xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision c41226654550b0a8aa75e91ce0a1cdb6ce2316ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(__ICE_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->skb) {
379 		dev_kfree_skb(rx_ring->skb);
380 		rx_ring->skb = NULL;
381 	}
382 
383 	if (rx_ring->xsk_pool) {
384 		ice_xsk_clean_rx_ring(rx_ring);
385 		goto rx_skip_free;
386 	}
387 
388 	/* Free all the Rx ring sk_buffs */
389 	for (i = 0; i < rx_ring->count; i++) {
390 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
391 
392 		if (!rx_buf->page)
393 			continue;
394 
395 		/* Invalidate cache lines that may have been written to by
396 		 * device so that we avoid corrupting memory.
397 		 */
398 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
399 					      rx_buf->page_offset,
400 					      rx_ring->rx_buf_len,
401 					      DMA_FROM_DEVICE);
402 
403 		/* free resources associated with mapping */
404 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
405 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
406 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
407 
408 		rx_buf->page = NULL;
409 		rx_buf->page_offset = 0;
410 	}
411 
412 rx_skip_free:
413 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
414 
415 	/* Zero out the descriptor ring */
416 	memset(rx_ring->desc, 0, rx_ring->size);
417 
418 	rx_ring->next_to_alloc = 0;
419 	rx_ring->next_to_clean = 0;
420 	rx_ring->next_to_use = 0;
421 }
422 
423 /**
424  * ice_free_rx_ring - Free Rx resources
425  * @rx_ring: ring to clean the resources from
426  *
427  * Free all receive software resources
428  */
429 void ice_free_rx_ring(struct ice_ring *rx_ring)
430 {
431 	ice_clean_rx_ring(rx_ring);
432 	if (rx_ring->vsi->type == ICE_VSI_PF)
433 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
434 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
435 	rx_ring->xdp_prog = NULL;
436 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
437 	rx_ring->rx_buf = NULL;
438 
439 	if (rx_ring->desc) {
440 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
441 				   rx_ring->desc, rx_ring->dma);
442 		rx_ring->desc = NULL;
443 	}
444 }
445 
446 /**
447  * ice_rx_offset - Return expected offset into page to access data
448  * @rx_ring: Ring we are requesting offset of
449  *
450  * Returns the offset value for ring into the data buffer.
451  */
452 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
453 {
454 	if (ice_ring_uses_build_skb(rx_ring))
455 		return ICE_SKB_PAD;
456 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
457 		return XDP_PACKET_HEADROOM;
458 
459 	return 0;
460 }
461 
462 /**
463  * ice_setup_rx_ring - Allocate the Rx descriptors
464  * @rx_ring: the Rx ring to set up
465  *
466  * Return 0 on success, negative on error
467  */
468 int ice_setup_rx_ring(struct ice_ring *rx_ring)
469 {
470 	struct device *dev = rx_ring->dev;
471 
472 	if (!dev)
473 		return -ENOMEM;
474 
475 	/* warn if we are about to overwrite the pointer */
476 	WARN_ON(rx_ring->rx_buf);
477 	rx_ring->rx_buf =
478 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
479 			     GFP_KERNEL);
480 	if (!rx_ring->rx_buf)
481 		return -ENOMEM;
482 
483 	/* round up to nearest page */
484 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
485 			      PAGE_SIZE);
486 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
487 					    GFP_KERNEL);
488 	if (!rx_ring->desc) {
489 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
490 			rx_ring->size);
491 		goto err;
492 	}
493 
494 	rx_ring->next_to_use = 0;
495 	rx_ring->next_to_clean = 0;
496 	rx_ring->rx_offset = ice_rx_offset(rx_ring);
497 
498 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
499 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
500 
501 	if (rx_ring->vsi->type == ICE_VSI_PF &&
502 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
503 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
504 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
505 			goto err;
506 	return 0;
507 
508 err:
509 	devm_kfree(dev, rx_ring->rx_buf);
510 	rx_ring->rx_buf = NULL;
511 	return -ENOMEM;
512 }
513 
514 static unsigned int
515 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
516 {
517 	unsigned int truesize;
518 
519 #if (PAGE_SIZE < 8192)
520 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
521 #else
522 	truesize = rx_ring->rx_offset ?
523 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
524 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
525 		SKB_DATA_ALIGN(size);
526 #endif
527 	return truesize;
528 }
529 
530 /**
531  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
532  * @rx_ring: Rx ring
533  * @xdp: xdp_buff used as input to the XDP program
534  * @xdp_prog: XDP program to run
535  *
536  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
537  */
538 static int
539 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
540 	    struct bpf_prog *xdp_prog)
541 {
542 	struct ice_ring *xdp_ring;
543 	int err;
544 	u32 act;
545 
546 	act = bpf_prog_run_xdp(xdp_prog, xdp);
547 	switch (act) {
548 	case XDP_PASS:
549 		return ICE_XDP_PASS;
550 	case XDP_TX:
551 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
552 		return ice_xmit_xdp_buff(xdp, xdp_ring);
553 	case XDP_REDIRECT:
554 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
555 		return !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
556 	default:
557 		bpf_warn_invalid_xdp_action(act);
558 		fallthrough;
559 	case XDP_ABORTED:
560 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
561 		fallthrough;
562 	case XDP_DROP:
563 		return ICE_XDP_CONSUMED;
564 	}
565 }
566 
567 /**
568  * ice_xdp_xmit - submit packets to XDP ring for transmission
569  * @dev: netdev
570  * @n: number of XDP frames to be transmitted
571  * @frames: XDP frames to be transmitted
572  * @flags: transmit flags
573  *
574  * Returns number of frames successfully sent. Failed frames
575  * will be free'ed by XDP core.
576  * For error cases, a negative errno code is returned and no-frames
577  * are transmitted (caller must handle freeing frames).
578  */
579 int
580 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
581 	     u32 flags)
582 {
583 	struct ice_netdev_priv *np = netdev_priv(dev);
584 	unsigned int queue_index = smp_processor_id();
585 	struct ice_vsi *vsi = np->vsi;
586 	struct ice_ring *xdp_ring;
587 	int nxmit = 0, i;
588 
589 	if (test_bit(__ICE_DOWN, vsi->state))
590 		return -ENETDOWN;
591 
592 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
593 		return -ENXIO;
594 
595 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
596 		return -EINVAL;
597 
598 	xdp_ring = vsi->xdp_rings[queue_index];
599 	for (i = 0; i < n; i++) {
600 		struct xdp_frame *xdpf = frames[i];
601 		int err;
602 
603 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
604 		if (err != ICE_XDP_TX)
605 			break;
606 		nxmit++;
607 	}
608 
609 	if (unlikely(flags & XDP_XMIT_FLUSH))
610 		ice_xdp_ring_update_tail(xdp_ring);
611 
612 	return nxmit;
613 }
614 
615 /**
616  * ice_alloc_mapped_page - recycle or make a new page
617  * @rx_ring: ring to use
618  * @bi: rx_buf struct to modify
619  *
620  * Returns true if the page was successfully allocated or
621  * reused.
622  */
623 static bool
624 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
625 {
626 	struct page *page = bi->page;
627 	dma_addr_t dma;
628 
629 	/* since we are recycling buffers we should seldom need to alloc */
630 	if (likely(page))
631 		return true;
632 
633 	/* alloc new page for storage */
634 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
635 	if (unlikely(!page)) {
636 		rx_ring->rx_stats.alloc_page_failed++;
637 		return false;
638 	}
639 
640 	/* map page for use */
641 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
642 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
643 
644 	/* if mapping failed free memory back to system since
645 	 * there isn't much point in holding memory we can't use
646 	 */
647 	if (dma_mapping_error(rx_ring->dev, dma)) {
648 		__free_pages(page, ice_rx_pg_order(rx_ring));
649 		rx_ring->rx_stats.alloc_page_failed++;
650 		return false;
651 	}
652 
653 	bi->dma = dma;
654 	bi->page = page;
655 	bi->page_offset = rx_ring->rx_offset;
656 	page_ref_add(page, USHRT_MAX - 1);
657 	bi->pagecnt_bias = USHRT_MAX;
658 
659 	return true;
660 }
661 
662 /**
663  * ice_alloc_rx_bufs - Replace used receive buffers
664  * @rx_ring: ring to place buffers on
665  * @cleaned_count: number of buffers to replace
666  *
667  * Returns false if all allocations were successful, true if any fail. Returning
668  * true signals to the caller that we didn't replace cleaned_count buffers and
669  * there is more work to do.
