xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx_lib.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/filter.h>
5 
6 #include "ice_txrx_lib.h"
7 #include "ice_eswitch.h"
8 #include "ice_lib.h"
9 
10 /**
11  * ice_release_rx_desc - Store the new tail and head values
12  * @rx_ring: ring to bump
13  * @val: new head index
14  */
15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
16 {
17 	u16 prev_ntu = rx_ring->next_to_use & ~0x7;
18 
19 	rx_ring->next_to_use = val;
20 
21 	/* update next to alloc since we have filled the ring */
22 	rx_ring->next_to_alloc = val;
23 
24 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
25 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
26 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
27 	 * the budget depending on the current traffic load.
28 	 */
29 	val &= ~0x7;
30 	if (prev_ntu != val) {
31 		/* Force memory writes to complete before letting h/w
32 		 * know there are new descriptors to fetch. (Only
33 		 * applicable for weak-ordered memory model archs,
34 		 * such as IA-64).
35 		 */
36 		wmb();
37 		writel(val, rx_ring->tail);
38 	}
39 }
40 
41 /**
42  * ice_ptype_to_htype - get a hash type
43  * @ptype: the ptype value from the descriptor
44  *
45  * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
46  * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
47  * Rx desc.
48  */
49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
50 {
51 	struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);
52 
53 	if (!decoded.known)
54 		return PKT_HASH_TYPE_NONE;
55 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
56 		return PKT_HASH_TYPE_L4;
57 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
58 		return PKT_HASH_TYPE_L3;
59 	if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
60 		return PKT_HASH_TYPE_L2;
61 
62 	return PKT_HASH_TYPE_NONE;
63 }
64 
65 /**
66  * ice_get_rx_hash - get RX hash value from descriptor
67  * @rx_desc: specific descriptor
68  *
69  * Returns hash, if present, 0 otherwise.
70  */
71 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc)
72 {
73 	const struct ice_32b_rx_flex_desc_nic *nic_mdid;
74 
75 	if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC))
76 		return 0;
77 
78 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
79 	return le32_to_cpu(nic_mdid->rss_hash);
80 }
81 
82 /**
83  * ice_rx_hash_to_skb - set the hash value in the skb
84  * @rx_ring: descriptor ring
85  * @rx_desc: specific descriptor
86  * @skb: pointer to current skb
87  * @rx_ptype: the ptype value from the descriptor
88  */
89 static void
90 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring,
91 		   const union ice_32b_rx_flex_desc *rx_desc,
92 		   struct sk_buff *skb, u16 rx_ptype)
93 {
94 	u32 hash;
95 
96 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
97 		return;
98 
99 	hash = ice_get_rx_hash(rx_desc);
100 	if (likely(hash))
101 		skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
102 }
103 
104 /**
105  * ice_rx_csum - Indicate in skb if checksum is good
106  * @ring: the ring we care about
107  * @skb: skb currently being received and modified
108  * @rx_desc: the receive descriptor
109  * @ptype: the packet type decoded by hardware
110  *
111  * skb->protocol must be set before this function is called
112  */
113 static void
114 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
115 	    union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
116 {
117 	struct ice_rx_ptype_decoded decoded;
118 	u16 rx_status0, rx_status1;
119 	bool ipv4, ipv6;
120 
121 	rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
122 	rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
123 
124 	decoded = ice_decode_rx_desc_ptype(ptype);
125 
126 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
127 	skb->ip_summed = CHECKSUM_NONE;
128 	skb_checksum_none_assert(skb);
129 
130 	/* check if Rx checksum is enabled */
131 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
132 		return;
133 
134 	/* check if HW has decoded the packet and checksum */
135 	if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
136 		return;
137 
138 	if (!(decoded.known && decoded.outer_ip))
139 		return;
140 
141 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
142 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
143 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
144 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
145 
146 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) {
147 		ring->vsi->back->hw_rx_eipe_error++;
148 		return;
149 	}
150 
151 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S))))
152 		goto checksum_fail;
153 
154 	if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
155 		goto checksum_fail;
156 
157 	/* check for L4 errors and handle packets that were not able to be
158 	 * checksummed due to arrival speed
159 	 */
160 	if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
161 		goto checksum_fail;
162 
163 	/* check for outer UDP checksum error in tunneled packets */
164 	if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
165 	    (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
166 		goto checksum_fail;
167 
168 	/* If there is an outer header present that might contain a checksum
169 	 * we need to bump the checksum level by 1 to reflect the fact that
170 	 * we are indicating we validated the inner checksum.
