1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->type = ICE_TX_BUF_DUMMY; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (dma_unmap_len(tx_buf, len)) 116 dma_unmap_page(ring->dev, 117 dma_unmap_addr(tx_buf, dma), 118 dma_unmap_len(tx_buf, len), 119 DMA_TO_DEVICE); 120 121 switch (tx_buf->type) { 122 case ICE_TX_BUF_DUMMY: 123 devm_kfree(ring->dev, tx_buf->raw_buf); 124 break; 125 case ICE_TX_BUF_SKB: 126 dev_kfree_skb_any(tx_buf->skb); 127 break; 128 case ICE_TX_BUF_XDP_TX: 129 page_frag_free(tx_buf->raw_buf); 130 break; 131 case ICE_TX_BUF_XDP_XMIT: 132 xdp_return_frame(tx_buf->xdpf); 133 break; 134 } 135 136 tx_buf->next_to_watch = NULL; 137 tx_buf->type = ICE_TX_BUF_EMPTY; 138 dma_unmap_len_set(tx_buf, len, 0); 139 /* tx_buf must be completely set up in the transmit path */ 140 } 141 142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 143 { 144 return netdev_get_tx_queue(ring->netdev, ring->q_index); 145 } 146 147 /** 148 * ice_clean_tx_ring - Free any empty Tx buffers 149 * @tx_ring: ring to be cleaned 150 */ 151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 152 { 153 u32 size; 154 u16 i; 155 156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 157 ice_xsk_clean_xdp_ring(tx_ring); 158 goto tx_skip_free; 159 } 160 161 /* ring already cleared, nothing to do */ 162 if (!tx_ring->tx_buf) 163 return; 164 165 /* Free all the Tx ring sk_buffs */ 166 for (i = 0; i < tx_ring->count; i++) 167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 168 169 tx_skip_free: 170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 171 172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 173 PAGE_SIZE); 174 /* Zero out the descriptor ring */ 175 memset(tx_ring->desc, 0, size); 176 177 tx_ring->next_to_use = 0; 178 tx_ring->next_to_clean = 0; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->type = ICE_TX_BUF_EMPTY; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->ring_stats->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct xdp_buff *xdp = &rx_ring->xdp; 386 struct device *dev = rx_ring->dev; 387 u32 size; 388 u16 i; 389 390 /* ring already cleared, nothing to do */ 391 if (!rx_ring->rx_buf) 392 return; 393 394 if (rx_ring->xsk_pool) { 395 ice_xsk_clean_rx_ring(rx_ring); 396 goto rx_skip_free; 397 } 398 399 if (xdp->data) { 400 xdp_return_buff(xdp); 401 xdp->data = NULL; 402 } 403 404 /* Free all the Rx ring sk_buffs */ 405 for (i = 0; i < rx_ring->count; i++) { 406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 407 408 if (!rx_buf->page) 409 continue; 410 411 /* Invalidate cache lines that may have been written to by 412 * device so that we avoid corrupting memory. 413 */ 414 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 415 rx_buf->page_offset, 416 rx_ring->rx_buf_len, 417 DMA_FROM_DEVICE); 418 419 /* free resources associated with mapping */ 420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 423 424 rx_buf->page = NULL; 425 rx_buf->page_offset = 0; 426 } 427 428 rx_skip_free: 429 if (rx_ring->xsk_pool) 430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 431 else 432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 433 434 /* Zero out the descriptor ring */ 435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 436 PAGE_SIZE); 437 memset(rx_ring->desc, 0, size); 438 439 rx_ring->next_to_alloc = 0; 440 rx_ring->next_to_clean = 0; 441 rx_ring->first_desc = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 rx_ring->xdp_prog = NULL; 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 rx_ring->first_desc = 0; 512 513 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 515 516 if (rx_ring->vsi->type == ICE_VSI_PF && 517 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 518 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 519 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 520 goto err; 521 return 0; 522 523 err: 524 kfree(rx_ring->rx_buf); 525 rx_ring->rx_buf = NULL; 526 return -ENOMEM; 527 } 528 529 /** 530 * ice_rx_frame_truesize 531 * @rx_ring: ptr to Rx ring 532 * @size: size 533 * 534 * calculate the truesize with taking into the account PAGE_SIZE of 535 * underlying arch 536 */ 537 static unsigned int 538 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size) 539 { 540 unsigned int truesize; 541 542 #if (PAGE_SIZE < 8192) 543 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 544 #else 545 truesize = rx_ring->rx_offset ? 546 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 547 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 548 SKB_DATA_ALIGN(size); 549 #endif 550 return truesize; 551 } 552 553 /** 554 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 555 * @rx_ring: Rx ring 556 * @xdp: xdp_buff used as input to the XDP program 557 * @xdp_prog: XDP program to run 558 * @xdp_ring: ring to be used for XDP_TX action 559 * @rx_buf: Rx buffer to store the XDP action 560 * @eop_desc: Last descriptor in packet to read metadata from 561 * 562 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 563 */ 564 static void 565 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 566 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 567 struct ice_rx_buf *rx_buf, union ice_32b_rx_flex_desc *eop_desc) 568 { 569 unsigned int ret = ICE_XDP_PASS; 570 u32 act; 571 572 if (!xdp_prog) 573 goto exit; 574 575 ice_xdp_meta_set_desc(xdp, eop_desc); 576 577 act = bpf_prog_run_xdp(xdp_prog, xdp); 578 switch (act) { 579 case XDP_PASS: 580 break; 581 case XDP_TX: 582 if (static_branch_unlikely(&ice_xdp_locking_key)) 583 spin_lock(&xdp_ring->tx_lock); 584 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 585 if (static_branch_unlikely(&ice_xdp_locking_key)) 586 spin_unlock(&xdp_ring->tx_lock); 587 if (ret == ICE_XDP_CONSUMED) 588 goto out_failure; 589 break; 590 case XDP_REDIRECT: 591 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 592 goto out_failure; 593 ret = ICE_XDP_REDIR; 594 break; 595 default: 596 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 597 fallthrough; 598 case XDP_ABORTED: 599 out_failure: 600 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 601 fallthrough; 602 case XDP_DROP: 603 ret = ICE_XDP_CONSUMED; 604 } 605 exit: 606 rx_buf->act = ret; 607 if (unlikely(xdp_buff_has_frags(xdp))) 608 ice_set_rx_bufs_act(xdp, rx_ring, ret); 609 } 610 611 /** 612 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 613 * @xdpf: XDP frame that will be converted to XDP buff 614 * @xdp_ring: XDP ring for transmission 615 */ 616 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 617 struct ice_tx_ring *xdp_ring) 618 { 619 struct xdp_buff xdp; 620 621 xdp.data_hard_start = (void *)xdpf; 622 xdp.data = xdpf->data; 623 xdp.data_end = xdp.data + xdpf->len; 624 xdp.frame_sz = xdpf->frame_sz; 625 xdp.flags = xdpf->flags; 626 627 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 628 } 629 630 /** 631 * ice_xdp_xmit - submit packets to XDP ring for transmission 632 * @dev: netdev 633 * @n: number of XDP frames to be transmitted 634 * @frames: XDP frames to be transmitted 635 * @flags: transmit flags 636 * 637 * Returns number of frames successfully sent. Failed frames 638 * will be free'ed by XDP core. 639 * For error cases, a negative errno code is returned and no-frames 640 * are transmitted (caller must handle freeing frames). 641 */ 642 int 643 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 644 u32 flags) 645 { 646 struct ice_netdev_priv *np = netdev_priv(dev); 647 unsigned int queue_index = smp_processor_id(); 648 struct ice_vsi *vsi = np->vsi; 649 struct ice_tx_ring *xdp_ring; 650 struct ice_tx_buf *tx_buf; 651 int nxmit = 0, i; 652 653 if (test_bit(ICE_VSI_DOWN, vsi->state)) 654 return -ENETDOWN; 655 656 if (!ice_is_xdp_ena_vsi(vsi)) 657 return -ENXIO; 658 659 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 660 return -EINVAL; 661 662 if (static_branch_unlikely(&ice_xdp_locking_key)) { 663 queue_index %= vsi->num_xdp_txq; 664 xdp_ring = vsi->xdp_rings[queue_index]; 665 spin_lock(&xdp_ring->tx_lock); 666 } else { 667 /* Generally, should not happen */ 668 if (unlikely(queue_index >= vsi->num_xdp_txq)) 669 return -ENXIO; 670 xdp_ring = vsi->xdp_rings[queue_index]; 671 } 672 673 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 674 for (i = 0; i < n; i++) { 675 const struct xdp_frame *xdpf = frames[i]; 676 int err; 677 678 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 679 if (err != ICE_XDP_TX) 680 break; 681 nxmit++; 682 } 683 684 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 685 if (unlikely(flags & XDP_XMIT_FLUSH)) 686 ice_xdp_ring_update_tail(xdp_ring); 687 688 if (static_branch_unlikely(&ice_xdp_locking_key)) 689 spin_unlock(&xdp_ring->tx_lock); 690 691 return nxmit; 692 } 693 694 /** 695 * ice_alloc_mapped_page - recycle or make a new page 696 * @rx_ring: ring to use 697 * @bi: rx_buf struct to modify 698 * 699 * Returns true if the page was successfully allocated or 700 * reused. 