1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/prefetch.h> 7 #include <linux/mm.h> 8 #include <linux/bpf_trace.h> 9 #include <net/xdp.h> 10 #include "ice_txrx_lib.h" 11 #include "ice_lib.h" 12 #include "ice.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_xsk.h" 15 16 #define ICE_RX_HDR_SIZE 256 17 18 #define FDIR_DESC_RXDID 0x40 19 #define ICE_FDIR_CLEAN_DELAY 10 20 21 /** 22 * ice_prgm_fdir_fltr - Program a Flow Director filter 23 * @vsi: VSI to send dummy packet 24 * @fdir_desc: flow director descriptor 25 * @raw_packet: allocated buffer for flow director 26 */ 27 int 28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 29 u8 *raw_packet) 30 { 31 struct ice_tx_buf *tx_buf, *first; 32 struct ice_fltr_desc *f_desc; 33 struct ice_tx_desc *tx_desc; 34 struct ice_ring *tx_ring; 35 struct device *dev; 36 dma_addr_t dma; 37 u32 td_cmd; 38 u16 i; 39 40 /* VSI and Tx ring */ 41 if (!vsi) 42 return -ENOENT; 43 tx_ring = vsi->tx_rings[0]; 44 if (!tx_ring || !tx_ring->desc) 45 return -ENOENT; 46 dev = tx_ring->dev; 47 48 /* we are using two descriptors to add/del a filter and we can wait */ 49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 50 if (!i) 51 return -EAGAIN; 52 msleep_interruptible(1); 53 } 54 55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 56 DMA_TO_DEVICE); 57 58 if (dma_mapping_error(dev, dma)) 59 return -EINVAL; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 first = &tx_ring->tx_buf[i]; 64 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 65 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 66 67 i++; 68 i = (i < tx_ring->count) ? i : 0; 69 tx_desc = ICE_TX_DESC(tx_ring, i); 70 tx_buf = &tx_ring->tx_buf[i]; 71 72 i++; 73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 74 75 memset(tx_buf, 0, sizeof(*tx_buf)); 76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 77 dma_unmap_addr_set(tx_buf, dma, dma); 78 79 tx_desc->buf_addr = cpu_to_le64(dma); 80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 81 ICE_TX_DESC_CMD_RE; 82 83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 84 tx_buf->raw_buf = raw_packet; 85 86 tx_desc->cmd_type_offset_bsz = 87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 88 89 /* Force memory write to complete before letting h/w know 90 * there are new descriptors to fetch. 91 */ 92 wmb(); 93 94 /* mark the data descriptor to be watched */ 95 first->next_to_watch = tx_desc; 96 97 writel(tx_ring->next_to_use, tx_ring->tail); 98 99 return 0; 100 } 101 102 /** 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer 104 * @ring: the ring that owns the buffer 105 * @tx_buf: the buffer to free 106 */ 107 static void 108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) 109 { 110 if (tx_buf->skb) { 111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 112 devm_kfree(ring->dev, tx_buf->raw_buf); 113 else if (ice_ring_is_xdp(ring)) 114 page_frag_free(tx_buf->raw_buf); 115 else 116 dev_kfree_skb_any(tx_buf->skb); 117 if (dma_unmap_len(tx_buf, len)) 118 dma_unmap_single(ring->dev, 119 dma_unmap_addr(tx_buf, dma), 120 dma_unmap_len(tx_buf, len), 121 DMA_TO_DEVICE); 122 } else if (dma_unmap_len(tx_buf, len)) { 123 dma_unmap_page(ring->dev, 124 dma_unmap_addr(tx_buf, dma), 125 dma_unmap_len(tx_buf, len), 126 DMA_TO_DEVICE); 127 } 128 129 tx_buf->next_to_watch = NULL; 130 tx_buf->skb = NULL; 131 dma_unmap_len_set(tx_buf, len, 0); 132 /* tx_buf must be completely set up in the transmit path */ 133 } 134 135 static struct netdev_queue *txring_txq(const struct ice_ring *ring) 136 { 137 return netdev_get_tx_queue(ring->netdev, ring->q_index); 138 } 139 140 /** 141 * ice_clean_tx_ring - Free any empty Tx buffers 142 * @tx_ring: ring to be cleaned 143 */ 144 void ice_clean_tx_ring(struct ice_ring *tx_ring) 145 { 146 u16 i; 147 148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 149 ice_xsk_clean_xdp_ring(tx_ring); 150 goto tx_skip_free; 151 } 152 153 /* ring already cleared, nothing to do */ 154 if (!tx_ring->tx_buf) 155 return; 156 157 /* Free all the Tx ring sk_buffs */ 158 for (i = 0; i < tx_ring->count; i++) 159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 160 161 tx_skip_free: 162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 163 164 /* Zero out the descriptor ring */ 165 memset(tx_ring->desc, 0, tx_ring->size); 166 167 tx_ring->next_to_use = 0; 168 tx_ring->next_to_clean = 0; 169 170 if (!tx_ring->netdev) 171 return; 172 173 /* cleanup Tx queue statistics */ 174 netdev_tx_reset_queue(txring_txq(tx_ring)); 175 } 176 177 /** 178 * ice_free_tx_ring - Free Tx resources per queue 179 * @tx_ring: Tx descriptor ring for a specific queue 180 * 181 * Free all transmit software resources 182 */ 183 void ice_free_tx_ring(struct ice_ring *tx_ring) 184 { 185 ice_clean_tx_ring(tx_ring); 186 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 187 tx_ring->tx_buf = NULL; 188 189 if (tx_ring->desc) { 190 dmam_free_coherent(tx_ring->dev, tx_ring->size, 191 tx_ring->desc, tx_ring->dma); 192 tx_ring->desc = NULL; 193 } 194 } 195 196 /** 197 * ice_clean_tx_irq - Reclaim resources after transmit completes 198 * @tx_ring: Tx ring to clean 199 * @napi_budget: Used to determine if we are in netpoll 200 * 201 * Returns true if there's any budget left (e.g. the clean is finished) 202 */ 203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) 204 { 205 unsigned int total_bytes = 0, total_pkts = 0; 206 unsigned int budget = ICE_DFLT_IRQ_WORK; 207 struct ice_vsi *vsi = tx_ring->vsi; 208 s16 i = tx_ring->next_to_clean; 209 struct ice_tx_desc *tx_desc; 210 struct ice_tx_buf *tx_buf; 211 212 tx_buf = &tx_ring->tx_buf[i]; 213 tx_desc = ICE_TX_DESC(tx_ring, i); 214 i -= tx_ring->count; 215 216 prefetch(&vsi->state); 217 218 do { 219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 220 221 /* if next_to_watch is not set then there is no work pending */ 222 if (!eop_desc) 223 break; 224 225 smp_rmb(); /* prevent any other reads prior to eop_desc */ 226 227 /* if the descriptor isn't done, no work yet to do */ 228 if (!(eop_desc->cmd_type_offset_bsz & 229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 230 break; 231 232 /* clear next_to_watch to prevent false hangs */ 233 tx_buf->next_to_watch = NULL; 234 235 /* update the statistics for this packet */ 236 total_bytes += tx_buf->bytecount; 237 total_pkts += tx_buf->gso_segs; 238 239 if (ice_ring_is_xdp(tx_ring)) 240 page_frag_free(tx_buf->raw_buf); 241 else 242 /* free the skb */ 243 napi_consume_skb(tx_buf->skb, napi_budget); 244 245 /* unmap skb header data */ 246 dma_unmap_single(tx_ring->dev, 247 dma_unmap_addr(tx_buf, dma), 248 dma_unmap_len(tx_buf, len), 249 DMA_TO_DEVICE); 250 251 /* clear tx_buf data */ 252 tx_buf->skb = NULL; 253 dma_unmap_len_set(tx_buf, len, 0); 254 255 /* unmap remaining buffers */ 256 while (tx_desc != eop_desc) { 257 tx_buf++; 258 tx_desc++; 259 i++; 260 if (unlikely(!i)) { 261 i -= tx_ring->count; 262 tx_buf = tx_ring->tx_buf; 263 tx_desc = ICE_TX_DESC(tx_ring, 0); 264 } 265 266 /* unmap any remaining paged data */ 267 if (dma_unmap_len(tx_buf, len)) { 268 dma_unmap_page(tx_ring->dev, 269 dma_unmap_addr(tx_buf, dma), 270 dma_unmap_len(tx_buf, len), 271 DMA_TO_DEVICE); 272 dma_unmap_len_set(tx_buf, len, 0); 273 } 274 } 275 276 /* move us one more past the eop_desc for start of next pkt */ 277 tx_buf++; 278 tx_desc++; 279 i++; 280 if (unlikely(!i)) { 281 i -= tx_ring->count; 282 tx_buf = tx_ring->tx_buf; 283 tx_desc = ICE_TX_DESC(tx_ring, 0); 284 } 285 286 prefetch(tx_desc); 287 288 /* update budget accounting */ 289 budget--; 290 } while (likely(budget)); 291 292 i += tx_ring->count; 293 tx_ring->next_to_clean = i; 294 295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 296 297 if (ice_ring_is_xdp(tx_ring)) 298 return !!budget; 299 300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, 301 total_bytes); 302 303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 306 /* Make sure that anybody stopping the queue after this 307 * sees the new next_to_clean. 308 */ 309 smp_mb(); 310 if (__netif_subqueue_stopped(tx_ring->netdev, 311 tx_ring->q_index) && 312 !test_bit(__ICE_DOWN, vsi->state)) { 313 netif_wake_subqueue(tx_ring->netdev, 314 tx_ring->q_index); 315 ++tx_ring->tx_stats.restart_q; 316 } 317 } 318 319 return !!budget; 320 } 321 322 /** 323 * ice_setup_tx_ring - Allocate the Tx descriptors 324 * @tx_ring: the Tx ring to set up 325 * 326 * Return 0 on success, negative on error 327 */ 328 int ice_setup_tx_ring(struct ice_ring *tx_ring) 329 { 330 struct device *dev = tx_ring->dev; 331 332 if (!dev) 333 return -ENOMEM; 334 335 /* warn if we are about to overwrite the pointer */ 336 WARN_ON(tx_ring->tx_buf); 337 tx_ring->tx_buf = 338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, 339 GFP_KERNEL); 340 if (!tx_ring->tx_buf) 341 return -ENOMEM; 342 343 /* round up to nearest page */ 344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 345 PAGE_SIZE); 346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, 347 GFP_KERNEL); 348 if (!tx_ring->desc) { 349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 350 tx_ring->size); 351 goto err; 352 } 353 354 tx_ring->next_to_use = 0; 355 tx_ring->next_to_clean = 0; 356 tx_ring->tx_stats.prev_pkt = -1; 357 return 0; 358 359 err: 360 devm_kfree(dev, tx_ring->tx_buf); 361 tx_ring->tx_buf = NULL; 362 return -ENOMEM; 363 } 364 365 /** 366 * ice_clean_rx_ring - Free Rx buffers 367 * @rx_ring: ring to be cleaned 368 */ 369 void ice_clean_rx_ring(struct ice_ring *rx_ring) 370 { 371 struct device *dev = rx_ring->dev; 372 u16 i; 373 374 /* ring already cleared, nothing to do */ 375 if (!rx_ring->rx_buf) 376 return; 377 378 if (rx_ring->skb) { 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 } 382 383 if (rx_ring->xsk_pool) { 384 ice_xsk_clean_rx_ring(rx_ring); 385 goto rx_skip_free; 386 } 387 388 /* Free all the Rx ring sk_buffs */ 389 for (i = 0; i < rx_ring->count; i++) { 390 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 391 392 if (!rx_buf->page) 393 continue; 394 395 /* Invalidate cache lines that may have been written to by 396 * device so that we avoid corrupting memory. 