171 	 */
172 	if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
173 		skb->csum_level = 1;
174 
175 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
176 	switch (decoded.inner_prot) {
177 	case ICE_RX_PTYPE_INNER_PROT_TCP:
178 	case ICE_RX_PTYPE_INNER_PROT_UDP:
179 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
180 		skb->ip_summed = CHECKSUM_UNNECESSARY;
181 		break;
182 	default:
183 		break;
184 	}
185 	return;
186 
187 checksum_fail:
188 	ring->vsi->back->hw_csum_rx_error++;
189 }
190 
191 /**
192  * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb
193  * @rx_ring: Ring to get the VSI info
194  * @rx_desc: Receive descriptor
195  * @skb: Particular skb to send timestamp with
196  *
197  * The timestamp is in ns, so we must convert the result first.
198  */
199 static void
200 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring,
201 		       const union ice_32b_rx_flex_desc *rx_desc,
202 		       struct sk_buff *skb)
203 {
204 	u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx);
205 
206 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns);
207 }
208 
209 /**
210  * ice_get_ptype - Read HW packet type from the descriptor
211  * @rx_desc: RX descriptor
212  */
213 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc)
214 {
215 	return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
216 	       ICE_RX_FLEX_DESC_PTYPE_M;
217 }
218 
219 /**
220  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
221  * @rx_ring: Rx descriptor ring packet is being transacted on
222  * @rx_desc: pointer to the EOP Rx descriptor
223  * @skb: pointer to current skb being populated
224  *
225  * This function checks the ring, descriptor, and packet information in
226  * order to populate the hash, checksum, VLAN, protocol, and
227  * other fields within the skb.
228  */
229 void
230 ice_process_skb_fields(struct ice_rx_ring *rx_ring,
231 		       union ice_32b_rx_flex_desc *rx_desc,
232 		       struct sk_buff *skb)
233 {
234 	u16 ptype = ice_get_ptype(rx_desc);
235 
236 	ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype);
237 
238 	/* modifies the skb - consumes the enet header */
239 	if (unlikely(rx_ring->flags & ICE_RX_FLAGS_MULTIDEV)) {
240 		struct net_device *netdev = ice_eswitch_get_target(rx_ring,
241 								   rx_desc);
242 
243 		if (ice_is_port_repr_netdev(netdev))
244 			ice_repr_inc_rx_stats(netdev, skb->len);
245 		skb->protocol = eth_type_trans(skb, netdev);
246 	} else {
247 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
248 	}
249 
250 	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
251 
252 	if (rx_ring->ptp_rx)
253 		ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb);
254 }
255 
256 /**
257  * ice_receive_skb - Send a completed packet up the stack
258  * @rx_ring: Rx ring in play
259  * @skb: packet to send up
260  * @vlan_tci: VLAN TCI for packet
261  *
262  * This function sends the completed packet (via. skb) up the stack using
263  * gro receive functions (with/without VLAN tag)
264  */
265 void
266 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci)
267 {
268 	if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto)
269 		__vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto,
270 				       vlan_tci);
271 
272 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
273 }
274 
275 /**
276  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
277  * @dev: device for DMA mapping
278  * @tx_buf: Tx buffer to clean
