1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->type = ICE_TX_BUF_DUMMY; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (dma_unmap_len(tx_buf, len)) 116 dma_unmap_page(ring->dev, 117 dma_unmap_addr(tx_buf, dma), 118 dma_unmap_len(tx_buf, len), 119 DMA_TO_DEVICE); 120 121 switch (tx_buf->type) { 122 case ICE_TX_BUF_DUMMY: 123 devm_kfree(ring->dev, tx_buf->raw_buf); 124 break; 125 case ICE_TX_BUF_SKB: 126 dev_kfree_skb_any(tx_buf->skb); 127 break; 128 case ICE_TX_BUF_XDP_TX: 129 page_frag_free(tx_buf->raw_buf); 130 break; 131 case ICE_TX_BUF_XDP_XMIT: 132 xdp_return_frame(tx_buf->xdpf); 133 break; 134 } 135 136 tx_buf->next_to_watch = NULL; 137 tx_buf->type = ICE_TX_BUF_EMPTY; 138 dma_unmap_len_set(tx_buf, len, 0); 139 /* tx_buf must be completely set up in the transmit path */ 140 } 141 142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 143 { 144 return netdev_get_tx_queue(ring->netdev, ring->q_index); 145 } 146 147 /** 148 * ice_clean_tx_ring - Free any empty Tx buffers 149 * @tx_ring: ring to be cleaned 150 */ 151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 152 { 153 u32 size; 154 u16 i; 155 156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 157 ice_xsk_clean_xdp_ring(tx_ring); 158 goto tx_skip_free; 159 } 160 161 /* ring already cleared, nothing to do */ 162 if (!tx_ring->tx_buf) 163 return; 164 165 /* Free all the Tx ring sk_buffs */ 166 for (i = 0; i < tx_ring->count; i++) 167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 168 169 tx_skip_free: 170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 171 172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 173 PAGE_SIZE); 174 /* Zero out the descriptor ring */ 175 memset(tx_ring->desc, 0, size); 176 177 tx_ring->next_to_use = 0; 178 tx_ring->next_to_clean = 0; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->type = ICE_TX_BUF_EMPTY; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->ring_stats->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct xdp_buff *xdp = &rx_ring->xdp; 386 struct device *dev = rx_ring->dev; 387 u32 size; 388 u16 i; 389 390 /* ring already cleared, nothing to do */ 391 if (!rx_ring->rx_buf) 392 return; 393 394 if (rx_ring->xsk_pool) { 395 ice_xsk_clean_rx_ring(rx_ring); 396 goto rx_skip_free; 397 } 398 399 if (xdp->data) { 400 xdp_return_buff(xdp); 401 xdp->data = NULL; 402 } 403 404 /* Free all the Rx ring sk_buffs */ 405 for (i = 0; i < rx_ring->count; i++) { 406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 407 408 if (!rx_buf->page) 409 continue; 410 411 /* Invalidate cache lines that may have been written to by 412 * device so that we avoid corrupting memory. 413 */ 414 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 415 rx_buf->page_offset, 416 rx_ring->rx_buf_len, 417 DMA_FROM_DEVICE); 418 419 /* free resources associated with mapping */ 420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 423 424 rx_buf->page = NULL; 425 rx_buf->page_offset = 0; 426 } 427 428 rx_skip_free: 429 if (rx_ring->xsk_pool) 430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 431 else 432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 433 434 /* Zero out the descriptor ring */ 435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 436 PAGE_SIZE); 437 memset(rx_ring->desc, 0, size); 438 439 rx_ring->next_to_alloc = 0; 440 rx_ring->next_to_clean = 0; 441 rx_ring->first_desc = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 WRITE_ONCE(rx_ring->xdp_prog, NULL); 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 rx_ring->first_desc = 0; 512 513 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 515 516 return 0; 517 518 err: 519 kfree(rx_ring->rx_buf); 520 rx_ring->rx_buf = NULL; 521 return -ENOMEM; 522 } 523 524 /** 525 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 526 * @rx_ring: Rx ring 527 * @xdp: xdp_buff used as input to the XDP program 528 * @xdp_prog: XDP program to run 529 * @xdp_ring: ring to be used for XDP_TX action 530 * @eop_desc: Last descriptor in packet to read metadata from 531 * 532 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 533 */ 534 static u32 535 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 536 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 537 union ice_32b_rx_flex_desc *eop_desc) 538 { 539 unsigned int ret = ICE_XDP_PASS; 540 u32 act; 541 542 if (!xdp_prog) 543 goto exit; 544 545 ice_xdp_meta_set_desc(xdp, eop_desc); 546 547 act = bpf_prog_run_xdp(xdp_prog, xdp); 548 switch (act) { 549 case XDP_PASS: 550 break; 551 case XDP_TX: 552 if (static_branch_unlikely(&ice_xdp_locking_key)) 553 spin_lock(&xdp_ring->tx_lock); 554 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 555 if (static_branch_unlikely(&ice_xdp_locking_key)) 556 spin_unlock(&xdp_ring->tx_lock); 557 if (ret == ICE_XDP_CONSUMED) 558 goto out_failure; 559 break; 560 case XDP_REDIRECT: 561 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 562 goto out_failure; 563 ret = ICE_XDP_REDIR; 564 break; 565 default: 566 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 567 fallthrough; 568 case XDP_ABORTED: 569 out_failure: 570 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 571 fallthrough; 572 case XDP_DROP: 573 ret = ICE_XDP_CONSUMED; 574 } 575 exit: 576 return ret; 577 } 578 579 /** 580 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 581 * @xdpf: XDP frame that will be converted to XDP buff 582 * @xdp_ring: XDP ring for transmission 583 */ 584 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 585 struct ice_tx_ring *xdp_ring) 586 { 587 struct xdp_buff xdp; 588 589 xdp.data_hard_start = (void *)xdpf; 590 xdp.data = xdpf->data; 591 xdp.data_end = xdp.data + xdpf->len; 592 xdp.frame_sz = xdpf->frame_sz; 593 xdp.flags = xdpf->flags; 594 595 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 596 } 597 598 /** 599 * ice_xdp_xmit - submit packets to XDP ring for transmission 600 * @dev: netdev 601 * @n: number of XDP frames to be transmitted 602 * @frames: XDP frames to be transmitted 603 * @flags: transmit flags 604 * 605 * Returns number of frames successfully sent. Failed frames 606 * will be free'ed by XDP core. 607 * For error cases, a negative errno code is returned and no-frames 608 * are transmitted (caller must handle freeing frames). 609 */ 610 int 611 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 612 u32 flags) 613 { 614 struct ice_netdev_priv *np = netdev_priv(dev); 615 unsigned int queue_index = smp_processor_id(); 616 struct ice_vsi *vsi = np->vsi; 617 struct ice_tx_ring *xdp_ring; 618 struct ice_tx_buf *tx_buf; 619 int nxmit = 0, i; 620 621 if (test_bit(ICE_VSI_DOWN, vsi->state)) 622 return -ENETDOWN; 623 624 if (!ice_is_xdp_ena_vsi(vsi)) 625 return -ENXIO; 626 627 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 628 return -EINVAL; 629 630 if (static_branch_unlikely(&ice_xdp_locking_key)) { 631 queue_index %= vsi->num_xdp_txq; 632 xdp_ring = vsi->xdp_rings[queue_index]; 633 spin_lock(&xdp_ring->tx_lock); 634 } else { 635 /* Generally, should not happen */ 636 if (unlikely(queue_index >= vsi->num_xdp_txq)) 637 return -ENXIO; 638 xdp_ring = vsi->xdp_rings[queue_index]; 639 } 640 641 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 642 for (i = 0; i < n; i++) { 643 const struct xdp_frame *xdpf = frames[i]; 644 int err; 645 646 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 647 if (err != ICE_XDP_TX) 648 break; 649 nxmit++; 650 } 651 652 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 653 if (unlikely(flags & XDP_XMIT_FLUSH)) 654 ice_xdp_ring_update_tail(xdp_ring); 655 656 if (static_branch_unlikely(&ice_xdp_locking_key)) 657 spin_unlock(&xdp_ring->tx_lock); 658 659 return nxmit; 660 } 661 662 /** 663 * ice_alloc_mapped_page - recycle or make a new page 664 * @rx_ring: ring to use 665 * @bi: rx_buf struct to modify 666 * 667 * Returns true if the page was successfully allocated or 668 * reused. 