xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 65d2dbb300197839eafc4171cfeb57a14c452724)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 #define FDIR_DESC_RXDID 0x40
19 #define ICE_FDIR_CLEAN_DELAY 10
20 
21 /**
22  * ice_prgm_fdir_fltr - Program a Flow Director filter
23  * @vsi: VSI to send dummy packet
24  * @fdir_desc: flow director descriptor
25  * @raw_packet: allocated buffer for flow director
26  */
27 int
28 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 		   u8 *raw_packet)
30 {
31 	struct ice_tx_buf *tx_buf, *first;
32 	struct ice_fltr_desc *f_desc;
33 	struct ice_tx_desc *tx_desc;
34 	struct ice_ring *tx_ring;
35 	struct device *dev;
36 	dma_addr_t dma;
37 	u32 td_cmd;
38 	u16 i;
39 
40 	/* VSI and Tx ring */
41 	if (!vsi)
42 		return -ENOENT;
43 	tx_ring = vsi->tx_rings[0];
44 	if (!tx_ring || !tx_ring->desc)
45 		return -ENOENT;
46 	dev = tx_ring->dev;
47 
48 	/* we are using two descriptors to add/del a filter and we can wait */
49 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 		if (!i)
51 			return -EAGAIN;
52 		msleep_interruptible(1);
53 	}
54 
55 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 			     DMA_TO_DEVICE);
57 
58 	if (dma_mapping_error(dev, dma))
59 		return -EINVAL;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	first = &tx_ring->tx_buf[i];
64 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66 
67 	i++;
68 	i = (i < tx_ring->count) ? i : 0;
69 	tx_desc = ICE_TX_DESC(tx_ring, i);
70 	tx_buf = &tx_ring->tx_buf[i];
71 
72 	i++;
73 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74 
75 	memset(tx_buf, 0, sizeof(*tx_buf));
76 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 	dma_unmap_addr_set(tx_buf, dma, dma);
78 
79 	tx_desc->buf_addr = cpu_to_le64(dma);
80 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 		 ICE_TX_DESC_CMD_RE;
82 
83 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 	tx_buf->raw_buf = raw_packet;
85 
86 	tx_desc->cmd_type_offset_bsz =
87 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88 
89 	/* Force memory write to complete before letting h/w know
90 	 * there are new descriptors to fetch.
91 	 */
92 	wmb();
93 
94 	/* mark the data descriptor to be watched */
95 	first->next_to_watch = tx_desc;
96 
97 	writel(tx_ring->next_to_use, tx_ring->tail);
98 
99 	return 0;
100 }
101 
102 /**
103  * ice_unmap_and_free_tx_buf - Release a Tx buffer
104  * @ring: the ring that owns the buffer
105  * @tx_buf: the buffer to free
106  */
107 static void
108 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109 {
110 	if (tx_buf->skb) {
111 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 			devm_kfree(ring->dev, tx_buf->raw_buf);
113 		else if (ice_ring_is_xdp(ring))
114 			page_frag_free(tx_buf->raw_buf);
115 		else
116 			dev_kfree_skb_any(tx_buf->skb);
117 		if (dma_unmap_len(tx_buf, len))
118 			dma_unmap_single(ring->dev,
119 					 dma_unmap_addr(tx_buf, dma),
120 					 dma_unmap_len(tx_buf, len),
121 					 DMA_TO_DEVICE);
122 	} else if (dma_unmap_len(tx_buf, len)) {
123 		dma_unmap_page(ring->dev,
124 			       dma_unmap_addr(tx_buf, dma),
125 			       dma_unmap_len(tx_buf, len),
126 			       DMA_TO_DEVICE);
127 	}
128 
129 	tx_buf->next_to_watch = NULL;
130 	tx_buf->skb = NULL;
131 	dma_unmap_len_set(tx_buf, len, 0);
132 	/* tx_buf must be completely set up in the transmit path */
133 }
134 
135 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136 {
137 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
138 }
139 
140 /**
141  * ice_clean_tx_ring - Free any empty Tx buffers
142  * @tx_ring: ring to be cleaned
143  */
144 void ice_clean_tx_ring(struct ice_ring *tx_ring)
145 {
146 	u16 i;
147 
148 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
149 		ice_xsk_clean_xdp_ring(tx_ring);
150 		goto tx_skip_free;
151 	}
152 
153 	/* ring already cleared, nothing to do */
154 	if (!tx_ring->tx_buf)
155 		return;
156 
157 	/* Free all the Tx ring sk_buffs */
158 	for (i = 0; i < tx_ring->count; i++)
159 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160 
161 tx_skip_free:
162 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163 
164 	/* Zero out the descriptor ring */
165 	memset(tx_ring->desc, 0, tx_ring->size);
166 
167 	tx_ring->next_to_use = 0;
168 	tx_ring->next_to_clean = 0;
169 
170 	if (!tx_ring->netdev)
171 		return;
172 
173 	/* cleanup Tx queue statistics */
174 	netdev_tx_reset_queue(txring_txq(tx_ring));
175 }
176 
177 /**
178  * ice_free_tx_ring - Free Tx resources per queue
179  * @tx_ring: Tx descriptor ring for a specific queue
180  *
181  * Free all transmit software resources
182  */
183 void ice_free_tx_ring(struct ice_ring *tx_ring)
184 {
185 	ice_clean_tx_ring(tx_ring);
186 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 	tx_ring->tx_buf = NULL;
188 
189 	if (tx_ring->desc) {
190 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 				   tx_ring->desc, tx_ring->dma);
192 		tx_ring->desc = NULL;
193 	}
194 }
195 
196 /**
197  * ice_clean_tx_irq - Reclaim resources after transmit completes
198  * @tx_ring: Tx ring to clean
199  * @napi_budget: Used to determine if we are in netpoll
200  *
201  * Returns true if there's any budget left (e.g. the clean is finished)
202  */
203 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204 {
205 	unsigned int total_bytes = 0, total_pkts = 0;
206 	unsigned int budget = ICE_DFLT_IRQ_WORK;
207 	struct ice_vsi *vsi = tx_ring->vsi;
208 	s16 i = tx_ring->next_to_clean;
209 	struct ice_tx_desc *tx_desc;
210 	struct ice_tx_buf *tx_buf;
211 
212 	tx_buf = &tx_ring->tx_buf[i];
213 	tx_desc = ICE_TX_DESC(tx_ring, i);
214 	i -= tx_ring->count;
215 
216 	prefetch(&vsi->state);
217 
218 	do {
219 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220 
221 		/* if next_to_watch is not set then there is no work pending */
222 		if (!eop_desc)
223 			break;
224 
225 		smp_rmb();	/* prevent any other reads prior to eop_desc */
226 
227 		/* if the descriptor isn't done, no work yet to do */
228 		if (!(eop_desc->cmd_type_offset_bsz &
229 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 			break;
231 
232 		/* clear next_to_watch to prevent false hangs */
233 		tx_buf->next_to_watch = NULL;
234 
235 		/* update the statistics for this packet */
236 		total_bytes += tx_buf->bytecount;
237 		total_pkts += tx_buf->gso_segs;
238 
239 		if (ice_ring_is_xdp(tx_ring))
240 			page_frag_free(tx_buf->raw_buf);
241 		else
242 			/* free the skb */
243 			napi_consume_skb(tx_buf->skb, napi_budget);
244 
245 		/* unmap skb header data */
246 		dma_unmap_single(tx_ring->dev,
247 				 dma_unmap_addr(tx_buf, dma),
248 				 dma_unmap_len(tx_buf, len),
249 				 DMA_TO_DEVICE);
250 
251 		/* clear tx_buf data */
252 		tx_buf->skb = NULL;
253 		dma_unmap_len_set(tx_buf, len, 0);
254 
255 		/* unmap remaining buffers */
256 		while (tx_desc != eop_desc) {
257 			tx_buf++;
258 			tx_desc++;
259 			i++;
260 			if (unlikely(!i)) {
261 				i -= tx_ring->count;
262 				tx_buf = tx_ring->tx_buf;
263 				tx_desc = ICE_TX_DESC(tx_ring, 0);
264 			}
265 
266 			/* unmap any remaining paged data */
267 			if (dma_unmap_len(tx_buf, len)) {
268 				dma_unmap_page(tx_ring->dev,
269 					       dma_unmap_addr(tx_buf, dma),
270 					       dma_unmap_len(tx_buf, len),
271 					       DMA_TO_DEVICE);
272 				dma_unmap_len_set(tx_buf, len, 0);
273 			}
274 		}
275 
276 		/* move us one more past the eop_desc for start of next pkt */
277 		tx_buf++;
278 		tx_desc++;
279 		i++;
280 		if (unlikely(!i)) {
281 			i -= tx_ring->count;
282 			tx_buf = tx_ring->tx_buf;
283 			tx_desc = ICE_TX_DESC(tx_ring, 0);
284 		}
285 
286 		prefetch(tx_desc);
287 
288 		/* update budget accounting */
289 		budget--;
290 	} while (likely(budget));
291 
292 	i += tx_ring->count;
293 	tx_ring->next_to_clean = i;
294 
295 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296 
297 	if (ice_ring_is_xdp(tx_ring))
298 		return !!budget;
299 
300 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 				  total_bytes);
302 
303 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 		/* Make sure that anybody stopping the queue after this
307 		 * sees the new next_to_clean.