670  *
671  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
672  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
673  * multiple tail writes per call.
674  */
675 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
676 {
677 	union ice_32b_rx_flex_desc *rx_desc;
678 	u16 ntu = rx_ring->next_to_use;
679 	struct ice_rx_buf *bi;
680 
681 	/* do nothing if no valid netdev defined */
682 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
683 	    !cleaned_count)
684 		return false;
685 
686 	/* get the Rx descriptor and buffer based on next_to_use */
687 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
688 	bi = &rx_ring->rx_buf[ntu];
689 
690 	do {
691 		/* if we fail here, we have work remaining */
692 		if (!ice_alloc_mapped_page(rx_ring, bi))
693 			break;
694 
695 		/* sync the buffer for use by the device */
696 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
697 						 bi->page_offset,
698 						 rx_ring->rx_buf_len,
699 						 DMA_FROM_DEVICE);
700 
701 		/* Refresh the desc even if buffer_addrs didn't change
702 		 * because each write-back erases this info.
703 		 */
704 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
705 
706 		rx_desc++;
707 		bi++;
708 		ntu++;
709 		if (unlikely(ntu == rx_ring->count)) {
710 			rx_desc = ICE_RX_DESC(rx_ring, 0);
711 			bi = rx_ring->rx_buf;
712 			ntu = 0;
713 		}
714 
715 		/* clear the status bits for the next_to_use descriptor */
716 		rx_desc->wb.status_error0 = 0;
717 
718 		cleaned_count--;
719 	} while (cleaned_count);
720 
721 	if (rx_ring->next_to_use != ntu)
722 		ice_release_rx_desc(rx_ring, ntu);
723 
724 	return !!cleaned_count;
725 }
726 
727 /**
728  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
729  * @rx_buf: Rx buffer to adjust
730  * @size: Size of adjustment
731  *
732  * Update the offset within page so that Rx buf will be ready to be reused.
733  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
734  * so the second half of page assigned to Rx buffer will be used, otherwise
735  * the offset is moved by "size" bytes
736  */
737 static void
738 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
739 {
740 #if (PAGE_SIZE < 8192)
741 	/* flip page offset to other buffer */
742 	rx_buf->page_offset ^= size;
743 #else
744 	/* move offset up to the next cache line */
745 	rx_buf->page_offset += size;
746 #endif
747 }
748 
749 /**
750  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
751  * @rx_buf: buffer containing the page
752  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
753  *
754  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
755  * which will assign the current buffer to the buffer that next_to_alloc is
756  * pointing to; otherwise, the DMA mapping needs to be destroyed and
757  * page freed
758  */
759 static bool
760 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
761 {
762 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
763 	struct page *page = rx_buf->page;
764 
765 	/* avoid re-using remote and pfmemalloc pages */
766 	if (!dev_page_is_reusable(page))
767 		return false;
768 
769 #if (PAGE_SIZE < 8192)
770 	/* if we are only owner of page we can reuse it */
771 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
772 		return false;
773 #else
774 #define ICE_LAST_OFFSET \
775 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
776 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
777 		return false;
778 #endif /* PAGE_SIZE < 8192) */
779 
780 	/* If we have drained the page fragment pool we need to update
781 	 * the pagecnt_bias and page count so that we fully restock the
782 	 * number of references the driver holds.
783 	 */
784 	if (unlikely(pagecnt_bias == 1)) {
785 		page_ref_add(page, USHRT_MAX - 1);
786 		rx_buf->pagecnt_bias = USHRT_MAX;
787 	}
788 
789 	return true;
790 }
791 
792 /**
793  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
794  * @rx_ring: Rx descriptor ring to transact packets on
795  * @rx_buf: buffer containing page to add
796  * @skb: sk_buff to place the data into
797  * @size: packet length from rx_desc
798  *
799  * This function will add the data contained in rx_buf->page to the skb.
800  * It will just attach the page as a frag to the skb.
801  * The function will then update the page offset.
802  */
803 static void
804 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
805 		struct sk_buff *skb, unsigned int size)
806 {
807 #if (PAGE_SIZE >= 8192)
808 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
809 #else
810 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
811 #endif
812 
813 	if (!size)
814 		return;
815 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
816 			rx_buf->page_offset, size, truesize);
817 
818 	/* page is being used so we must update the page offset */
819 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
820 }
821 
822 /**
823  * ice_reuse_rx_page - page flip buffer and store it back on the ring
824  * @rx_ring: Rx descriptor ring to store buffers on
825  * @old_buf: donor buffer to have page reused
826  *
827  * Synchronizes page for reuse by the adapter
828  */
829 static void
830 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
831 {
832 	u16 nta = rx_ring->next_to_alloc;
833 	struct ice_rx_buf *new_buf;
834 
835 	new_buf = &rx_ring->rx_buf[nta];
836 
837 	/* update, and store next to alloc */
838 	nta++;
839 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
840 
841 	/* Transfer page from old buffer to new buffer.
842 	 * Move each member individually to avoid possible store
843 	 * forwarding stalls and unnecessary copy of skb.
844 	 */
845 	new_buf->dma = old_buf->dma;
846 	new_buf->page = old_buf->page;
847 	new_buf->page_offset = old_buf->page_offset;
848 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
849 }
850 
851 /**
852  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
853  * @rx_ring: Rx descriptor ring to transact packets on
854  * @size: size of buffer to add to skb
855  * @rx_buf_pgcnt: rx_buf page refcount
856  *
857  * This function will pull an Rx buffer from the ring and synchronize it
858  * for use by the CPU.
859  */
860 static struct ice_rx_buf *
861 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
862 	       int *rx_buf_pgcnt)
863 {
864 	struct ice_rx_buf *rx_buf;
865 
866 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
867 	*rx_buf_pgcnt =
868 #if (PAGE_SIZE < 8192)
869 		page_count(rx_buf->page);
870 #else
871 		0;
872 #endif
873 	prefetchw(rx_buf->page);
874 
875 	if (!size)
876 		return rx_buf;
877 	/* we are reusing so sync this buffer for CPU use */
878 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
879 				      rx_buf->page_offset, size,
880 				      DMA_FROM_DEVICE);
881 
882 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
883 	rx_buf->pagecnt_bias--;
884 
885 	return rx_buf;
886 }
887 
888 /**
889  * ice_build_skb - Build skb around an existing buffer
890  * @rx_ring: Rx descriptor ring to transact packets on
891  * @rx_buf: Rx buffer to pull data from
892  * @xdp: xdp_buff pointing to the data
893  *
894  * This function builds an skb around an existing Rx buffer, taking care
895  * to set up the skb correctly and avoid any memcpy overhead.
896  */
897 static struct sk_buff *
898 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
899 	      struct xdp_buff *xdp)
900 {
901 	u8 metasize = xdp->data - xdp->data_meta;
902 #if (PAGE_SIZE < 8192)
903 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
904 #else
905 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
906 				SKB_DATA_ALIGN(xdp->data_end -
907 					       xdp->data_hard_start);
908 #endif
909 	struct sk_buff *skb;
910 
911 	/* Prefetch first cache line of first page. If xdp->data_meta
912 	 * is unused, this points exactly as xdp->data, otherwise we
913 	 * likely have a consumer accessing first few bytes of meta
914 	 * data, and then actual data.
915 	 */
916 	net_prefetch(xdp->data_meta);
917 	/* build an skb around the page buffer */
918 	skb = build_skb(xdp->data_hard_start, truesize);
919 	if (unlikely(!skb))
920 		return NULL;
921 
922 	/* must to record Rx queue, otherwise OS features such as
923 	 * symmetric queue won't work
924 	 */
925 	skb_record_rx_queue(skb, rx_ring->q_index);
926 
927 	/* update pointers within the skb to store the data */
928 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
929 	__skb_put(skb, xdp->data_end - xdp->data);
930 	if (metasize)
931 		skb_metadata_set(skb, metasize);
932 
933 	/* buffer is used by skb, update page_offset */
934 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
935 
936 	return skb;
937 }
938 
939 /**
940  * ice_construct_skb - Allocate skb and populate it
941  * @rx_ring: Rx descriptor ring to transact packets on
942  * @rx_buf: Rx buffer to pull data from
943  * @xdp: xdp_buff pointing to the data
944  *
945  * This function allocates an skb. It then populates it with the page
946  * data from the current receive descriptor, taking care to set up the
947  * skb correctly.