669 */ 670 static bool 671 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 672 { 673 struct page *page = bi->page; 674 dma_addr_t dma; 675 676 /* since we are recycling buffers we should seldom need to alloc */ 677 if (likely(page)) 678 return true; 679 680 /* alloc new page for storage */ 681 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 682 if (unlikely(!page)) { 683 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 684 return false; 685 } 686 687 /* map page for use */ 688 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 689 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 690 691 /* if mapping failed free memory back to system since 692 * there isn't much point in holding memory we can't use 693 */ 694 if (dma_mapping_error(rx_ring->dev, dma)) { 695 __free_pages(page, ice_rx_pg_order(rx_ring)); 696 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 697 return false; 698 } 699 700 bi->dma = dma; 701 bi->page = page; 702 bi->page_offset = rx_ring->rx_offset; 703 page_ref_add(page, USHRT_MAX - 1); 704 bi->pagecnt_bias = USHRT_MAX; 705 706 return true; 707 } 708 709 /** 710 * ice_alloc_rx_bufs - Replace used receive buffers 711 * @rx_ring: ring to place buffers on 712 * @cleaned_count: number of buffers to replace 713 * 714 * Returns false if all allocations were successful, true if any fail. Returning 715 * true signals to the caller that we didn't replace cleaned_count buffers and 716 * there is more work to do. 717 * 718 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 719 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 720 * multiple tail writes per call. 721 */ 722 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 723 { 724 union ice_32b_rx_flex_desc *rx_desc; 725 u16 ntu = rx_ring->next_to_use; 726 struct ice_rx_buf *bi; 727 728 /* do nothing if no valid netdev defined */ 729 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 730 !cleaned_count) 731 return false; 732 733 /* get the Rx descriptor and buffer based on next_to_use */ 734 rx_desc = ICE_RX_DESC(rx_ring, ntu); 735 bi = &rx_ring->rx_buf[ntu]; 736 737 do { 738 /* if we fail here, we have work remaining */ 739 if (!ice_alloc_mapped_page(rx_ring, bi)) 740 break; 741 742 /* sync the buffer for use by the device */ 743 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 744 bi->page_offset, 745 rx_ring->rx_buf_len, 746 DMA_FROM_DEVICE); 747 748 /* Refresh the desc even if buffer_addrs didn't change 749 * because each write-back erases this info. 750 */ 751 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 752 753 rx_desc++; 754 bi++; 755 ntu++; 756 if (unlikely(ntu == rx_ring->count)) { 757 rx_desc = ICE_RX_DESC(rx_ring, 0); 758 bi = rx_ring->rx_buf; 759 ntu = 0; 760 } 761 762 /* clear the status bits for the next_to_use descriptor */ 763 rx_desc->wb.status_error0 = 0; 764 765 cleaned_count--; 766 } while (cleaned_count); 767 768 if (rx_ring->next_to_use != ntu) 769 ice_release_rx_desc(rx_ring, ntu); 770 771 return !!cleaned_count; 772 } 773 774 /** 775 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 776 * @rx_buf: Rx buffer to adjust 777 * @size: Size of adjustment 778 * 779 * Update the offset within page so that Rx buf will be ready to be reused. 780 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 781 * so the second half of page assigned to Rx buffer will be used, otherwise 782 * the offset is moved by "size" bytes 783 */ 784 static void 785 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 786 { 787 #if (PAGE_SIZE < 8192) 788 /* flip page offset to other buffer */ 789 rx_buf->page_offset ^= size; 790 #else 791 /* move offset up to the next cache line */ 792 rx_buf->page_offset += size; 793 #endif 794 } 795 796 /** 797 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 798 * @rx_buf: buffer containing the page 799 * 800 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 801 * which will assign the current buffer to the buffer that next_to_alloc is 802 * pointing to; otherwise, the DMA mapping needs to be destroyed and 803 * page freed 804 */ 805 static bool 806 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 807 { 808 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 809 struct page *page = rx_buf->page; 810 811 /* avoid re-using remote and pfmemalloc pages */ 812 if (!dev_page_is_reusable(page)) 813 return false; 814 815 /* if we are only owner of page we can reuse it */ 816 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 817 return false; 818 #if (PAGE_SIZE >= 8192) 819 #define ICE_LAST_OFFSET \ 820 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072) 821 if (rx_buf->page_offset > ICE_LAST_OFFSET) 822 return false; 823 #endif /* PAGE_SIZE >= 8192) */ 824 825 /* If we have drained the page fragment pool we need to update 826 * the pagecnt_bias and page count so that we fully restock the 827 * number of references the driver holds. 828 */ 829 if (unlikely(pagecnt_bias == 1)) { 830 page_ref_add(page, USHRT_MAX - 1); 831 rx_buf->pagecnt_bias = USHRT_MAX; 832 } 833 834 return true; 835 } 836 837 /** 838 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 839 * @rx_ring: Rx descriptor ring to transact packets on 840 * @xdp: xdp buff to place the data into 841 * @rx_buf: buffer containing page to add 842 * @size: packet length from rx_desc 843 * 844 * This function will add the data contained in rx_buf->page to the xdp buf. 845 * It will just attach the page as a frag. 846 */ 847 static int 848 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 849 struct ice_rx_buf *rx_buf, const unsigned int size) 850 { 851 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 852 853 if (!size) 854 return 0; 855 856 if (!xdp_buff_has_frags(xdp)) { 857 sinfo->nr_frags = 0; 858 sinfo->xdp_frags_size = 0; 859 xdp_buff_set_frags_flag(xdp); 860 } 861 862 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) 863 return -ENOMEM; 864 865 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 866 rx_buf->page_offset, size); 867 sinfo->xdp_frags_size += size; 868 /* remember frag count before XDP prog execution; bpf_xdp_adjust_tail() 869 * can pop off frags but driver has to handle it on its own 870 */ 871 rx_ring->nr_frags = sinfo->nr_frags; 872 873 if (page_is_pfmemalloc(rx_buf->page)) 874 xdp_buff_set_frag_pfmemalloc(xdp); 875 876 return 0; 877 } 878 879 /** 880 * ice_reuse_rx_page - page flip buffer and store it back on the ring 881 * @rx_ring: Rx descriptor ring to store buffers on 882 * @old_buf: donor buffer to have page reused 883 * 884 * Synchronizes page for reuse by the adapter 885 */ 886 static void 887 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 888 { 889 u16 nta = rx_ring->next_to_alloc; 890 struct ice_rx_buf *new_buf; 891 892 new_buf = &rx_ring->rx_buf[nta]; 893 894 /* update, and store next to alloc */ 895 nta++; 896 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 897 898 /* Transfer page from old buffer to new buffer. 899 * Move each member individually to avoid possible store 900 * forwarding stalls and unnecessary copy of skb. 901 */ 902 new_buf->dma = old_buf->dma; 903 new_buf->page = old_buf->page; 904 new_buf->page_offset = old_buf->page_offset; 905 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 906 } 907 908 /** 909 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 910 * @rx_ring: Rx descriptor ring to transact packets on 911 * @size: size of buffer to add to skb 912 * @ntc: index of next to clean element 913 * 914 * This function will pull an Rx buffer from the ring and synchronize it 915 * for use by the CPU. 916 */ 917 static struct ice_rx_buf * 918 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 919 const unsigned int ntc) 920 { 921 struct ice_rx_buf *rx_buf; 922 923 rx_buf = &rx_ring->rx_buf[ntc]; 924 prefetchw(rx_buf->page); 925 926 if (!size) 927 return rx_buf; 928 /* we are reusing so sync this buffer for CPU use */ 929 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 930 rx_buf->page_offset, size, 931 DMA_FROM_DEVICE); 932 933 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 934 rx_buf->pagecnt_bias--; 935 936 return rx_buf; 937 } 938 939 /** 940 * ice_get_pgcnts - grab page_count() for gathered fragments 941 * @rx_ring: Rx descriptor ring to store the page counts on 942 * 943 * This function is intended to be called right before running XDP 944 * program so that the page recycling mechanism will be able to take 945 * a correct decision regarding underlying pages; this is done in such 946 * way as XDP program can change the refcount of page 947 */ 948 static void ice_get_pgcnts(struct ice_rx_ring *rx_ring) 949 { 950 u32 nr_frags = rx_ring->nr_frags + 1; 951 u32 idx = rx_ring->first_desc; 952 struct ice_rx_buf *rx_buf; 953 u32 cnt = rx_ring->count; 954 955 for (int i = 0; i < nr_frags; i++) { 956 rx_buf = &rx_ring->rx_buf[idx]; 957 rx_buf->pgcnt = page_count(rx_buf->page); 958 959 if (++idx == cnt) 960 idx = 0; 961 } 962 } 963 964 /** 965 * ice_build_skb - Build skb around an existing buffer 966 * @rx_ring: Rx descriptor ring to transact packets on 967 * @xdp: xdp_buff pointing to the data 968 * 969 * This function builds an skb around an existing XDP buffer, taking care 970 * to set up the skb correctly and avoid any memcpy overhead. Driver has 971 * already combined frags (if any) to skb_shared_info. 972 */ 973 static struct sk_buff * 974 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 975 { 976 u8 metasize = xdp->data - xdp->data_meta; 977 struct skb_shared_info *sinfo = NULL; 978 unsigned int nr_frags; 979 struct sk_buff *skb; 980 981 if (unlikely(xdp_buff_has_frags(xdp))) { 982 sinfo = xdp_get_shared_info_from_buff(xdp); 983 nr_frags = sinfo->nr_frags; 984 } 985 986 /* Prefetch first cache line of first page. If xdp->data_meta 987 * is unused, this points exactly as xdp->data, otherwise we 988 * likely have a consumer accessing first few bytes of meta 989 * data, and then actual data. 990 */ 991 net_prefetch(xdp->data_meta); 992 /* build an skb around the page buffer */ 993 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 994 if (unlikely(!skb)) 995 return NULL; 996 997 /* must to record Rx queue, otherwise OS features such as 998 * symmetric queue won't work 999 */ 1000 skb_record_rx_queue(skb, rx_ring->q_index); 1001 1002 /* update pointers within the skb to store the data */ 1003 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1004 __skb_put(skb, xdp->data_end - xdp->data); 1005 if (metasize) 1006 skb_metadata_set(skb, metasize); 1007 1008 if (unlikely(xdp_buff_has_frags(xdp))) 1009 xdp_update_skb_shared_info(skb, nr_frags, 1010 sinfo->xdp_frags_size, 1011 nr_frags * xdp->frame_sz, 1012 xdp_buff_is_frag_pfmemalloc(xdp)); 1013 1014 return skb; 1015 } 1016 1017 /** 1018 * ice_construct_skb - Allocate skb and populate it 1019 * @rx_ring: Rx descriptor ring to transact packets on 1020 * @xdp: xdp_buff pointing to the data 1021 * 1022 * This function allocates an skb. It then populates it with the page 1023 * data from the current receive descriptor, taking care to set up the 1024 * skb correctly. 1025 */ 1026 static struct sk_buff * 1027 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1028 { 1029 unsigned int size = xdp->data_end - xdp->data; 1030 struct skb_shared_info *sinfo = NULL; 1031 struct ice_rx_buf *rx_buf; 1032 unsigned int nr_frags = 0; 1033 unsigned int headlen; 1034 struct sk_buff *skb; 1035 1036 /* prefetch first cache line of first page */ 1037 net_prefetch(xdp->data); 1038 1039 if (unlikely(xdp_buff_has_frags(xdp))) { 1040 sinfo = xdp_get_shared_info_from_buff(xdp); 1041 nr_frags = sinfo->nr_frags; 1042 } 1043 1044 /* allocate a skb to store the frags */ 1045 skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE); 1046 if (unlikely(!skb)) 1047 return NULL; 1048 1049 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1050 skb_record_rx_queue(skb, rx_ring->q_index); 1051 /* Determine available headroom for copy */ 1052 headlen = size; 1053 if (headlen > ICE_RX_HDR_SIZE) 1054 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1055 1056 /* align pull length to size of long to optimize memcpy performance */ 1057 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1058 sizeof(long))); 1059 1060 /* if we exhaust the linear part then add what is left as a frag */ 1061 size -= headlen; 1062 if (size) { 1063 /* besides adding here a partial frag, we are going to add 1064 * frags from xdp_buff, make sure there is enough space for 1065 * them 1066 */ 1067 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1068 dev_kfree_skb(skb); 1069 return NULL; 1070 } 1071 skb_add_rx_frag(skb, 0, rx_buf->page, 1072 rx_buf->page_offset + headlen, size, 1073 xdp->frame_sz); 1074 } else { 1075 /* buffer is unused, restore biased page count in Rx buffer; 1076 * data was copied onto skb's linear part so there's no 1077 * need for adjusting page offset and we can reuse this buffer 1078 * as-is 1079 */ 1080 rx_buf->pagecnt_bias++; 1081 } 1082 1083 if (unlikely(xdp_buff_has_frags(xdp))) { 1084 struct skb_shared_info *skinfo = skb_shinfo(skb); 1085 1086 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1087 sizeof(skb_frag_t) * nr_frags); 1088 1089 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 1090 sinfo->xdp_frags_size, 1091 nr_frags * xdp->frame_sz, 1092 xdp_buff_is_frag_pfmemalloc(xdp)); 1093 } 1094 1095 return skb; 1096 } 1097 1098 /** 1099 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1100 * @rx_ring: Rx descriptor ring to transact packets on 1101 * @rx_buf: Rx buffer to pull data from 1102 * 1103 * This function will clean up the contents of the rx_buf. It will either 1104 * recycle the buffer or unmap it and free the associated resources. 1105 */ 1106 static void 1107 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1108 { 1109 if (!rx_buf) 1110 return; 1111 1112 if (ice_can_reuse_rx_page(rx_buf)) { 1113 /* hand second half of page back to the ring */ 1114 ice_reuse_rx_page(rx_ring, rx_buf); 1115 } else { 1116 /* we are not reusing the buffer so unmap it */ 1117 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1118 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1119 ICE_RX_DMA_ATTR); 1120 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1121 } 1122 1123 /* clear contents of buffer_info */ 1124 rx_buf->page = NULL; 1125 } 1126 1127 /** 1128 * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all frame frags 1129 * @rx_ring: Rx ring with all the auxiliary data 1130 * @xdp: XDP buffer carrying linear + frags part 1131 * @xdp_xmit: XDP_TX/XDP_REDIRECT verdict storage 1132 * @ntc: a current next_to_clean value to be stored at rx_ring 1133 * @verdict: return code from XDP program execution 1134 * 1135 * Walk through gathered fragments and satisfy internal page 1136 * recycle mechanism; we take here an action related to verdict 1137 * returned by XDP program; 1138 */ 1139 static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 1140 u32 *xdp_xmit, u32 ntc, u32 verdict) 1141 { 1142 u32 nr_frags = rx_ring->nr_frags + 1; 1143 u32 idx = rx_ring->first_desc; 1144 u32 cnt = rx_ring->count; 1145 u32 post_xdp_frags = 1; 1146 struct ice_rx_buf *buf; 1147 int i; 1148 1149 if (unlikely(xdp_buff_has_frags(xdp))) 1150 post_xdp_frags += xdp_get_shared_info_from_buff(xdp)->nr_frags; 1151 1152 for (i = 0; i < post_xdp_frags; i++) { 1153 buf = &rx_ring->rx_buf[idx]; 1154 1155 if (verdict & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1156 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1157 *xdp_xmit |= verdict; 1158 } else if (verdict & ICE_XDP_CONSUMED) { 1159 buf->pagecnt_bias++; 1160 } else if (verdict == ICE_XDP_PASS) { 1161 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1162 } 1163 1164 ice_put_rx_buf(rx_ring, buf); 1165 1166 if (++idx == cnt) 1167 idx = 0; 1168 } 1169 /* handle buffers that represented frags released by XDP prog; 1170 * for these we keep pagecnt_bias as-is; refcount from struct page 1171 * has been decremented within XDP prog and we do not have to increase 1172 * the biased refcnt 1173 */ 1174 for (; i < nr_frags; i++) { 1175 buf = &rx_ring->rx_buf[idx]; 1176 ice_put_rx_buf(rx_ring, buf); 1177 if (++idx == cnt) 1178 idx = 0; 1179 } 1180 1181 xdp->data = NULL; 1182 rx_ring->first_desc = ntc; 1183 rx_ring->nr_frags = 0; 1184 } 1185 1186 /** 1187 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1188 * @rx_ring: Rx descriptor ring to transact packets on 1189 * @budget: Total limit on number of packets to process 1190 * 1191 * This function provides a "bounce buffer" approach to Rx interrupt 1192 * processing. The advantage to this is that on systems that have 1193 * expensive overhead for IOMMU access this provides a means of avoiding 1194 * it by maintaining the mapping of the page to the system. 1195 * 1196 * Returns amount of work completed 1197 */ 1198 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1199 { 1200 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1201 unsigned int offset = rx_ring->rx_offset; 1202 struct xdp_buff *xdp = &rx_ring->xdp; 1203 struct ice_tx_ring *xdp_ring = NULL; 1204 struct bpf_prog *xdp_prog = NULL; 1205 u32 ntc = rx_ring->next_to_clean; 1206 u32 cached_ntu, xdp_verdict; 1207 u32 cnt = rx_ring->count; 1208 u32 xdp_xmit = 0; 1209 bool failure; 1210 1211 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1212 if (xdp_prog) { 1213 xdp_ring = rx_ring->xdp_ring; 1214 cached_ntu = xdp_ring->next_to_use; 1215 } 1216 1217 /* start the loop to process Rx packets bounded by 'budget' */ 1218 while (likely(total_rx_pkts < (unsigned int)budget)) { 1219 union ice_32b_rx_flex_desc *rx_desc; 1220 struct ice_rx_buf *rx_buf; 1221 struct sk_buff *skb; 1222 unsigned int size; 1223 u16 stat_err_bits; 1224 u16 vlan_tci; 1225 1226 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1227 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1228 1229 /* status_error_len will always be zero for unused descriptors 1230 * because it's cleared in cleanup, and overlaps with hdr_addr 1231 * which is always zero because packet split isn't used, if the 1232 * hardware wrote DD then it will be non-zero 1233 */ 1234 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1235 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1236 break; 1237 1238 /* This memory barrier is needed to keep us from reading 1239 * any other fields out of the rx_desc until we know the 1240 * DD bit is set. 1241 */ 1242 dma_rmb(); 1243 1244 