701 */ 702 static bool 703 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 704 { 705 struct page *page = bi->page; 706 dma_addr_t dma; 707 708 /* since we are recycling buffers we should seldom need to alloc */ 709 if (likely(page)) 710 return true; 711 712 /* alloc new page for storage */ 713 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 714 if (unlikely(!page)) { 715 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 716 return false; 717 } 718 719 /* map page for use */ 720 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 721 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 722 723 /* if mapping failed free memory back to system since 724 * there isn't much point in holding memory we can't use 725 */ 726 if (dma_mapping_error(rx_ring->dev, dma)) { 727 __free_pages(page, ice_rx_pg_order(rx_ring)); 728 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 729 return false; 730 } 731 732 bi->dma = dma; 733 bi->page = page; 734 bi->page_offset = rx_ring->rx_offset; 735 page_ref_add(page, USHRT_MAX - 1); 736 bi->pagecnt_bias = USHRT_MAX; 737 738 return true; 739 } 740 741 /** 742 * ice_alloc_rx_bufs - Replace used receive buffers 743 * @rx_ring: ring to place buffers on 744 * @cleaned_count: number of buffers to replace 745 * 746 * Returns false if all allocations were successful, true if any fail. Returning 747 * true signals to the caller that we didn't replace cleaned_count buffers and 748 * there is more work to do. 749 * 750 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 751 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 752 * multiple tail writes per call. 753 */ 754 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 755 { 756 union ice_32b_rx_flex_desc *rx_desc; 757 u16 ntu = rx_ring->next_to_use; 758 struct ice_rx_buf *bi; 759 760 /* do nothing if no valid netdev defined */ 761 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 762 !cleaned_count) 763 return false; 764 765 /* get the Rx descriptor and buffer based on next_to_use */ 766 rx_desc = ICE_RX_DESC(rx_ring, ntu); 767 bi = &rx_ring->rx_buf[ntu]; 768 769 do { 770 /* if we fail here, we have work remaining */ 771 if (!ice_alloc_mapped_page(rx_ring, bi)) 772 break; 773 774 /* sync the buffer for use by the device */ 775 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 776 bi->page_offset, 777 rx_ring->rx_buf_len, 778 DMA_FROM_DEVICE); 779 780 /* Refresh the desc even if buffer_addrs didn't change 781 * because each write-back erases this info. 782 */ 783 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 784 785 rx_desc++; 786 bi++; 787 ntu++; 788 if (unlikely(ntu == rx_ring->count)) { 789 rx_desc = ICE_RX_DESC(rx_ring, 0); 790 bi = rx_ring->rx_buf; 791 ntu = 0; 792 } 793 794 /* clear the status bits for the next_to_use descriptor */ 795 rx_desc->wb.status_error0 = 0; 796 797 cleaned_count--; 798 } while (cleaned_count); 799 800 if (rx_ring->next_to_use != ntu) 801 ice_release_rx_desc(rx_ring, ntu); 802 803 return !!cleaned_count; 804 } 805 806 /** 807 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 808 * @rx_buf: Rx buffer to adjust 809 * @size: Size of adjustment 810 * 811 * Update the offset within page so that Rx buf will be ready to be reused. 812 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 813 * so the second half of page assigned to Rx buffer will be used, otherwise 814 * the offset is moved by "size" bytes 815 */ 816 static void 817 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 818 { 819 #if (PAGE_SIZE < 8192) 820 /* flip page offset to other buffer */ 821 rx_buf->page_offset ^= size; 822 #else 823 /* move offset up to the next cache line */ 824 rx_buf->page_offset += size; 825 #endif 826 } 827 828 /** 829 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 830 * @rx_buf: buffer containing the page 831 * 832 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 833 * which will assign the current buffer to the buffer that next_to_alloc is 834 * pointing to; otherwise, the DMA mapping needs to be destroyed and 835 * page freed 836 */ 837 static bool 838 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 839 { 840 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 841 struct page *page = rx_buf->page; 842 843 /* avoid re-using remote and pfmemalloc pages */ 844 if (!dev_page_is_reusable(page)) 845 return false; 846 847 #if (PAGE_SIZE < 8192) 848 /* if we are only owner of page we can reuse it */ 849 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 850 return false; 851 #else 852 #define ICE_LAST_OFFSET \ 853 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 854 if (rx_buf->page_offset > ICE_LAST_OFFSET) 855 return false; 856 #endif /* PAGE_SIZE < 8192) */ 857 858 /* If we have drained the page fragment pool we need to update 859 * the pagecnt_bias and page count so that we fully restock the 860 * number of references the driver holds. 861 */ 862 if (unlikely(pagecnt_bias == 1)) { 863 page_ref_add(page, USHRT_MAX - 1); 864 rx_buf->pagecnt_bias = USHRT_MAX; 865 } 866 867 return true; 868 } 869 870 /** 871 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 872 * @rx_ring: Rx descriptor ring to transact packets on 873 * @xdp: xdp buff to place the data into 874 * @rx_buf: buffer containing page to add 875 * @size: packet length from rx_desc 876 * 877 * This function will add the data contained in rx_buf->page to the xdp buf. 878 * It will just attach the page as a frag. 879 */ 880 static int 881 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 882 struct ice_rx_buf *rx_buf, const unsigned int size) 883 { 884 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 885 886 if (!size) 887 return 0; 888 889 if (!xdp_buff_has_frags(xdp)) { 890 sinfo->nr_frags = 0; 891 sinfo->xdp_frags_size = 0; 892 xdp_buff_set_frags_flag(xdp); 893 } 894 895 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 896 if (unlikely(xdp_buff_has_frags(xdp))) 897 ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED); 898 return -ENOMEM; 899 } 900 901 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 902 rx_buf->page_offset, size); 903 sinfo->xdp_frags_size += size; 904 905 if (page_is_pfmemalloc(rx_buf->page)) 906 xdp_buff_set_frag_pfmemalloc(xdp); 907 908 return 0; 909 } 910 911 /** 912 * ice_reuse_rx_page - page flip buffer and store it back on the ring 913 * @rx_ring: Rx descriptor ring to store buffers on 914 * @old_buf: donor buffer to have page reused 915 * 916 * Synchronizes page for reuse by the adapter 917 */ 918 static void 919 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 920 { 921 u16 nta = rx_ring->next_to_alloc; 922 struct ice_rx_buf *new_buf; 923 924 new_buf = &rx_ring->rx_buf[nta]; 925 926 /* update, and store next to alloc */ 927 nta++; 928 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 929 930 /* Transfer page from old buffer to new buffer. 931 * Move each member individually to avoid possible store 932 * forwarding stalls and unnecessary copy of skb. 933 */ 934 new_buf->dma = old_buf->dma; 935 new_buf->page = old_buf->page; 936 new_buf->page_offset = old_buf->page_offset; 937 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 938 } 939 940 /** 941 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 942 * @rx_ring: Rx descriptor ring to transact packets on 943 * @size: size of buffer to add to skb 944 * @ntc: index of next to clean element 945 * 946 * This function will pull an Rx buffer from the ring and synchronize it 947 * for use by the CPU. 948 */ 949 static struct ice_rx_buf * 950 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 951 const unsigned int ntc) 952 { 953 struct ice_rx_buf *rx_buf; 954 955 rx_buf = &rx_ring->rx_buf[ntc]; 956 rx_buf->pgcnt = 957 #if (PAGE_SIZE < 8192) 958 page_count(rx_buf->page); 959 #else 960 0; 961 #endif 962 prefetchw(rx_buf->page); 963 964 if (!size) 965 return rx_buf; 966 /* we are reusing so sync this buffer for CPU use */ 967 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 968 rx_buf->page_offset, size, 969 DMA_FROM_DEVICE); 970 971 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 972 rx_buf->pagecnt_bias--; 973 974 return rx_buf; 975 } 976 977 /** 978 * ice_build_skb - Build skb around an existing buffer 979 * @rx_ring: Rx descriptor ring to transact packets on 980 * @xdp: xdp_buff pointing to the data 981 * 982 * This function builds an skb around an existing XDP buffer, taking care 983 * to set up the skb correctly and avoid any memcpy overhead. Driver has 984 * already combined frags (if any) to skb_shared_info. 985 */ 986 static struct sk_buff * 987 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 988 { 989 u8 metasize = xdp->data - xdp->data_meta; 990 struct skb_shared_info *sinfo = NULL; 991 unsigned int nr_frags; 992 struct sk_buff *skb; 993 994 if (unlikely(xdp_buff_has_frags(xdp))) { 995 sinfo = xdp_get_shared_info_from_buff(xdp); 996 nr_frags = sinfo->nr_frags; 997 } 998 999 /* Prefetch first cache line of first page. If xdp->data_meta 1000 * is unused, this points exactly as xdp->data, otherwise we 1001 * likely have a consumer accessing first few bytes of meta 1002 * data, and then actual data. 1003 */ 1004 net_prefetch(xdp->data_meta); 1005 /* build an skb around the page buffer */ 1006 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 1007 if (unlikely(!skb)) 1008 return NULL; 1009 1010 /* must to record Rx queue, otherwise OS features such as 1011 * symmetric queue won't work 1012 */ 1013 skb_record_rx_queue(skb, rx_ring->q_index); 1014 1015 /* update pointers within the skb to store the data */ 1016 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1017 __skb_put(skb, xdp->data_end - xdp->data); 1018 if (metasize) 1019 skb_metadata_set(skb, metasize); 1020 1021 if (unlikely(xdp_buff_has_frags(xdp))) 1022 xdp_update_skb_shared_info(skb, nr_frags, 1023 sinfo->xdp_frags_size, 1024 nr_frags * xdp->frame_sz, 1025 xdp_buff_is_frag_pfmemalloc(xdp)); 1026 1027 return skb; 1028 } 1029 1030 /** 1031 * ice_construct_skb - Allocate skb and populate it 1032 * @rx_ring: Rx descriptor ring to transact packets on 1033 * @xdp: xdp_buff pointing to the data 1034 * 1035 * This function allocates an skb. It then populates it with the page 1036 * data from the current receive descriptor, taking care to set up the 1037 * skb correctly. 1038 */ 1039 static struct sk_buff * 1040 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1041 { 1042 unsigned int size = xdp->data_end - xdp->data; 1043 struct skb_shared_info *sinfo = NULL; 1044 struct ice_rx_buf *rx_buf; 1045 unsigned int nr_frags = 0; 1046 unsigned int headlen; 1047 struct sk_buff *skb; 1048 1049 /* prefetch first cache line of first page */ 1050 net_prefetch(xdp->data); 1051 1052 if (unlikely(xdp_buff_has_frags(xdp))) { 1053 sinfo = xdp_get_shared_info_from_buff(xdp); 1054 nr_frags = sinfo->nr_frags; 1055 } 1056 1057 /* allocate a skb to store the frags */ 1058 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, 1059 GFP_ATOMIC | __GFP_NOWARN); 1060 if (unlikely(!skb)) 1061 return NULL; 1062 1063 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1064 skb_record_rx_queue(skb, rx_ring->q_index); 1065 /* Determine available headroom for copy */ 1066 headlen = size; 1067 if (headlen > ICE_RX_HDR_SIZE) 1068 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1069 1070 /* align pull length to size of long to optimize memcpy performance */ 1071 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1072 sizeof(long))); 1073 1074 /* if we exhaust the linear part then add what is left as a frag */ 1075 size -= headlen; 1076 if (size) { 1077 /* besides adding here a partial frag, we are going to add 1078 * frags from xdp_buff, make sure there is enough space for 1079 * them 1080 */ 1081 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1082 dev_kfree_skb(skb); 1083 return NULL; 1084 } 1085 skb_add_rx_frag(skb, 0, rx_buf->page, 1086 rx_buf->page_offset + headlen, size, 1087 xdp->frame_sz); 1088 } else { 1089 /* buffer is unused, change the act that should be taken later 1090 * on; data was copied onto skb's linear part so there's no 1091 * need for adjusting page offset and we can reuse this buffer 1092 * as-is 1093 */ 1094 rx_buf->act = ICE_SKB_CONSUMED; 1095 } 1096 1097 if (unlikely(xdp_buff_has_frags(xdp))) { 1098 struct skb_shared_info *skinfo = skb_shinfo(skb); 1099 1100 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1101 sizeof(skb_frag_t) * nr_frags); 1102 1103 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 1104 sinfo->xdp_frags_size, 1105 nr_frags * xdp->frame_sz, 1106 xdp_buff_is_frag_pfmemalloc(xdp)); 1107 } 1108 1109 return skb; 1110 } 1111 1112 /** 1113 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1114 * @rx_ring: Rx descriptor ring to transact packets on 1115 * @rx_buf: Rx buffer to pull data from 1116 * 1117 * This function will clean up the contents of the rx_buf. It will either 1118 * recycle the buffer or unmap it and free the associated resources. 1119 */ 1120 static void 1121 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1122 { 1123 if (!rx_buf) 1124 return; 1125 1126 if (ice_can_reuse_rx_page(rx_buf)) { 1127 /* hand second half of page back to the ring */ 1128 ice_reuse_rx_page(rx_ring, rx_buf); 1129 } else { 1130 /* we are not reusing the buffer so unmap it */ 1131 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1132 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1133 ICE_RX_DMA_ATTR); 1134 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1135 } 1136 1137 /* clear contents of buffer_info */ 1138 rx_buf->page = NULL; 1139 } 1140 1141 /** 1142 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1143 * @rx_ring: Rx descriptor ring to transact packets on 1144 * @budget: Total limit on number of packets to process 1145 * 1146 * This function provides a "bounce buffer" approach to Rx interrupt 1147 * processing. The advantage to this is that on systems that have 1148 * expensive overhead for IOMMU access this provides a means of avoiding 1149 * it by maintaining the mapping of the page to the system. 1150 * 1151 * Returns amount of work completed 1152 */ 1153 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1154 { 1155 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1156 unsigned int offset = rx_ring->rx_offset; 1157 struct xdp_buff *xdp = &rx_ring->xdp; 1158 u32 cached_ntc = rx_ring->first_desc; 1159 struct ice_tx_ring *xdp_ring = NULL; 1160 struct bpf_prog *xdp_prog = NULL; 1161 u32 ntc = rx_ring->next_to_clean; 1162 u32 cnt = rx_ring->count; 1163 u32 xdp_xmit = 0; 1164 u32 cached_ntu; 1165 bool failure; 1166 u32 first; 1167 1168 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1169 #if (PAGE_SIZE < 8192) 1170 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1171 #endif 1172 1173 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1174 if (xdp_prog) { 1175 xdp_ring = rx_ring->xdp_ring; 1176 cached_ntu = xdp_ring->next_to_use; 1177 } 1178 1179 /* start the loop to process Rx packets bounded by 'budget' */ 1180 while (likely(total_rx_pkts < (unsigned int)budget)) { 1181 union ice_32b_rx_flex_desc *rx_desc; 1182 struct ice_rx_buf *rx_buf; 1183 struct sk_buff *skb; 1184 unsigned int size; 1185 u16 stat_err_bits; 1186 u16 vlan_tci; 1187 1188 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1189 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1190 1191 /* status_error_len will always be zero for unused descriptors 1192 * because it's cleared in cleanup, and overlaps with hdr_addr 1193 * which is always zero because packet split isn't used, if the 1194 * hardware wrote DD then it will be non-zero 1195 */ 1196 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1197 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1198 break; 1199 1200 /* This memory barrier is needed to keep us from reading 1201 * any other fields out of the rx_desc until we know the 1202 * DD bit is set. 1203 */ 1204 dma_rmb(); 1205 1206 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1207 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1208 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1209 1210 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1211 ctrl_vsi->vf) 1212 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1213 if (++ntc == cnt) 1214 ntc = 0; 1215 rx_ring->first_desc = ntc; 1216 continue; 1217 } 1218 1219 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1220 ICE_RX_FLX_DESC_PKT_LEN_M; 1221 1222 /* retrieve a buffer from the ring */ 1223 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1224 1225 if (!xdp->data) { 1226 void *hard_start; 1227 1228 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1229 offset; 1230 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1231 #if (PAGE_SIZE > 4096) 1232 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1233 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size); 1234 #endif 1235 xdp_buff_clear_frags_flag(xdp); 1236 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1237 break; 1238 } 1239 if (++ntc == cnt) 1240 ntc = 0; 1241 1242 /* skip if it is NOP desc */ 1243 if (ice_is_non_eop(rx_ring, rx_desc)) 1244 continue; 1245 1246 ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf, rx_desc); 1247 if (rx_buf->act == ICE_XDP_PASS) 1248 goto construct_skb; 1249 total_rx_bytes += xdp_get_buff_len(xdp); 1250 total_rx_pkts++; 1251 1252 xdp->data = NULL; 1253 rx_ring->first_desc = ntc; 1254 continue; 1255 construct_skb: 1256 if (likely(ice_ring_uses_build_skb(rx_ring))) 1257 skb = ice_build_skb(rx_ring, xdp); 1258 else 1259 skb = ice_construct_skb(rx_ring, xdp); 1260 /* exit if we failed to retrieve a buffer */ 1261 if (!skb) { 1262 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 1263 rx_buf->act = ICE_XDP_CONSUMED; 1264 if (unlikely(xdp_buff_has_frags(xdp))) 1265 ice_set_rx_bufs_act(xdp, rx_ring, 1266 ICE_XDP_CONSUMED); 1267 xdp->data = NULL; 1268 rx_ring->first_desc = ntc; 1269 break; 1270 } 1271 xdp->data = NULL; 1272 rx_ring->first_desc = ntc; 1273 1274 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1275 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1276 stat_err_bits))) { 1277 dev_kfree_skb_any(skb); 1278 continue; 1279 } 1280 1281 vlan_tci = ice_get_vlan_tci(rx_desc); 1282 1283 /* pad the skb if needed, to make a valid ethernet frame */ 1284 if (eth_skb_pad(skb)) 1285 continue; 1286 1287 /* probably a little skewed due to removing CRC */ 1288 total_rx_bytes += skb->len; 1289 1290 /* populate checksum, VLAN, and protocol */ 1291 ice_process_skb_fields(rx_ring, rx_desc, skb); 1292 1293 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1294 /* send completed skb up the stack */ 1295 ice_receive_skb(rx_ring, skb, vlan_tci); 1296 1297 /* update budget accounting */ 1298 total_rx_pkts++; 1299 } 1300 1301 first = rx_ring->first_desc; 1302 while (cached_ntc != first) { 1303 struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc]; 1304 1305 if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1306 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1307 xdp_xmit |= buf->act; 1308 } else if (buf->act & ICE_XDP_CONSUMED) { 1309 buf->pagecnt_bias++; 1310 } else if (buf->act == ICE_XDP_PASS) { 1311 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1312 } 1313 1314 ice_put_rx_buf(rx_ring, buf); 1315 if (++cached_ntc >= cnt) 1316 cached_ntc = 0; 1317 } 1318 rx_ring->next_to_clean = ntc; 1319 /* return up to cleaned_count buffers to hardware */ 1320 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1321 1322 if (xdp_xmit) 1323 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1324 1325 if (rx_ring->ring_stats) 1326 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1327 total_rx_bytes); 1328 1329 /* guarantee a trip back through this routine if there was a failure */ 1330 return failure ? budget : (int)total_rx_pkts; 1331 } 1332 1333 static void __ice_update_sample(struct ice_q_vector *q_vector, 1334 struct ice_ring_container *rc, 1335 struct dim_sample *sample, 1336 bool is_tx) 1337 { 1338 u64 packets = 0, bytes = 0; 1339 1340 if (is_tx) { 1341 struct ice_tx_ring *tx_ring; 1342 1343 ice_for_each_tx_ring(tx_ring, *rc) { 1344 struct ice_ring_stats *ring_stats; 1345 1346 ring_stats = tx_ring->ring_stats; 1347 if (!ring_stats) 1348 continue; 1349 packets += ring_stats->stats.pkts; 1350 bytes += ring_stats->stats.bytes; 1351 } 1352 } else { 1353 struct ice_rx_ring *rx_ring; 1354 1355 ice_for_each_rx_ring(rx_ring, *rc) { 1356 struct ice_ring_stats *ring_stats; 1357 1358 ring_stats = rx_ring->ring_stats; 1359 if (!ring_stats) 1360 continue; 1361 packets += ring_stats->stats.pkts; 1362 bytes += ring_stats->stats.bytes; 1363 } 1364 } 1365 1366 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1367 sample->comp_ctr = 0; 1368 1369 /* if dim settings get stale, like when not updated for 1 1370 * second or longer, force it to start again. This addresses the 1371 * frequent case of an idle queue being switched to by the 1372 * scheduler. The 1,000 here means 1,000 milliseconds. 1373 */ 1374 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1375 rc->dim.state = DIM_START_MEASURE; 1376 } 1377 1378 /** 1379 * ice_net_dim - Update net DIM algorithm 1380 * @q_vector: the vector associated with the interrupt 1381 * 1382 * Create a DIM sample and notify net_dim() so that it can possibly decide 1383 * a new ITR value based on incoming packets, bytes, and interrupts. 1384 * 1385 * This function is a no-op if the ring is not configured to dynamic ITR. 1386 */ 1387 static void ice_net_dim(struct ice_q_vector *q_vector) 1388 { 1389 struct ice_ring_container *tx = &q_vector->tx; 1390 struct ice_ring_container *rx = &q_vector->rx; 1391 1392 if (ITR_IS_DYNAMIC(tx)) { 1393 struct dim_sample dim_sample; 1394 1395 __ice_update_sample(q_vector, tx, &dim_sample, true); 1396 net_dim(&tx->dim, dim_sample); 1397 } 1398 1399 if (ITR_IS_DYNAMIC(rx)) { 1400 struct dim_sample dim_sample; 1401 1402 __ice_update_sample(q_vector, rx, &dim_sample, false); 1403 net_dim(&rx->dim, dim_sample); 1404 } 1405 } 1406 1407 /** 1408 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1409 * @itr_idx: interrupt throttling index 1410 * @itr: interrupt throttling value in usecs 1411 */ 1412 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1413 { 1414 /* The ITR value is reported in microseconds, and the register value is 1415 * recorded in 2 microsecond units. For this reason we only need to 1416 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1417 * granularity as a shift instead of division. The mask makes sure the 1418 * ITR value is never odd so we don't accidentally write into the field 1419 * prior to the ITR field. 1420 */ 1421 itr &= ICE_ITR_MASK; 1422 1423 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1424 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1425 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1426 } 1427 1428 /** 1429 * ice_enable_interrupt - re-enable MSI-X interrupt 1430 * @q_vector: the vector associated with the interrupt to enable 1431 * 1432 * If the VSI is down, the interrupt will not be re-enabled. Also, 1433 * when enabling the interrupt always reset the wb_on_itr to false 1434 * and trigger a software interrupt to clean out internal state. 1435 */ 1436 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1437 { 1438 struct ice_vsi *vsi = q_vector->vsi; 1439 bool wb_en = q_vector->wb_on_itr; 1440 u32 itr_val; 1441 1442 if (test_bit(ICE_DOWN, vsi->state)) 1443 return; 1444 1445 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1446 * make sure to catch any pending cleanups that might have been missed 1447 * due to interrupt state transition. If busy poll or poll isn't 1448 * enabled, then don't update ITR, and just enable the interrupt. 1449 */ 1450 if (!wb_en) { 1451 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1452 } else { 1453 q_vector->wb_on_itr = false; 1454 1455 /* do two things here with a single write. Set up the third ITR 1456 * index to be used for software interrupt moderation, and then 1457 * trigger a software interrupt with a rate limit of 20K on 1458 * software interrupts, this will help avoid high interrupt 1459 * loads due to frequently polling and exiting polling. 1460 */ 1461 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1462 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1463 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1464 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1465 } 1466 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1467 } 1468 1469 /** 1470 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1471 * @q_vector: q_vector to set WB_ON_ITR on 1472 * 1473 * We need to tell hardware to write-back completed descriptors even when 1474 * interrupts are disabled. Descriptors will be written back on cache line 1475 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1476 * descriptors may not be written back if they don't fill a cache line until 1477 * the next interrupt. 