:
475 	xdp_ring->ring_stats->tx_stats.tx_busy++;
476 
477 	return ICE_XDP_CONSUMED;
478 }
479 
480 /**
481  * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
482  * @xdp_ring: XDP ring
483  * @xdp_res: Result of the receive batch
484  * @first_idx: index to write from caller
485  *
486  * This function bumps XDP Tx tail and/or flush redirect map, and
487  * should be called when a batch of packets has been processed in the
488  * napi loop.
489  */
490 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
491 			 u32 first_idx)
492 {
493 	struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
494 
495 	if (xdp_res & ICE_XDP_REDIR)
496 		xdp_do_flush();
497 
498 	if (xdp_res & ICE_XDP_TX) {
499 		if (static_branch_unlikely(&ice_xdp_locking_key))
500 			spin_lock(&xdp_ring->tx_lock);
501 		/* store index of descriptor with RS bit set in the first
502 		 * ice_tx_buf of given NAPI batch
503 		 */
504 		tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
505 		ice_xdp_ring_update_tail(xdp_ring);
506 		if (static_branch_unlikely(&ice_xdp_locking_key))
507 			spin_unlock(&xdp_ring->tx_lock);
508 	}
509 }
510 
511 /**
512  * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler
513  * @ctx: XDP buff pointer
514  * @ts_ns: destination address
515  *
516  * Copy HW timestamp (if available) to the destination address.
517  */
518 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns)
519 {
520 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
521 
522 	*ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc,
523 				     xdp_ext->pkt_ctx);
524 	if (!*ts_ns)
525 		return -ENODATA;
526 
527 	return 0;
528 }
529 
530 /* Define a ptype index -> XDP hash type lookup table.
531  * It uses the same ptype definitions as ice_decode_rx_desc_ptype[],
532  * avoiding possible copy-paste errors.
533  */
534 #undef ICE_PTT
535 #undef ICE_PTT_UNUSED_ENTRY
536 
537 #define ICE_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
538 	[PTYPE] = XDP_RSS_L3_##OUTER_IP_VER | XDP_RSS_L4_##I | XDP_RSS_TYPE_##PL
539 
540 #define ICE_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = 0
541 
542 /* A few supplementary definitions for when XDP hash types do not coincide
543  * with what can be generated from ptype definitions
544  * by means of preprocessor concatenation.
545  */
546 #define XDP_RSS_L3_NONE		XDP_RSS_TYPE_NONE
547 #define XDP_RSS_L4_NONE		XDP_RSS_TYPE_NONE
548 #define XDP_RSS_TYPE_PAY2	XDP_RSS_TYPE_L2
549 #define XDP_RSS_TYPE_PAY3	XDP_RSS_TYPE_NONE
550 #define XDP_RSS_TYPE_PAY4	XDP_RSS_L4
551 
552 static const enum xdp_rss_hash_type
553 ice_ptype_to_xdp_hash[ICE_NUM_DEFINED_PTYPES] = {
554 	ICE_PTYPES
555 };
556 
557 #undef XDP_RSS_L3_NONE
558 #undef XDP_RSS_L4_NONE
559 #undef XDP_RSS_TYPE_PAY2
560 #undef XDP_RSS_TYPE_PAY3
561 #undef XDP_RSS_TYPE_PAY4
562 
563 #undef ICE_PTT
564 #undef ICE_PTT_UNUSED_ENTRY
565 
566 /**
567  * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor
568  * @eop_desc: End of Packet descriptor
569  */
570 static enum xdp_rss_hash_type
571 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc)
572 {
573 	u16 ptype = ice_get_ptype(eop_desc);
574 
575 	if (unlikely(ptype >= ICE_NUM_DEFINED_PTYPES))
576 		return 0;
577 
578 	return ice_ptype_to_xdp_hash[ptype];
579 }
580 
581 /**
582  * ice_xdp_rx_hash - RX hash XDP hint handler
583  * @ctx: XDP buff pointer
584  * @hash: hash destination address
585  * @rss_type: XDP hash type destination address
586  *
587  * Copy RX hash (if available) and its type to the destination address.
588  */
589 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
590 			   enum xdp_rss_hash_type *rss_type)
591 {
592 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
593 
594 	*hash = ice_get_rx_hash(xdp_ext->eop_desc);
595 	*rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc);
596 	if (!likely(*hash))
597 		return -ENODATA;
598 
599 	return 0;
600 }
601 
602 /**
603  * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler
604  * @ctx: XDP buff pointer
605  * @vlan_proto: destination address for VLAN protocol
606  * @vlan_tci: destination address for VLAN TCI
607  *
608  * Copy VLAN tag (if was stripped) and corresponding protocol
609  * to the destination address.
610  */
611 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto,
612 			       u16 *vlan_tci)
613 {
614 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
615 
616 	*vlan_proto = xdp_ext->pkt_ctx->vlan_proto;
617 	if (!*vlan_proto)
618 		return -ENODATA;
619 
620 	*vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc);
621 	if (!*vlan_tci)
622 		return -ENODATA;
623 
624 	return 0;
625 }
626 
627 const struct xdp_metadata_ops ice_xdp_md_ops = {
628 	.xmo_rx_timestamp		= ice_xdp_rx_hw_ts,
629 	.xmo_rx_hash			= ice_xdp_rx_hash,
630 	.xmo_rx_vlan_tag		= ice_xdp_rx_vlan_tag,
631 };
632