948  */
949 static struct sk_buff *
950 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
951 		  struct xdp_buff *xdp)
952 {
953 	unsigned int size = xdp->data_end - xdp->data;
954 	unsigned int headlen;
955 	struct sk_buff *skb;
956 
957 	/* prefetch first cache line of first page */
958 	net_prefetch(xdp->data);
959 
960 	/* allocate a skb to store the frags */
961 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
962 			       GFP_ATOMIC | __GFP_NOWARN);
963 	if (unlikely(!skb))
964 		return NULL;
965 
966 	skb_record_rx_queue(skb, rx_ring->q_index);
967 	/* Determine available headroom for copy */
968 	headlen = size;
969 	if (headlen > ICE_RX_HDR_SIZE)
970 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
971 
972 	/* align pull length to size of long to optimize memcpy performance */
973 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
974 							 sizeof(long)));
975 
976 	/* if we exhaust the linear part then add what is left as a frag */
977 	size -= headlen;
978 	if (size) {
979 #if (PAGE_SIZE >= 8192)
980 		unsigned int truesize = SKB_DATA_ALIGN(size);
981 #else
982 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
983 #endif
984 		skb_add_rx_frag(skb, 0, rx_buf->page,
985 				rx_buf->page_offset + headlen, size, truesize);
986 		/* buffer is used by skb, update page_offset */
987 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
988 	} else {
989 		/* buffer is unused, reset bias back to rx_buf; data was copied
990 		 * onto skb's linear part so there's no need for adjusting
991 		 * page offset and we can reuse this buffer as-is
992 		 */
993 		rx_buf->pagecnt_bias++;
994 	}
995 
996 	return skb;
997 }
998 
999 /**
1000  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1001  * @rx_ring: Rx descriptor ring to transact packets on
1002  * @rx_buf: Rx buffer to pull data from
1003  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1004  *
1005  * This function will update next_to_clean and then clean up the contents
1006  * of the rx_buf. It will either recycle the buffer or unmap it and free
1007  * the associated resources.
1008  */
1009 static void
1010 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1011 	       int rx_buf_pgcnt)
1012 {
1013 	u16 ntc = rx_ring->next_to_clean + 1;
1014 
1015 	/* fetch, update, and store next to clean */
1016 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1017 	rx_ring->next_to_clean = ntc;
1018 
1019 	if (!rx_buf)
1020 		return;
1021 
1022 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1023 		/* hand second half of page back to the ring */
1024 		ice_reuse_rx_page(rx_ring, rx_buf);
1025 	} else {
1026 		/* we are not reusing the buffer so unmap it */
1027 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1028 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1029 				     ICE_RX_DMA_ATTR);
1030 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1031 	}
1032 
1033 	/* clear contents of buffer_info */
1034 	rx_buf->page = NULL;
1035 }
1036 
1037 /**
1038  * ice_is_non_eop - process handling of non-EOP buffers
1039  * @rx_ring: Rx ring being processed
1040  * @rx_desc: Rx descriptor for current buffer
1041  *
1042  * If the buffer is an EOP buffer, this function exits returning false,
1043  * otherwise return true indicating that this is in fact a non-EOP buffer.
1044  */
1045 static bool
1046 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1047 {
1048 	/* if we are the last buffer then there is nothing else to do */
1049 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1050 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1051 		return false;
1052 
1053 	rx_ring->rx_stats.non_eop_descs++;
1054 
1055 	return true;
1056 }
1057 
1058 /**
1059  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1060  * @rx_ring: Rx descriptor ring to transact packets on
1061  * @budget: Total limit on number of packets to process
1062  *
1063  * This function provides a "bounce buffer" approach to Rx interrupt
1064  * processing. The advantage to this is that on systems that have
1065  * expensive overhead for IOMMU access this provides a means of avoiding
1066  * it by maintaining the mapping of the page to the system.
1067  *
1068  * Returns amount of work completed
1069  */
1070 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1071 {
1072 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1073 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1074 	unsigned int offset = rx_ring->rx_offset;
1075 	unsigned int xdp_res, xdp_xmit = 0;
1076 	struct sk_buff *skb = rx_ring->skb;
1077 	struct bpf_prog *xdp_prog = NULL;
1078 	struct xdp_buff xdp;
1079 	bool failure;
1080 
1081 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1082 #if (PAGE_SIZE < 8192)
1083 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1084 #endif
1085 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1086 
1087 	/* start the loop to process Rx packets bounded by 'budget' */
1088 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1089 		union ice_32b_rx_flex_desc *rx_desc;
1090 		struct ice_rx_buf *rx_buf;
1091 		unsigned char *hard_start;
1092 		unsigned int size;
1093 		u16 stat_err_bits;
1094 		int rx_buf_pgcnt;
1095 		u16 vlan_tag = 0;
1096 		u8 rx_ptype;
1097 
1098 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1099 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1100 
1101 		/* status_error_len will always be zero for unused descriptors
1102 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1103 		 * which is always zero because packet split isn't used, if the
1104 		 * hardware wrote DD then it will be non-zero
1105 		 */
1106 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1107 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1108 			break;
1109 
1110 		/* This memory barrier is needed to keep us from reading
1111 		 * any other fields out of the rx_desc until we know the
1112 		 * DD bit is set.
1113 		 */
1114 		dma_rmb();
1115 
1116 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1117 			ice_put_rx_buf(rx_ring, NULL, 0);
1118 			cleaned_count++;
1119 			continue;
1120 		}
1121 
1122 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1123 			ICE_RX_FLX_DESC_PKT_LEN_M;
1124 
1125 		/* retrieve a buffer from the ring */
1126 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1127 
1128 		if (!size) {
1129 			xdp.data = NULL;
1130 			xdp.data_end = NULL;
1131 			xdp.data_hard_start = NULL;
1132 			xdp.data_meta = NULL;
1133 			goto construct_skb;
1134 		}
1135 
1136 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1137 			     offset;
1138 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1139 #if (PAGE_SIZE > 4096)
1140 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1141 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1142 #endif
1143 
1144 		rcu_read_lock();
1145 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1146 		if (!xdp_prog) {
1147 			rcu_read_unlock();
1148 			goto construct_skb;
1149 		}
1150 
1151 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1152 		rcu_read_unlock();
1153 		if (!xdp_res)
1154 			goto construct_skb;
1155 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1156 			xdp_xmit |= xdp_res;
1157 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1158 		} else {
1159 			rx_buf->pagecnt_bias++;
1160 		}
1161 		total_rx_bytes += size;
1162 		total_rx_pkts++;
1163 
1164 		cleaned_count++;
1165 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1166 		continue;
1167 construct_skb:
1168 		if (skb) {
1169 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1170 		} else if (likely(xdp.data)) {
1171 			if (ice_ring_uses_build_skb(rx_ring))
1172 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1173 			else
1174 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1175 		}
1176 		/* exit if we failed to retrieve a buffer */
1177 		if (!skb) {
1178 			rx_ring->rx_stats.alloc_buf_failed++;
1179 			if (rx_buf)
1180 				rx_buf->pagecnt_bias++;
1181 			break;
1182 		}
1183 
1184 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1185 		cleaned_count++;
1186 
1187 		/* skip if it is NOP desc */
1188 		if (ice_is_non_eop(rx_ring, rx_desc))
1189 			continue;
1190 
1191 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1192 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1193 			dev_kfree_skb_any(skb);
1194 			continue;
1195 		}
1196 
1197 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1198 		if (ice_test_staterr(rx_desc, stat_err_bits))
1199 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1200 
1201 		/* pad the skb if needed, to make a valid ethernet frame */
1202 		if (eth_skb_pad(skb)) {
1203 			skb = NULL;
1204 			continue;
1205 		}
1206 
1207 		/* probably a little skewed due to removing CRC */
1208 		total_rx_bytes += skb->len;
1209 
1210 		/* populate checksum, VLAN, and protocol */
1211 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1212 			ICE_RX_FLEX_DESC_PTYPE_M;
1213 
1214 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1215 
1216 		/* send completed skb up the stack */
1217 		ice_receive_skb(rx_ring, skb, vlan_tag);
1218 		skb = NULL;
1219 
1220 		/* update budget accounting */
1221 		total_rx_pkts++;
1222 	}
1223 
1224 	/* return up to cleaned_count buffers to hardware */
1225 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1226 
1227 	if (xdp_prog)
1228 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1229 	rx_ring->skb = skb;
1230 
1231 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1232 
1233 	/* guarantee a trip back through this routine if there was a failure */
1234 	return failure ? budget : (int)total_rx_pkts;
1235 }
1236 
1237 /**
1238  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1239  * @port_info: port_info structure containing the current link speed
1240  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1241  * @itr: ITR value to update
1242  *
1243  * Calculate how big of an increment should be applied to the ITR value passed
1244  * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1245  * link speed.