1478 * 1479 * This sets the write-back frequency to whatever was set previously for the 1480 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1481 * aren't meddling with the INTENA_M bit. 1482 */ 1483 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1484 { 1485 struct ice_vsi *vsi = q_vector->vsi; 1486 1487 /* already in wb_on_itr mode no need to change it */ 1488 if (q_vector->wb_on_itr) 1489 return; 1490 1491 /* use previously set ITR values for all of the ITR indices by 1492 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1493 * be static in non-adaptive mode (user configured) 1494 */ 1495 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1496 FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) | 1497 FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) | 1498 FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1)); 1499 1500 q_vector->wb_on_itr = true; 1501 } 1502 1503 /** 1504 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1505 * @napi: napi struct with our devices info in it 1506 * @budget: amount of work driver is allowed to do this pass, in packets 1507 * 1508 * This function will clean all queues associated with a q_vector. 1509 * 1510 * Returns the amount of work done 1511 */ 1512 int ice_napi_poll(struct napi_struct *napi, int budget) 1513 { 1514 struct ice_q_vector *q_vector = 1515 container_of(napi, struct ice_q_vector, napi); 1516 struct ice_tx_ring *tx_ring; 1517 struct ice_rx_ring *rx_ring; 1518 bool clean_complete = true; 1519 int budget_per_ring; 1520 int work_done = 0; 1521 1522 /* Since the actual Tx work is minimal, we can give the Tx a larger 1523 * budget and be more aggressive about cleaning up the Tx descriptors. 1524 */ 1525 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1526 bool wd; 1527 1528 if (tx_ring->xsk_pool) 1529 wd = ice_xmit_zc(tx_ring); 1530 else if (ice_ring_is_xdp(tx_ring)) 1531 wd = true; 1532 else 1533 wd = ice_clean_tx_irq(tx_ring, budget); 1534 1535 if (!wd) 1536 clean_complete = false; 1537 } 1538 1539 /* Handle case where we are called by netpoll with a budget of 0 */ 1540 if (unlikely(budget <= 0)) 1541 return budget; 1542 1543 /* normally we have 1 Rx ring per q_vector */ 1544 if (unlikely(q_vector->num_ring_rx > 1)) 1545 /* We attempt to distribute budget to each Rx queue fairly, but 1546 * don't allow the budget to go below 1 because that would exit 1547 * polling early. 1548 */ 1549 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1550 else 1551 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1552 budget_per_ring = budget; 1553 1554 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1555 int cleaned; 1556 1557 /* A dedicated path for zero-copy allows making a single 1558 * comparison in the irq context instead of many inside the 1559 * ice_clean_rx_irq function and makes the codebase cleaner. 1560 */ 1561 cleaned = rx_ring->xsk_pool ? 1562 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1563 ice_clean_rx_irq(rx_ring, budget_per_ring); 1564 work_done += cleaned; 1565 /* if we clean as many as budgeted, we must not be done */ 1566 if (cleaned >= budget_per_ring) 1567 clean_complete = false; 1568 } 1569 1570 /* If work not completed, return budget and polling will return */ 1571 if (!clean_complete) { 1572 /* Set the writeback on ITR so partial completions of 1573 * cache-lines will still continue even if we're polling. 1574 */ 1575 ice_set_wb_on_itr(q_vector); 1576 return budget; 1577 } 1578 1579 /* Exit the polling mode, but don't re-enable interrupts if stack might 1580 * poll us due to busy-polling 1581 */ 1582 if (napi_complete_done(napi, work_done)) { 1583 ice_net_dim(q_vector); 1584 ice_enable_interrupt(q_vector); 1585 } else { 1586 ice_set_wb_on_itr(q_vector); 1587 } 1588 1589 return min_t(int, work_done, budget - 1); 1590 } 1591 1592 /** 1593 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1594 * @tx_ring: the ring to be checked 1595 * @size: the size buffer we want to assure is available 1596 * 1597 * Returns -EBUSY if a stop is needed, else 0 1598 */ 1599 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1600 { 1601 netif_tx_stop_queue(txring_txq(tx_ring)); 1602 /* Memory barrier before checking head and tail */ 1603 smp_mb(); 1604 1605 /* Check again in a case another CPU has just made room available. */ 1606 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1607 return -EBUSY; 1608 1609 /* A reprieve! - use start_queue because it doesn't call schedule */ 1610 netif_tx_start_queue(txring_txq(tx_ring)); 1611 ++tx_ring->ring_stats->tx_stats.restart_q; 1612 return 0; 1613 } 1614 1615 /** 1616 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1617 * @tx_ring: the ring to be checked 1618 * @size: the size buffer we want to assure is available 1619 * 1620 * Returns 0 if stop is not needed 1621 */ 1622 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1623 { 1624 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1625 return 0; 1626 1627 return __ice_maybe_stop_tx(tx_ring, size); 1628 } 1629 1630 /** 1631 * ice_tx_map - Build the Tx descriptor 1632 * @tx_ring: ring to send buffer on 1633 * @first: first buffer info buffer to use 1634 * @off: pointer to struct that holds offload parameters 1635 * 1636 * This function loops over the skb data pointed to by *first 1637 * and gets a physical address for each memory location and programs 1638 * it and the length into the transmit descriptor. 1639 */ 1640 static void 1641 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1642 struct ice_tx_offload_params *off) 1643 { 1644 u64 td_offset, td_tag, td_cmd; 1645 u16 i = tx_ring->next_to_use; 1646 unsigned int data_len, size; 1647 struct ice_tx_desc *tx_desc; 1648 struct ice_tx_buf *tx_buf; 1649 struct sk_buff *skb; 1650 skb_frag_t *frag; 1651 dma_addr_t dma; 1652 bool kick; 1653 1654 td_tag = off->td_l2tag1; 1655 td_cmd = off->td_cmd; 1656 td_offset = off->td_offset; 1657 skb = first->skb; 1658 1659 data_len = skb->data_len; 1660 size = skb_headlen(skb); 1661 1662 tx_desc = ICE_TX_DESC(tx_ring, i); 1663 1664 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1665 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1666 td_tag = first->vid; 1667 } 1668 1669 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1670 1671 tx_buf = first; 1672 1673 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1674 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1675 1676 if (dma_mapping_error(tx_ring->dev, dma)) 1677 goto dma_error; 1678 1679 /* record length, and DMA address */ 1680 dma_unmap_len_set(tx_buf, len, size); 1681 dma_unmap_addr_set(tx_buf, dma, dma); 1682 1683 /* align size to end of page */ 1684 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1685 tx_desc->buf_addr = cpu_to_le64(dma); 1686 1687 /* account for data chunks larger than the hardware 1688 * can handle 1689 */ 1690 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1691 tx_desc->cmd_type_offset_bsz = 1692 ice_build_ctob(td_cmd, td_offset, max_data, 1693 td_tag); 1694 1695 tx_desc++; 1696 i++; 1697 1698 if (i == tx_ring->count) { 1699 tx_desc = ICE_TX_DESC(tx_ring, 0); 1700 i = 0; 1701 } 1702 1703 dma += max_data; 1704 size -= max_data; 1705 1706 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1707 tx_desc->buf_addr = cpu_to_le64(dma); 1708 } 1709 1710 if (likely(!data_len)) 1711 break; 1712 1713 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1714 size, td_tag); 1715 1716 tx_desc++; 1717 i++; 1718 1719 if (i == tx_ring->count) { 1720 tx_desc = ICE_TX_DESC(tx_ring, 0); 1721 i = 0; 1722 } 1723 1724 size = skb_frag_size(frag); 1725 data_len -= size; 1726 1727 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1728 DMA_TO_DEVICE); 1729 1730 tx_buf = &tx_ring->tx_buf[i]; 1731 tx_buf->type = ICE_TX_BUF_FRAG; 1732 } 1733 1734 /* record SW timestamp if HW timestamp is not available */ 1735 skb_tx_timestamp(first->skb); 1736 1737 i++; 1738 if (i == tx_ring->count) 1739 i = 0; 1740 1741 /* write last descriptor with RS and EOP bits */ 1742 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1743 tx_desc->cmd_type_offset_bsz = 1744 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1745 1746 /* Force memory writes to complete before letting h/w know there 1747 * are new descriptors to fetch. 1748 * 1749 * We also use this memory barrier to make certain all of the 1750 * status bits have been updated before next_to_watch is written. 