397 */ 398 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 399 rx_buf->page_offset, 400 rx_ring->rx_buf_len, 401 DMA_FROM_DEVICE); 402 403 /* free resources associated with mapping */ 404 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 405 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 406 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 407 408 rx_buf->page = NULL; 409 rx_buf->page_offset = 0; 410 } 411 412 rx_skip_free: 413 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); 414 415 /* Zero out the descriptor ring */ 416 memset(rx_ring->desc, 0, rx_ring->size); 417 418 rx_ring->next_to_alloc = 0; 419 rx_ring->next_to_clean = 0; 420 rx_ring->next_to_use = 0; 421 } 422 423 /** 424 * ice_free_rx_ring - Free Rx resources 425 * @rx_ring: ring to clean the resources from 426 * 427 * Free all receive software resources 428 */ 429 void ice_free_rx_ring(struct ice_ring *rx_ring) 430 { 431 ice_clean_rx_ring(rx_ring); 432 if (rx_ring->vsi->type == ICE_VSI_PF) 433 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 434 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 435 rx_ring->xdp_prog = NULL; 436 devm_kfree(rx_ring->dev, rx_ring->rx_buf); 437 rx_ring->rx_buf = NULL; 438 439 if (rx_ring->desc) { 440 dmam_free_coherent(rx_ring->dev, rx_ring->size, 441 rx_ring->desc, rx_ring->dma); 442 rx_ring->desc = NULL; 443 } 444 } 445 446 /** 447 * ice_rx_offset - Return expected offset into page to access data 448 * @rx_ring: Ring we are requesting offset of 449 * 450 * Returns the offset value for ring into the data buffer. 451 */ 452 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 453 { 454 if (ice_ring_uses_build_skb(rx_ring)) 455 return ICE_SKB_PAD; 456 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 457 return XDP_PACKET_HEADROOM; 458 459 return 0; 460 } 461 462 /** 463 * ice_setup_rx_ring - Allocate the Rx descriptors 464 * @rx_ring: the Rx ring to set up 465 * 466 * Return 0 on success, negative on error 467 */ 468 int ice_setup_rx_ring(struct ice_ring *rx_ring) 469 { 470 struct device *dev = rx_ring->dev; 471 472 if (!dev) 473 return -ENOMEM; 474 475 /* warn if we are about to overwrite the pointer */ 476 WARN_ON(rx_ring->rx_buf); 477 rx_ring->rx_buf = 478 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, 479 GFP_KERNEL); 480 if (!rx_ring->rx_buf) 481 return -ENOMEM; 482 483 /* round up to nearest page */ 484 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 485 PAGE_SIZE); 486 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, 487 GFP_KERNEL); 488 if (!rx_ring->desc) { 489 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 490 rx_ring->size); 491 goto err; 492 } 493 494 rx_ring->next_to_use = 0; 495 rx_ring->next_to_clean = 0; 496 rx_ring->rx_offset = ice_rx_offset(rx_ring); 497 498 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 499 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 500 501 if (rx_ring->vsi->type == ICE_VSI_PF && 502 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 503 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 504 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 505 goto err; 506 return 0; 507 508 err: 509 devm_kfree(dev, rx_ring->rx_buf); 510 rx_ring->rx_buf = NULL; 511 return -ENOMEM; 512 } 513 514 static unsigned int 515 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) 516 { 517 unsigned int truesize; 518 519 #if (PAGE_SIZE < 8192) 520 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 521 #else 522 truesize = rx_ring->rx_offset ? 523 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 524 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 525 SKB_DATA_ALIGN(size); 526 #endif 527 return truesize; 528 } 529 530 /** 531 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 532 * @rx_ring: Rx ring 533 * @xdp: xdp_buff used as input to the XDP program 534 * @xdp_prog: XDP program to run 535 * 536 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 537 */ 538 static int 539 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, 540 struct bpf_prog *xdp_prog) 541 { 542 struct ice_ring *xdp_ring; 543 int err; 544 u32 act; 545 546 act = bpf_prog_run_xdp(xdp_prog, xdp); 547 switch (act) { 548 case XDP_PASS: 549 return ICE_XDP_PASS; 550 case XDP_TX: 551 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; 552 return ice_xmit_xdp_buff(xdp, xdp_ring); 553 case XDP_REDIRECT: 554 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 555 return !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 556 default: 557 bpf_warn_invalid_xdp_action(act); 558 fallthrough; 559 case XDP_ABORTED: 560 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 561 fallthrough; 562 case XDP_DROP: 563 return ICE_XDP_CONSUMED; 564 } 565 } 566 567 /** 568 * ice_xdp_xmit - submit packets to XDP ring for transmission 569 * @dev: netdev 570 * @n: number of XDP frames to be transmitted 571 * @frames: XDP frames to be transmitted 572 * @flags: transmit flags 573 * 574 * Returns number of frames successfully sent. Frames that fail are 575 * free'ed via XDP return API. 576 * For error cases, a negative errno code is returned and no-frames 577 * are transmitted (caller must handle freeing frames). 578 */ 579 int 580 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 581 u32 flags) 582 { 583 struct ice_netdev_priv *np = netdev_priv(dev); 584 unsigned int queue_index = smp_processor_id(); 585 struct ice_vsi *vsi = np->vsi; 586 struct ice_ring *xdp_ring; 587 int drops = 0, i; 588 589 if (test_bit(__ICE_DOWN, vsi->state)) 590 return -ENETDOWN; 591 592 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 593 return -ENXIO; 594 595 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 596 return -EINVAL; 597 598 xdp_ring = vsi->xdp_rings[queue_index]; 599 for (i = 0; i < n; i++) { 600 struct xdp_frame *xdpf = frames[i]; 601 int err; 602 603 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 604 if (err != ICE_XDP_TX) { 605 xdp_return_frame_rx_napi(xdpf); 606 drops++; 607 } 608 } 609 610 if (unlikely(flags & XDP_XMIT_FLUSH)) 611 ice_xdp_ring_update_tail(xdp_ring); 612 613 return n - drops; 614 } 615 616 /** 617 * ice_alloc_mapped_page - recycle or make a new page 618 * @rx_ring: ring to use 619 * @bi: rx_buf struct to modify 620 * 621 * Returns true if the page was successfully allocated or 622 * reused. 623 */ 624 static bool 625 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) 626 { 627 struct page *page = bi->page; 628 dma_addr_t dma; 629 630 /* since we are recycling buffers we should seldom need to alloc */ 631 if (likely(page)) 632 return true; 633 634 /* alloc new page for storage */ 635 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 636 if (unlikely(!page)) { 637 rx_ring->rx_stats.alloc_page_failed++; 638 return false; 639 } 640 641 /* map page for use */ 642 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 643 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 644 645 /* if mapping failed free memory back to system since 646 * there isn't much point in holding memory we can't use 647 */ 648 if (dma_mapping_error(rx_ring->dev, dma)) { 649 __free_pages(page, ice_rx_pg_order(rx_ring)); 650 rx_ring->rx_stats.alloc_page_failed++; 651 return false; 652 } 653 654 bi->dma = dma; 655 bi->page = page; 656 bi->page_offset = rx_ring->rx_offset; 657 page_ref_add(page, USHRT_MAX - 1); 658 bi->pagecnt_bias = USHRT_MAX; 659 660 return true; 661 } 662 663 /** 664 * ice_alloc_rx_bufs - Replace used receive buffers 665 * @rx_ring: ring to place buffers on 666 * @cleaned_count: number of buffers to replace 667 * 668 * Returns false if all allocations were successful, true if any fail. Returning 669 * true signals to the caller that we didn't replace cleaned_count buffers and 670 * there is more work to do. 671 * 672 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 673 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 674 * multiple tail writes per call. 675 */ 676 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) 677 { 678 union ice_32b_rx_flex_desc *rx_desc; 679 u16 ntu = rx_ring->next_to_use; 680 struct ice_rx_buf *bi; 681 682 /* do nothing if no valid netdev defined */ 683 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 684 !cleaned_count) 685 return false; 686 687 /* get the Rx descriptor and buffer based on next_to_use */ 688 rx_desc = ICE_RX_DESC(rx_ring, ntu); 689 bi = &rx_ring->rx_buf[ntu]; 690 691 do { 692 /* if we fail here, we have work remaining */ 693 if (!ice_alloc_mapped_page(rx_ring, bi)) 694 break; 695 696 /* sync the buffer for use by the device */ 697 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 698 bi->page_offset, 699 rx_ring->rx_buf_len, 700 DMA_FROM_DEVICE); 701 702 /* Refresh the desc even if buffer_addrs didn't change 703 * because each write-back erases this info. 704 */ 705 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 706 707 rx_desc++; 708 bi++; 709 ntu++; 710 if (unlikely(ntu == rx_ring->count)) { 711 rx_desc = ICE_RX_DESC(rx_ring, 0); 712 bi = rx_ring->rx_buf; 713 ntu = 0; 714 } 715 716 /* clear the status bits for the next_to_use descriptor */ 717 rx_desc->wb.status_error0 = 0; 718 719 cleaned_count--; 720 } while (cleaned_count); 721 722 if (rx_ring->next_to_use != ntu) 723 ice_release_rx_desc(rx_ring, ntu); 724 725 return !!cleaned_count; 726 } 727 728 /** 729 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 730 * @rx_buf: Rx buffer to adjust 731 * @size: Size of adjustment 732 * 733 * Update the offset within page so that Rx buf will be ready to be reused. 