1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/filter.h> 5 #include <linux/net/intel/libie/rx.h> 6 7 #include "ice_txrx_lib.h" 8 #include "ice_eswitch.h" 9 #include "ice_lib.h" 10 11 /** 12 * ice_release_rx_desc - Store the new tail and head values 13 * @rx_ring: ring to bump 14 * @val: new head index 15 */ 16 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) 17 { 18 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 19 20 rx_ring->next_to_use = val; 21 22 /* update next to alloc since we have filled the ring */ 23 rx_ring->next_to_alloc = val; 24 25 /* QRX_TAIL will be updated with any tail value, but hardware ignores 26 * the lower 3 bits. This makes it so we only bump tail on meaningful 27 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 28 * the budget depending on the current traffic load. 29 */ 30 val &= ~0x7; 31 if (prev_ntu != val) { 32 /* Force memory writes to complete before letting h/w 33 * know there are new descriptors to fetch. (Only 34 * applicable for weak-ordered memory model archs, 35 * such as IA-64). 36 */ 37 wmb(); 38 writel(val, rx_ring->tail); 39 } 40 } 41 42 /** 43 * ice_get_rx_hash - get RX hash value from descriptor 44 * @rx_desc: specific descriptor 45 * 46 * Returns hash, if present, 0 otherwise. 47 */ 48 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc) 49 { 50 const struct ice_32b_rx_flex_desc_nic *nic_mdid; 51 52 if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)) 53 return 0; 54 55 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 56 return le32_to_cpu(nic_mdid->rss_hash); 57 } 58 59 /** 60 * ice_rx_hash_to_skb - set the hash value in the skb 61 * @rx_ring: descriptor ring 62 * @rx_desc: specific descriptor 63 * @skb: pointer to current skb 64 * @rx_ptype: the ptype value from the descriptor 65 */ 66 static void 67 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring, 68 const union ice_32b_rx_flex_desc *rx_desc, 69 struct sk_buff *skb, u16 rx_ptype) 70 { 71 struct libeth_rx_pt decoded; 72 u32 hash; 73 74 decoded = libie_rx_pt_parse(rx_ptype); 75 if (!libeth_rx_pt_has_hash(rx_ring->netdev, decoded)) 76 return; 77 78 hash = ice_get_rx_hash(rx_desc); 79 if (likely(hash)) 80 libeth_rx_pt_set_hash(skb, hash, decoded); 81 } 82 83 /** 84 * ice_rx_gcs - Set generic checksum in skb 85 * @skb: skb currently being received and modified 86 * @rx_desc: receive descriptor 87 */ 88 static void ice_rx_gcs(struct sk_buff *skb, 89 const union ice_32b_rx_flex_desc *rx_desc) 90 { 91 const struct ice_32b_rx_flex_desc_nic *desc; 92 u16 csum; 93 94 desc = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 95 skb->ip_summed = CHECKSUM_COMPLETE; 96 csum = (__force u16)desc->raw_csum; 97 skb->csum = csum_unfold((__force __sum16)swab16(csum)); 98 } 99 100 /** 101 * ice_rx_csum - Indicate in skb if checksum is good 102 * @ring: the ring we care about 103 * @skb: skb currently being received and modified 104 * @rx_desc: the receive descriptor 105 * @ptype: the packet type decoded by hardware 106 * 107 * skb->protocol must be set before this function is called 108 */ 109 static void 110 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, 111 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 112 { 113 struct libeth_rx_pt decoded; 114 u16 rx_status0, rx_status1; 115 bool ipv4, ipv6; 116 117 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 118 skb->ip_summed = CHECKSUM_NONE; 119 120 decoded = libie_rx_pt_parse(ptype); 121 if (!libeth_rx_pt_has_checksum(ring->netdev, decoded)) 122 return; 123 124 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 125 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 126 127 if ((ring->flags & ICE_RX_FLAGS_RING_GCS) && 128 rx_desc->wb.rxdid == ICE_RXDID_FLEX_NIC && 129 (decoded.inner_prot == LIBETH_RX_PT_INNER_TCP || 130 decoded.inner_prot == LIBETH_RX_PT_INNER_UDP || 131 decoded.inner_prot == LIBETH_RX_PT_INNER_ICMP)) { 132 ice_rx_gcs(skb, rx_desc); 133 return; 134 } 135 136 /* check if HW has decoded the packet and checksum */ 137 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 138 return; 139 140 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4; 141 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6; 142 