1246  *
1247  * The following is a calculation derived from:
1248  *  wmem_default / (size + overhead) = desired_pkts_per_int
1249  *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1250  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1251  *
1252  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1253  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1254  * formula down to:
1255  *
1256  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1257  * ITR = -------------------------------------------- * --------------
1258  *			     rate			pkt_size + 640
1259  */
1260 static unsigned int
1261 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1262 				 unsigned int avg_pkt_size,
1263 				 unsigned int itr)
1264 {
1265 	switch (port_info->phy.link_info.link_speed) {
1266 	case ICE_AQ_LINK_SPEED_100GB:
1267 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1268 				    avg_pkt_size + 640);
1269 		break;
1270 	case ICE_AQ_LINK_SPEED_50GB:
1271 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1272 				    avg_pkt_size + 640);
1273 		break;
1274 	case ICE_AQ_LINK_SPEED_40GB:
1275 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1276 				    avg_pkt_size + 640);
1277 		break;
1278 	case ICE_AQ_LINK_SPEED_25GB:
1279 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1280 				    avg_pkt_size + 640);
1281 		break;
1282 	case ICE_AQ_LINK_SPEED_20GB:
1283 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1284 				    avg_pkt_size + 640);
1285 		break;
1286 	case ICE_AQ_LINK_SPEED_10GB:
1287 	default:
1288 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1289 				    avg_pkt_size + 640);
1290 		break;
1291 	}
1292 
1293 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1294 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1295 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1296 	}
1297 
1298 	return itr;
1299 }
1300 
1301 /**
1302  * ice_update_itr - update the adaptive ITR value based on statistics
1303  * @q_vector: structure containing interrupt and ring information
1304  * @rc: structure containing ring performance data
1305  *
1306  * Stores a new ITR value based on packets and byte
1307  * counts during the last interrupt.  The advantage of per interrupt
1308  * computation is faster updates and more accurate ITR for the current
1309  * traffic pattern.  Constants in this function were computed
1310  * based on theoretical maximum wire speed and thresholds were set based
1311  * on testing data as well as attempting to minimize response time
1312  * while increasing bulk throughput.
1313  */
1314 static void
1315 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1316 {
1317 	unsigned long next_update = jiffies;
1318 	unsigned int packets, bytes, itr;
1319 	bool container_is_rx;
1320 
1321 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1322 		return;
1323 
1324 	/* If itr_countdown is set it means we programmed an ITR within
1325 	 * the last 4 interrupt cycles. This has a side effect of us
1326 	 * potentially firing an early interrupt. In order to work around
1327 	 * this we need to throw out any data received for a few
1328 	 * interrupts following the update.
1329 	 */
1330 	if (q_vector->itr_countdown) {
1331 		itr = rc->target_itr;
1332 		goto clear_counts;
1333 	}
1334 
1335 	container_is_rx = (&q_vector->rx == rc);
1336 	/* For Rx we want to push the delay up and default to low latency.
1337 	 * for Tx we want to pull the delay down and default to high latency.
1338 	 */
1339 	itr = container_is_rx ?
1340 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1341 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1342 
1343 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1344 	 * that either packets are coming in so slow there hasn't been
1345 	 * any work, or that there is so much work that NAPI is dealing
1346 	 * with interrupt moderation and we don't need to do anything.
1347 	 */
1348 	if (time_after(next_update, rc->next_update))
1349 		goto clear_counts;
1350 
1351 	prefetch(q_vector->vsi->port_info);
1352 
1353 	packets = rc->total_pkts;
1354 	bytes = rc->total_bytes;
1355 
1356 	if (container_is_rx) {
1357 		/* If Rx there are 1 to 4 packets and bytes are less than
1358 		 * 9000 assume insufficient data to use bulk rate limiting
1359 		 * approach unless Tx is already in bulk rate limiting. We
1360 		 * are likely latency driven.
1361 		 */
1362 		if (packets && packets < 4 && bytes < 9000 &&
1363 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1364 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1365 			goto adjust_by_size_and_speed;
1366 		}
1367 	} else if (packets < 4) {
1368 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1369 		 * bulk mode and we are receiving 4 or fewer packets just
1370 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1371 		 * that the Rx can relax.
1372 		 */
1373 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1374 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1375 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1376 			goto clear_counts;
1377 	} else if (packets > 32) {
1378 		/* If we have processed over 32 packets in a single interrupt
1379 		 * for Tx assume we need to switch over to "bulk" mode.
1380 		 */
1381 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1382 	}
1383 
1384 	/* We have no packets to actually measure against. This means
1385 	 * either one of the other queues on this vector is active or
1386 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1387 	 *
1388 	 * Between 4 and 56 we can assume that our current interrupt delay
1389 	 * is only slightly too low. As such we should increase it by a small
1390 	 * fixed amount.
1391 	 */
1392 	if (packets < 56) {
1393 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1394 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1395 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1396 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1397 		}
1398 		goto clear_counts;
1399 	}
1400 
1401 	if (packets <= 256) {
1402 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1403 		itr &= ICE_ITR_MASK;
1404 
1405 		/* Between 56 and 112 is our "goldilocks" zone where we are
1406 		 * working out "just right". Just report that our current
1407 		 * ITR is good for us.
1408 		 */
1409 		if (packets <= 112)
1410 			goto clear_counts;
1411 
1412 		/* If packet count is 128 or greater we are likely looking
1413 		 * at a slight overrun of the delay we want. Try halving
1414 		 * our delay to see if that will cut the number of packets
1415 		 * in half per interrupt.
1416 		 */
1417 		itr >>= 1;
1418 		itr &= ICE_ITR_MASK;
1419 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1420 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1421 
1422 		goto clear_counts;
1423 	}
1424 
1425 	/* The paths below assume we are dealing with a bulk ITR since
1426 	 * number of packets is greater than 256. We are just going to have
1427 	 * to compute a value and try to bring the count under control,
1428 	 * though for smaller packet sizes there isn't much we can do as
1429 	 * NAPI polling will likely be kicking in sooner rather than later.
1430 	 */
1431 	itr = ICE_ITR_ADAPTIVE_BULK;
1432 
1433 adjust_by_size_and_speed:
1434 
1435 	/* based on checks above packets cannot be 0 so division is safe */
1436 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1437 					       bytes / packets, itr);
1438 
1439 clear_counts:
1440 	/* write back value */
1441 	rc->target_itr = itr;
1442 
1443 	/* next update should occur within next jiffy */
1444 	rc->next_update = next_update + 1;
1445 
1446 	rc->total_bytes = 0;
1447 	rc->total_pkts = 0;
1448 }
1449 
1450 /**
1451  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1452  * @itr_idx: interrupt throttling index
1453  * @itr: interrupt throttling value in usecs
1454  */
1455 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1456 {
1457 	/* The ITR value is reported in microseconds, and the register value is
1458 	 * recorded in 2 microsecond units. For this reason we only need to
1459 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1460 	 * granularity as a shift instead of division. The mask makes sure the
1461 	 * ITR value is never odd so we don't accidentally write into the field
1462 	 * prior to the ITR field.