734 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 735 * so the second half of page assigned to Rx buffer will be used, otherwise 736 * the offset is moved by "size" bytes 737 */ 738 static void 739 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 740 { 741 #if (PAGE_SIZE < 8192) 742 /* flip page offset to other buffer */ 743 rx_buf->page_offset ^= size; 744 #else 745 /* move offset up to the next cache line */ 746 rx_buf->page_offset += size; 747 #endif 748 } 749 750 /** 751 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 752 * @rx_buf: buffer containing the page 753 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 754 * 755 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 756 * which will assign the current buffer to the buffer that next_to_alloc is 757 * pointing to; otherwise, the DMA mapping needs to be destroyed and 758 * page freed 759 */ 760 static bool 761 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 762 { 763 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 764 struct page *page = rx_buf->page; 765 766 /* avoid re-using remote and pfmemalloc pages */ 767 if (!dev_page_is_reusable(page)) 768 return false; 769 770 #if (PAGE_SIZE < 8192) 771 /* if we are only owner of page we can reuse it */ 772 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 773 return false; 774 #else 775 #define ICE_LAST_OFFSET \ 776 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 777 if (rx_buf->page_offset > ICE_LAST_OFFSET) 778 return false; 779 #endif /* PAGE_SIZE < 8192) */ 780 781 /* If we have drained the page fragment pool we need to update 782 * the pagecnt_bias and page count so that we fully restock the 783 * number of references the driver holds. 784 */ 785 if (unlikely(pagecnt_bias == 1)) { 786 page_ref_add(page, USHRT_MAX - 1); 787 rx_buf->pagecnt_bias = USHRT_MAX; 788 } 789 790 return true; 791 } 792 793 /** 794 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 795 * @rx_ring: Rx descriptor ring to transact packets on 796 * @rx_buf: buffer containing page to add 797 * @skb: sk_buff to place the data into 798 * @size: packet length from rx_desc 799 * 800 * This function will add the data contained in rx_buf->page to the skb. 801 * It will just attach the page as a frag to the skb. 802 * The function will then update the page offset. 803 */ 804 static void 805 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 806 struct sk_buff *skb, unsigned int size) 807 { 808 #if (PAGE_SIZE >= 8192) 809 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 810 #else 811 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 812 #endif 813 814 if (!size) 815 return; 816 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 817 rx_buf->page_offset, size, truesize); 818 819 /* page is being used so we must update the page offset */ 820 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 821 } 822 823 /** 824 * ice_reuse_rx_page - page flip buffer and store it back on the ring 825 * @rx_ring: Rx descriptor ring to store buffers on 826 * @old_buf: donor buffer to have page reused 827 * 828 * Synchronizes page for reuse by the adapter 829 */ 830 static void 831 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) 832 { 833 u16 nta = rx_ring->next_to_alloc; 834 struct ice_rx_buf *new_buf; 835 836 new_buf = &rx_ring->rx_buf[nta]; 837 838 /* update, and store next to alloc */ 839 nta++; 840 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 841 842 /* Transfer page from old buffer to new buffer. 843 * Move each member individually to avoid possible store 844 * forwarding stalls and unnecessary copy of skb. 845 */ 846 new_buf->dma = old_buf->dma; 847 new_buf->page = old_buf->page; 848 new_buf->page_offset = old_buf->page_offset; 849 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 850 } 851 852 /** 853 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 854 * @rx_ring: Rx descriptor ring to transact packets on 855 * @size: size of buffer to add to skb 856 * @rx_buf_pgcnt: rx_buf page refcount 857 * 858 * This function will pull an Rx buffer from the ring and synchronize it 859 * for use by the CPU. 860 */ 861 static struct ice_rx_buf * 862 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size, 863 int *rx_buf_pgcnt) 864 { 865 struct ice_rx_buf *rx_buf; 866 867 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 868 *rx_buf_pgcnt = 869 #if (PAGE_SIZE < 8192) 870 page_count(rx_buf->page); 871 #else 872 0; 873 #endif 874 prefetchw(rx_buf->page); 875 876 if (!size) 877 return rx_buf; 878 /* we are reusing so sync this buffer for CPU use */ 879 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 880 rx_buf->page_offset, size, 881 DMA_FROM_DEVICE); 882 883 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 884 rx_buf->pagecnt_bias--; 885 886 return rx_buf; 887 } 888 889 /** 890 * ice_build_skb - Build skb around an existing buffer 891 * @rx_ring: Rx descriptor ring to transact packets on 892 * @rx_buf: Rx buffer to pull data from 893 * @xdp: xdp_buff pointing to the data 894 * 895 * This function builds an skb around an existing Rx buffer, taking care 896 * to set up the skb correctly and avoid any memcpy overhead. 897 */ 898 static struct sk_buff * 899 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 900 struct xdp_buff *xdp) 901 { 902 u8 metasize = xdp->data - xdp->data_meta; 903 #if (PAGE_SIZE < 8192) 904 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 905 #else 906 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 907 SKB_DATA_ALIGN(xdp->data_end - 908 xdp->data_hard_start); 909 #endif 910 struct sk_buff *skb; 911 912 /* Prefetch first cache line of first page. If xdp->data_meta 913 * is unused, this points exactly as xdp->data, otherwise we 914 * likely have a consumer accessing first few bytes of meta 915 * data, and then actual data. 916 */ 917 net_prefetch(xdp->data_meta); 918 /* build an skb around the page buffer */ 919 skb = build_skb(xdp->data_hard_start, truesize); 920 if (unlikely(!skb)) 921 return NULL; 922 923 /* must to record Rx queue, otherwise OS features such as 924 * symmetric queue won't work 925 */ 926 skb_record_rx_queue(skb, rx_ring->q_index); 927 928 /* update pointers within the skb to store the data */ 929 skb_reserve(skb, xdp->data - xdp->data_hard_start); 930 __skb_put(skb, xdp->data_end - xdp->data); 931 if (metasize) 932 skb_metadata_set(skb, metasize); 933 934 /* buffer is used by skb, update page_offset */ 935 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 936 937 return skb; 938 } 939 940 /** 941 * ice_construct_skb - Allocate skb and populate it 942 * @rx_ring: Rx descriptor ring to transact packets on 943 * @rx_buf: Rx buffer to pull data from 944 * @xdp: xdp_buff pointing to the data 945 * 946 * This function allocates an skb. It then populates it with the page 947 * data from the current receive descriptor, taking care to set up the 948 * skb correctly. 949 */ 950 static struct sk_buff * 951 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 952 struct xdp_buff *xdp) 953 { 954 unsigned int size = xdp->data_end - xdp->data; 955 unsigned int headlen; 956 struct sk_buff *skb; 957 958 /* prefetch first cache line of first page */ 959 net_prefetch(xdp->data); 960 961 /* allocate a skb to store the frags */ 962 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 963 GFP_ATOMIC | __GFP_NOWARN); 964 if (unlikely(!skb)) 965 return NULL; 966 967 skb_record_rx_queue(skb, rx_ring->q_index); 968 /* Determine available headroom for copy */ 969 headlen = size; 970 if (headlen > ICE_RX_HDR_SIZE) 971 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 972 973 /* align pull length to size of long to optimize memcpy performance */ 974 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 975 sizeof(long))); 976 977 /* if we exhaust the linear part then add what is left as a frag */ 978 size -= headlen; 979 if (size) { 980 #if (PAGE_SIZE >= 8192) 981 unsigned int truesize = SKB_DATA_ALIGN(size); 982 #else 983 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 984 #endif 985 skb_add_rx_frag(skb, 0, rx_buf->page, 986 rx_buf->page_offset + headlen, size, truesize); 987 /* buffer is used by skb, update page_offset */ 988 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 989 } else { 990 /* buffer is unused, reset bias back to rx_buf; data was copied 991 * onto skb's linear part so there's no need for adjusting 992 * page offset and we can reuse this buffer as-is 993 */ 994 rx_buf->pagecnt_bias++; 995 } 996 997 return skb; 998 } 999 1000 /** 1001 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1002 * @rx_ring: Rx descriptor ring to transact packets on 1003 * @rx_buf: Rx buffer to pull data from 1004 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1005 * 1006 * This function will update next_to_clean and then clean up the contents 1007 * of the rx_buf. It will either recycle the buffer or unmap it and free 1008 * the associated resources. 1009 */ 1010 static void 1011 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, 1012 int rx_buf_pgcnt) 1013 { 1014 u16 ntc = rx_ring->next_to_clean + 1; 1015 1016 /* fetch, update, and store next to clean */ 1017 ntc = (ntc < rx_ring->count) ? ntc : 0; 1018 rx_ring->next_to_clean = ntc; 1019 1020 if (!rx_buf) 1021 return; 1022 1023 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1024 /* hand second half of page back to the ring */ 1025 ice_reuse_rx_page(rx_ring, rx_buf); 1026 } else { 1027 /* we are not reusing the buffer so unmap it */ 1028 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1029 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1030 ICE_RX_DMA_ATTR); 1031 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1032 } 1033 1034 /* clear contents of buffer_info */ 1035 rx_buf->page = NULL; 1036 } 1037 1038 /** 1039 * ice_is_non_eop - process handling of non-EOP buffers 1040 * @rx_ring: Rx ring being processed 1041 * @rx_desc: Rx descriptor for current buffer 1042 * 1043 * If the buffer is an EOP buffer, this function exits returning false, 1044 * otherwise return true indicating that this is in fact a non-EOP buffer. 