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1245 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1246 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1247 1248 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1249 ctrl_vsi->vf) 1250 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1251 if (++ntc == cnt) 1252 ntc = 0; 1253 rx_ring->first_desc = ntc; 1254 continue; 1255 } 1256 1257 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1258 ICE_RX_FLX_DESC_PKT_LEN_M; 1259 1260 /* retrieve a buffer from the ring */ 1261 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1262 1263 if (!xdp->data) { 1264 void *hard_start; 1265 1266 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1267 offset; 1268 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1269 xdp_buff_clear_frags_flag(xdp); 1270 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1271 ice_put_rx_mbuf(rx_ring, xdp, NULL, ntc, ICE_XDP_CONSUMED); 1272 break; 1273 } 1274 if (++ntc == cnt) 1275 ntc = 0; 1276 1277 /* skip if it is NOP desc */ 1278 if (ice_is_non_eop(rx_ring, rx_desc)) 1279 continue; 1280 1281 ice_get_pgcnts(rx_ring); 1282 xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc); 1283 if (xdp_verdict == ICE_XDP_PASS) 1284 goto construct_skb; 1285 total_rx_bytes += xdp_get_buff_len(xdp); 1286 total_rx_pkts++; 1287 1288 ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict); 1289 1290 continue; 1291 construct_skb: 1292 if (likely(ice_ring_uses_build_skb(rx_ring))) 1293 skb = ice_build_skb(rx_ring, xdp); 1294 else 1295 skb = ice_construct_skb(rx_ring, xdp); 1296 /* exit if we failed to retrieve a buffer */ 1297 if (!skb) { 1298 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 1299 xdp_verdict = ICE_XDP_CONSUMED; 1300 } 1301 ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict); 1302 1303 if (!skb) 1304 break; 1305 1306 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1307 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1308 stat_err_bits))) { 1309 dev_kfree_skb_any(skb); 1310 continue; 1311 } 1312 1313 vlan_tci = ice_get_vlan_tci(rx_desc); 1314 1315 /* pad the skb if needed, to make a valid ethernet frame */ 1316 if (eth_skb_pad(skb)) 1317 continue; 1318 1319 /* probably a little skewed due to removing CRC */ 1320 total_rx_bytes += skb->len; 1321 1322 /* populate checksum, VLAN, and protocol */ 1323 ice_process_skb_fields(rx_ring, rx_desc, skb); 1324 1325 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1326 /* send completed skb up the stack */ 1327 ice_receive_skb(rx_ring, skb, vlan_tci); 1328 1329 /* update budget accounting */ 1330 total_rx_pkts++; 1331 } 1332 1333 rx_ring->next_to_clean = ntc; 1334 /* return up to cleaned_count buffers to hardware */ 1335 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1336 1337 if (xdp_xmit) 1338 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1339 1340 if (rx_ring->ring_stats) 1341 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1342 total_rx_bytes); 1343 1344 /* guarantee a trip back through this routine if there was a failure */ 1345 return failure ? budget : (int)total_rx_pkts; 1346 } 1347 1348 static void __ice_update_sample(struct ice_q_vector *q_vector, 1349 struct ice_ring_container *rc, 1350 struct dim_sample *sample, 1351 bool is_tx) 1352 { 1353 u64 packets = 0, bytes = 0; 1354 1355 if (is_tx) { 1356 struct ice_tx_ring *tx_ring; 1357 1358 ice_for_each_tx_ring(tx_ring, *rc) { 1359 struct ice_ring_stats *ring_stats; 1360 1361 ring_stats = tx_ring->ring_stats; 1362 if (!ring_stats) 1363 continue; 1364 packets += ring_stats->stats.pkts; 1365 bytes += ring_stats->stats.bytes; 1366 } 1367 } else { 1368 struct ice_rx_ring *rx_ring; 1369 1370 ice_for_each_rx_ring(rx_ring, *rc) { 1371 struct ice_ring_stats *ring_stats; 1372 1373 ring_stats = rx_ring->ring_stats; 1374 if (!ring_stats) 1375 continue; 1376 packets += ring_stats->stats.pkts; 1377 bytes += ring_stats->stats.bytes; 1378 } 1379 } 1380 1381 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1382 sample->comp_ctr = 0; 1383 1384 /* if dim settings get stale, like when not updated for 1 1385 * second or longer, force it to start again. This addresses the 1386 * frequent case of an idle queue being switched to by the 1387 * scheduler. The 1,000 here means 1,000 milliseconds. 1388 */ 1389 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1390 rc->dim.state = DIM_START_MEASURE; 1391 } 1392 1393 /** 1394 * ice_net_dim - Update net DIM algorithm 1395 * @q_vector: the vector associated with the interrupt 1396 * 1397 * Create a DIM sample and notify net_dim() so that it can possibly decide 1398 * a new ITR value based on incoming packets, bytes, and interrupts. 1399 * 1400 * This function is a no-op if the ring is not configured to dynamic ITR. 1401 */ 1402 static void ice_net_dim(struct ice_q_vector *q_vector) 1403 { 1404 struct ice_ring_container *tx = &q_vector->tx; 1405 struct ice_ring_container *rx = &q_vector->rx; 1406 1407 if (ITR_IS_DYNAMIC(tx)) { 1408 struct dim_sample dim_sample; 1409 1410 __ice_update_sample(q_vector, tx, &dim_sample, true); 1411 net_dim(&tx->dim, &dim_sample); 1412 } 1413 1414 if (ITR_IS_DYNAMIC(rx)) { 1415 struct dim_sample dim_sample; 1416 1417 __ice_update_sample(q_vector, rx, &dim_sample, false); 1418 net_dim(&rx->dim, &dim_sample); 1419 } 1420 } 1421 1422 /** 1423 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1424 * @itr_idx: interrupt throttling index 1425 * @itr: interrupt throttling value in usecs 1426 */ 1427 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1428 { 1429 /* The ITR value is reported in microseconds, and the register value is 1430 * recorded in 2 microsecond units. For this reason we only need to 1431 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1432 * granularity as a shift instead of division. The mask makes sure the 1433 * ITR value is never odd so we don't accidentally write into the field 1434 * prior to the ITR field. 1435 */ 1436 itr &= ICE_ITR_MASK; 1437 1438 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1439 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1440 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1441 } 1442 1443 /** 1444 * ice_enable_interrupt - re-enable MSI-X interrupt 1445 * @q_vector: the vector associated with the interrupt to enable 1446 * 1447 * If the VSI is down, the interrupt will not be re-enabled. Also, 1448 * when enabling the interrupt always reset the wb_on_itr to false 1449 * and trigger a software interrupt to clean out internal state. 1450 */ 1451 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1452 { 1453 struct ice_vsi *vsi = q_vector->vsi; 1454 bool wb_en = q_vector->wb_on_itr; 1455 u32 itr_val; 1456 1457 if (test_bit(ICE_DOWN, vsi->state)) 1458 return; 1459 1460 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1461 * make sure to catch any pending cleanups that might have been missed 1462 * due to interrupt state transition. If busy poll or poll isn't 1463 * enabled, then don't update ITR, and just enable the interrupt. 1464 */ 1465 if (!wb_en) { 1466 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1467 } else { 1468 q_vector->wb_on_itr = false; 1469 1470 /* do two things here with a single write. Set up the third ITR 1471 * index to be used for software interrupt moderation, and then 1472 * trigger a software interrupt with a rate limit of 20K on 1473 * software interrupts, this will help avoid high interrupt 1474 * loads due to frequently polling and exiting polling. 1475 */ 1476 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1477 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1478 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1479 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1480 } 1481 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1482 } 1483 1484 /** 1485 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1486 * @q_vector: q_vector to set WB_ON_ITR on 1487 * 1488 * We need to tell hardware to write-back completed descriptors even when 1489 * interrupts are disabled. Descriptors will be written back on cache line 1490 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1491 * descriptors may not be written back if they don't fill a cache line until 1492 * the next interrupt. 