143 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) { 144 ring->vsi->back->hw_rx_eipe_error++; 145 return; 146 } 147 148 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))) 149 goto checksum_fail; 150 151 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 152 goto checksum_fail; 153 154 /* check for L4 errors and handle packets that were not able to be 155 * checksummed due to arrival speed 156 */ 157 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 158 goto checksum_fail; 159 160 /* check for outer UDP checksum error in tunneled packets */ 161 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 162 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 163 goto checksum_fail; 164 165 /* If there is an outer header present that might contain a checksum 166 * we need to bump the checksum level by 1 to reflect the fact that 167 * we are indicating we validated the inner checksum. 168 */ 169 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT) 170 skb->csum_level = 1; 171 172 skb->ip_summed = CHECKSUM_UNNECESSARY; 173 return; 174 175 checksum_fail: 176 ring->vsi->back->hw_csum_rx_error++; 177 } 178 179 /** 180 * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb 181 * @rx_ring: Ring to get the VSI info 182 * @rx_desc: Receive descriptor 183 * @skb: Particular skb to send timestamp with 184 * 185 * The timestamp is in ns, so we must convert the result first. 186 */ 187 static void 188 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring, 189 const union ice_32b_rx_flex_desc *rx_desc, 190 struct sk_buff *skb) 191 { 192 u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx); 193 194 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns); 195 } 196 197 /** 198 * ice_get_ptype - Read HW packet type from the descriptor 199 * @rx_desc: RX descriptor 200 */ 201 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc) 202 { 203 return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 204 ICE_RX_FLEX_DESC_PTYPE_M; 205 } 206 207 /** 208 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 209 * @rx_ring: Rx descriptor ring packet is being transacted on 210 * @rx_desc: pointer to the EOP Rx descriptor 211 * @skb: pointer to current skb being populated 212 * 213 * This function checks the ring, descriptor, and packet information in 214 * order to populate the hash, checksum, VLAN, protocol, and 215 * other fields within the skb. 216 */ 217 void 218 ice_process_skb_fields(struct ice_rx_ring *rx_ring, 219 union ice_32b_rx_flex_desc *rx_desc, 220 struct sk_buff *skb) 221 { 222 u16 ptype = ice_get_ptype(rx_desc); 223 224 ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype); 225 226 /* modifies the skb - consumes the enet header */ 227 if (unlikely(rx_ring->flags & ICE_RX_FLAGS_MULTIDEV)) { 228 struct net_device *netdev = ice_eswitch_get_target(rx_ring, 229 rx_desc); 230 231 if (ice_is_port_repr_netdev(netdev)) 232 ice_repr_inc_rx_stats(netdev, skb->len); 233 skb->protocol = eth_type_trans(skb, netdev); 234 } else { 235 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 236 } 237 238 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 239 240 if (rx_ring->ptp_rx) 241 ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb); 242 } 243 244 /** 245 * ice_receive_skb - Send a completed packet up the stack 246 * @rx_ring: Rx ring in play 247 * @skb: packet to send up 248 * @vlan_tci: VLAN TCI for packet 249 * 250 * This function sends the completed packet (via. skb) up the stack using 251 * gro receive functions (with/without VLAN tag) 252 */ 253 void 254 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci) 255 { 256 if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto) 257 __vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto, 258 vlan_tci); 259 260 napi_gro_receive(&rx_ring->q_vector->napi, skb); 261 } 262 263 /** 264 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 265 * @dev: device for DMA mapping 266 * @tx_buf: Tx buffer to clean 267 * @bq: XDP bulk flush struct 268 */ 269 static void 270 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf, 271 struct xdp_frame_bulk *bq) 272 { 273 dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma), 274 