1045 */ 1046 static bool 1047 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1048 { 1049 /* if we are the last buffer then there is nothing else to do */ 1050 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1051 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1052 return false; 1053 1054 rx_ring->rx_stats.non_eop_descs++; 1055 1056 return true; 1057 } 1058 1059 /** 1060 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1061 * @rx_ring: Rx descriptor ring to transact packets on 1062 * @budget: Total limit on number of packets to process 1063 * 1064 * This function provides a "bounce buffer" approach to Rx interrupt 1065 * processing. The advantage to this is that on systems that have 1066 * expensive overhead for IOMMU access this provides a means of avoiding 1067 * it by maintaining the mapping of the page to the system. 1068 * 1069 * Returns amount of work completed 1070 */ 1071 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) 1072 { 1073 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1074 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1075 unsigned int offset = rx_ring->rx_offset; 1076 unsigned int xdp_res, xdp_xmit = 0; 1077 struct sk_buff *skb = rx_ring->skb; 1078 struct bpf_prog *xdp_prog = NULL; 1079 struct xdp_buff xdp; 1080 bool failure; 1081 1082 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1083 #if (PAGE_SIZE < 8192) 1084 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1085 #endif 1086 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1087 1088 /* start the loop to process Rx packets bounded by 'budget' */ 1089 while (likely(total_rx_pkts < (unsigned int)budget)) { 1090 union ice_32b_rx_flex_desc *rx_desc; 1091 struct ice_rx_buf *rx_buf; 1092 unsigned char *hard_start; 1093 unsigned int size; 1094 u16 stat_err_bits; 1095 int rx_buf_pgcnt; 1096 u16 vlan_tag = 0; 1097 u8 rx_ptype; 1098 1099 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1100 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1101 1102 /* status_error_len will always be zero for unused descriptors 1103 * because it's cleared in cleanup, and overlaps with hdr_addr 1104 * which is always zero because packet split isn't used, if the 1105 * hardware wrote DD then it will be non-zero 1106 */ 1107 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1108 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1109 break; 1110 1111 /* This memory barrier is needed to keep us from reading 1112 * any other fields out of the rx_desc until we know the 1113 * DD bit is set. 1114 */ 1115 dma_rmb(); 1116 1117 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1118 ice_put_rx_buf(rx_ring, NULL, 0); 1119 cleaned_count++; 1120 continue; 1121 } 1122 1123 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1124 ICE_RX_FLX_DESC_PKT_LEN_M; 1125 1126 /* retrieve a buffer from the ring */ 1127 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1128 1129 if (!size) { 1130 xdp.data = NULL; 1131 xdp.data_end = NULL; 1132 xdp.data_hard_start = NULL; 1133 xdp.data_meta = NULL; 1134 goto construct_skb; 1135 } 1136 1137 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1138 offset; 1139 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1140 #if (PAGE_SIZE > 4096) 1141 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1142 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1143 #endif 1144 1145 rcu_read_lock(); 1146 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1147 if (!xdp_prog) { 1148 rcu_read_unlock(); 1149 goto construct_skb; 1150 } 1151 1152 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); 1153 rcu_read_unlock(); 1154 if (!xdp_res) 1155 goto construct_skb; 1156 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1157 xdp_xmit |= xdp_res; 1158 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1159 } else { 1160 rx_buf->pagecnt_bias++; 1161 } 1162 total_rx_bytes += size; 1163 total_rx_pkts++; 1164 1165 cleaned_count++; 1166 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1167 continue; 1168 construct_skb: 1169 if (skb) { 1170 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1171 } else if (likely(xdp.data)) { 1172 if (ice_ring_uses_build_skb(rx_ring)) 1173 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1174 else 1175 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1176 } 1177 /* exit if we failed to retrieve a buffer */ 1178 if (!skb) { 1179 rx_ring->rx_stats.alloc_buf_failed++; 1180 if (rx_buf) 1181 rx_buf->pagecnt_bias++; 1182 break; 1183 } 1184 1185 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1186 cleaned_count++; 1187 1188 /* skip if it is NOP desc */ 1189 if (ice_is_non_eop(rx_ring, rx_desc)) 1190 continue; 1191 1192 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1193 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1194 dev_kfree_skb_any(skb); 1195 continue; 1196 } 1197 1198 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1199 if (ice_test_staterr(rx_desc, stat_err_bits)) 1200 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1201 1202 /* pad the skb if needed, to make a valid ethernet frame */ 1203 if (eth_skb_pad(skb)) { 1204 skb = NULL; 1205 continue; 1206 } 1207 1208 /* probably a little skewed due to removing CRC */ 1209 total_rx_bytes += skb->len; 1210 1211 /* populate checksum, VLAN, and protocol */ 1212 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1213 ICE_RX_FLEX_DESC_PTYPE_M; 1214 1215 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1216 1217 /* send completed skb up the stack */ 1218 ice_receive_skb(rx_ring, skb, vlan_tag); 1219 skb = NULL; 1220 1221 /* update budget accounting */ 1222 total_rx_pkts++; 1223 } 1224 1225 /* return up to cleaned_count buffers to hardware */ 1226 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1227 1228 if (xdp_prog) 1229 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 1230 rx_ring->skb = skb; 1231 1232 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1233 1234 /* guarantee a trip back through this routine if there was a failure */ 1235 return failure ? budget : (int)total_rx_pkts; 1236 } 1237 1238 /** 1239 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic 1240 * @port_info: port_info structure containing the current link speed 1241 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine 1242 * @itr: ITR value to update 1243 * 1244 * Calculate how big of an increment should be applied to the ITR value passed 1245 * in based on wmem_default, SKB overhead, ethernet overhead, and the current 1246 * link speed. 1247 * 1248 * The following is a calculation derived from: 1249 * wmem_default / (size + overhead) = desired_pkts_per_int 1250 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1251 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1252 * 1253 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1254 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1255 * formula down to: 1256 * 1257 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 1258 * ITR = -------------------------------------------- * -------------- 1259 * rate pkt_size + 640 1260 */ 1261 static unsigned int 1262 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, 1263 unsigned int avg_pkt_size, 1264 unsigned int itr) 1265 { 1266 switch (port_info->phy.link_info.link_speed) { 1267 case ICE_AQ_LINK_SPEED_100GB: 1268 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), 1269 avg_pkt_size + 640); 1270 break; 1271 case ICE_AQ_LINK_SPEED_50GB: 1272 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), 1273 avg_pkt_size + 640); 1274 break; 1275 case ICE_AQ_LINK_SPEED_40GB: 1276 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), 1277 avg_pkt_size + 640); 1278 break; 1279 case ICE_AQ_LINK_SPEED_25GB: 1280 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), 1281 avg_pkt_size + 640); 1282 break; 1283 case ICE_AQ_LINK_SPEED_20GB: 1284 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), 1285 avg_pkt_size + 640); 1286 break; 1287 case ICE_AQ_LINK_SPEED_10GB: 1288 default: 1289 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), 1290 avg_pkt_size + 640); 1291 break; 1292 } 1293 1294 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1295 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1296 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1297 } 1298 1299 return itr; 1300 } 1301 1302 /** 1303 * ice_update_itr - update the adaptive ITR value based on statistics 1304 * @q_vector: structure containing interrupt and ring information 1305 * @rc: structure containing ring performance data 1306 * 1307 * Stores a new ITR value based on packets and byte 1308 * counts during the last interrupt. The advantage of per interrupt 1309 * computation is faster updates and more accurate ITR for the current 1310 * traffic pattern. Constants in this function were computed 1311 * based on theoretical maximum wire speed and thresholds were set based 1312 * on testing data as well as attempting to minimize response time 1313 * while increasing bulk throughput. 1314 */ 1315 static void 1316 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) 1317 { 1318 unsigned long next_update = jiffies; 1319 unsigned int packets, bytes, itr; 1320 bool container_is_rx; 1321 1322 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) 1323 return; 1324 1325 /* If itr_countdown is set it means we programmed an ITR within 1326 * the last 4 interrupt cycles. This has a side effect of us 1327 * potentially firing an early interrupt. In order to work around 1328 * this we need to throw out any data received for a few 1329 * interrupts following the update. 