1751 */ 1752 wmb(); 1753 1754 /* set next_to_watch value indicating a packet is present */ 1755 first->next_to_watch = tx_desc; 1756 1757 tx_ring->next_to_use = i; 1758 1759 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1760 1761 /* notify HW of packet */ 1762 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1763 netdev_xmit_more()); 1764 if (kick) 1765 /* notify HW of packet */ 1766 writel(i, tx_ring->tail); 1767 1768 return; 1769 1770 dma_error: 1771 /* clear DMA mappings for failed tx_buf map */ 1772 for (;;) { 1773 tx_buf = &tx_ring->tx_buf[i]; 1774 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1775 if (tx_buf == first) 1776 break; 1777 if (i == 0) 1778 i = tx_ring->count; 1779 i--; 1780 } 1781 1782 tx_ring->next_to_use = i; 1783 } 1784 1785 /** 1786 * ice_tx_csum - Enable Tx checksum offloads 1787 * @first: pointer to the first descriptor 1788 * @off: pointer to struct that holds offload parameters 1789 * 1790 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1791 */ 1792 static 1793 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1794 { 1795 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1796 struct sk_buff *skb = first->skb; 1797 union { 1798 struct iphdr *v4; 1799 struct ipv6hdr *v6; 1800 unsigned char *hdr; 1801 } ip; 1802 union { 1803 struct tcphdr *tcp; 1804 unsigned char *hdr; 1805 } l4; 1806 __be16 frag_off, protocol; 1807 unsigned char *exthdr; 1808 u32 offset, cmd = 0; 1809 u8 l4_proto = 0; 1810 1811 if (skb->ip_summed != CHECKSUM_PARTIAL) 1812 return 0; 1813 1814 protocol = vlan_get_protocol(skb); 1815 1816 if (eth_p_mpls(protocol)) { 1817 ip.hdr = skb_inner_network_header(skb); 1818 l4.hdr = skb_checksum_start(skb); 1819 } else { 1820 ip.hdr = skb_network_header(skb); 1821 l4.hdr = skb_transport_header(skb); 1822 } 1823 1824 /* compute outer L2 header size */ 1825 l2_len = ip.hdr - skb->data; 1826 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1827 1828 /* set the tx_flags to indicate the IP protocol type. this is 1829 * required so that checksum header computation below is accurate. 1830 */ 1831 if (ip.v4->version == 4) 1832 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1833 else if (ip.v6->version == 6) 1834 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1835 1836 if (skb->encapsulation) { 1837 bool gso_ena = false; 1838 u32 tunnel = 0; 1839 1840 /* define outer network header type */ 1841 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1842 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1843 ICE_TX_CTX_EIPT_IPV4 : 1844 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1845 l4_proto = ip.v4->protocol; 1846 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1847 int ret; 1848 1849 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1850 exthdr = ip.hdr + sizeof(*ip.v6); 1851 l4_proto = ip.v6->nexthdr; 1852 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1853 &l4_proto, &frag_off); 1854 if (ret < 0) 1855 return -1; 1856 } 1857 1858 /* define outer transport */ 1859 switch (l4_proto) { 1860 case IPPROTO_UDP: 1861 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1862 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1863 break; 1864 case IPPROTO_GRE: 1865 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1866 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1867 break; 1868 case IPPROTO_IPIP: 1869 case IPPROTO_IPV6: 1870 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1871 l4.hdr = skb_inner_network_header(skb); 1872 break; 1873 default: 1874 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1875 return -1; 1876 1877 skb_checksum_help(skb); 1878 return 0; 1879 } 1880 1881 /* compute outer L3 header size */ 1882 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1883 ICE_TXD_CTX_QW0_EIPLEN_S; 1884 1885 /* switch IP header pointer from outer to inner header */ 1886 ip.hdr = skb_inner_network_header(skb); 1887 1888 /* compute tunnel header size */ 1889 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1890 ICE_TXD_CTX_QW0_NATLEN_S; 1891 1892 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1893 /* indicate if we need to offload outer UDP header */ 1894 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1895 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1896 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1897 1898 /* record tunnel offload values */ 1899 off->cd_tunnel_params |= tunnel; 1900 1901 /* set DTYP=1 to indicate that it's an Tx context descriptor 1902 * in IPsec tunnel mode with Tx offloads in Quad word 1 1903 */ 1904 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1905 1906 /* switch L4 header pointer from outer to inner */ 1907 l4.hdr = skb_inner_transport_header(skb); 1908 l4_proto = 0; 1909 1910 /* reset type as we transition from outer to inner headers */ 1911 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1912 if (ip.v4->version == 4) 1913 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1914 if (ip.v6->version == 6) 1915 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1916 } 1917 1918 /* Enable IP checksum offloads */ 1919 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1920 l4_proto = ip.v4->protocol; 1921 /* the stack computes the IP header already, the only time we 1922 * need the hardware to recompute it is in the case of TSO. 1923 */ 1924 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1925 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1926 else 1927 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1928 1929 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1930 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1931 exthdr = ip.hdr + sizeof(*ip.v6); 1932 l4_proto = ip.v6->nexthdr; 1933 if (l4.hdr != exthdr) 1934 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1935 &frag_off); 1936 } else { 1937 return -1; 1938 } 1939 1940 /* compute inner L3 header size */ 1941 l3_len = l4.hdr - ip.hdr; 1942 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1943 1944 /* Enable L4 checksum offloads */ 1945 switch (l4_proto) { 1946 case IPPROTO_TCP: 1947 /* enable checksum offloads */ 1948 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1949 l4_len = l4.tcp->doff; 1950 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1951 break; 1952 case IPPROTO_UDP: 1953 /* enable UDP checksum offload */ 1954 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1955 l4_len = (sizeof(struct udphdr) >> 2); 1956 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1957 break; 1958 case IPPROTO_SCTP: 1959 /* enable SCTP checksum offload */ 1960 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1961 l4_len = sizeof(struct sctphdr) >> 2; 1962 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1963 break; 1964 1965 default: 1966 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1967 return -1; 1968 skb_checksum_help(skb); 1969 return 0; 1970 } 1971 1972 off->td_cmd |= cmd; 1973 off->td_offset |= offset; 1974 return 1; 1975 } 1976 1977 /** 1978 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1979 * @tx_ring: ring to send buffer on 1980 * @first: pointer to struct ice_tx_buf 1981 * 1982 * Checks the skb and set up correspondingly several generic transmit flags 1983 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1984 */ 1985 static void 1986 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1987 { 1988 struct sk_buff *skb = first->skb; 1989 1990 /* nothing left to do, software offloaded VLAN */ 1991 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1992 return; 1993 1994 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1995 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1996 * VLAN offloads exclusively so we only care about the VLAN ID here 1997 */ 1998 if (skb_vlan_tag_present(skb)) { 1999 first->vid = skb_vlan_tag_get(skb); 2000 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 2001 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 2002 else 2003 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2004 } 2005 2006 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2007 } 2008 2009 /** 2010 * ice_tso - computes mss and TSO length to prepare for TSO 2011 * @first: pointer to struct ice_tx_buf 2012 * @off: pointer to struct that holds offload parameters 2013 * 2014 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2015 */ 2016 static 2017 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2018 { 2019 struct sk_buff *skb = first->skb; 2020 union { 2021 struct iphdr *v4; 2022 struct ipv6hdr *v6; 2023 unsigned char *hdr; 2024 } ip; 2025 union { 2026 struct tcphdr *tcp; 2027 struct udphdr *udp; 2028 unsigned char *hdr; 2029 } l4; 2030 u64 cd_mss, cd_tso_len; 2031 __be16 protocol; 2032 u32 paylen; 2033 u8 l4_start; 2034 int err; 2035 2036 if (skb->ip_summed != CHECKSUM_PARTIAL) 2037 return 0; 2038 2039 if (!skb_is_gso(skb)) 2040 return 0; 2041 2042 err = skb_cow_head(skb, 0); 2043 if (err < 0) 2044 return err; 2045 2046 protocol = vlan_get_protocol(skb); 2047 2048 if (eth_p_mpls(protocol)) 2049 ip.hdr = skb_inner_network_header(skb); 2050 else 2051 ip.hdr = skb_network_header(skb); 2052 l4.hdr = skb_checksum_start(skb); 2053 2054 /* initialize outer IP header fields */ 2055 if (ip.v4->version == 4) { 2056 ip.v4->tot_len = 0; 2057 ip.v4->check = 0; 2058 } else { 2059 ip.v6->payload_len = 0; 2060 } 2061 2062 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2063 SKB_GSO_GRE_CSUM | 2064 SKB_GSO_IPXIP4 | 2065 SKB_GSO_IPXIP6 | 2066 SKB_GSO_UDP_TUNNEL | 2067 SKB_GSO_UDP_TUNNEL_CSUM)) { 2068 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2069 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2070 l4.udp->len = 0; 2071 2072 /* determine offset of outer transport header */ 2073 l4_start = (u8)(l4.hdr - skb->data); 2074 2075 /* remove payload length from outer checksum */ 2076 paylen = skb->len - l4_start; 2077 csum_replace_by_diff(&l4.udp->check, 2078 (__force __wsum)htonl(paylen)); 2079 } 2080 2081 /* reset pointers to inner headers */ 2082 ip.hdr = skb_inner_network_header(skb); 2083 l4.hdr = skb_inner_transport_header(skb); 2084 2085 /* initialize inner IP header fields */ 2086 if (ip.v4->version == 4) { 2087 ip.v4->tot_len = 0; 2088 ip.v4->check = 0; 2089 } else { 2090 ip.v6->payload_len = 0; 2091 } 2092 } 2093 2094 /* determine offset of transport header */ 2095 l4_start = (u8)(l4.hdr - skb->data); 2096 2097 /* remove payload length from checksum */ 2098 paylen = skb->len - l4_start; 2099 2100 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2101 csum_replace_by_diff(&l4.udp->check, 2102 (__force __wsum)htonl(paylen)); 2103 /* compute length of UDP segmentation header */ 2104 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2105 } else { 2106 csum_replace_by_diff(&l4.tcp->check, 2107 (__force __wsum)htonl(paylen)); 2108 /* compute length of TCP segmentation header */ 2109 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2110 } 2111 2112 /* update gso_segs and bytecount */ 2113 first->gso_segs = skb_shinfo(skb)->gso_segs; 2114 first->bytecount += (first->gso_segs - 1) * off->header_len; 2115 2116 cd_tso_len = skb->len - off->header_len; 2117 cd_mss = skb_shinfo(skb)->gso_size; 2118 2119 /* record cdesc_qw1 with TSO parameters */ 2120 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2121 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2122 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2123 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2124 first->tx_flags |= ICE_TX_FLAGS_TSO; 2125 return 1; 2126 } 2127 2128 /** 2129 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2130 * @size: transmit request size in bytes 2131 * 2132 * Due to hardware alignment restrictions (4K alignment), we need to 2133 * assume that we can have no more than 12K of data per descriptor, even 2134 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2135 * Thus, we need to divide by 12K. But division is slow! Instead, 2136 * we decompose the operation into shifts and one relatively cheap 2137 * multiply operation. 2138 * 2139 * To divide by 12K, we first divide by 4K, then divide by 3: 2140 * To divide by 4K, shift right by 12 bits 2141 * To divide by 3, multiply by 85, then divide by 256 2142 * (Divide by 256 is done by shifting right by 8 bits) 2143 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2144 * 3, we'll underestimate near each multiple of 12K. This is actually more 2145 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2146 * segment. For our purposes this is accurate out to 1M which is orders of 2147 * magnitude greater than our largest possible GSO size. 2148 * 2149 * This would then be implemented as: 2150 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2151 * 2152 * Since multiplication and division are commutative, we can reorder 2153 * operations into: 2154 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2155 */ 2156 static unsigned int ice_txd_use_count(unsigned int size) 2157 { 2158 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2159 } 2160 2161 /** 2162 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2163 * @skb: send buffer 2164 * 2165 * Returns number of data descriptors needed for this skb. 2166 */ 2167 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2168 { 2169 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2170 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2171 unsigned int count = 0, size = skb_headlen(skb); 2172 2173 for (;;) { 2174 count += ice_txd_use_count(size); 2175 2176 if (!nr_frags--) 2177 break; 2178 2179 size = skb_frag_size(frag++); 2180 } 2181 2182 return count; 2183 } 2184 2185 /** 2186 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2187 * @skb: send buffer 2188 * 2189 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2190 * and so we need to figure out the cases where we need to linearize the skb. 2191 * 2192 * For TSO we need to count the TSO header and segment payload separately. 2193 * As such we need to check cases where we have 7 fragments or more as we 2194 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2195 * the segment payload in the first descriptor, and another 7 for the 2196 * fragments. 2197 */ 2198 static bool __ice_chk_linearize(struct sk_buff *skb) 2199 { 2200 const skb_frag_t *frag, *stale; 2201 int nr_frags, sum; 2202 2203 /* no need to check if number of frags is less than 7 */ 2204 nr_frags = skb_shinfo(skb)->nr_frags; 2205 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2206 return false; 2207 2208 /* We need to walk through the list and validate that each group 2209 * of 6 fragments totals at least gso_size. 2210 */ 2211 nr_frags -= ICE_MAX_BUF_TXD - 2; 2212 frag = &skb_shinfo(skb)->frags[0]; 2213 2214 /* Initialize size to the negative value of gso_size minus 1. We 2215 * use this as the worst case scenario in which the frag ahead 2216 * of us only provides one byte which is why we are limited to 6 2217 * descriptors for a single transmit as the header and previous 2218 * fragment are already consuming 2 descriptors. 2219 */ 2220 sum = 1 - skb_shinfo(skb)->gso_size; 2221 2222 /* Add size of frags 0 through 4 to create our initial sum */ 2223 sum += skb_frag_size(frag++); 2224 sum += skb_frag_size(frag++); 2225 sum += skb_frag_size(frag++); 2226 sum += skb_frag_size(frag++); 2227 sum += skb_frag_size(frag++); 2228 2229 /* Walk through fragments adding latest fragment, testing it, and 2230 * then removing stale fragments from the sum. 2231 */ 2232 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2233 int stale_size = skb_frag_size(stale); 2234 2235 sum += skb_frag_size(frag++); 2236 2237 /* The stale fragment may present us with a smaller 2238 * descriptor than the actual fragment size. To account 2239 * for that we need to remove all the data on the front and 2240 * figure out what the remainder would be in the last 2241 * descriptor associated with the fragment. 2242 */ 2243 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2244 int align_pad = -(skb_frag_off(stale)) & 2245 (ICE_MAX_READ_REQ_SIZE - 1); 2246 2247 sum -= align_pad; 2248 stale_size -= align_pad; 2249 2250 do { 2251 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2252 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2253 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2254 } 2255 2256 /* if sum is negative we failed to make sufficient progress */ 2257 if (sum < 0) 2258 return true; 2259 2260 if (!nr_frags--) 2261 break; 2262 2263 sum -= stale_size; 2264 } 2265 2266 return false; 2267 } 2268 2269 /** 2270 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2271 * @skb: send buffer 2272 * @count: number of buffers used 2273 * 2274 * Note: Our HW can't scatter-gather more than 8 fragments to build 2275 * a packet on the wire and so we need to figure out the cases where we 2276 * need to linearize the skb. 2277 */ 2278 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2279 { 2280 /* Both TSO and single send will work if count is less than 8 */ 2281 if (likely(count < ICE_MAX_BUF_TXD)) 2282 return false; 2283 2284 if (skb_is_gso(skb)) 2285 return __ice_chk_linearize(skb); 2286 2287 /* we can support up to 8 data buffers for a single send */ 2288 return count != ICE_MAX_BUF_TXD; 2289 } 2290 2291 /** 2292 * ice_tstamp - set up context descriptor for hardware timestamp 2293 * @tx_ring: pointer to the Tx ring to send buffer on 2294 * @skb: pointer to the SKB we're sending 2295 * @first: Tx buffer 2296 * @off: Tx offload parameters 2297 */ 2298 static void 2299 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2300 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2301 { 2302 s8 idx; 2303 2304 /* only timestamp the outbound packet if the user has requested it */ 2305 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2306 return; 2307 2308 /* Tx timestamps cannot be sampled when doing TSO */ 2309 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2310 return; 2311 2312 /* Grab an open timestamp slot */ 2313 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2314 if (idx < 0) { 2315 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2316 return; 2317 } 2318 2319 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2320 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2321 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2322 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2323 } 2324 2325 /** 2326 * ice_xmit_frame_ring - Sends buffer on Tx ring 2327 * @skb: send buffer 2328 * @tx_ring: ring to send buffer on 2329 * 2330 * Returns NETDEV_TX_OK if sent, else an error code 2331 */ 2332 static netdev_tx_t 2333 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2334 { 2335 struct ice_tx_offload_params offload = { 0 }; 2336 struct ice_vsi *vsi = tx_ring->vsi; 2337 struct ice_tx_buf *first; 2338 struct ethhdr *eth; 2339 unsigned int count; 2340 int tso, csum; 2341 2342 ice_trace(xmit_frame_ring, tx_ring, skb); 2343 2344 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2345 goto out_drop; 2346 2347 count = ice_xmit_desc_count(skb); 2348 if (ice_chk_linearize(skb, count)) { 2349 if (__skb_linearize(skb)) 2350 goto out_drop; 2351 count = ice_txd_use_count(skb->len); 2352 tx_ring->ring_stats->tx_stats.tx_linearize++; 2353 } 2354 2355 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2356 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2357 * + 4 desc gap to avoid the cache line where head is, 2358 * + 1 desc for context descriptor, 2359 * otherwise try next time 2360 */ 2361 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2362 ICE_DESCS_FOR_CTX_DESC)) { 2363 tx_ring->ring_stats->tx_stats.tx_busy++; 2364 return NETDEV_TX_BUSY; 2365 } 2366 2367 /* prefetch for bql data which is infrequently used */ 2368 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2369 2370 offload.tx_ring = tx_ring; 2371 2372 /* record the location of the first descriptor for this packet */ 2373 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2374 first->skb = skb; 2375 first->type = ICE_TX_BUF_SKB; 2376 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2377 first->gso_segs = 1; 2378 first->tx_flags = 0; 2379 2380 /* prepare the VLAN tagging flags for Tx */ 2381 ice_tx_prepare_vlan_flags(tx_ring, first); 2382 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2383 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2384 (ICE_TX_CTX_DESC_IL2TAG2 << 2385 ICE_TXD_CTX_QW1_CMD_S)); 2386 offload.cd_l2tag2 = first->vid; 2387 } 2388 2389 /* set up TSO offload */ 2390 tso = ice_tso(first, &offload); 2391 if (tso < 0) 2392 goto out_drop; 2393 2394 /* always set up Tx checksum offload */ 2395 csum = ice_tx_csum(first, &offload); 2396 if (csum < 0) 2397 goto out_drop; 2398 2399 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2400 eth = (struct ethhdr *)skb_mac_header(skb); 2401 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2402 eth->h_proto == htons(ETH_P_LLDP)) && 2403 vsi->type == ICE_VSI_PF && 2404 vsi->port_info->qos_cfg.is_sw_lldp)) 2405 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2406 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2407 ICE_TXD_CTX_QW1_CMD_S); 2408 2409 ice_tstamp(tx_ring, skb, first, &offload); 2410 if (ice_is_switchdev_running(vsi->back)) 2411 ice_eswitch_set_target_vsi(skb, &offload); 2412 2413 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2414 struct ice_tx_ctx_desc *cdesc; 2415 u16 i = tx_ring->next_to_use; 2416 2417 /* grab the next descriptor */ 2418 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2419 i++; 2420 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2421 2422 /* setup context descriptor */ 2423 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2424 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2425 cdesc->rsvd = cpu_to_le16(0); 2426 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2427 } 2428 2429 ice_tx_map(tx_ring, first, &offload); 2430 return NETDEV_TX_OK; 2431 2432 out_drop: 2433 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2434 dev_kfree_skb_any(skb); 2435 return NETDEV_TX_OK; 2436 } 2437 2438 /** 2439 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2440 * @skb: send buffer 2441 * @netdev: network interface device structure 2442 * 2443 * Returns NETDEV_TX_OK if sent, else an error code 2444 */ 2445 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2446 { 2447 struct ice_netdev_priv *np = netdev_priv(netdev); 2448 struct ice_vsi *vsi = np->vsi; 2449 struct ice_tx_ring *tx_ring; 2450 2451 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2452 2453 /* hardware can't handle really short frames, hardware padding works 2454 * beyond this point 2455 */ 2456 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2457 return NETDEV_TX_OK; 2458 2459 return ice_xmit_frame_ring(skb, tx_ring); 2460 } 2461 2462 /** 2463 * ice_get_dscp_up - return the UP/TC value for a SKB 2464 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2465 * @skb: SKB to query for info to determine UP/TC 2466 * 2467 * This function is to only be called when the PF is in L3 DSCP PFC mode 2468 */ 2469 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2470 { 2471 u8 dscp = 0; 2472 2473 if (skb->protocol == htons(ETH_P_IP)) 2474 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2475 else if (skb->protocol == htons(ETH_P_IPV6)) 2476 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2477 2478 return dcbcfg->dscp_map[dscp]; 2479 } 2480 2481 u16 2482 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2483 struct net_device *sb_dev) 2484 { 2485 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2486 struct ice_dcbx_cfg *dcbcfg; 2487 2488 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2489 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2490 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2491 2492 return netdev_pick_tx(netdev, skb, sb_dev); 2493 } 2494 2495 /** 2496 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2497 * @tx_ring: tx_ring to clean 2498 */ 2499 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2500 { 2501 struct ice_vsi *vsi = tx_ring->vsi; 2502 s16 i = tx_ring->next_to_clean; 2503 int budget = ICE_DFLT_IRQ_WORK; 2504 struct ice_tx_desc *tx_desc; 2505 struct ice_tx_buf *tx_buf; 2506 2507 tx_buf = &tx_ring->tx_buf[i]; 2508 tx_desc = ICE_TX_DESC(tx_ring, i); 2509 i -= tx_ring->count; 2510 2511 do { 2512 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2513 2514 /* if next_to_watch is not set then there is no pending work */ 2515 if (!eop_desc) 2516 break; 2517 2518 /* prevent any other reads prior to eop_desc */ 2519 smp_rmb(); 2520 2521 /* if the descriptor isn't done, no work to do */ 2522 if (!(eop_desc->cmd_type_offset_bsz & 2523 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2524 break; 2525 2526 /* clear next_to_watch to prevent false hangs */ 2527 tx_buf->next_to_watch = NULL; 2528 tx_desc->buf_addr = 0; 2529 tx_desc->cmd_type_offset_bsz = 0; 2530 2531 /* move past filter desc */ 2532 tx_buf++; 2533 tx_desc++; 2534 i++; 2535 if (unlikely(!i)) { 2536 i -= tx_ring->count; 2537 tx_buf = tx_ring->tx_buf; 2538 tx_desc = ICE_TX_DESC(tx_ring, 0); 2539 } 2540 2541 /* unmap the data header */ 2542 if (dma_unmap_len(tx_buf, len)) 2543 dma_unmap_single(tx_ring->dev, 2544 dma_unmap_addr(tx_buf, dma), 2545 dma_unmap_len(tx_buf, len), 2546 DMA_TO_DEVICE); 2547 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2548 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2549 2550 /* clear next_to_watch to prevent false hangs */ 2551 tx_buf->type = ICE_TX_BUF_EMPTY; 2552 tx_buf->tx_flags = 0; 2553 tx_buf->next_to_watch = NULL; 2554 dma_unmap_len_set(tx_buf, len, 0); 2555 tx_desc->buf_addr = 0; 2556 tx_desc->cmd_type_offset_bsz = 0; 2557 2558 /* move past eop_desc for start of next FD desc */ 2559 tx_buf++; 2560 tx_desc++; 2561 i++; 2562 if (unlikely(!i)) { 2563 i -= tx_ring->count; 2564 tx_buf = tx_ring->tx_buf; 2565 tx_desc = ICE_TX_DESC(tx_ring, 0); 2566 } 2567 2568 budget--; 2569 } while (likely(budget)); 2570 2571 i += tx_ring->count; 2572 tx_ring->next_to_clean = i; 2573 2574 /* re-enable interrupt if needed */ 2575 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2576 } 2577