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 275 dma_unmap_len_set(tx_buf, len, 0); 276 277 switch (tx_buf->type) { 278 case ICE_TX_BUF_XDP_TX: 279 page_frag_free(tx_buf->raw_buf); 280 break; 281 case ICE_TX_BUF_XDP_XMIT: 282 xdp_return_frame_bulk(tx_buf->xdpf, bq); 283 break; 284 } 285 286 tx_buf->type = ICE_TX_BUF_EMPTY; 287 } 288 289 /** 290 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring 291 * @xdp_ring: XDP ring to clean 292 */ 293 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) 294 { 295 int total_bytes = 0, total_pkts = 0; 296 struct device *dev = xdp_ring->dev; 297 u32 ntc = xdp_ring->next_to_clean; 298 struct ice_tx_desc *tx_desc; 299 u32 cnt = xdp_ring->count; 300 struct xdp_frame_bulk bq; 301 u32 frags, xdp_tx = 0; 302 u32 ready_frames = 0; 303 u32 idx; 304 u32 ret; 305 306 idx = xdp_ring->tx_buf[ntc].rs_idx; 307 tx_desc = ICE_TX_DESC(xdp_ring, idx); 308 if (tx_desc->cmd_type_offset_bsz & 309 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 310 if (idx >= ntc) 311 ready_frames = idx - ntc + 1; 312 else 313 ready_frames = idx + cnt - ntc + 1; 314 } 315 316 if (unlikely(!ready_frames)) 317 return 0; 318 ret = ready_frames; 319 320 xdp_frame_bulk_init(&bq); 321 rcu_read_lock(); /* xdp_return_frame_bulk() */ 322 323 while (ready_frames) { 324 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 325 struct ice_tx_buf *head = tx_buf; 326 327 /* bytecount holds size of head + frags */ 328 total_bytes += tx_buf->bytecount; 329 frags = tx_buf->nr_frags; 330 total_pkts++; 331 /* count head + frags */ 332 ready_frames -= frags + 1; 333 xdp_tx++; 334 335 ntc++; 336 if (ntc == cnt) 337 ntc = 0; 338 339 for (int i = 0; i < frags; i++) { 340 tx_buf = &xdp_ring->tx_buf[ntc]; 341 342 ice_clean_xdp_tx_buf(dev, tx_buf, &bq); 343 ntc++; 344 if (ntc == cnt) 345 ntc = 0; 346 } 347 348 ice_clean_xdp_tx_buf(dev, head, &bq); 349 } 350 351 xdp_flush_frame_bulk(&bq); 352 rcu_read_unlock(); 353 354 tx_desc->cmd_type_offset_bsz = 0; 355 xdp_ring->next_to_clean = ntc; 356 xdp_ring->xdp_tx_active -= xdp_tx; 357 ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); 358 359 return ret; 360 } 361 362 /** 363 * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission 364 * @xdp: XDP buffer to be placed onto Tx descriptors 365 * @xdp_ring: XDP ring for transmission 366 * @frame: whether this comes from .ndo_xdp_xmit() 367 */ 368 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring, 369 bool frame) 370 { 371 struct skb_shared_info *sinfo = NULL; 372 u32 size = xdp->data_end - xdp->data; 373 struct device *dev = xdp_ring->dev; 374 u32 ntu = xdp_ring->next_to_use; 375 struct ice_tx_desc *tx_desc; 376 struct ice_tx_buf *tx_head; 377 struct ice_tx_buf *tx_buf; 378 u32 cnt = xdp_ring->count; 379 void *data = xdp->data; 380 u32 nr_frags = 0; 381 u32 free_space; 382 u32 frag = 0; 383 384 free_space = ICE_DESC_UNUSED(xdp_ring); 385 if (free_space < ICE_RING_QUARTER(xdp_ring)) 386 free_space += ice_clean_xdp_irq(xdp_ring); 387 388 if (unlikely(!free_space)) 389 goto busy; 390 391 if (unlikely(xdp_buff_has_frags(xdp))) { 392 sinfo = xdp_get_shared_info_from_buff(xdp); 393 nr_frags = sinfo->nr_frags; 394 if (free_space < nr_frags + 1) 395 goto busy; 396 } 397 398 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 399 tx_head = &xdp_ring->tx_buf[ntu]; 400 tx_buf = tx_head; 401 402 for (;;) { 403 dma_addr_t dma; 404 405 dma = dma_map_single(dev, data, size, DMA_TO_DEVICE); 406 if (dma_mapping_error(dev, dma)) 407 goto dma_unmap; 408 409 /* record length, and DMA address */ 410 dma_unmap_len_set(tx_buf, len, size); 411 dma_unmap_addr_set(tx_buf, dma, dma); 412 413 if (frame) { 414 tx_buf->type = ICE_TX_BUF_FRAG; 415 } else { 416 tx_buf->type = ICE_TX_BUF_XDP_TX; 417 tx_buf->raw_buf = data; 418 } 419 420 tx_desc->buf_addr = cpu_to_le64(dma); 421 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 422 423 ntu++; 424 if (ntu == cnt) 425 ntu = 0; 426 427 if (frag == nr_frags) 428 break; 429 430 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 431 tx_buf = &xdp_ring->tx_buf[ntu]; 432 433 data = skb_frag_address(&sinfo->frags[frag]); 434 size = skb_frag_size(&sinfo->frags[frag]); 435 frag++; 436 } 437 438 /* store info about bytecount