1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/filter.h> 5 6 #include "ice_txrx_lib.h" 7 #include "ice_eswitch.h" 8 #include "ice_lib.h" 9 10 /** 11 * ice_release_rx_desc - Store the new tail and head values 12 * @rx_ring: ring to bump 13 * @val: new head index 14 */ 15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) 16 { 17 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 18 19 rx_ring->next_to_use = val; 20 21 /* update next to alloc since we have filled the ring */ 22 rx_ring->next_to_alloc = val; 23 24 /* QRX_TAIL will be updated with any tail value, but hardware ignores 25 * the lower 3 bits. This makes it so we only bump tail on meaningful 26 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 27 * the budget depending on the current traffic load. 28 */ 29 val &= ~0x7; 30 if (prev_ntu != val) { 31 /* Force memory writes to complete before letting h/w 32 * know there are new descriptors to fetch. (Only 33 * applicable for weak-ordered memory model archs, 34 * such as IA-64). 35 */ 36 wmb(); 37 writel(val, rx_ring->tail); 38 } 39 } 40 41 /** 42 * ice_ptype_to_htype - get a hash type 43 * @ptype: the ptype value from the descriptor 44 * 45 * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by 46 * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of 47 * Rx desc. 48 */ 49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) 50 { 51 struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); 52 53 if (!decoded.known) 54 return PKT_HASH_TYPE_NONE; 55 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) 56 return PKT_HASH_TYPE_L4; 57 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) 58 return PKT_HASH_TYPE_L3; 59 if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) 60 return PKT_HASH_TYPE_L2; 61 62 return PKT_HASH_TYPE_NONE; 63 } 64 65 /** 66 * ice_get_rx_hash - get RX hash value from descriptor 67 * @rx_desc: specific descriptor 68 * 69 * Returns hash, if present, 0 otherwise. 70 */ 71 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc) 72 { 73 const struct ice_32b_rx_flex_desc_nic *nic_mdid; 74 75 if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)) 76 return 0; 77 78 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 79 return le32_to_cpu(nic_mdid->rss_hash); 80 } 81 82 /** 83 * ice_rx_hash_to_skb - set the hash value in the skb 84 * @rx_ring: descriptor ring 85 * @rx_desc: specific descriptor 86 * @skb: pointer to current skb 87 * @rx_ptype: the ptype value from the descriptor 88 */ 89 static void 90 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring, 91 const union ice_32b_rx_flex_desc *rx_desc, 92 struct sk_buff *skb, u16 rx_ptype) 93 { 94 u32 hash; 95 96 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 97 return; 98 99 hash = ice_get_rx_hash(rx_desc); 100 if (likely(hash)) 101 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 102 } 103 104 /** 105 * ice_rx_csum - Indicate in skb if checksum is good 106 * @ring: the ring we care about 107 * @skb: skb currently being received and modified 108 * @rx_desc: the receive descriptor 109 * @ptype: the packet type decoded by hardware 110 * 111 * skb->protocol must be set before this function is called 112 */ 113 static void 114 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, 115 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 116 { 117 struct ice_rx_ptype_decoded decoded; 118 u16 rx_status0, rx_status1; 119 bool ipv4, ipv6; 120 121 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 122 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 123 124 decoded = ice_decode_rx_desc_ptype(ptype); 125 126 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 127 skb->ip_summed = CHECKSUM_NONE; 128 skb_checksum_none_assert(skb); 129 130 /* check if Rx checksum is enabled */ 131 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 132 return; 133 134 /* check if HW has decoded the packet and checksum */ 135 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 136 return; 137 138 if (!