279  * @bq: XDP bulk flush struct
280  */
281 static void
282 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf,
283 		     struct xdp_frame_bulk *bq)
284 {
285 	dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma),
286 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
287 	dma_unmap_len_set(tx_buf, len, 0);
288 
289 	switch (tx_buf->type) {
290 	case ICE_TX_BUF_XDP_TX:
291 		page_frag_free(tx_buf->raw_buf);
292 		break;
293 	case ICE_TX_BUF_XDP_XMIT:
294 		xdp_return_frame_bulk(tx_buf->xdpf, bq);
295 		break;
296 	}
297 
298 	tx_buf->type = ICE_TX_BUF_EMPTY;
299 }
300 
301 /**
302  * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
303  * @xdp_ring: XDP ring to clean
304  */
305 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
306 {
307 	int total_bytes = 0, total_pkts = 0;
308 	struct device *dev = xdp_ring->dev;
309 	u32 ntc = xdp_ring->next_to_clean;
310 	struct ice_tx_desc *tx_desc;
311 	u32 cnt = xdp_ring->count;
312 	struct xdp_frame_bulk bq;
313 	u32 frags, xdp_tx = 0;
314 	u32 ready_frames = 0;
315 	u32 idx;
316 	u32 ret;
317 
318 	idx = xdp_ring->tx_buf[ntc].rs_idx;
319 	tx_desc = ICE_TX_DESC(xdp_ring, idx);
320 	if (tx_desc->cmd_type_offset_bsz &
321 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
322 		if (idx >= ntc)
323 			ready_frames = idx - ntc + 1;
324 		else
325 			ready_frames = idx + cnt - ntc + 1;
326 	}
327 
328 	if (unlikely(!ready_frames))
329 		return 0;
330 	ret = ready_frames;
331 
332 	xdp_frame_bulk_init(&bq);
333 	rcu_read_lock(); /* xdp_return_frame_bulk() */
334 
335 	while (ready_frames) {
336 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
337 		struct ice_tx_buf *head = tx_buf;
338 
339 		/* bytecount holds size of head + frags */
340 		total_bytes += tx_buf->bytecount;
341 		frags = tx_buf->nr_frags;
342 		total_pkts++;
343 		/* count head + frags */
344 		ready_frames -= frags + 1;
345 		xdp_tx++;
346 
347 		ntc++;
348 		if (ntc == cnt)
349 			ntc = 0;
350 
351 		for (int i = 0; i < frags; i++) {
352 			tx_buf = &xdp_ring->tx_buf[ntc];
353 
354 			ice_clean_xdp_tx_buf(dev, tx_buf, &bq);
355 			ntc++;
356 			if (ntc == cnt)
357 				ntc = 0;
358 		}
359 
360 		ice_clean_xdp_tx_buf(dev, head, &bq);
361 	}
362 
363 	xdp_flush_frame_bulk(&bq);
364 	rcu_read_unlock();
365 
366 	tx_desc->cmd_type_offset_bsz = 0;
367 	xdp_ring->next_to_clean = ntc;
368 	xdp_ring->xdp_tx_active -= xdp_tx;
369 	ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
370 
371 	return ret;
372 }
373 
374 /**
375  * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
376  * @xdp: XDP buffer to be placed onto Tx descriptors
377  * @xdp_ring: XDP ring for transmission
378  * @frame: whether this comes from .ndo_xdp_xmit()
379  */
380 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring,
381 			bool frame)
382 {
383 	struct skb_shared_info *sinfo = NULL;
384 	u32 size = xdp->data_end - xdp->data;
385 	struct device *dev = xdp_ring->dev;
386 	u32 ntu = xdp_ring->next_to_use;
387 	struct ice_tx_desc *tx_desc;
388 	struct ice_tx_buf *tx_head;
389 	struct ice_tx_buf *tx_buf;
390 	u32 cnt = xdp_ring->count;
391 	void *data = xdp->data;
392 	u32 nr_frags = 0;
393 	u32 free_space;
394 	u32 frag = 0;
395 
396 	free_space = ICE_DESC_UNUSED(xdp_ring);
397 	if (free_space < ICE_RING_QUARTER(xdp_ring))
398 		free_space += ice_clean_xdp_irq(xdp_ring);
399 
400 	if (unlikely(!free_space))
401 		goto busy;
402 
403 	if (unlikely(xdp_buff_has_frags(xdp))) {