and frag count in first desc */ 439 tx_head->bytecount = xdp_get_buff_len(xdp); 440 tx_head->nr_frags = nr_frags; 441 442 if (frame) { 443 tx_head->type = ICE_TX_BUF_XDP_XMIT; 444 tx_head->xdpf = xdp->data_hard_start; 445 } 446 447 /* update last descriptor from a frame with EOP */ 448 tx_desc->cmd_type_offset_bsz |= 449 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 450 451 xdp_ring->xdp_tx_active++; 452 xdp_ring->next_to_use = ntu; 453 454 return ICE_XDP_TX; 455 456 dma_unmap: 457 for (;;) { 458 tx_buf = &xdp_ring->tx_buf[ntu]; 459 dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma), 460 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 461 dma_unmap_len_set(tx_buf, len, 0); 462 if (tx_buf == tx_head) 463 break; 464 465 if (!ntu) 466 ntu += cnt; 467 ntu--; 468 } 469 return ICE_XDP_CONSUMED; 470 471 busy: 472 xdp_ring->ring_stats->tx_stats.tx_busy++; 473 474 return ICE_XDP_CONSUMED; 475 } 476 477 /** 478 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 479 * @xdp_ring: XDP ring 480 * @xdp_res: Result of the receive batch 481 * @first_idx: index to write from caller 482 * 483 * This function bumps XDP Tx tail and/or flush redirect map, and 484 * should be called when a batch of packets has been processed in the 485 * napi loop. 486 */ 487 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res, 488 u32 first_idx) 489 { 490 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx]; 491 492 if (xdp_res & ICE_XDP_REDIR) 493 xdp_do_flush(); 494 495 if (xdp_res & ICE_XDP_TX) { 496 if (static_branch_unlikely(&ice_xdp_locking_key)) 497 spin_lock(&xdp_ring->tx_lock); 498 /* store index of descriptor with RS bit set in the first 499 * ice_tx_buf of given NAPI batch 500 */ 501 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 502 ice_xdp_ring_update_tail(xdp_ring); 503 if (static_branch_unlikely(&ice_xdp_locking_key)) 504 spin_unlock(&xdp_ring->tx_lock); 505 } 506 } 507 508 /** 509 * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler 510 * @ctx: XDP buff pointer 511 * @ts_ns: destination address 512 * 513 * Copy HW timestamp (if available) to the destination address. 514 */ 515 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns) 516 { 517 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 518 519 *ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc, 520 xdp_ext->pkt_ctx); 521 if (!*ts_ns) 522 return -ENODATA; 523 524 return 0; 525 } 526 527 /** 528 * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor 529 * @eop_desc: End of Packet descriptor 530 */ 531 static enum xdp_rss_hash_type 532 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc) 533 { 534 return libie_rx_pt_parse(ice_get_ptype(eop_desc)).hash_type; 535 } 536 537 /** 538 * ice_xdp_rx_hash - RX hash XDP hint handler 539 * @ctx: XDP buff pointer 540 * @hash: hash destination address 541 * @rss_type: XDP hash type destination address 542 * 543 * Copy RX hash (if available) and its type to the destination address. 544 */ 545 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, 546 enum xdp_rss_hash_type *rss_type) 547 { 548 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 549 550 *hash = ice_get_rx_hash(xdp_ext->eop_desc); 551 *rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc); 552 if (!likely(*hash)) 553 return -ENODATA; 554 555 return 0; 556 } 557 558 /** 559 * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler 560 * @ctx: XDP buff pointer 561 * @vlan_proto: destination address for VLAN protocol 562 * @vlan_tci: destination address for VLAN TCI 563 * 564 * Copy VLAN tag (if was stripped) and corresponding protocol 565 * to the destination address. 566 */ 567 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto, 568 u16 *vlan_tci) 569 { 570 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 571 572 *vlan_proto = xdp_ext->pkt_ctx->vlan_proto; 573 if (!*vlan_proto) 574 return -ENODATA; 575 576 *vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc); 577 if (!*vlan_tci) 578 return -ENODATA; 579 580 return 0; 581 } 582 583 const struct xdp_metadata_ops ice_xdp_md_ops = { 584 .xmo_rx_timestamp = ice_xdp_rx_hw_ts, 585 .xmo_rx_hash = ice_xdp_rx_hash, 586 .xmo_rx_vlan_tag = ice_xdp_rx_vlan_tag, 587 }; 588