(decoded.known && decoded.outer_ip)) 139 return; 140 141 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 142 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 143 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 144 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 145 146 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) { 147 ring->vsi->back->hw_rx_eipe_error++; 148 return; 149 } 150 151 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))) 152 goto checksum_fail; 153 154 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 155 goto checksum_fail; 156 157 /* check for L4 errors and handle packets that were not able to be 158 * checksummed due to arrival speed 159 */ 160 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 161 goto checksum_fail; 162 163 /* check for outer UDP checksum error in tunneled packets */ 164 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 165 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 166 goto checksum_fail; 167 168 /* If there is an outer header present that might contain a checksum 169 * we need to bump the checksum level by 1 to reflect the fact that 170 * we are indicating we validated the inner checksum. 171 */ 172 if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) 173 skb->csum_level = 1; 174 175 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 176 switch (decoded.inner_prot) { 177 case ICE_RX_PTYPE_INNER_PROT_TCP: 178 case ICE_RX_PTYPE_INNER_PROT_UDP: 179 case ICE_RX_PTYPE_INNER_PROT_SCTP: 180 skb->ip_summed = CHECKSUM_UNNECESSARY; 181 break; 182 default: 183 break; 184 } 185 return; 186 187 checksum_fail: 188 ring->vsi->back->hw_csum_rx_error++; 189 } 190 191 /** 192 * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb 193 * @rx_ring: Ring to get the VSI info 194 * @rx_desc: Receive descriptor 195 * @skb: Particular skb to send timestamp with 196 * 197 * The timestamp is in ns, so we must convert the result first. 198 */ 199 static void 200 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring, 201 const union ice_32b_rx_flex_desc *rx_desc, 202 struct sk_buff *skb) 203 { 204 u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx); 205 206 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns); 207 } 208 209 /** 210 * ice_get_ptype - Read HW packet type from the descriptor 211 * @rx_desc: RX descriptor 212 */ 213 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc) 214 { 215 return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 216 ICE_RX_FLEX_DESC_PTYPE_M; 217 } 218 219 /** 220 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 221 * @rx_ring: Rx descriptor ring packet is being transacted on 222 * @rx_desc: pointer to the EOP Rx descriptor 223 * @skb: pointer to current skb being populated 224 * 225 * This function checks the ring, descriptor, and packet information in 226 * order to populate the hash, checksum, VLAN, protocol, and 227 * other fields within the skb. 228 */ 229 void 230 ice_process_skb_fields(struct ice_rx_ring *rx_ring, 231 union ice_32b_rx_flex_desc *rx_desc, 232 struct sk_buff *skb) 233 { 234 u16 ptype = ice_get_ptype(rx_desc); 235 236 ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype); 237 238 /* modifies the skb - consumes the enet header */ 239 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 240 241 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 242 243 if (rx_ring->ptp_rx) 244 ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb); 245 } 246 247 /** 248 * ice_receive_skb - Send a completed packet up the stack 249 * @rx_ring: Rx ring in play 250 * @skb: packet to send up 251 * @vlan_tci: VLAN TCI for packet 252 * 253 * This function sends the completed packet (via. skb) up the stack using 254 * gro receive functions (with/without VLAN tag) 255 */ 256 void 257 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci) 258 { 259 if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto) 260 __vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto, 261 vlan_tci); 262 263 napi_gro_receive(&rx_ring->q_vector->napi, skb); 264 } 265 266 /** 267 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 268 * @dev: device for DMA mapping 269 * @tx_buf: Tx buffer to clean 270 * @bq: XDP bulk flush struct 271 */ 272 static void 273 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf, 274 struct xdp_frame_bulk *bq) 275 { 276 dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma), 277 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 278 dma_unmap_len_set(tx_buf, len, 0); 279 280 switch (tx_buf->type) { 281 case ICE_TX_BUF_XDP_TX: 282 page_frag_free(tx_buf->raw_buf); 283 break; 284 case ICE_TX_BUF_XDP_XMIT: 285 xdp_return_frame_bulk(tx_buf->xdpf, bq); 286 break; 287 } 288 289 tx_buf->type = ICE_TX_BUF_EMPTY; 290 } 291 292 /** 293 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring 294 * @xdp_ring: XDP ring to clean 295 */ 296 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) 297 { 298 int total_bytes = 0, total_pkts = 0; 299 struct device *dev = xdp_ring->dev; 300 u32 ntc = xdp_ring->next_to_clean; 301 struct