1493 * 1494 * This sets the write-back frequency to whatever was set previously for the 1495 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1496 * aren't meddling with the INTENA_M bit. 1497 */ 1498 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1499 { 1500 struct ice_vsi *vsi = q_vector->vsi; 1501 1502 /* already in wb_on_itr mode no need to change it */ 1503 if (q_vector->wb_on_itr) 1504 return; 1505 1506 /* use previously set ITR values for all of the ITR indices by 1507 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1508 * be static in non-adaptive mode (user configured) 1509 */ 1510 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1511 FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) | 1512 FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) | 1513 FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1)); 1514 1515 q_vector->wb_on_itr = true; 1516 } 1517 1518 /** 1519 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1520 * @napi: napi struct with our devices info in it 1521 * @budget: amount of work driver is allowed to do this pass, in packets 1522 * 1523 * This function will clean all queues associated with a q_vector. 1524 * 1525 * Returns the amount of work done 1526 */ 1527 int ice_napi_poll(struct napi_struct *napi, int budget) 1528 { 1529 struct ice_q_vector *q_vector = 1530 container_of(napi, struct ice_q_vector, napi); 1531 struct ice_tx_ring *tx_ring; 1532 struct ice_rx_ring *rx_ring; 1533 bool clean_complete = true; 1534 int budget_per_ring; 1535 int work_done = 0; 1536 1537 /* Since the actual Tx work is minimal, we can give the Tx a larger 1538 * budget and be more aggressive about cleaning up the Tx descriptors. 1539 */ 1540 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1541 struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool); 1542 bool wd; 1543 1544 if (xsk_pool) 1545 wd = ice_xmit_zc(tx_ring, xsk_pool); 1546 else if (ice_ring_is_xdp(tx_ring)) 1547 wd = true; 1548 else 1549 wd = ice_clean_tx_irq(tx_ring, budget); 1550 1551 if (!wd) 1552 clean_complete = false; 1553 } 1554 1555 /* Handle case where we are called by netpoll with a budget of 0 */ 1556 if (unlikely(budget <= 0)) 1557 return budget; 1558 1559 /* normally we have 1 Rx ring per q_vector */ 1560 if (unlikely(q_vector->num_ring_rx > 1)) 1561 /* We attempt to distribute budget to each Rx queue fairly, but 1562 * don't allow the budget to go below 1 because that would exit 1563 * polling early. 1564 */ 1565 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1566 else 1567 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1568 budget_per_ring = budget; 1569 1570 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1571 struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool); 1572 int cleaned; 1573 1574 /* A dedicated path for zero-copy allows making a single 1575 * comparison in the irq context instead of many inside the 1576 * ice_clean_rx_irq function and makes the codebase cleaner. 1577 */ 1578 cleaned = rx_ring->xsk_pool ? 1579 ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) : 1580 ice_clean_rx_irq(rx_ring, budget_per_ring); 1581 work_done += cleaned; 1582 /* if we clean as many as budgeted, we must not be done */ 1583 if (cleaned >= budget_per_ring) 1584 clean_complete = false; 1585 } 1586 1587 /* If work not completed, return budget and polling will return */ 1588 if (!clean_complete) { 1589 /* Set the writeback on ITR so partial completions of 1590 * cache-lines will still continue even if we're polling. 1591 */ 1592 ice_set_wb_on_itr(q_vector); 1593 return budget; 1594 } 1595 1596 /* Exit the polling mode, but don't re-enable interrupts if stack might 1597 * poll us due to busy-polling 1598 */ 1599 if (napi_complete_done(napi, work_done)) { 1600 ice_net_dim(q_vector); 1601 ice_enable_interrupt(q_vector); 1602 } else { 1603 ice_set_wb_on_itr(q_vector); 1604 } 1605 1606 return min_t(int, work_done, budget - 1); 1607 } 1608 1609 /** 1610 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1611 * @tx_ring: the ring to be checked 1612 * @size: the size buffer we want to assure is available 1613 * 1614 * Returns -EBUSY if a stop is needed, else 0 1615 */ 1616 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1617 { 1618 netif_tx_stop_queue(txring_txq(tx_ring)); 1619 /* Memory barrier before checking head and tail */ 1620 smp_mb(); 1621 1622 /* Check again in a case another CPU has just made room available. */ 1623 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1624 return -EBUSY; 1625 1626 /* A reprieve! - use start_queue because it doesn't call schedule */ 1627 netif_tx_start_queue(txring_txq(tx_ring)); 1628 ++tx_ring->ring_stats->tx_stats.restart_q; 1629 return 0; 1630 } 1631 1632 /** 1633 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1634 * @tx_ring: the ring to be checked 1635 * @size: the size buffer we want to assure is available 1636 * 1637 * Returns 0 if stop is not needed 1638 */ 1639 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1640 { 1641 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1642 return 0; 1643 1644 return __ice_maybe_stop_tx(tx_ring, size); 1645 } 1646 1647 /** 1648 * ice_tx_map - Build the Tx descriptor 1649 * @tx_ring: ring to send buffer on 1650 * @first: first buffer info buffer to use 1651 * @off: pointer to struct that holds offload parameters 1652 * 1653 * This function loops over the skb data pointed to by *first 1654 * and gets a physical address for each memory location and programs 1655 * it and the length into the transmit descriptor. 1656 */ 1657 static void 1658 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1659 struct ice_tx_offload_params *off) 1660 { 1661 u64 td_offset, td_tag, td_cmd; 1662 u16 i = tx_ring->next_to_use; 1663 unsigned int data_len, size; 1664 struct ice_tx_desc *tx_desc; 1665 struct ice_tx_buf *tx_buf; 1666 struct sk_buff *skb; 1667 skb_frag_t *frag; 1668 dma_addr_t dma; 1669 bool kick; 1670 1671 td_tag = off->td_l2tag1; 1672 td_cmd = off->td_cmd; 1673 td_offset = off->td_offset; 1674 skb = first->skb; 1675 1676 data_len = skb->data_len; 1677 size = skb_headlen(skb); 1678 1679 tx_desc = ICE_TX_DESC(tx_ring, i); 1680 1681 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1682 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1683 td_tag = first->vid; 1684 } 1685 1686 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1687 1688 tx_buf = first; 1689 1690 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1691 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1692 1693 if (dma_mapping_error(tx_ring->dev, dma)) 1694 goto dma_error; 1695 1696 /* record length, and DMA address */ 1697 dma_unmap_len_set(tx_buf, len, size); 1698 dma_unmap_addr_set(tx_buf, dma, dma); 1699 1700 /* align size to end of page */ 1701 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1702 tx_desc->buf_addr = cpu_to_le64(dma); 1703 1704 /* account for data chunks larger than the hardware 1705 * can handle 1706 */ 1707 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1708 tx_desc->cmd_type_offset_bsz = 1709 ice_build_ctob(td_cmd, td_offset, max_data, 1710 td_tag); 1711 1712 tx_desc++; 1713 i++; 1714 1715 if (i == tx_ring->count) { 1716 tx_desc = ICE_TX_DESC(tx_ring, 0); 1717 i = 0; 1718 } 1719 1720 dma += max_data; 1721 size -= max_data; 1722 1723 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1724 tx_desc->buf_addr = cpu_to_le64(dma); 1725 } 1726 1727 if (likely(!data_len)) 1728 break; 1729 1730 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1731 size, td_tag); 1732 1733 tx_desc++; 1734 i++; 1735 1736 if (i == tx_ring->count) { 1737 tx_desc = ICE_TX_DESC(tx_ring, 0); 1738 i = 0; 1739 } 1740 1741 size = skb_frag_size(frag); 1742 data_len -= size; 1743 1744 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1745 DMA_TO_DEVICE); 1746 1747 tx_buf = &tx_ring->tx_buf[i]; 1748 tx_buf->type = ICE_TX_BUF_FRAG; 1749 } 1750 1751 /* record SW timestamp if HW timestamp is not available */ 1752 skb_tx_timestamp(first->skb); 1753 1754 i++; 1755 if (i == tx_ring->count) 1756 i = 0; 1757 1758 /* write last descriptor with RS and EOP bits */ 1759 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1760 tx_desc->cmd_type_offset_bsz = 1761 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1762 1763 /* Force memory writes to complete before letting h/w know there 1764 * are new descriptors to fetch. 1765 * 1766 * We also use this memory barrier to make certain all of the 1767 * status bits have been updated before next_to_watch is written. 