1330 */ 1331 if (q_vector->itr_countdown) { 1332 itr = rc->target_itr; 1333 goto clear_counts; 1334 } 1335 1336 container_is_rx = (&q_vector->rx == rc); 1337 /* For Rx we want to push the delay up and default to low latency. 1338 * for Tx we want to pull the delay down and default to high latency. 1339 */ 1340 itr = container_is_rx ? 1341 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : 1342 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; 1343 1344 /* If we didn't update within up to 1 - 2 jiffies we can assume 1345 * that either packets are coming in so slow there hasn't been 1346 * any work, or that there is so much work that NAPI is dealing 1347 * with interrupt moderation and we don't need to do anything. 1348 */ 1349 if (time_after(next_update, rc->next_update)) 1350 goto clear_counts; 1351 1352 prefetch(q_vector->vsi->port_info); 1353 1354 packets = rc->total_pkts; 1355 bytes = rc->total_bytes; 1356 1357 if (container_is_rx) { 1358 /* If Rx there are 1 to 4 packets and bytes are less than 1359 * 9000 assume insufficient data to use bulk rate limiting 1360 * approach unless Tx is already in bulk rate limiting. We 1361 * are likely latency driven. 1362 */ 1363 if (packets && packets < 4 && bytes < 9000 && 1364 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { 1365 itr = ICE_ITR_ADAPTIVE_LATENCY; 1366 goto adjust_by_size_and_speed; 1367 } 1368 } else if (packets < 4) { 1369 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1370 * bulk mode and we are receiving 4 or fewer packets just 1371 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1372 * that the Rx can relax. 1373 */ 1374 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && 1375 (q_vector->rx.target_itr & ICE_ITR_MASK) == 1376 ICE_ITR_ADAPTIVE_MAX_USECS) 1377 goto clear_counts; 1378 } else if (packets > 32) { 1379 /* If we have processed over 32 packets in a single interrupt 1380 * for Tx assume we need to switch over to "bulk" mode. 1381 */ 1382 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; 1383 } 1384 1385 /* We have no packets to actually measure against. This means 1386 * either one of the other queues on this vector is active or 1387 * we are a Tx queue doing TSO with too high of an interrupt rate. 1388 * 1389 * Between 4 and 56 we can assume that our current interrupt delay 1390 * is only slightly too low. As such we should increase it by a small 1391 * fixed amount. 1392 */ 1393 if (packets < 56) { 1394 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; 1395 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { 1396 itr &= ICE_ITR_ADAPTIVE_LATENCY; 1397 itr += ICE_ITR_ADAPTIVE_MAX_USECS; 1398 } 1399 goto clear_counts; 1400 } 1401 1402 if (packets <= 256) { 1403 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1404 itr &= ICE_ITR_MASK; 1405 1406 /* Between 56 and 112 is our "goldilocks" zone where we are 1407 * working out "just right". Just report that our current 1408 * ITR is good for us. 1409 */ 1410 if (packets <= 112) 1411 goto clear_counts; 1412 1413 /* If packet count is 128 or greater we are likely looking 1414 * at a slight overrun of the delay we want. Try halving 1415 * our delay to see if that will cut the number of packets 1416 * in half per interrupt. 1417 */ 1418 itr >>= 1; 1419 itr &= ICE_ITR_MASK; 1420 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) 1421 itr = ICE_ITR_ADAPTIVE_MIN_USECS; 1422 1423 goto clear_counts; 1424 } 1425 1426 /* The paths below assume we are dealing with a bulk ITR since 1427 * number of packets is greater than 256. We are just going to have 1428 * to compute a value and try to bring the count under control, 1429 * though for smaller packet sizes there isn't much we can do as 1430 * NAPI polling will likely be kicking in sooner rather than later. 1431 */ 1432 itr = ICE_ITR_ADAPTIVE_BULK; 1433 1434 adjust_by_size_and_speed: 1435 1436 /* based on checks above packets cannot be 0 so division is safe */ 1437 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, 1438 bytes / packets, itr); 1439 1440 clear_counts: 1441 /* write back value */ 1442 rc->target_itr = itr; 1443 1444 /* next update should occur within next jiffy */ 1445 rc->next_update = next_update + 1; 1446 1447 rc->total_bytes = 0; 1448 rc->total_pkts = 0; 1449 } 1450 1451 /** 1452 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1453 * @itr_idx: interrupt throttling index 1454 * @itr: interrupt throttling value in usecs 1455 */ 1456 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1457 { 1458 /* The ITR value is reported in microseconds, and the register value is 1459 * recorded in 2 microsecond units. For this reason we only need to 1460 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1461 * granularity as a shift instead of division. The mask makes sure the 1462 * ITR value is never odd so we don't accidentally write into the field 1463 * prior to the ITR field. 1464 */ 1465 itr &= ICE_ITR_MASK; 1466 1467 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1468 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1469 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1470 } 1471 1472 /* The act of updating the ITR will cause it to immediately trigger. In order 1473 * to prevent this from throwing off adaptive update statistics we defer the 1474 * update so that it can only happen so often. So after either Tx or Rx are 1475 * updated we make the adaptive scheme wait until either the ITR completely 1476 * expires via the next_update expiration or we have been through at least 1477 * 3 interrupts. 1478 */ 1479 #define ITR_COUNTDOWN_START 3 1480 1481 /** 1482 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt 1483 * @q_vector: q_vector for which ITR is being updated and interrupt enabled 1484 */ 1485 static void ice_update_ena_itr(struct ice_q_vector *q_vector) 1486 { 1487 struct ice_ring_container *tx = &q_vector->tx; 1488 struct ice_ring_container *rx = &q_vector->rx; 1489 struct ice_vsi *vsi = q_vector->vsi; 1490 u32 itr_val; 1491 1492 /* when exiting WB_ON_ITR just reset the countdown and let ITR 1493 * resume it's normal "interrupts-enabled" path 1494 */ 1495 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1496 q_vector->itr_countdown = 0; 1497 1498 /* This will do nothing if dynamic updates are not enabled */ 1499 ice_update_itr(q_vector, tx); 1500 ice_update_itr(q_vector, rx); 1501 1502 /* This block of logic allows us to get away with only updating 1503 * one ITR value with each interrupt. The idea is to perform a 1504 * pseudo-lazy update with the following criteria. 1505 * 1506 * 1. Rx is given higher priority than Tx if both are in same state 1507 * 2. If we must reduce an ITR that is given highest priority. 1508 * 3. We then give priority to increasing ITR based on amount. 1509 */ 1510 if (rx->target_itr < rx->current_itr) { 1511 /* Rx ITR needs to be reduced, this is highest priority */ 1512 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1513 rx->current_itr = rx->target_itr; 1514 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1515 } else if ((tx->target_itr < tx->current_itr) || 1516 ((rx->target_itr - rx->current_itr) < 1517 (tx->target_itr - tx->current_itr))) { 1518 /* Tx ITR needs to be reduced, this is second priority 1519 * Tx ITR needs to be increased more than Rx, fourth priority 1520 */ 1521 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); 1522 tx->current_itr = tx->target_itr; 1523 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1524 } else if (rx->current_itr != rx->target_itr) { 1525 /* Rx ITR needs to be increased, third priority */ 1526 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); 1527 rx->current_itr = rx->target_itr; 1528 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1529 } else { 1530 /* Still have to re-enable the interrupts */ 1531 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1532 if (q_vector->itr_countdown) 1533 q_vector->itr_countdown--; 1534 } 1535 1536 if (!test_bit(__ICE_DOWN, vsi->state)) 1537 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1538 } 1539 1540 /** 1541 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1542 * @q_vector: q_vector to set WB_ON_ITR on 1543 * 1544 * We need to tell hardware to write-back completed descriptors even when 1545 * interrupts are disabled. Descriptors will be written back on cache line 1546 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1547 * descriptors may not be written back if they don't fill a cache line until 1548 * the next interrupt. 1549 * 1550 * This sets the write-back frequency to whatever was set previously for the 1551 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1552 * aren't meddling with the INTENA_M bit. 1553 */ 1554 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1555 { 1556 struct ice_vsi *vsi = q_vector->vsi; 1557 1558 /* already in wb_on_itr mode no need to change it */ 1559 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) 1560 return; 1561 1562 /* use previously set ITR values for all of the ITR indices by 1563 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1564 * be static in non-adaptive mode (user configured) 1565 */ 1566 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1567 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1568 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1569 GLINT_DYN_CTL_WB_ON_ITR_M); 1570 1571 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; 1572 } 1573 1574 /** 1575 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1576 * @napi: napi struct with our devices info in it 1577 * @budget: amount of work driver is allowed to do this pass, in packets 1578 * 1579 * This function will clean all queues associated with a q_vector. 