ice_tx_desc *tx_desc; 302 u32 cnt = xdp_ring->count; 303 struct xdp_frame_bulk bq; 304 u32 frags, xdp_tx = 0; 305 u32 ready_frames = 0; 306 u32 idx; 307 u32 ret; 308 309 idx = xdp_ring->tx_buf[ntc].rs_idx; 310 tx_desc = ICE_TX_DESC(xdp_ring, idx); 311 if (tx_desc->cmd_type_offset_bsz & 312 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 313 if (idx >= ntc) 314 ready_frames = idx - ntc + 1; 315 else 316 ready_frames = idx + cnt - ntc + 1; 317 } 318 319 if (unlikely(!ready_frames)) 320 return 0; 321 ret = ready_frames; 322 323 xdp_frame_bulk_init(&bq); 324 rcu_read_lock(); /* xdp_return_frame_bulk() */ 325 326 while (ready_frames) { 327 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 328 struct ice_tx_buf *head = tx_buf; 329 330 /* bytecount holds size of head + frags */ 331 total_bytes += tx_buf->bytecount; 332 frags = tx_buf->nr_frags; 333 total_pkts++; 334 /* count head + frags */ 335 ready_frames -= frags + 1; 336 xdp_tx++; 337 338 ntc++; 339 if (ntc == cnt) 340 ntc = 0; 341 342 for (int i = 0; i < frags; i++) { 343 tx_buf = &xdp_ring->tx_buf[ntc]; 344 345 ice_clean_xdp_tx_buf(dev, tx_buf, &bq); 346 ntc++; 347 if (ntc == cnt) 348 ntc = 0; 349 } 350 351 ice_clean_xdp_tx_buf(dev, head, &bq); 352 } 353 354 xdp_flush_frame_bulk(&bq); 355 rcu_read_unlock(); 356 357 tx_desc->cmd_type_offset_bsz = 0; 358 xdp_ring->next_to_clean = ntc; 359 xdp_ring->xdp_tx_active -= xdp_tx; 360 ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); 361 362 return ret; 363 } 364 365 /** 366 * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission 367 * @xdp: XDP buffer to be placed onto Tx descriptors 368 * @xdp_ring: XDP ring for transmission 369 * @frame: whether this comes from .ndo_xdp_xmit() 370 */ 371 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring, 372 bool frame) 373 { 374 struct skb_shared_info *sinfo = NULL; 375 u32 size = xdp->data_end - xdp->data; 376 struct device *dev = xdp_ring->dev; 377 u32 ntu = xdp_ring->next_to_use; 378 struct ice_tx_desc *tx_desc; 379 struct ice_tx_buf *tx_head; 380 struct ice_tx_buf *tx_buf; 381 u32 cnt = xdp_ring->count; 382 void *data = xdp->data; 383 u32 nr_frags = 0; 384 u32 free_space; 385 u32 frag = 0; 386 387 free_space = ICE_DESC_UNUSED(xdp_ring); 388 if (free_space < ICE_RING_QUARTER(xdp_ring)) 389 free_space += ice_clean_xdp_irq(xdp_ring); 390 391 if (unlikely(!free_space)) 392 goto busy; 393 394 if (unlikely(xdp_buff_has_frags(xdp))) { 395 sinfo = xdp_get_shared_info_from_buff(xdp); 396 nr_frags = sinfo->nr_frags; 397 if (free_space < nr_frags + 1) 398 goto busy; 399 } 400 401 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 402 tx_head = &xdp_ring->tx_buf[ntu]; 403 tx_buf = tx_head; 404 405 for (;;) { 406 dma_addr_t dma; 407 408 dma = dma_map_single(dev, data, size, DMA_TO_DEVICE); 409 if (dma_mapping_error(dev, dma)) 410 goto dma_unmap; 411 412 /* record length, and DMA address */ 413 dma_unmap_len_set(tx_buf, len, size); 414 dma_unmap_addr_set(tx_buf, dma, dma); 415 416 if (frame) { 417 tx_buf->type = ICE_TX_BUF_FRAG; 418 } else { 419 tx_buf->type = ICE_TX_BUF_XDP_TX; 420 tx_buf->raw_buf = data; 421 } 422 423 tx_desc->buf_addr = cpu_to_le64(dma); 424 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 425 426 ntu++; 427 if (ntu == cnt) 428 ntu = 0; 429 430 if (frag == nr_frags) 431 break; 432 433 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 434 tx_buf = &xdp_ring->tx_buf[ntu]; 435 436 data = skb_frag_address(&sinfo->frags[frag]); 437 size = skb_frag_size(&sinfo->frags[frag]); 438 frag++; 439 } 440 441 /* store info about bytecount and frag count in first desc */ 442 tx_head->bytecount = xdp_get_buff_len(xdp); 443 tx_head->nr_frags = nr_frags; 444 445 if (frame) { 446 tx_head->type = ICE_TX_BUF_XDP_XMIT; 447 tx_head->xdpf = xdp->data_hard_start; 448 } 449 450 /* update last descriptor from a frame with EOP */ 451 tx_desc->cmd_type_offset_bsz |= 452 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 453 454 xdp_ring->xdp_tx_active++; 455 xdp_ring->next_to_use = ntu; 456 457 return ICE_XDP_TX; 458 459 dma_unmap: 460 for (;;) { 461 tx_buf = &xdp_ring->tx_buf[ntu]; 462 dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma), 463 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 464 dma_unmap_len_set(tx_buf, len, 0); 465 if (tx_buf == tx_head) 466 break; 467 468 if (!ntu) 469 ntu += cnt; 470 ntu--; 471 } 472 return ICE_XDP_CONSUMED; 473 474 busy: 475 xdp_ring->ring_stats->tx_stats.tx_busy++; 476 477 return ICE_XDP_CONSUMED; 478 } 479 480 /** 481 