1768 */ 1769 wmb(); 1770 1771 /* set next_to_watch value indicating a packet is present */ 1772 first->next_to_watch = tx_desc; 1773 1774 tx_ring->next_to_use = i; 1775 1776 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1777 1778 /* notify HW of packet */ 1779 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1780 netdev_xmit_more()); 1781 if (kick) 1782 /* notify HW of packet */ 1783 writel(i, tx_ring->tail); 1784 1785 return; 1786 1787 dma_error: 1788 /* clear DMA mappings for failed tx_buf map */ 1789 for (;;) { 1790 tx_buf = &tx_ring->tx_buf[i]; 1791 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1792 if (tx_buf == first) 1793 break; 1794 if (i == 0) 1795 i = tx_ring->count; 1796 i--; 1797 } 1798 1799 tx_ring->next_to_use = i; 1800 } 1801 1802 /** 1803 * ice_tx_csum - Enable Tx checksum offloads 1804 * @first: pointer to the first descriptor 1805 * @off: pointer to struct that holds offload parameters 1806 * 1807 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1808 */ 1809 static 1810 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1811 { 1812 const struct ice_tx_ring *tx_ring = off->tx_ring; 1813 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1814 struct sk_buff *skb = first->skb; 1815 union { 1816 struct iphdr *v4; 1817 struct ipv6hdr *v6; 1818 unsigned char *hdr; 1819 } ip; 1820 union { 1821 struct tcphdr *tcp; 1822 unsigned char *hdr; 1823 } l4; 1824 __be16 frag_off, protocol; 1825 unsigned char *exthdr; 1826 u32 offset, cmd = 0; 1827 u8 l4_proto = 0; 1828 1829 if (skb->ip_summed != CHECKSUM_PARTIAL) 1830 return 0; 1831 1832 protocol = vlan_get_protocol(skb); 1833 1834 if (eth_p_mpls(protocol)) { 1835 ip.hdr = skb_inner_network_header(skb); 1836 l4.hdr = skb_checksum_start(skb); 1837 } else { 1838 ip.hdr = skb_network_header(skb); 1839 l4.hdr = skb_transport_header(skb); 1840 } 1841 1842 /* compute outer L2 header size */ 1843 l2_len = ip.hdr - skb->data; 1844 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1845 1846 /* set the tx_flags to indicate the IP protocol type. this is 1847 * required so that checksum header computation below is accurate. 1848 */ 1849 if (ip.v4->version == 4) 1850 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1851 else if (ip.v6->version == 6) 1852 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1853 1854 if (skb->encapsulation) { 1855 bool gso_ena = false; 1856 u32 tunnel = 0; 1857 1858 /* define outer network header type */ 1859 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1860 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1861 ICE_TX_CTX_EIPT_IPV4 : 1862 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1863 l4_proto = ip.v4->protocol; 1864 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1865 int ret; 1866 1867 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1868 exthdr = ip.hdr + sizeof(*ip.v6); 1869 l4_proto = ip.v6->nexthdr; 1870 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1871 &l4_proto, &frag_off); 1872 if (ret < 0) 1873 return -1; 1874 } 1875 1876 /* define outer transport */ 1877 switch (l4_proto) { 1878 case IPPROTO_UDP: 1879 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1880 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1881 break; 1882 case IPPROTO_GRE: 1883 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1884 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1885 break; 1886 case IPPROTO_IPIP: 1887 case IPPROTO_IPV6: 1888 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1889 l4.hdr = skb_inner_network_header(skb); 1890 break; 1891 default: 1892 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1893 return -1; 1894 1895 skb_checksum_help(skb); 1896 return 0; 1897 } 1898 1899 /* compute outer L3 header size */ 1900 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1901 ICE_TXD_CTX_QW0_EIPLEN_S; 1902 1903 /* switch IP header pointer from outer to inner header */ 1904 ip.hdr = skb_inner_network_header(skb); 1905 1906 /* compute tunnel header size */ 1907 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1908 ICE_TXD_CTX_QW0_NATLEN_S; 1909 1910 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1911 /* indicate if we need to offload outer UDP header */ 1912 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1913 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1914 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1915 1916 /* record tunnel offload values */ 1917 off->cd_tunnel_params |= tunnel; 1918 1919 /* set DTYP=1 to indicate that it's an Tx context descriptor 1920 * in IPsec tunnel mode with Tx offloads in Quad word 1 1921 */ 1922 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1923 1924 /* switch L4 header pointer from outer to inner */ 1925 l4.hdr = skb_inner_transport_header(skb); 1926 l4_proto = 0; 1927 1928 /* reset type as we transition from outer to inner headers */ 1929 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1930 if (ip.v4->version == 4) 1931 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1932 if (ip.v6->version == 6) 1933 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1934 } 1935 1936 /* Enable IP checksum offloads */ 1937 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1938 l4_proto = ip.v4->protocol; 1939 /* the stack computes the IP header already, the only time we 1940 * need the hardware to recompute it is in the case of TSO. 1941 */ 1942 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1943 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1944 else 1945 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1946 1947 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1948 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1949 exthdr = ip.hdr + sizeof(*ip.v6); 1950 l4_proto = ip.v6->nexthdr; 1951 if (l4.hdr != exthdr) 1952 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1953 &frag_off); 1954 } else { 1955 return -1; 1956 } 1957 1958 /* compute inner L3 header size */ 1959 l3_len = l4.hdr - ip.hdr; 1960 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1961 1962 if ((tx_ring->netdev->features & NETIF_F_HW_CSUM) && 1963 !(first->tx_flags & ICE_TX_FLAGS_TSO) && 1964 !skb_csum_is_sctp(skb)) { 1965 /* Set GCS */ 1966 u16 csum_start = (skb->csum_start - skb->mac_header) / 2; 1967 u16 csum_offset = skb->csum_offset / 2; 1968 u16 gcs_params; 1969 1970 gcs_params = FIELD_PREP(ICE_TX_GCS_DESC_START_M, csum_start) | 1971 FIELD_PREP(ICE_TX_GCS_DESC_OFFSET_M, csum_offset) | 1972 FIELD_PREP(ICE_TX_GCS_DESC_TYPE_M, 1973 ICE_TX_GCS_DESC_CSUM_PSH); 1974 1975 /* Unlike legacy HW checksums, GCS requires a context 1976 * descriptor. 1977 */ 1978 off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX; 1979 off->cd_gcs_params = gcs_params; 1980 /* Fill out CSO info in data descriptors */ 1981 off->td_offset |= offset; 1982 off->td_cmd |= cmd; 1983 return 1; 1984 } 1985 1986 /* Enable L4 checksum offloads */ 1987 switch (l4_proto) { 1988 case IPPROTO_TCP: 1989 /* enable checksum offloads */ 1990 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1991 l4_len = l4.tcp->doff; 1992 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1993 break; 1994 case IPPROTO_UDP: 1995 /* enable UDP checksum offload */ 1996 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1997 l4_len = (sizeof(struct udphdr) >> 2); 1998 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1999 break; 2000 case IPPROTO_SCTP: 2001 /* enable SCTP checksum offload */ 2002 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2003 l4_len = sizeof(struct sctphdr) >> 2; 2004 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2005 break; 2006 2007 default: 2008 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2009 return -1; 2010 skb_checksum_help(skb); 2011 return 0; 2012 } 2013 2014 off->td_cmd |= cmd; 2015 off->td_offset |= offset; 2016 return 1; 2017 } 2018 2019 /** 2020 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2021 * @tx_ring: ring to send buffer on 2022 * @first: pointer to struct ice_tx_buf 2023 * 2024 * Checks the skb and set up correspondingly several generic transmit flags 2025 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2026 */ 2027 static void 2028 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 2029 { 2030 struct sk_buff *skb = first->skb; 2031 2032 /* nothing left to do, software offloaded VLAN */ 2033 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2034 return; 2035 2036 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 2037 * feature flags, which the driver only allows either 802.1Q or 802.1ad 2038 * VLAN offloads exclusively so we only care about the VLAN ID here 2039 */ 2040 if (skb_vlan_tag_present(skb)) { 2041 first->vid = skb_vlan_tag_get(skb); 2042 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 2043 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 2044 else 2045 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2046 } 2047 2048 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2049 } 2050 2051 /** 2052 * ice_tso - computes mss and TSO length to prepare for TSO 2053 * @first: pointer to struct ice_tx_buf 2054 * @off: pointer to struct that holds offload parameters 2055 * 2056 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2057 */ 2058 static 2059 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2060 { 2061 struct sk_buff *skb = first->skb; 2062 union { 2063 struct iphdr *v4; 2064 struct ipv6hdr *v6; 2065 unsigned char *hdr; 2066 } ip; 2067 union { 2068 struct tcphdr *tcp; 2069 struct udphdr *udp; 2070 unsigned char *hdr; 2071 } l4; 2072 u64 cd_mss, cd_tso_len; 2073 __be16 protocol; 2074 u32 paylen; 2075 u8 l4_start; 2076 int err; 2077 2078 if (skb->ip_summed != CHECKSUM_PARTIAL) 2079 return 0; 2080 2081 if (!skb_is_gso(skb)) 2082 return 0; 2083 2084 err = skb_cow_head(skb, 0); 2085 if (err < 0) 2086 return err; 2087 2088 protocol = vlan_get_protocol(skb); 2089 2090 if (eth_p_mpls(protocol)) 2091 ip.hdr = skb_inner_network_header(skb); 2092 else 2093 ip.hdr = skb_network_header(skb); 2094 l4.hdr = skb_checksum_start(skb); 2095 2096 /* initialize outer IP header fields */ 2097 if (ip.v4->version == 4) { 2098 ip.v4->tot_len = 0; 2099 ip.v4->check = 0; 2100 } else { 2101 ip.v6->payload_len = 0; 2102 } 2103 2104 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2105 SKB_GSO_GRE_CSUM | 2106 SKB_GSO_IPXIP4 | 2107 SKB_GSO_IPXIP6 | 2108 SKB_GSO_UDP_TUNNEL | 2109 SKB_GSO_UDP_TUNNEL_CSUM)) { 2110 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2111 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2112 l4.udp->len = 0; 2113 2114 /* determine offset of outer transport header */ 2115 l4_start = (u8)(l4.hdr - skb->data); 2116 2117 /* remove payload length from outer checksum */ 2118 paylen = skb->len - l4_start; 2119 csum_replace_by_diff(&l4.udp->check, 2120 (__force __wsum)htonl(paylen)); 2121 } 2122 2123 /* reset pointers to inner headers */ 2124 ip.hdr = skb_inner_network_header(skb); 2125 l4.hdr = skb_inner_transport_header(skb); 2126 2127 /* initialize inner IP header fields */ 2128 if (ip.v4->version == 4) { 2129 ip.v4->tot_len = 0; 2130 ip.v4->check = 0; 2131 } else { 2132 ip.v6->payload_len = 0; 2133 } 2134 } 2135 2136 /* determine offset of transport header */ 2137 l4_start = (u8)(l4.hdr - skb->data); 2138 2139 /* remove payload length from checksum */ 2140 paylen = skb->len - l4_start; 2141 2142 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2143 csum_replace_by_diff(&l4.udp->check, 2144 (__force __wsum)htonl(paylen)); 2145 /* compute length of UDP segmentation header */ 2146 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2147 } else { 2148 csum_replace_by_diff(&l4.tcp->check, 2149 (__force __wsum)htonl(paylen)); 2150 /* compute length of TCP segmentation header */ 2151 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2152 } 2153 2154 /* update gso_segs and bytecount */ 2155 first->gso_segs = skb_shinfo(skb)->gso_segs; 2156 first->bytecount += (first->gso_segs - 1) * off->header_len; 2157 2158 cd_tso_len = skb->len - off->header_len; 2159 cd_mss = skb_shinfo(skb)->gso_size; 2160 2161 /* record cdesc_qw1 with TSO parameters */ 2162 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2163 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2164 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2165 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2166 first->tx_flags |= ICE_TX_FLAGS_TSO; 2167 return 1; 2168 } 2169 2170 /** 2171 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2172 * @size: transmit request size in bytes 2173 * 2174 * Due to hardware alignment restrictions (4K alignment), we need to 2175 * assume that we can have no more than 12K of data per descriptor, even 2176 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2177 * Thus, we need to divide by 12K. But division is slow! Instead, 2178 * we decompose the operation into shifts and one relatively cheap 2179 * multiply operation. 2180 * 2181 * To divide by 12K, we first divide by 4K, then divide by 3: 2182 * To divide by 4K, shift right by 12 bits 2183 * To divide by 3, multiply by 85, then divide by 256 2184 * (Divide by 256 is done by shifting right by 8 bits) 2185 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2186 * 3, we'll underestimate near each multiple of 12K. This is actually more 2187 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2188 * segment. For our purposes this is accurate out to 1M which is orders of 2189 * magnitude greater than our largest possible GSO size. 2190 * 2191 * This would then be implemented as: 2192 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2193 * 2194 * Since multiplication and division are commutative, we can reorder 2195 * operations into: 2196 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2197 */ 2198 static unsigned int ice_txd_use_count(unsigned int size) 2199 { 2200 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2201 } 2202 2203 /** 2204 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2205 * @skb: send buffer 2206 * 2207 * Returns number of data descriptors needed for this skb. 2208 */ 2209 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2210 { 2211 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2212 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2213 unsigned int count = 0, size = skb_headlen(skb); 2214 2215 for (;;) { 2216 count += ice_txd_use_count(size); 2217 2218 if (!nr_frags--) 2219 break; 2220 2221 size = skb_frag_size(frag++); 2222 } 2223 2224 return count; 2225 } 2226 2227 /** 2228 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2229 * @skb: send buffer 2230 * 2231 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2232 * and so we need to figure out the cases where we need to linearize the skb. 2233 * 2234 * For TSO we need to count the TSO header and segment payload separately. 2235 * As such we need to check cases where we have 7 fragments or more as we 2236 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2237 * the segment payload in the first descriptor, and another 7 for the 2238 * fragments. 2239 */ 2240 static bool __ice_chk_linearize(struct sk_buff *skb) 2241 { 2242 const skb_frag_t *frag, *stale; 2243 int nr_frags, sum; 2244 2245 /* no need to check if number of frags is less than 7 */ 2246 nr_frags = skb_shinfo(skb)->nr_frags; 2247 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2248 return false; 2249 2250 /* We need to walk through the list and validate that each group 2251 * of 6 fragments totals at least gso_size. 2252 */ 2253 nr_frags -= ICE_MAX_BUF_TXD - 2; 2254 frag = &skb_shinfo(skb)->frags[0]; 2255 2256 /* Initialize size to the negative value of gso_size minus 1. We 2257 * use this as the worst case scenario in which the frag ahead 2258 * of us only provides one byte which is why we are limited to 6 2259 * descriptors for a single transmit as the header and previous 2260 * fragment are already consuming 2 descriptors. 2261 */ 2262 sum = 1 - skb_shinfo(skb)->gso_size; 2263 2264 /* Add size of frags 0 through 4 to create our initial sum */ 2265 sum += skb_frag_size(frag++); 2266 sum += skb_frag_size(frag++); 2267 sum += skb_frag_size(frag++); 2268 sum += skb_frag_size(frag++); 2269 sum += skb_frag_size(frag++); 2270 2271 /* Walk through fragments adding latest fragment, testing it, and 2272 * then removing stale fragments from the sum. 2273 */ 2274 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2275 int stale_size = skb_frag_size(stale); 2276 2277 sum += skb_frag_size(frag++); 2278 2279 /* The stale fragment may present us with a smaller 2280 * descriptor than the actual fragment size. To account 2281 * for that we need to remove all the data on the front and 2282 * figure out what the remainder would be in the last 2283 * descriptor associated with the fragment. 2284 */ 2285 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2286 int align_pad = -(skb_frag_off(stale)) & 2287 (ICE_MAX_READ_REQ_SIZE - 1); 2288 2289 sum -= align_pad; 2290 stale_size -= align_pad; 2291 2292 do { 2293 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2294 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2295 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2296 } 2297 2298 /* if sum is negative we failed to make sufficient progress */ 2299 if (sum < 0) 2300 return true; 2301 2302 if (!nr_frags--) 2303 break; 2304 2305 sum -= stale_size; 2306 } 2307 2308 return false; 2309 } 2310 2311 /** 2312 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2313 * @skb: send buffer 2314 * @count: number of buffers used 2315 * 2316 * Note: Our HW can't scatter-gather more than 8 fragments to build 2317 * a packet on the wire and so we need to figure out the cases where we 2318 * need to linearize the skb. 2319 */ 2320 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2321 { 2322 /* Both TSO and single send will work if count is less than 8 */ 2323 if (likely(count < ICE_MAX_BUF_TXD)) 2324 return false; 2325 2326 if (skb_is_gso(skb)) 2327 return __ice_chk_linearize(skb); 2328 2329 /* we can support up to 8 data buffers for a single send */ 2330 return count != ICE_MAX_BUF_TXD; 2331 } 2332 2333 /** 2334 * ice_tstamp - set up context descriptor for hardware timestamp 2335 * @tx_ring: pointer to the Tx ring to send buffer on 2336 * @skb: pointer to the SKB we're sending 2337 * @first: Tx buffer 2338 * @off: Tx offload parameters 