1580 * 1581 * Returns the amount of work done 1582 */ 1583 int ice_napi_poll(struct napi_struct *napi, int budget) 1584 { 1585 struct ice_q_vector *q_vector = 1586 container_of(napi, struct ice_q_vector, napi); 1587 bool clean_complete = true; 1588 struct ice_ring *ring; 1589 int budget_per_ring; 1590 int work_done = 0; 1591 1592 /* Since the actual Tx work is minimal, we can give the Tx a larger 1593 * budget and be more aggressive about cleaning up the Tx descriptors. 1594 */ 1595 ice_for_each_ring(ring, q_vector->tx) { 1596 bool wd = ring->xsk_pool ? 1597 ice_clean_tx_irq_zc(ring, budget) : 1598 ice_clean_tx_irq(ring, budget); 1599 1600 if (!wd) 1601 clean_complete = false; 1602 } 1603 1604 /* Handle case where we are called by netpoll with a budget of 0 */ 1605 if (unlikely(budget <= 0)) 1606 return budget; 1607 1608 /* normally we have 1 Rx ring per q_vector */ 1609 if (unlikely(q_vector->num_ring_rx > 1)) 1610 /* We attempt to distribute budget to each Rx queue fairly, but 1611 * don't allow the budget to go below 1 because that would exit 1612 * polling early. 1613 */ 1614 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1615 else 1616 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1617 budget_per_ring = budget; 1618 1619 ice_for_each_ring(ring, q_vector->rx) { 1620 int cleaned; 1621 1622 /* A dedicated path for zero-copy allows making a single 1623 * comparison in the irq context instead of many inside the 1624 * ice_clean_rx_irq function and makes the codebase cleaner. 1625 */ 1626 cleaned = ring->xsk_pool ? 1627 ice_clean_rx_irq_zc(ring, budget_per_ring) : 1628 ice_clean_rx_irq(ring, budget_per_ring); 1629 work_done += cleaned; 1630 /* if we clean as many as budgeted, we must not be done */ 1631 if (cleaned >= budget_per_ring) 1632 clean_complete = false; 1633 } 1634 1635 /* If work not completed, return budget and polling will return */ 1636 if (!clean_complete) { 1637 /* Set the writeback on ITR so partial completions of 1638 * cache-lines will still continue even if we're polling. 1639 */ 1640 ice_set_wb_on_itr(q_vector); 1641 return budget; 1642 } 1643 1644 /* Exit the polling mode, but don't re-enable interrupts if stack might 1645 * poll us due to busy-polling 1646 */ 1647 if (likely(napi_complete_done(napi, work_done))) 1648 ice_update_ena_itr(q_vector); 1649 else 1650 ice_set_wb_on_itr(q_vector); 1651 1652 return min_t(int, work_done, budget - 1); 1653 } 1654 1655 /** 1656 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1657 * @tx_ring: the ring to be checked 1658 * @size: the size buffer we want to assure is available 1659 * 1660 * Returns -EBUSY if a stop is needed, else 0 1661 */ 1662 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1663 { 1664 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); 1665 /* Memory barrier before checking head and tail */ 1666 smp_mb(); 1667 1668 /* Check again in a case another CPU has just made room available. */ 1669 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1670 return -EBUSY; 1671 1672 /* A reprieve! - use start_subqueue because it doesn't call schedule */ 1673 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); 1674 ++tx_ring->tx_stats.restart_q; 1675 return 0; 1676 } 1677 1678 /** 1679 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1680 * @tx_ring: the ring to be checked 1681 * @size: the size buffer we want to assure is available 1682 * 1683 * Returns 0 if stop is not needed 1684 */ 1685 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) 1686 { 1687 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1688 return 0; 1689 1690 return __ice_maybe_stop_tx(tx_ring, size); 1691 } 1692 1693 /** 1694 * ice_tx_map - Build the Tx descriptor 1695 * @tx_ring: ring to send buffer on 1696 * @first: first buffer info buffer to use 1697 * @off: pointer to struct that holds offload parameters 1698 * 1699 * This function loops over the skb data pointed to by *first 1700 * and gets a physical address for each memory location and programs 1701 * it and the length into the transmit descriptor. 1702 */ 1703 static void 1704 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, 1705 struct ice_tx_offload_params *off) 1706 { 1707 u64 td_offset, td_tag, td_cmd; 1708 u16 i = tx_ring->next_to_use; 1709 unsigned int data_len, size; 1710 struct ice_tx_desc *tx_desc; 1711 struct ice_tx_buf *tx_buf; 1712 struct sk_buff *skb; 1713 skb_frag_t *frag; 1714 dma_addr_t dma; 1715 1716 td_tag = off->td_l2tag1; 1717 td_cmd = off->td_cmd; 1718 td_offset = off->td_offset; 1719 skb = first->skb; 1720 1721 data_len = skb->data_len; 1722 size = skb_headlen(skb); 1723 1724 tx_desc = ICE_TX_DESC(tx_ring, i); 1725 1726 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1727 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1728 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1729 ICE_TX_FLAGS_VLAN_S; 1730 } 1731 1732 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1733 1734 tx_buf = first; 1735 1736 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1737 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1738 1739 if (dma_mapping_error(tx_ring->dev, dma)) 1740 goto dma_error; 1741 1742 /* record length, and DMA address */ 1743 dma_unmap_len_set(tx_buf, len, size); 1744 dma_unmap_addr_set(tx_buf, dma, dma); 1745 1746 /* align size to end of page */ 1747 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1748 tx_desc->buf_addr = cpu_to_le64(dma); 1749 1750 /* account for data chunks larger than the hardware 1751 * can handle 1752 */ 1753 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1754 tx_desc->cmd_type_offset_bsz = 1755 ice_build_ctob(td_cmd, td_offset, max_data, 1756 td_tag); 1757 1758 tx_desc++; 1759 i++; 1760 1761 if (i == tx_ring->count) { 1762 tx_desc = ICE_TX_DESC(tx_ring, 0); 1763 i = 0; 1764 } 1765 1766 dma += max_data; 1767 size -= max_data; 1768 1769 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1770 tx_desc->buf_addr = cpu_to_le64(dma); 1771 } 1772 1773 if (likely(!data_len)) 1774 break; 1775 1776 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1777 size, td_tag); 1778 1779 tx_desc++; 1780 i++; 1781 1782 if (i == tx_ring->count) { 1783 tx_desc = ICE_TX_DESC(tx_ring, 0); 1784 i = 0; 1785 } 1786 1787 size = skb_frag_size(frag); 1788 data_len -= size; 1789 1790 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1791 DMA_TO_DEVICE); 1792 1793 tx_buf = &tx_ring->tx_buf[i]; 1794 } 1795 1796 /* record bytecount for BQL */ 1797 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1798 1799 /* record SW timestamp if HW timestamp is not available */ 1800 skb_tx_timestamp(first->skb); 1801 1802 i++; 1803 if (i == tx_ring->count) 1804 i = 0; 1805 1806 /* write last descriptor with RS and EOP bits */ 1807 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1808 tx_desc->cmd_type_offset_bsz = 1809 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1810 1811 /* Force memory writes to complete before letting h/w know there 1812 * are new descriptors to fetch. 1813 * 1814 * We also use this memory barrier to make certain all of the 1815 * status bits have been updated before next_to_watch is written. 1816 */ 1817 wmb(); 1818 1819 /* set next_to_watch value indicating a packet is present */ 1820 first->next_to_watch = tx_desc; 1821 1822 tx_ring->next_to_use = i; 1823 1824 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1825 1826 /* notify HW of packet */ 1827 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 1828 writel(i, tx_ring->tail); 1829 1830 return; 1831 1832 dma_error: 1833 /* clear DMA mappings for failed tx_buf map */ 1834 for (;;) { 1835 tx_buf = &tx_ring->tx_buf[i]; 1836 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1837 if (tx_buf == first) 1838 break; 1839 if (i == 0) 1840 i = tx_ring->count; 1841 i--; 1842 } 1843 1844 tx_ring->next_to_use = i; 1845 } 1846 1847 /** 1848 * ice_tx_csum - Enable Tx checksum offloads 1849 * @first: pointer to the first descriptor 1850 * @off: pointer to struct that holds offload parameters 1851 * 1852 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1853 */ 1854 static 1855 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1856 { 1857 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1858 struct sk_buff *skb = first->skb; 1859 union { 1860 struct iphdr *v4; 1861 struct ipv6hdr *v6; 1862 unsigned char *hdr; 1863 } ip; 1864 union { 1865 struct tcphdr *tcp; 1866 unsigned char *hdr; 1867 } l4; 1868 __be16 frag_off, protocol; 1869 unsigned char *exthdr; 1870 u32 offset, cmd = 0; 1871 u8 l4_proto = 0; 1872 1873 if (skb->ip_summed != CHECKSUM_PARTIAL) 1874 return 0; 1875 1876 ip.hdr = skb_network_header(skb); 1877 l4.hdr = skb_transport_header(skb); 1878 1879 /* compute outer L2 header size */ 1880 l2_len = ip.hdr - skb->data; 1881 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1882 1883 protocol = vlan_get_protocol(skb); 1884 1885 if (protocol == htons(ETH_P_IP)) 1886 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1887 else if (protocol == htons(ETH_P_IPV6)) 1888 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1889 1890 if (skb->encapsulation) { 1891 bool gso_ena = false; 1892 u32 tunnel = 0; 1893 1894 /* define outer network header type */ 1895 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1896 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1897 ICE_TX_CTX_EIPT_IPV4 : 1898 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1899 l4_proto = ip.v4->protocol; 1900 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1901 int ret; 1902 1903 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1904 exthdr = ip.hdr + sizeof(*ip.v6); 1905 l4_proto = ip.v6->nexthdr; 1906 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1907 &l4_proto, &frag_off); 1908 if (ret < 0) 1909 return -1; 1910 } 1911 1912 /* define outer transport */ 1913 switch (l4_proto) { 1914 case IPPROTO_UDP: 1915 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1916 