404 		sinfo = xdp_get_shared_info_from_buff(xdp);
405 		nr_frags = sinfo->nr_frags;
406 		if (free_space < nr_frags + 1)
407 			goto busy;
408 	}
409 
410 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
411 	tx_head = &xdp_ring->tx_buf[ntu];
412 	tx_buf = tx_head;
413 
414 	for (;;) {
415 		dma_addr_t dma;
416 
417 		dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
418 		if (dma_mapping_error(dev, dma))
419 			goto dma_unmap;
420 
421 		/* record length, and DMA address */
422 		dma_unmap_len_set(tx_buf, len, size);
423 		dma_unmap_addr_set(tx_buf, dma, dma);
424 
425 		if (frame) {
426 			tx_buf->type = ICE_TX_BUF_FRAG;
427 		} else {
428 			tx_buf->type = ICE_TX_BUF_XDP_TX;
429 			tx_buf->raw_buf = data;
430 		}
431 
432 		tx_desc->buf_addr = cpu_to_le64(dma);
433 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
434 
435 		ntu++;
436 		if (ntu == cnt)
437 			ntu = 0;
438 
439 		if (frag == nr_frags)
440 			break;
441 
442 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
443 		tx_buf = &xdp_ring->tx_buf[ntu];
444 
445 		data = skb_frag_address(&sinfo->frags[frag]);
446 		size = skb_frag_size(&sinfo->frags[frag]);
447 		frag++;
448 	}
449 
450 	/* store info about bytecount and frag count in first desc */
451 	tx_head->bytecount = xdp_get_buff_len(xdp);
452 	tx_head->nr_frags = nr_frags;
453 
454 	if (frame) {
455 		tx_head->type = ICE_TX_BUF_XDP_XMIT;
456 		tx_head->xdpf = xdp->data_hard_start;
457 	}
458 
459 	/* update last descriptor from a frame with EOP */
460 	tx_desc->cmd_type_offset_bsz |=
461 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
462 
463 	xdp_ring->xdp_tx_active++;
464 	xdp_ring->next_to_use = ntu;
465 
466 	return ICE_XDP_TX;
467 
468 dma_unmap:
469 	for (;;) {
470 		tx_buf = &xdp_ring->tx_buf[ntu];
471 		dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
472 			       dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
473 		dma_unmap_len_set(tx_buf, len, 0);
474 		if (tx_buf == tx_head)
475 			break;
476 
477 		if (!ntu)
478 			ntu += cnt;
479 		ntu--;
480 	}
481 	return ICE_XDP_CONSUMED;
482 
483 busy:
484 	xdp_ring->ring_stats->tx_stats.tx_busy++;
485 
486 	return ICE_XDP_CONSUMED;
487 }
488 
489 /**
490  * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
491  * @xdp_ring: XDP ring
492  * @xdp_res: Result of the receive batch
493  * @first_idx: index to write from caller
494  *
495  * This function bumps XDP Tx tail and/or flush redirect map, and
496  * should be called when a batch of packets has been processed in the
497  * napi loop.
498  */
499 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
500 			 u32 first_idx)
501 {
502 	struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
503 
504 	if (xdp_res & ICE_XDP_REDIR)
505 		xdp_do_flush();
506 
507 	if (xdp_res & ICE_XDP_TX) {
508 		if (static_branch_unlikely(&ice_xdp_locking_key))
509 			spin_lock(&xdp_ring->tx_lock);
510 		/* store index of descriptor with RS bit set in the first
511 		 * ice_tx_buf of given NAPI batch
512 		 */
513 		tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
514 		ice_xdp_ring_update_tail(xdp_ring);
515 		if (static_branch_unlikely(&ice_xdp_locking_key))
516 			spin_unlock(&xdp_ring->tx_lock);
517 	}
518 }
519 
520 /**
521  * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler
522  * @ctx: XDP buff pointer
523  * @ts_ns: destination address
524  *
525  * Copy HW timestamp (if available) to the destination address.