2339 */ 2340 static void 2341 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2342 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2343 { 2344 s8 idx; 2345 2346 /* only timestamp the outbound packet if the user has requested it */ 2347 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2348 return; 2349 2350 /* Tx timestamps cannot be sampled when doing TSO */ 2351 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2352 return; 2353 2354 /* Grab an open timestamp slot */ 2355 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2356 if (idx < 0) { 2357 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2358 return; 2359 } 2360 2361 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2362 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2363 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2364 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2365 } 2366 2367 /** 2368 * ice_xmit_frame_ring - Sends buffer on Tx ring 2369 * @skb: send buffer 2370 * @tx_ring: ring to send buffer on 2371 * 2372 * Returns NETDEV_TX_OK if sent, else an error code 2373 */ 2374 static netdev_tx_t 2375 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2376 { 2377 struct ice_tx_offload_params offload = { 0 }; 2378 struct ice_vsi *vsi = tx_ring->vsi; 2379 struct ice_tx_buf *first; 2380 struct ethhdr *eth; 2381 unsigned int count; 2382 int tso, csum; 2383 2384 ice_trace(xmit_frame_ring, tx_ring, skb); 2385 2386 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2387 goto out_drop; 2388 2389 count = ice_xmit_desc_count(skb); 2390 if (ice_chk_linearize(skb, count)) { 2391 if (__skb_linearize(skb)) 2392 goto out_drop; 2393 count = ice_txd_use_count(skb->len); 2394 tx_ring->ring_stats->tx_stats.tx_linearize++; 2395 } 2396 2397 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2398 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2399 * + 4 desc gap to avoid the cache line where head is, 2400 * + 1 desc for context descriptor, 2401 * otherwise try next time 2402 */ 2403 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2404 ICE_DESCS_FOR_CTX_DESC)) { 2405 tx_ring->ring_stats->tx_stats.tx_busy++; 2406 return NETDEV_TX_BUSY; 2407 } 2408 2409 /* prefetch for bql data which is infrequently used */ 2410 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2411 2412 offload.tx_ring = tx_ring; 2413 2414 /* record the location of the first descriptor for this packet */ 2415 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2416 first->skb = skb; 2417 first->type = ICE_TX_BUF_SKB; 2418 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2419 first->gso_segs = 1; 2420 first->tx_flags = 0; 2421 2422 /* prepare the VLAN tagging flags for Tx */ 2423 ice_tx_prepare_vlan_flags(tx_ring, first); 2424 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2425 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2426 (ICE_TX_CTX_DESC_IL2TAG2 << 2427 ICE_TXD_CTX_QW1_CMD_S)); 2428 offload.cd_l2tag2 = first->vid; 2429 } 2430 2431 /* set up TSO offload */ 2432 tso = ice_tso(first, &offload); 2433 if (tso < 0) 2434 goto out_drop; 2435 2436 /* always set up Tx checksum offload */ 2437 csum = ice_tx_csum(first, &offload); 2438 if (csum < 0) 2439 goto out_drop; 2440 2441 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2442 eth = (struct ethhdr *)skb_mac_header(skb); 2443 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2444 eth->h_proto == htons(ETH_P_LLDP)) && 2445 vsi->type == ICE_VSI_PF && 2446 vsi->port_info->qos_cfg.is_sw_lldp)) 2447 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2448 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2449 ICE_TXD_CTX_QW1_CMD_S); 2450 2451 ice_tstamp(tx_ring, skb, first, &offload); 2452 if ((ice_is_switchdev_running(vsi->back) || 2453 ice_lag_is_switchdev_running(vsi->back)) && 2454 vsi->type != ICE_VSI_SF) 2455 ice_eswitch_set_target_vsi(skb, &offload); 2456 2457 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2458 struct ice_tx_ctx_desc *cdesc; 2459 u16 i = tx_ring->next_to_use; 2460 2461 /* grab the next descriptor */ 2462 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2463 i++; 2464 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2465 2466 /* setup context descriptor */ 2467 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2468 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2469 cdesc->gcs = cpu_to_le16(offload.cd_gcs_params); 2470 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2471 } 2472 2473 ice_tx_map(tx_ring, first, &offload); 2474 return NETDEV_TX_OK; 2475 2476 out_drop: 2477 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2478 dev_kfree_skb_any(skb); 2479 return NETDEV_TX_OK; 2480 } 2481 2482 /** 2483 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2484 * @skb: send buffer 2485 * @netdev: network interface device structure 2486 * 2487 * Returns NETDEV_TX_OK if sent, else an error code 2488 */ 2489 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2490 { 2491 struct ice_netdev_priv *np = netdev_priv(netdev); 2492 struct ice_vsi *vsi = np->vsi; 2493 struct ice_tx_ring *tx_ring; 2494 2495 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2496 2497 /* hardware can't handle really short frames, hardware padding works 2498 * beyond this point 2499 */ 2500 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2501 return NETDEV_TX_OK; 2502 2503 return ice_xmit_frame_ring(skb, tx_ring); 2504 } 2505 2506 /** 2507 * ice_get_dscp_up - return the UP/TC value for a SKB 2508 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2509 * @skb: SKB to query for info to determine UP/TC 2510 * 2511 * This function is to only be called when the PF is in L3 DSCP PFC mode 2512 */ 2513 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2514 { 2515 u8 dscp = 0; 2516 2517 if (skb->protocol == htons(ETH_P_IP)) 2518 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2519 else if (skb->protocol == htons(ETH_P_IPV6)) 2520 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2521 2522 return dcbcfg->dscp_map[dscp]; 2523 } 2524 2525 u16 2526 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2527 struct net_device *sb_dev) 2528 { 2529 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2530 struct ice_dcbx_cfg *dcbcfg; 2531 2532 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2533 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2534 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2535 2536 return netdev_pick_tx(netdev, skb, sb_dev); 2537 } 2538 2539 /** 2540 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2541 * @tx_ring: tx_ring to clean 2542 */ 2543 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2544 { 2545 struct ice_vsi *vsi = tx_ring->vsi; 2546 s16 i = tx_ring->next_to_clean; 2547 int budget = ICE_DFLT_IRQ_WORK; 2548 struct ice_tx_desc *tx_desc; 2549 struct ice_tx_buf *tx_buf; 2550 2551 tx_buf = &tx_ring->tx_buf[i]; 2552 tx_desc = ICE_TX_DESC(tx_ring, i); 2553 i -= tx_ring->count; 2554 2555 do { 2556 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2557 2558 /* if next_to_watch is not set then there is no pending work */ 2559 if (!eop_desc) 2560 break; 2561 2562 /* prevent any other reads prior to eop_desc */ 2563 smp_rmb(); 2564 2565 /* if the descriptor isn't done, no work to do */ 2566 if (!(eop_desc->cmd_type_offset_bsz & 2567 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2568 break; 2569 2570 /* clear next_to_watch to prevent false hangs */ 2571 tx_buf->next_to_watch = NULL; 2572 tx_desc->buf_addr = 0; 2573 tx_desc->cmd_type_offset_bsz = 0; 2574 2575 /* move past filter desc */ 2576 tx_buf++; 2577 tx_desc++; 2578 i++; 2579 if (unlikely(!i)) { 2580 i -= tx_ring->count; 2581 tx_buf = tx_ring->tx_buf; 2582 tx_desc = ICE_TX_DESC(tx_ring, 0); 2583 } 2584 2585 /* unmap the data header */ 2586 if (dma_unmap_len(tx_buf, len)) 2587 dma_unmap_single(tx_ring->dev, 2588 dma_unmap_addr(tx_buf, dma), 2589 dma_unmap_len(tx_buf, len), 2590 DMA_TO_DEVICE); 2591 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2592 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2593 2594 /* clear next_to_watch to prevent false hangs */ 2595 tx_buf->type = ICE_TX_BUF_EMPTY; 2596 tx_buf->tx_flags = 0; 2597 tx_buf->next_to_watch = NULL; 2598 dma_unmap_len_set(tx_buf, len, 0); 2599 tx_desc->buf_addr = 0; 2600 tx_desc->cmd_type_offset_bsz = 0; 2601 2602 /* move past eop_desc for start of next FD desc */ 2603 tx_buf++; 2604 tx_desc++; 2605 i++; 2606 if (unlikely(!i)) { 2607 i -= tx_ring->count; 2608 tx_buf = tx_ring->tx_buf; 2609 tx_desc = ICE_TX_DESC(tx_ring, 0); 2610 } 2611 2612 budget--; 2613 } while (likely(budget)); 2614 2615 i += tx_ring->count; 2616 tx_ring->next_to_clean = i; 2617 2618 /* re-enable interrupt if needed */ 2619 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2620 } 2621