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1917 break; 1918 case IPPROTO_GRE: 1919 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1920 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1921 break; 1922 case IPPROTO_IPIP: 1923 case IPPROTO_IPV6: 1924 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1925 l4.hdr = skb_inner_network_header(skb); 1926 break; 1927 default: 1928 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1929 return -1; 1930 1931 skb_checksum_help(skb); 1932 return 0; 1933 } 1934 1935 /* compute outer L3 header size */ 1936 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1937 ICE_TXD_CTX_QW0_EIPLEN_S; 1938 1939 /* switch IP header pointer from outer to inner header */ 1940 ip.hdr = skb_inner_network_header(skb); 1941 1942 /* compute tunnel header size */ 1943 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1944 ICE_TXD_CTX_QW0_NATLEN_S; 1945 1946 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1947 /* indicate if we need to offload outer UDP header */ 1948 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1949 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1950 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1951 1952 /* record tunnel offload values */ 1953 off->cd_tunnel_params |= tunnel; 1954 1955 /* set DTYP=1 to indicate that it's an Tx context descriptor 1956 * in IPsec tunnel mode with Tx offloads in Quad word 1 1957 */ 1958 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1959 1960 /* switch L4 header pointer from outer to inner */ 1961 l4.hdr = skb_inner_transport_header(skb); 1962 l4_proto = 0; 1963 1964 /* reset type as we transition from outer to inner headers */ 1965 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1966 if (ip.v4->version == 4) 1967 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1968 if (ip.v6->version == 6) 1969 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1970 } 1971 1972 /* Enable IP checksum offloads */ 1973 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1974 l4_proto = ip.v4->protocol; 1975 /* the stack computes the IP header already, the only time we 1976 * need the hardware to recompute it is in the case of TSO. 1977 */ 1978 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1979 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1980 else 1981 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1982 1983 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1984 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1985 exthdr = ip.hdr + sizeof(*ip.v6); 1986 l4_proto = ip.v6->nexthdr; 1987 if (l4.hdr != exthdr) 1988 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1989 &frag_off); 1990 } else { 1991 return -1; 1992 } 1993 1994 /* compute inner L3 header size */ 1995 l3_len = l4.hdr - ip.hdr; 1996 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1997 1998 /* Enable L4 checksum offloads */ 1999 switch (l4_proto) { 2000 case IPPROTO_TCP: 2001 /* enable checksum offloads */ 2002 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 2003 l4_len = l4.tcp->doff; 2004 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2005 break; 2006 case IPPROTO_UDP: 2007 /* enable UDP checksum offload */ 2008 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 2009 l4_len = (sizeof(struct udphdr) >> 2); 2010 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2011 break; 2012 case IPPROTO_SCTP: 2013 /* enable SCTP checksum offload */ 2014 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2015 l4_len = sizeof(struct sctphdr) >> 2; 2016 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2017 break; 2018 2019 default: 2020 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2021 return -1; 2022 skb_checksum_help(skb); 2023 return 0; 2024 } 2025 2026 off->td_cmd |= cmd; 2027 off->td_offset |= offset; 2028 return 1; 2029 } 2030 2031 /** 2032 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2033 * @tx_ring: ring to send buffer on 2034 * @first: pointer to struct ice_tx_buf 2035 * 2036 * Checks the skb and set up correspondingly several generic transmit flags 2037 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2038 */ 2039 static void 2040 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) 2041 { 2042 struct sk_buff *skb = first->skb; 2043 2044 /* nothing left to do, software offloaded VLAN */ 2045 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2046 return; 2047 2048 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 2049 * insertion for 802.1AD is not supported 2050 */ 2051 if (skb_vlan_tag_present(skb)) { 2052 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 2053 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2054 } 2055 2056 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2057 } 2058 2059 /** 2060 * ice_tso - computes mss and TSO length to prepare for TSO 2061 * @first: pointer to struct ice_tx_buf 2062 * @off: pointer to struct that holds offload parameters 2063 * 2064 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2065 */ 2066 static 2067 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2068 { 2069 struct sk_buff *skb = first->skb; 2070 union { 2071 struct iphdr *v4; 2072 struct ipv6hdr *v6; 2073 unsigned char *hdr; 2074 } ip; 2075 union { 2076 struct tcphdr *tcp; 2077 struct udphdr *udp; 2078 unsigned char *hdr; 2079 } l4; 2080 u64 cd_mss, cd_tso_len; 2081 u32 paylen; 2082 u8 l4_start; 2083 int err; 2084 2085 if (skb->ip_summed != CHECKSUM_PARTIAL) 2086 return 0; 2087 2088 if (!skb_is_gso(skb)) 2089 return 0; 2090 2091 err = skb_cow_head(skb, 0); 2092 if (err < 0) 2093 return err; 2094 2095 /* cppcheck-suppress unreadVariable */ 2096 ip.hdr = skb_network_header(skb); 2097 l4.hdr = skb_transport_header(skb); 2098 2099 /* initialize outer IP header fields */ 2100 if (ip.v4->version == 4) { 2101 ip.v4->tot_len = 0; 2102 ip.v4->check = 0; 2103 } else { 2104 ip.v6->payload_len = 0; 2105 } 2106 2107 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2108 SKB_GSO_GRE_CSUM | 2109 SKB_GSO_IPXIP4 | 2110 SKB_GSO_IPXIP6 | 2111 SKB_GSO_UDP_TUNNEL | 2112 SKB_GSO_UDP_TUNNEL_CSUM)) { 2113 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2114 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2115 l4.udp->len = 0; 2116 2117 /* determine offset of outer transport header */ 2118 l4_start = (u8)(l4.hdr - skb->data); 2119 2120 /* remove payload length from outer checksum */ 2121 paylen = skb->len - l4_start; 2122 csum_replace_by_diff(&l4.udp->check, 2123 (__force __wsum)htonl(paylen)); 2124 } 2125 2126 /* reset pointers to inner headers */ 2127 2128 /* cppcheck-suppress unreadVariable */ 2129 ip.hdr = skb_inner_network_header(skb); 2130 l4.hdr = skb_inner_transport_header(skb); 2131 2132 /* initialize inner IP header fields */ 2133 if (ip.v4->version == 4) { 2134 ip.v4->tot_len = 0; 2135 ip.v4->check = 0; 2136 } else { 2137 ip.v6->payload_len = 0; 2138 } 2139 } 2140 2141 /* determine offset of transport header */ 2142 l4_start = (u8)(l4.hdr - skb->data); 2143 2144 /* remove payload length from checksum */ 2145 paylen = skb->len - l4_start; 2146 2147 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2148 csum_replace_by_diff(&l4.udp->check, 2149 (__force __wsum)htonl(paylen)); 2150 /* compute length of UDP segmentation header */ 2151 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2152 } else { 2153 csum_replace_by_diff(&l4.tcp->check, 2154 (__force __wsum)htonl(paylen)); 2155 /* compute length of TCP segmentation header */ 2156 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2157 } 2158 2159 /* update gso_segs and bytecount */ 2160 first->gso_segs = skb_shinfo(skb)->gso_segs; 2161 first->bytecount += (first->gso_segs - 1) * off->header_len; 2162 2163 cd_tso_len = skb->len - off->header_len; 2164 cd_mss = skb_shinfo(skb)->gso_size; 2165 2166 /* record cdesc_qw1 with TSO parameters */ 2167 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2168 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2169 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2170 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2171 first->tx_flags |= ICE_TX_FLAGS_TSO; 2172 return 1; 2173 } 2174 2175 /** 2176 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2177 * @size: transmit request size in bytes 2178 * 2179 * Due to hardware alignment restrictions (4K alignment), we need to 2180 * assume that we can have no more than 12K of data per descriptor, even 2181 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2182 * Thus, we need to divide by 12K. But division is slow! Instead, 2183 * we decompose the operation into shifts and one relatively cheap 2184 * multiply operation. 2185 * 2186 * To divide by 12K, we first divide by 4K, then divide by 3: 2187 * To divide by 4K, shift right by 12 bits 2188 * To divide by 3, multiply by 85, then divide by 256 2189 * (Divide by 256 is done by shifting right by 8 bits) 2190 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2191 * 3, we'll underestimate near each multiple of 12K. This is actually more 2192 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2193 * segment. For our purposes this is accurate out to 1M which is orders of 2194 * magnitude greater than our largest possible GSO size. 2195 * 2196 * This would then be implemented as: 2197 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2198 * 2199 * Since multiplication and division are commutative, we can reorder 2200 * operations into: 2201 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2202 */ 2203 static unsigned int ice_txd_use_count(unsigned int size) 2204 { 2205 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2206 } 2207 2208 /** 2209 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2210 * @skb: send buffer 2211 * 2212 * Returns number of data descriptors needed for this skb. 2213 */ 2214 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2215 { 2216 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2217 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2218 unsigned int count = 0, size = skb_headlen(skb); 2219 2220 for (;;) { 2221 count += ice_txd_use_count(size); 2222 2223 if (!nr_frags--) 2224 break; 2225 2226 size = skb_frag_size(frag++); 2227 } 2228 2229 return count; 2230 } 2231 2232 /** 2233 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2234 * @skb: send buffer 2235 * 2236 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2237 * and so we need to figure out the cases where we need to linearize the skb. 2238 * 2239 * For TSO we need to count the TSO header and segment payload separately. 