526  */
527 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns)
528 {
529 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
530 
531 	*ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc,
532 				     xdp_ext->pkt_ctx);
533 	if (!*ts_ns)
534 		return -ENODATA;
535 
536 	return 0;
537 }
538 
539 /* Define a ptype index -> XDP hash type lookup table.
540  * It uses the same ptype definitions as ice_decode_rx_desc_ptype[],
541  * avoiding possible copy-paste errors.
542  */
543 #undef ICE_PTT
544 #undef ICE_PTT_UNUSED_ENTRY
545 
546 #define ICE_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
547 	[PTYPE] = XDP_RSS_L3_##OUTER_IP_VER | XDP_RSS_L4_##I | XDP_RSS_TYPE_##PL
548 
549 #define ICE_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = 0
550 
551 /* A few supplementary definitions for when XDP hash types do not coincide
552  * with what can be generated from ptype definitions
553  * by means of preprocessor concatenation.
554  */
555 #define XDP_RSS_L3_NONE		XDP_RSS_TYPE_NONE
556 #define XDP_RSS_L4_NONE		XDP_RSS_TYPE_NONE
557 #define XDP_RSS_TYPE_PAY2	XDP_RSS_TYPE_L2
558 #define XDP_RSS_TYPE_PAY3	XDP_RSS_TYPE_NONE
559 #define XDP_RSS_TYPE_PAY4	XDP_RSS_L4
560 
561 static const enum xdp_rss_hash_type
562 ice_ptype_to_xdp_hash[ICE_NUM_DEFINED_PTYPES] = {
563 	ICE_PTYPES
564 };
565 
566 #undef XDP_RSS_L3_NONE
567 #undef XDP_RSS_L4_NONE
568 #undef XDP_RSS_TYPE_PAY2
569 #undef XDP_RSS_TYPE_PAY3
570 #undef XDP_RSS_TYPE_PAY4
571 
572 #undef ICE_PTT
573 #undef ICE_PTT_UNUSED_ENTRY
574 
575 /**
576  * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor
577  * @eop_desc: End of Packet descriptor
578  */
579 static enum xdp_rss_hash_type
580 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc)
581 {
582 	u16 ptype = ice_get_ptype(eop_desc);
583 
584 	if (unlikely(ptype >= ICE_NUM_DEFINED_PTYPES))
585 		return 0;
586 
587 	return ice_ptype_to_xdp_hash[ptype];
588 }
589 
590 /**
591  * ice_xdp_rx_hash - RX hash XDP hint handler
592  * @ctx: XDP buff pointer
593  * @hash: hash destination address
594  * @rss_type: XDP hash type destination address
595  *
596  * Copy RX hash (if available) and its type to the destination address.
597  */
598 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
599 			   enum xdp_rss_hash_type *rss_type)
600 {
601 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
602 
603 	*hash = ice_get_rx_hash(xdp_ext->eop_desc);
604 	*rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc);
605 	if (!likely(*hash))
606 		return -ENODATA;
607 
608 	return 0;
609 }
610 
611 /**
612  * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler
613  * @ctx: XDP buff pointer
614  * @vlan_proto: destination address for VLAN protocol
615  * @vlan_tci: destination address for VLAN TCI
616  *
617  * Copy VLAN tag (if was stripped) and corresponding protocol
618  * to the destination address.
619  */
620 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto,
621 			       u16 *vlan_tci)
622 {
623 	const struct ice_xdp_buff *xdp_ext = (void *)ctx;
624 
625 	*vlan_proto = xdp_ext->pkt_ctx->vlan_proto;
626 	if (!*vlan_proto)
627 		return -ENODATA;
628 
629 	*vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc);
630 	if (!*vlan_tci)
631 		return -ENODATA;
632 
633 	return 0;
634 }
635 
636 const struct xdp_metadata_ops ice_xdp_md_ops = {
637 	.xmo_rx_timestamp		= ice_xdp_rx_hw_ts,
638 	.xmo_rx_hash			= ice_xdp_rx_hash,
639 	.xmo_rx_vlan_tag		= ice_xdp_rx_vlan_tag,
640 };
641