1463 	 */
1464 	itr &= ICE_ITR_MASK;
1465 
1466 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1467 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1468 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1469 }
1470 
1471 /* The act of updating the ITR will cause it to immediately trigger. In order
1472  * to prevent this from throwing off adaptive update statistics we defer the
1473  * update so that it can only happen so often. So after either Tx or Rx are
1474  * updated we make the adaptive scheme wait until either the ITR completely
1475  * expires via the next_update expiration or we have been through at least
1476  * 3 interrupts.
1477  */
1478 #define ITR_COUNTDOWN_START 3
1479 
1480 /**
1481  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1482  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1483  */
1484 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1485 {
1486 	struct ice_ring_container *tx = &q_vector->tx;
1487 	struct ice_ring_container *rx = &q_vector->rx;
1488 	struct ice_vsi *vsi = q_vector->vsi;
1489 	u32 itr_val;
1490 
1491 	/* when exiting WB_ON_ITR just reset the countdown and let ITR
1492 	 * resume it's normal "interrupts-enabled" path
1493 	 */
1494 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1495 		q_vector->itr_countdown = 0;
1496 
1497 	/* This will do nothing if dynamic updates are not enabled */
1498 	ice_update_itr(q_vector, tx);
1499 	ice_update_itr(q_vector, rx);
1500 
1501 	/* This block of logic allows us to get away with only updating
1502 	 * one ITR value with each interrupt. The idea is to perform a
1503 	 * pseudo-lazy update with the following criteria.
1504 	 *
1505 	 * 1. Rx is given higher priority than Tx if both are in same state
1506 	 * 2. If we must reduce an ITR that is given highest priority.
1507 	 * 3. We then give priority to increasing ITR based on amount.
1508 	 */
1509 	if (rx->target_itr < rx->current_itr) {
1510 		/* Rx ITR needs to be reduced, this is highest priority */
1511 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1512 		rx->current_itr = rx->target_itr;
1513 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1514 	} else if ((tx->target_itr < tx->current_itr) ||
1515 		   ((rx->target_itr - rx->current_itr) <
1516 		    (tx->target_itr - tx->current_itr))) {
1517 		/* Tx ITR needs to be reduced, this is second priority
1518 		 * Tx ITR needs to be increased more than Rx, fourth priority
1519 		 */
1520 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1521 		tx->current_itr = tx->target_itr;
1522 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1523 	} else if (rx->current_itr != rx->target_itr) {
1524 		/* Rx ITR needs to be increased, third priority */
1525 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1526 		rx->current_itr = rx->target_itr;
1527 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1528 	} else {
1529 		/* Still have to re-enable the interrupts */
1530 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1531 		if (q_vector->itr_countdown)
1532 			q_vector->itr_countdown--;
1533 	}
1534 
1535 	if (!test_bit(__ICE_DOWN, vsi->state))
1536 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1537 }
1538 
1539 /**
1540  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1541  * @q_vector: q_vector to set WB_ON_ITR on
1542  *
1543  * We need to tell hardware to write-back completed descriptors even when
1544  * interrupts are disabled. Descriptors will be written back on cache line
1545  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1546  * descriptors may not be written back if they don't fill a cache line until
1547  * the next interrupt.
1548  *
1549  * This sets the write-back frequency to whatever was set previously for the
1550  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1551  * aren't meddling with the INTENA_M bit.
1552  */
1553 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1554 {
1555 	struct ice_vsi *vsi = q_vector->vsi;
1556 
1557 	/* already in wb_on_itr mode no need to change it */
1558 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1559 		return;
1560 
1561 	/* use previously set ITR values for all of the ITR indices by
1562 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1563 	 * be static in non-adaptive mode (user configured)
1564 	 */
1565 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1566 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1567 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1568 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1569 
1570 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1571 }
1572 
1573 /**
1574  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1575  * @napi: napi struct with our devices info in it
1576  * @budget: amount of work driver is allowed to do this pass, in packets
1577  *
1578  * This function will clean all queues associated with a q_vector.
1579  *
1580  * Returns the amount of work done
1581  */
1582 int ice_napi_poll(struct napi_struct *napi, int budget)
1583 {
1584 	struct ice_q_vector *q_vector =
1585 				container_of(napi, struct ice_q_vector, napi);
1586 	bool clean_complete = true;
1587 	struct ice_ring *ring;
1588 	int budget_per_ring;
1589 	int work_done = 0;
1590 
1591 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1592 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1593 	 */
1594 	ice_for_each_ring(ring, q_vector->tx) {
1595 		bool wd = ring->xsk_pool ?
1596 			  ice_clean_tx_irq_zc(ring, budget) :
1597 			  ice_clean_tx_irq(ring, budget);
1598 
1599 		if (!wd)
1600 			clean_complete = false;
1601 	}
1602 
1603 	/* Handle case where we are called by netpoll with a budget of 0 */
1604 	if (unlikely(budget <= 0))
1605 		return budget;
1606 
1607 	/* normally we have 1 Rx ring per q_vector */
1608 	if (unlikely(q_vector->num_ring_rx > 1))
1609 		/* We attempt to distribute budget to each Rx queue fairly, but
1610 		 * don't allow the budget to go below 1 because that would exit
1611 		 * polling early.
1612 		 */
1613 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1614 	else
1615 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1616 		budget_per_ring = budget;
1617 
1618 	ice_for_each_ring(ring, q_vector->rx) {
1619 		int cleaned;
1620 
1621 		/* A dedicated path for zero-copy allows making a single
1622 		 * comparison in the irq context instead of many inside the
1623 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1624 		 */
1625 		cleaned = ring->xsk_pool ?
1626 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1627 			  ice_clean_rx_irq(ring, budget_per_ring);
1628 		work_done += cleaned;
1629 		/* if we clean as many as budgeted, we must not be done */
1630 		if (cleaned >= budget_per_ring)
1631 			clean_complete = false;
1632 	}
1633 
1634 	/* If work not completed, return budget and polling will return */
1635 	if (!clean_complete) {
1636 		/* Set the writeback on ITR so partial completions of
1637 		 * cache-lines will still continue even if we're polling.
1638 		 */
1639 		ice_set_wb_on_itr(q_vector);
1640 		return budget;
1641 	}
1642 
1643 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1644 	 * poll us due to busy-polling
1645 	 */
1646 	if (likely(napi_complete_done(napi, work_done)))
1647 		ice_update_ena_itr(q_vector);
1648 	else
1649 		ice_set_wb_on_itr(q_vector);
1650 
1651 	return min_t(int, work_done, budget - 1);
1652 }
1653 
1654 /**
1655  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1656  * @tx_ring: the ring to be checked
1657  * @size: the size buffer we want to assure is available
1658  *
1659  * Returns -EBUSY if a stop is needed, else 0
1660  */
1661 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1662 {
1663 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1664 	/* Memory barrier before checking head and tail */
1665 	smp_mb();
1666 
1667 	/* Check again in a case another CPU has just made room available. */
1668 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1669 		return -EBUSY;
1670 
1671 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1672 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1673 	++tx_ring->tx_stats.restart_q;
1674 	return 0;
1675 }
1676 
1677 /**
1678  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1679  * @tx_ring: the ring to be checked
1680  * @size:    the size buffer we want to assure is available
1681  *
1682  * Returns 0 if stop is not needed
1683  */
1684 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1685 {
1686 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1687 		return 0;
1688 
1689 	return __ice_maybe_stop_tx(tx_ring, size);
1690 }
1691 
1692 /**
1693  * ice_tx_map - Build the Tx descriptor
1694  * @tx_ring: ring to send buffer on
1695  * @first: first buffer info buffer to use
1696  * @off: pointer to struct that holds offload parameters
1697  *
1698  * This function loops over the skb data pointed to by *first
1699  * and gets a physical address for each memory location and programs
1700  * it and the length into the transmit descriptor.