2240 * As such we need to check cases where we have 7 fragments or more as we 2241 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2242 * the segment payload in the first descriptor, and another 7 for the 2243 * fragments. 2244 */ 2245 static bool __ice_chk_linearize(struct sk_buff *skb) 2246 { 2247 const skb_frag_t *frag, *stale; 2248 int nr_frags, sum; 2249 2250 /* no need to check if number of frags is less than 7 */ 2251 nr_frags = skb_shinfo(skb)->nr_frags; 2252 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2253 return false; 2254 2255 /* We need to walk through the list and validate that each group 2256 * of 6 fragments totals at least gso_size. 2257 */ 2258 nr_frags -= ICE_MAX_BUF_TXD - 2; 2259 frag = &skb_shinfo(skb)->frags[0]; 2260 2261 /* Initialize size to the negative value of gso_size minus 1. We 2262 * use this as the worst case scenario in which the frag ahead 2263 * of us only provides one byte which is why we are limited to 6 2264 * descriptors for a single transmit as the header and previous 2265 * fragment are already consuming 2 descriptors. 2266 */ 2267 sum = 1 - skb_shinfo(skb)->gso_size; 2268 2269 /* Add size of frags 0 through 4 to create our initial sum */ 2270 sum += skb_frag_size(frag++); 2271 sum += skb_frag_size(frag++); 2272 sum += skb_frag_size(frag++); 2273 sum += skb_frag_size(frag++); 2274 sum += skb_frag_size(frag++); 2275 2276 /* Walk through fragments adding latest fragment, testing it, and 2277 * then removing stale fragments from the sum. 2278 */ 2279 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2280 int stale_size = skb_frag_size(stale); 2281 2282 sum += skb_frag_size(frag++); 2283 2284 /* The stale fragment may present us with a smaller 2285 * descriptor than the actual fragment size. To account 2286 * for that we need to remove all the data on the front and 2287 * figure out what the remainder would be in the last 2288 * descriptor associated with the fragment. 2289 */ 2290 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2291 int align_pad = -(skb_frag_off(stale)) & 2292 (ICE_MAX_READ_REQ_SIZE - 1); 2293 2294 sum -= align_pad; 2295 stale_size -= align_pad; 2296 2297 do { 2298 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2299 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2300 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2301 } 2302 2303 /* if sum is negative we failed to make sufficient progress */ 2304 if (sum < 0) 2305 return true; 2306 2307 if (!nr_frags--) 2308 break; 2309 2310 sum -= stale_size; 2311 } 2312 2313 return false; 2314 } 2315 2316 /** 2317 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2318 * @skb: send buffer 2319 * @count: number of buffers used 2320 * 2321 * Note: Our HW can't scatter-gather more than 8 fragments to build 2322 * a packet on the wire and so we need to figure out the cases where we 2323 * need to linearize the skb. 2324 */ 2325 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2326 { 2327 /* Both TSO and single send will work if count is less than 8 */ 2328 if (likely(count < ICE_MAX_BUF_TXD)) 2329 return false; 2330 2331 if (skb_is_gso(skb)) 2332 return __ice_chk_linearize(skb); 2333 2334 /* we can support up to 8 data buffers for a single send */ 2335 return count != ICE_MAX_BUF_TXD; 2336 } 2337 2338 /** 2339 * ice_xmit_frame_ring - Sends buffer on Tx ring 2340 * @skb: send buffer 2341 * @tx_ring: ring to send buffer on 2342 * 2343 * Returns NETDEV_TX_OK if sent, else an error code 2344 */ 2345 static netdev_tx_t 2346 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) 2347 { 2348 struct ice_tx_offload_params offload = { 0 }; 2349 struct ice_vsi *vsi = tx_ring->vsi; 2350 struct ice_tx_buf *first; 2351 unsigned int count; 2352 int tso, csum; 2353 2354 count = ice_xmit_desc_count(skb); 2355 if (ice_chk_linearize(skb, count)) { 2356 if (__skb_linearize(skb)) 2357 goto out_drop; 2358 count = ice_txd_use_count(skb->len); 2359 tx_ring->tx_stats.tx_linearize++; 2360 } 2361 2362 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2363 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2364 * + 4 desc gap to avoid the cache line where head is, 2365 * + 1 desc for context descriptor, 2366 * otherwise try next time 2367 */ 2368 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2369 ICE_DESCS_FOR_CTX_DESC)) { 2370 tx_ring->tx_stats.tx_busy++; 2371 return NETDEV_TX_BUSY; 2372 } 2373 2374 offload.tx_ring = tx_ring; 2375 2376 /* record the location of the first descriptor for this packet */ 2377 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2378 first->skb = skb; 2379 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2380 first->gso_segs = 1; 2381 first->tx_flags = 0; 2382 2383 /* prepare the VLAN tagging flags for Tx */ 2384 ice_tx_prepare_vlan_flags(tx_ring, first); 2385 2386 /* set up TSO offload */ 2387 tso = ice_tso(first, &offload); 2388 if (tso < 0) 2389 goto out_drop; 2390 2391 /* always set up Tx checksum offload */ 2392 csum = ice_tx_csum(first, &offload); 2393 if (csum < 0) 2394 goto out_drop; 2395 2396 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2397 if (unlikely(skb->priority == TC_PRIO_CONTROL && 2398 vsi->type == ICE_VSI_PF && 2399 vsi->port_info->qos_cfg.is_sw_lldp)) 2400 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2401 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2402 ICE_TXD_CTX_QW1_CMD_S); 2403 2404 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2405 struct ice_tx_ctx_desc *cdesc; 2406 u16 i = tx_ring->next_to_use; 2407 2408 /* grab the next descriptor */ 2409 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2410 i++; 2411 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2412 2413 /* setup context descriptor */ 2414 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2415 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2416 cdesc->rsvd = cpu_to_le16(0); 2417 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2418 } 2419 2420 ice_tx_map(tx_ring, first, &offload); 2421 return NETDEV_TX_OK; 2422 2423 out_drop: 2424 dev_kfree_skb_any(skb); 2425 return NETDEV_TX_OK; 2426 } 2427 2428 /** 2429 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2430 * @skb: send buffer 2431 * @netdev: network interface device structure 2432 * 2433 * Returns NETDEV_TX_OK if sent, else an error code 2434 */ 2435 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2436 { 2437 struct ice_netdev_priv *np = netdev_priv(netdev); 2438 struct ice_vsi *vsi = np->vsi; 2439 struct ice_ring *tx_ring; 2440 2441 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2442 2443 /* hardware can't handle really short frames, hardware padding works 2444 * beyond this point 2445 */ 2446 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2447 return NETDEV_TX_OK; 2448 2449 return ice_xmit_frame_ring(skb, tx_ring); 2450 } 2451 2452 /** 2453 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2454 * @tx_ring: tx_ring to clean 2455 */ 2456 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) 2457 { 2458 struct ice_vsi *vsi = tx_ring->vsi; 2459 s16 i = tx_ring->next_to_clean; 2460 int budget = ICE_DFLT_IRQ_WORK; 2461 struct ice_tx_desc *tx_desc; 2462 struct ice_tx_buf *tx_buf; 2463 2464 tx_buf = &tx_ring->tx_buf[i]; 2465 tx_desc = ICE_TX_DESC(tx_ring, i); 2466 i -= tx_ring->count; 2467 2468 do { 2469 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2470 2471 /* if next_to_watch is not set then there is no pending work */ 2472 if (!eop_desc) 2473 break; 2474 2475 /* prevent any other reads prior to eop_desc */ 2476 smp_rmb(); 2477 2478 /* if the descriptor isn't done, no work to do */ 2479 if (!(eop_desc->cmd_type_offset_bsz & 2480 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2481 break; 2482 2483 /* clear next_to_watch to prevent false hangs */ 2484 tx_buf->next_to_watch = NULL; 2485 tx_desc->buf_addr = 0; 2486 tx_desc->cmd_type_offset_bsz = 0; 2487 2488 /* move past filter desc */ 2489 tx_buf++; 2490 tx_desc++; 2491 i++; 2492 if (unlikely(!i)) { 2493 i -= tx_ring->count; 2494 tx_buf = tx_ring->tx_buf; 2495 tx_desc = ICE_TX_DESC(tx_ring, 0); 2496 } 2497 2498 /* unmap the data header */ 2499 if (dma_unmap_len(tx_buf, len)) 2500 dma_unmap_single(tx_ring->dev, 2501 dma_unmap_addr(tx_buf, dma), 2502 dma_unmap_len(tx_buf, len), 2503 DMA_TO_DEVICE); 2504 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2505 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2506 2507 /* clear next_to_watch to prevent false hangs */ 2508 tx_buf->raw_buf = NULL; 2509 tx_buf->tx_flags = 0; 2510 tx_buf->next_to_watch = NULL; 2511 dma_unmap_len_set(tx_buf, len, 0); 2512 tx_desc->buf_addr = 0; 2513 tx_desc->cmd_type_offset_bsz = 0; 2514 2515 /* move past eop_desc for start of next FD desc */ 2516 tx_buf++; 2517 tx_desc++; 2518 i++; 2519 if (unlikely(!i)) { 2520 i -= tx_ring->count; 2521 tx_buf = tx_ring->tx_buf; 2522 tx_desc = ICE_TX_DESC(tx_ring, 0); 2523 } 2524 2525 budget--; 2526 } while (likely(budget)); 2527 2528 i += tx_ring->count; 2529 tx_ring->next_to_clean = i; 2530 2531 /* re-enable interrupt if needed */ 2532 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2533 } 2534