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 482 * @xdp_ring: XDP ring 483 * @xdp_res: Result of the receive batch 484 * @first_idx: index to write from caller 485 * 486 * This function bumps XDP Tx tail and/or flush redirect map, and 487 * should be called when a batch of packets has been processed in the 488 * napi loop. 489 */ 490 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res, 491 u32 first_idx) 492 { 493 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx]; 494 495 if (xdp_res & ICE_XDP_REDIR) 496 xdp_do_flush(); 497 498 if (xdp_res & ICE_XDP_TX) { 499 if (static_branch_unlikely(&ice_xdp_locking_key)) 500 spin_lock(&xdp_ring->tx_lock); 501 /* store index of descriptor with RS bit set in the first 502 * ice_tx_buf of given NAPI batch 503 */ 504 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 505 ice_xdp_ring_update_tail(xdp_ring); 506 if (static_branch_unlikely(&ice_xdp_locking_key)) 507 spin_unlock(&xdp_ring->tx_lock); 508 } 509 } 510 511 /** 512 * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler 513 * @ctx: XDP buff pointer 514 * @ts_ns: destination address 515 * 516 * Copy HW timestamp (if available) to the destination address. 517 */ 518 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns) 519 { 520 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 521 522 *ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc, 523 xdp_ext->pkt_ctx); 524 if (!*ts_ns) 525 return -ENODATA; 526 527 return 0; 528 } 529 530 /* Define a ptype index -> XDP hash type lookup table. 531 * It uses the same ptype definitions as ice_decode_rx_desc_ptype[], 532 * avoiding possible copy-paste errors. 533 */ 534 #undef ICE_PTT 535 #undef ICE_PTT_UNUSED_ENTRY 536 537 #define ICE_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\ 538 [PTYPE] = XDP_RSS_L3_##OUTER_IP_VER | XDP_RSS_L4_##I | XDP_RSS_TYPE_##PL 539 540 #define ICE_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = 0 541 542 /* A few supplementary definitions for when XDP hash types do not coincide 543 * with what can be generated from ptype definitions 544 * by means of preprocessor concatenation. 545 */ 546 #define XDP_RSS_L3_NONE XDP_RSS_TYPE_NONE 547 #define XDP_RSS_L4_NONE XDP_RSS_TYPE_NONE 548 #define XDP_RSS_TYPE_PAY2 XDP_RSS_TYPE_L2 549 #define XDP_RSS_TYPE_PAY3 XDP_RSS_TYPE_NONE 550 #define XDP_RSS_TYPE_PAY4 XDP_RSS_L4 551 552 static const enum xdp_rss_hash_type 553 ice_ptype_to_xdp_hash[ICE_NUM_DEFINED_PTYPES] = { 554 ICE_PTYPES 555 }; 556 557 #undef XDP_RSS_L3_NONE 558 #undef XDP_RSS_L4_NONE 559 #undef XDP_RSS_TYPE_PAY2 560 #undef XDP_RSS_TYPE_PAY3 561 #undef XDP_RSS_TYPE_PAY4 562 563 #undef ICE_PTT 564 #undef ICE_PTT_UNUSED_ENTRY 565 566 /** 567 * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor 568 * @eop_desc: End of Packet descriptor 569 */ 570 static enum xdp_rss_hash_type 571 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc) 572 { 573 u16 ptype = ice_get_ptype(eop_desc); 574 575 if (unlikely(ptype >= ICE_NUM_DEFINED_PTYPES)) 576 return 0; 577 578 return ice_ptype_to_xdp_hash[ptype]; 579 } 580 581 /** 582 * ice_xdp_rx_hash - RX hash XDP hint handler 583 * @ctx: XDP buff pointer 584 * @hash: hash destination address 585 * @rss_type: XDP hash type destination address 586 * 587 * Copy RX hash (if available) and its type to the destination address. 588 */ 589 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, 590 enum xdp_rss_hash_type *rss_type) 591 { 592 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 593 594 *hash = ice_get_rx_hash(xdp_ext->eop_desc); 595 *rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc); 596 if (!likely(*hash)) 597 return -ENODATA; 598 599 return 0; 600 } 601 602 /** 603 * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler 604 * @ctx: XDP buff pointer 605 * @vlan_proto: destination address for VLAN protocol 606 * @vlan_tci: destination address for VLAN TCI 607 * 608 * Copy VLAN tag (if was stripped) and corresponding protocol 609 * to the destination address. 610 */ 611 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto, 612 u16 *vlan_tci) 613 { 614 const struct ice_xdp_buff *xdp_ext = (void *)ctx; 615 616 *vlan_proto = xdp_ext->pkt_ctx->vlan_proto; 617 if (!*vlan_proto) 618 return -ENODATA; 619 620 *vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc); 621 if (!*vlan_tci) 622 return -ENODATA; 623 624 return 0; 625 } 626 627 const struct xdp_metadata_ops ice_xdp_md_ops = { 628 .xmo_rx_timestamp = ice_xdp_rx_hw_ts, 629 .xmo_rx_hash = ice_xdp_rx_hash, 630 .xmo_rx_vlan_tag = ice_xdp_rx_vlan_tag, 631 }; 632