1701  */
1702 static void
1703 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1704 	   struct ice_tx_offload_params *off)
1705 {
1706 	u64 td_offset, td_tag, td_cmd;
1707 	u16 i = tx_ring->next_to_use;
1708 	unsigned int data_len, size;
1709 	struct ice_tx_desc *tx_desc;
1710 	struct ice_tx_buf *tx_buf;
1711 	struct sk_buff *skb;
1712 	skb_frag_t *frag;
1713 	dma_addr_t dma;
1714 
1715 	td_tag = off->td_l2tag1;
1716 	td_cmd = off->td_cmd;
1717 	td_offset = off->td_offset;
1718 	skb = first->skb;
1719 
1720 	data_len = skb->data_len;
1721 	size = skb_headlen(skb);
1722 
1723 	tx_desc = ICE_TX_DESC(tx_ring, i);
1724 
1725 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1726 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1727 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1728 			  ICE_TX_FLAGS_VLAN_S;
1729 	}
1730 
1731 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1732 
1733 	tx_buf = first;
1734 
1735 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1736 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1737 
1738 		if (dma_mapping_error(tx_ring->dev, dma))
1739 			goto dma_error;
1740 
1741 		/* record length, and DMA address */
1742 		dma_unmap_len_set(tx_buf, len, size);
1743 		dma_unmap_addr_set(tx_buf, dma, dma);
1744 
1745 		/* align size to end of page */
1746 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1747 		tx_desc->buf_addr = cpu_to_le64(dma);
1748 
1749 		/* account for data chunks larger than the hardware
1750 		 * can handle
1751 		 */
1752 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1753 			tx_desc->cmd_type_offset_bsz =
1754 				ice_build_ctob(td_cmd, td_offset, max_data,
1755 					       td_tag);
1756 
1757 			tx_desc++;
1758 			i++;
1759 
1760 			if (i == tx_ring->count) {
1761 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1762 				i = 0;
1763 			}
1764 
1765 			dma += max_data;
1766 			size -= max_data;
1767 
1768 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1769 			tx_desc->buf_addr = cpu_to_le64(dma);
1770 		}
1771 
1772 		if (likely(!data_len))
1773 			break;
1774 
1775 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1776 							      size, td_tag);
1777 
1778 		tx_desc++;
1779 		i++;
1780 
1781 		if (i == tx_ring->count) {
1782 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1783 			i = 0;
1784 		}
1785 
1786 		size = skb_frag_size(frag);
1787 		data_len -= size;
1788 
1789 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1790 				       DMA_TO_DEVICE);
1791 
1792 		tx_buf = &tx_ring->tx_buf[i];
1793 	}
1794 
1795 	/* record bytecount for BQL */
1796 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1797 
1798 	/* record SW timestamp if HW timestamp is not available */
1799 	skb_tx_timestamp(first->skb);
1800 
1801 	i++;
1802 	if (i == tx_ring->count)
1803 		i = 0;
1804 
1805 	/* write last descriptor with RS and EOP bits */
1806 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1807 	tx_desc->cmd_type_offset_bsz =
1808 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1809 
1810 	/* Force memory writes to complete before letting h/w know there
1811 	 * are new descriptors to fetch.
1812 	 *
1813 	 * We also use this memory barrier to make certain all of the
1814 	 * status bits have been updated before next_to_watch is written.
1815 	 */
1816 	wmb();
1817 
1818 	/* set next_to_watch value indicating a packet is present */
1819 	first->next_to_watch = tx_desc;
1820 
1821 	tx_ring->next_to_use = i;
1822 
1823 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1824 
1825 	/* notify HW of packet */
1826 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1827 		writel(i, tx_ring->tail);
1828 
1829 	return;
1830 
1831 dma_error:
1832 	/* clear DMA mappings for failed tx_buf map */
1833 	for (;;) {
1834 		tx_buf = &tx_ring->tx_buf[i];
1835 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1836 		if (tx_buf == first)
1837 			break;
1838 		if (i == 0)
1839 			i = tx_ring->count;
1840 		i--;
1841 	}
1842 
1843 	tx_ring->next_to_use = i;
1844 }
1845 
1846 /**
1847  * ice_tx_csum - Enable Tx checksum offloads
1848  * @first: pointer to the first descriptor
1849  * @off: pointer to struct that holds offload parameters
1850  *
1851  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1852  */
1853 static
1854 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1855 {
1856 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1857 	struct sk_buff *skb = first->skb;
1858 	union {
1859 		struct iphdr *v4;
1860 		struct ipv6hdr *v6;
1861 		unsigned char *hdr;
1862 	} ip;
1863 	union {
1864 		struct tcphdr *tcp;
1865 		unsigned char *hdr;
1866 	} l4;
1867 	__be16 frag_off, protocol;
1868 	unsigned char *exthdr;
1869 	u32 offset, cmd = 0;
1870 	u8 l4_proto = 0;
1871 
1872 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1873 		return 0;
1874 
1875 	ip.hdr = skb_network_header(skb);
1876 	l4.hdr = skb_transport_header(skb);
1877 
1878 	/* compute outer L2 header size */
1879 	l2_len = ip.hdr - skb->data;
1880 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1881 
1882 	protocol = vlan_get_protocol(skb);
1883 
1884 	if (protocol == htons(ETH_P_IP))
1885 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1886 	else if (protocol == htons(ETH_P_IPV6))
1887 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1888 
1889 	if (skb->encapsulation) {
1890 		bool gso_ena = false;
1891 		u32 tunnel = 0;
1892 
1893 		/* define outer network header type */
1894 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1895 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1896 				  ICE_TX_CTX_EIPT_IPV4 :
1897 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1898 			l4_proto = ip.v4->protocol;
1899 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1900 			int ret;
1901 
1902 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1903 			exthdr = ip.hdr + sizeof(*ip.v6);
1904 			l4_proto = ip.v6->nexthdr;
1905 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1906 					       &l4_proto, &frag_off);
1907 			if (ret < 0)
1908 				return -1;
1909 		}
1910 
1911 		/* define outer transport */
1912 		switch (l4_proto) {
1913 		case IPPROTO_UDP:
1914 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1915 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1916 			break;
1917 		case IPPROTO_GRE:
1918 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1919 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1920 			break;
1921 		case IPPROTO_IPIP:
1922 		case IPPROTO_IPV6:
1923 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1924 			l4.hdr = skb_inner_network_header(skb);
1925 			break;
1926 		default:
1927 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1928 				return -1;
1929 
1930 			skb_checksum_help(skb);
1931 			return 0;
1932 		}
1933 
1934 		/* compute outer L3 header size */
1935 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1936 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1937 
1938 		/* switch IP header pointer from outer to inner header */
1939 		ip.hdr = skb_inner_network_header(skb);
1940 
1941 		/* compute tunnel header size */
1942 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1943 			   ICE_TXD_CTX_QW0_NATLEN_S;
1944 
1945 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1946 		/* indicate if we need to offload outer UDP header */
1947 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1948 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1949 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1950 
1951 		/* record tunnel offload values */
1952 		off->cd_tunnel_params |= tunnel;
1953 
1954 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1955 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1956 		 */
1957 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1958 
1959 		/* switch L4 header pointer from outer to inner */
1960 		l4.hdr = skb_inner_transport_header(skb);
1961 		l4_proto = 0;
1962 
1963 		/* reset type as we transition from outer to inner headers */
1964 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1965 		if (ip.v4->version == 4)
1966 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1967 		if (ip.v6->version == 6)
1968 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1969 	}
1970 
1971 	/* Enable IP checksum offloads */
1972 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1973 		l4_proto = ip.v4->protocol;
1974 		/* the stack computes the IP header already, the only time we
1975 		 * need the hardware to recompute it is in the case of TSO.
1976 		 */
1977 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1978 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1979 		else
1980 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1981 
1982 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1983 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1984 		exthdr = ip.hdr + sizeof(*ip.v6);
1985 		l4_proto = ip.v6->nexthdr;
1986 		if (l4.hdr != exthdr)
1987 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1988 					 &frag_off);
1989 	} else {
1990 		return -1;
1991 	}
1992 
1993 	/* compute inner L3 header size */
1994 	l3_len = l4.hdr - ip.hdr;
1995 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1996 
1997 	/* Enable L4 checksum offloads */
1998 	switch (l4_proto) {
1999 	case IPPROTO_TCP:
2000 		/* enable checksum offloads */
2001 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2002 		l4_len = l4.tcp->doff;
2003 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2004 		break;
2005 	case IPPROTO_UDP:
2006 		/* enable UDP checksum offload */
2007 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2008 		l4_len = (sizeof(struct udphdr) >> 2);
2009 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2010 		break;
2011 	case IPPROTO_SCTP:
2012 		/* enable SCTP checksum offload */
2013 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2014 		l4_len = sizeof(struct sctphdr) >> 2;
2015 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2016 		break;
2017 
2018 	default:
2019 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2020 			return -1;
2021 		skb_checksum_help(skb);
2022 		return 0;
2023 	}
2024 
2025 	off->td_cmd |= cmd;
2026 	off->td_offset |= offset;
2027 	return 1;
2028 }
2029 
2030 /**
2031  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2032  * @tx_ring: ring to send buffer on
2033  * @first: pointer to struct ice_tx_buf
2034  *
2035  * Checks the skb and set up correspondingly several generic transmit flags
2036  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2037  */
2038 static void
2039 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2040 {
2041 	struct sk_buff *skb = first->skb;
2042 
2043 	/* nothing left to do, software offloaded VLAN */
2044 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2045 		return;
2046 
2047 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2048 	 * insertion for 802.1AD is not supported
2049 	 */
2050 	if (skb_vlan_tag_present(skb)) {
2051 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2052 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2053 	}
2054 
2055 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2056 }
2057 
2058 /**
2059  * ice_tso - computes mss and TSO length to prepare for TSO
2060  * @first: pointer to struct ice_tx_buf
2061  * @off: pointer to struct that holds offload parameters
2062  *
2063  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2064  */
2065 static
2066 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2067 {
2068 	struct sk_buff *skb = first->skb;
2069 	union {
2070 		struct iphdr *v4;
2071 		struct ipv6hdr *v6;
2072 		unsigned char *hdr;
2073 	} ip;
2074 	union {
2075 		struct tcphdr *tcp;
2076 		struct udphdr *udp;
2077 		unsigned char *hdr;
2078 	} l4;
2079 	u64 cd_mss, cd_tso_len;
2080 	u32 paylen;
2081 	u8 l4_start;
2082 	int err;
2083 
2084 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2085 		return 0;
2086 
2087 	if (!skb_is_gso(skb))
2088 		return 0;
2089 
2090 	err = skb_cow_head(skb, 0);
2091 	if (err < 0)
2092 		return err;
2093 
2094 	/* cppcheck-suppress unreadVariable */
2095 	ip.hdr = skb_network_header(skb);
2096 	l4.hdr = skb_transport_header(skb);
2097 
2098 	/* initialize outer IP header fields */
2099 	if (ip.v4->version == 4) {
2100 		ip.v4->tot_len = 0;
2101 		ip.v4->check = 0;
2102 	} else {
2103 		ip.v6->payload_len = 0;
2104 	}
2105 
2106 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2107 					 SKB_GSO_GRE_CSUM |
2108 					 SKB_GSO_IPXIP4 |
2109 					 SKB_GSO_IPXIP6 |
2110 					 SKB_GSO_UDP_TUNNEL |
2111 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2112 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2113 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2114 			l4.udp->len = 0;
2115 
2116 			/* determine offset of outer transport header */
2117 			l4_start = (u8)(l4.hdr - skb->data);
2118 
2119 			/* remove payload length from outer checksum */
2120 			paylen = skb->len - l4_start;
2121 			csum_replace_by_diff(&l4.udp->check,
2122 					     (__force __wsum)htonl(paylen));
2123 		}
2124 
2125 		/* reset pointers to inner headers */
2126 
2127 		/* cppcheck-suppress unreadVariable */
2128 		ip.hdr = skb_inner_network_header(skb);
2129 		l4.hdr = skb_inner_transport_header(skb);
2130 
2131 		/* initialize inner IP header fields */
2132 		if (ip.v4->version == 4) {
2133 			ip.v4->tot_len = 0;
2134 			ip.v4->check = 0;
2135 		} else {
2136 			ip.v6->payload_len = 0;
2137 		}
2138 	}
2139 
2140 	/* determine offset of transport header */
2141 	l4_start = (u8)(l4.hdr - skb->data);
2142 
2143 	/* remove payload length from checksum */
2144 	paylen = skb->len - l4_start;
2145 
2146 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2147 		csum_replace_by_diff(&l4.udp->check,
2148 				     (__force __wsum)htonl(paylen));
2149 		/* compute length of UDP segmentation header */
2150 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2151 	} else {
2152 		csum_replace_by_diff(&l4.tcp->check,
2153 				     (__force __wsum)htonl(paylen));
2154 		/* compute length of TCP segmentation header */
2155 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2156 	}
2157 
2158 	/* update gso_segs and bytecount */
2159 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2160 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2161 
2162 	cd_tso_len = skb->len - off->header_len;
2163 	cd_mss = skb_shinfo(skb)->gso_size;
2164 
2165 	/* record cdesc_qw1 with TSO parameters */
2166 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2167 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2168 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2169 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2170 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2171 	return 1;
2172 }
2173 
2174 /**
2175  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2176  * @size: transmit request size in bytes
2177  *
2178  * Due to hardware alignment restrictions (4K alignment), we need to
2179  * assume that we can have no more than 12K of data per descriptor, even
2180  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2181  * Thus, we need to divide by 12K. But division is slow! Instead,
2182  * we decompose the operation into shifts and one relatively cheap
2183  * multiply operation.
2184  *
2185  * To divide by 12K, we first divide by 4K, then divide by 3:
2186  *     To divide by 4K, shift right by 12 bits
2187  *     To divide by 3, multiply by 85, then divide by 256
2188  *     (Divide by 256 is done by shifting right by 8 bits)
2189  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2190  * 3, we'll underestimate near each multiple of 12K. This is actually more
2191  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2192  * segment. For our purposes this is accurate out to 1M which is orders of
2193  * magnitude greater than our largest possible GSO size.
2194  *
2195  * This would then be implemented as:
2196  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2197  *
2198  * Since multiplication and division are commutative, we can reorder
2199  * operations into:
2200  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2201  */
2202 static unsigned int ice_txd_use_count(unsigned int size)
2203 {
2204 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2205 }
2206 
2207 /**
2208  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2209  * @skb: send buffer
2210  *
2211  * Returns number of data descriptors needed for this skb.
2212  */
2213 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2214 {
2215 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2216 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2217 	unsigned int count = 0, size = skb_headlen(skb);
2218 
2219 	for (;;) {
2220 		count += ice_txd_use_count(size);
2221 
2222 		if (!nr_frags--)
2223 			break;
2224 
2225 		size = skb_frag_size(frag++);
2226 	}
2227 
2228 	return count;
2229 }
2230 
2231 /**
2232  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2233  * @skb: send buffer
2234  *
2235  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2236  * and so we need to figure out the cases where we need to linearize the skb.
2237  *
2238  * For TSO we need to count the TSO header and segment payload separately.
2239  * As such we need to check cases where we have 7 fragments or more as we
2240  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2241  * the segment payload in the first descriptor, and another 7 for the
2242  * fragments.
2243  */
2244 static bool __ice_chk_linearize(struct sk_buff *skb)
2245 {
2246 	const skb_frag_t *frag, *stale;
2247 	int nr_frags, sum;
2248 
2249 	/* no need to check if number of frags is less than 7 */
2250 	nr_frags = skb_shinfo(skb)->nr_frags;
2251 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2252 		return false;
2253 
2254 	/* We need to walk through the list and validate that each group
2255 	 * of 6 fragments totals at least gso_size.
2256 	 */
2257 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2258 	frag = &skb_shinfo(skb)->frags[0];
2259 
2260 	/* Initialize size to the negative value of gso_size minus 1. We
2261 	 * use this as the worst case scenario in which the frag ahead
2262 	 * of us only provides one byte which is why we are limited to 6
2263 	 * descriptors for a single transmit as the header and previous
2264 	 * fragment are already consuming 2 descriptors.
2265 	 */
2266 	sum = 1 - skb_shinfo(skb)->gso_size;
2267 
2268 	/* Add size of frags 0 through 4 to create our initial sum */
2269 	sum += skb_frag_size(frag++);
2270 	sum += skb_frag_size(frag++);
2271 	sum += skb_frag_size(frag++);
2272 	sum += skb_frag_size(frag++);
2273 	sum += skb_frag_size(frag++);
2274 
2275 	/* Walk through fragments adding latest fragment, testing it, and
2276 	 * then removing stale fragments from the sum.
2277 	 */
2278 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2279 		int stale_size = skb_frag_size(stale);
2280 
2281 		sum += skb_frag_size(frag++);
2282 
2283 		/* The stale fragment may present us with a smaller
2284 		 * descriptor than the actual fragment size. To account
2285 		 * for that we need to remove all the data on the front and
2286 		 * figure out what the remainder would be in the last
2287 		 * descriptor associated with the fragment.
2288 		 */
2289 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2290 			int align_pad = -(skb_frag_off(stale)) &
2291 					(ICE_MAX_READ_REQ_SIZE - 1);
2292 
2293 			sum -= align_pad;
2294 			stale_size -= align_pad;
2295 
2296 			do {
2297 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2298 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2299 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2300 		}
2301 
2302 		/* if sum is negative we failed to make sufficient progress */
2303 		if (sum < 0)
2304 			return true;
2305 
2306 		if (!nr_frags--)
2307 			break;
2308 
2309 		sum -= stale_size;
2310 	}
2311 
2312 	return false;
2313 }
2314 
2315 /**
2316  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2317  * @skb:      send buffer
2318  * @count:    number of buffers used
2319  *
2320  * Note: Our HW can't scatter-gather more than 8 fragments to build
2321  * a packet on the wire and so we need to figure out the cases where we
2322  * need to linearize the skb.
2323  */
2324 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2325 {
2326 	/* Both TSO and single send will work if count is less than 8 */
2327 	if (likely(count < ICE_MAX_BUF_TXD))
2328 		return false;
2329 
2330 	if (skb_is_gso(skb))
2331 		return __ice_chk_linearize(skb);
2332 
2333 	/* we can support up to 8 data buffers for a single send */
2334 	return count != ICE_MAX_BUF_TXD;
2335 }
2336 
2337 /**
2338  * ice_xmit_frame_ring - Sends buffer on Tx ring
2339  * @skb: send buffer
2340  * @tx_ring: ring to send buffer on
2341  *
2342  * Returns NETDEV_TX_OK if sent, else an error code
2343  */
2344 static netdev_tx_t
2345 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2346 {
2347 	struct ice_tx_offload_params offload = { 0 };
2348 	struct ice_vsi *vsi = tx_ring->vsi;
2349 	struct ice_tx_buf *first;
2350 	unsigned int count;
2351 	int tso, csum;
2352 
2353 	count = ice_xmit_desc_count(skb);
2354 	if (ice_chk_linearize(skb, count)) {
2355 		if (__skb_linearize(skb))
2356 			goto out_drop;
2357 		count = ice_txd_use_count(skb->len);
2358 		tx_ring->tx_stats.tx_linearize++;
2359 	}
2360 
2361 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2362 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2363 	 *       + 4 desc gap to avoid the cache line where head is,
2364 	 *       + 1 desc for context descriptor,
2365 	 * otherwise try next time
2366 	 */
2367 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2368 			      ICE_DESCS_FOR_CTX_DESC)) {
2369 		tx_ring->tx_stats.tx_busy++;
2370 		return NETDEV_TX_BUSY;
2371 	}
2372 
2373 	offload.tx_ring = tx_ring;
2374 
2375 	/* record the location of the first descriptor for this packet */
2376 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2377 	first->skb = skb;
2378 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2379 	first->gso_segs = 1;
2380 	first->tx_flags = 0;
2381 
2382 	/* prepare the VLAN tagging flags for Tx */
2383 	ice_tx_prepare_vlan_flags(tx_ring, first);
2384 
2385 	/* set up TSO offload */
2386 	tso = ice_tso(first, &offload);
2387 	if (tso < 0)
2388 		goto out_drop;
2389 
2390 	/* always set up Tx checksum offload */
2391 	csum = ice_tx_csum(first, &offload);
2392 	if (csum < 0)
2393 		goto out_drop;
2394 
2395 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2396 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2397 		     vsi->type == ICE_VSI_PF &&
2398 		     vsi->port_info->qos_cfg.is_sw_lldp))
2399 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2400 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2401 					ICE_TXD_CTX_QW1_CMD_S);
2402 
2403 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2404 		struct ice_tx_ctx_desc *cdesc;
2405 		u16 i = tx_ring->next_to_use;
2406 
2407 		/* grab the next descriptor */
2408 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2409 		i++;
2410 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2411 
2412 		/* setup context descriptor */
2413 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2414 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2415 		cdesc->rsvd = cpu_to_le16(0);
2416 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2417 	}
2418 
2419 	ice_tx_map(tx_ring, first, &offload);
2420 	return NETDEV_TX_OK;
2421 
2422 out_drop:
2423 	dev_kfree_skb_any(skb);
2424 	return NETDEV_TX_OK;
2425 }
2426 
2427 /**
2428  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2429  * @skb: send buffer
2430  * @netdev: network interface device structure
2431  *
2432  * Returns NETDEV_TX_OK if sent, else an error code
2433  */
2434 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2435 {
2436 	struct ice_netdev_priv *np = netdev_priv(netdev);
2437 	struct ice_vsi *vsi = np->vsi;
2438 	struct ice_ring *tx_ring;
2439 
2440 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2441 
2442 	/* hardware can't handle really short frames, hardware padding works
2443 	 * beyond this point
2444 	 */
2445 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2446 		return NETDEV_TX_OK;
2447 
2448 	return ice_xmit_frame_ring(skb, tx_ring);
2449 }
2450 
2451 /**
2452  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2453  * @tx_ring: tx_ring to clean
2454  */
2455 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2456 {
2457 	struct ice_vsi *vsi = tx_ring->vsi;
2458 	s16 i = tx_ring->next_to_clean;
2459 	int budget = ICE_DFLT_IRQ_WORK;
2460 	struct ice_tx_desc *tx_desc;
2461 	struct ice_tx_buf *tx_buf;
2462 
2463 	tx_buf = &tx_ring->tx_buf[i];
2464 	tx_desc = ICE_TX_DESC(tx_ring, i);
2465 	i -= tx_ring->count;
2466 
2467 	do {
2468 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2469 
2470 		/* if next_to_watch is not set then there is no pending work */
2471 		if (!eop_desc)
2472 			break;
2473 
2474 		/* prevent any other reads prior to eop_desc */
2475 		smp_rmb();
2476 
2477 		/* if the descriptor isn't done, no work to do */
2478 		if (!(eop_desc->cmd_type_offset_bsz &
2479 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2480 			break;
2481 
2482 		/* clear next_to_watch to prevent false hangs */
2483 		tx_buf->next_to_watch = NULL;
2484 		tx_desc->buf_addr = 0;
2485 		tx_desc->cmd_type_offset_bsz = 0;
2486 
2487 		/* move past filter desc */
2488 		tx_buf++;
2489 		tx_desc++;
2490 		i++;
2491 		if (unlikely(!i)) {
2492 			i -= tx_ring->count;
2493 			tx_buf = tx_ring->tx_buf;
2494 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2495 		}
2496 
2497 		/* unmap the data header */
2498 		if (dma_unmap_len(tx_buf, len))
2499 			dma_unmap_single(tx_ring->dev,
2500 					 dma_unmap_addr(tx_buf, dma),
2501 					 dma_unmap_len(tx_buf, len),
2502 					 DMA_TO_DEVICE);
2503 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2504 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2505 
2506 		/* clear next_to_watch to prevent false hangs */
2507 		tx_buf->raw_buf = NULL;
2508 		tx_buf->tx_flags = 0;
2509 		tx_buf->next_to_watch = NULL;
2510 		dma_unmap_len_set(tx_buf, len, 0);
2511 		tx_desc->buf_addr = 0;
2512 		tx_desc->cmd_type_offset_bsz = 0;
2513 
2514 		/* move past eop_desc for start of next FD desc */
2515 		tx_buf++;
2516 		tx_desc++;
2517 		i++;
2518 		if (unlikely(!i)) {
2519 			i -= tx_ring->count;
2520 			tx_buf = tx_ring->tx_buf;
2521 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2522 		}
2523 
2524 		budget--;
2525 	} while (likely(budget));
2526 
2527 	i += tx_ring->count;
2528 	tx_ring->next_to_clean = i;
2529 
2530 	/* re-enable interrupt if needed */
2531 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2532 }
2533