308 		 */
309 		smp_mb();
310 		if (__netif_subqueue_stopped(tx_ring->netdev,
311 					     tx_ring->q_index) &&
312 		    !test_bit(__ICE_DOWN, vsi->state)) {
313 			netif_wake_subqueue(tx_ring->netdev,
314 					    tx_ring->q_index);
315 			++tx_ring->tx_stats.restart_q;
316 		}
317 	}
318 
319 	return !!budget;
320 }
321 
322 /**
323  * ice_setup_tx_ring - Allocate the Tx descriptors
324  * @tx_ring: the Tx ring to set up
325  *
326  * Return 0 on success, negative on error
327  */
328 int ice_setup_tx_ring(struct ice_ring *tx_ring)
329 {
330 	struct device *dev = tx_ring->dev;
331 
332 	if (!dev)
333 		return -ENOMEM;
334 
335 	/* warn if we are about to overwrite the pointer */
336 	WARN_ON(tx_ring->tx_buf);
337 	tx_ring->tx_buf =
338 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 			     GFP_KERNEL);
340 	if (!tx_ring->tx_buf)
341 		return -ENOMEM;
342 
343 	/* round up to nearest page */
344 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 			      PAGE_SIZE);
346 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 					    GFP_KERNEL);
348 	if (!tx_ring->desc) {
349 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 			tx_ring->size);
351 		goto err;
352 	}
353 
354 	tx_ring->next_to_use = 0;
355 	tx_ring->next_to_clean = 0;
356 	tx_ring->tx_stats.prev_pkt = -1;
357 	return 0;
358 
359 err:
360 	devm_kfree(dev, tx_ring->tx_buf);
361 	tx_ring->tx_buf = NULL;
362 	return -ENOMEM;
363 }
364 
365 /**
366  * ice_clean_rx_ring - Free Rx buffers
367  * @rx_ring: ring to be cleaned
368  */
369 void ice_clean_rx_ring(struct ice_ring *rx_ring)
370 {
371 	struct device *dev = rx_ring->dev;
372 	u16 i;
373 
374 	/* ring already cleared, nothing to do */
375 	if (!rx_ring->rx_buf)
376 		return;
377 
378 	if (rx_ring->skb) {
379 		dev_kfree_skb(rx_ring->skb);
380 		rx_ring->skb = NULL;
381 	}
382 
383 	if (rx_ring->xsk_pool) {
384 		ice_xsk_clean_rx_ring(rx_ring);
385 		goto rx_skip_free;
386 	}
387 
388 	/* Free all the Rx ring sk_buffs */
389 	for (i = 0; i < rx_ring->count; i++) {
390 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
391 
392 		if (!rx_buf->page)
393 			continue;
394 
395 		/* Invalidate cache lines that may have been written to by
396 		 * device so that we avoid corrupting memory.
397 		 */
398 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
399 					      rx_buf->page_offset,
400 					      rx_ring->rx_buf_len,
401 					      DMA_FROM_DEVICE);
402 
403 		/* free resources associated with mapping */
404 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
405 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
406 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
407 
408 		rx_buf->page = NULL;
409 		rx_buf->page_offset = 0;
410 	}
411 
412 rx_skip_free:
413 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
414 
415 	/* Zero out the descriptor ring */
416 	memset(rx_ring->desc, 0, rx_ring->size);
417 
418 	rx_ring->next_to_alloc = 0;
419 	rx_ring->next_to_clean = 0;
420 	rx_ring->next_to_use = 0;
421 }
422 
423 /**
424  * ice_free_rx_ring - Free Rx resources
425  * @rx_ring: ring to clean the resources from
426  *
427  * Free all receive software resources
428  */
429 void ice_free_rx_ring(struct ice_ring *rx_ring)
430 {
431 	ice_clean_rx_ring(rx_ring);
432 	if (rx_ring->vsi->type == ICE_VSI_PF)
433 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
434 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
435 	rx_ring->xdp_prog = NULL;
436 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
437 	rx_ring->rx_buf = NULL;
438 
439 	if (rx_ring->desc) {
440 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
441 				   rx_ring->desc, rx_ring->dma);
442 		rx_ring->desc = NULL;
443 	}
444 }
445 
446 /**
447  * ice_rx_offset - Return expected offset into page to access data
448  * @rx_ring: Ring we are requesting offset of
449  *
450  * Returns the offset value for ring into the data buffer.
451  */
452 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
453 {
454 	if (ice_ring_uses_build_skb(rx_ring))
455 		return ICE_SKB_PAD;
456 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
457 		return XDP_PACKET_HEADROOM;
458 
459 	return 0;
460 }
461 
462 /**
463  * ice_setup_rx_ring - Allocate the Rx descriptors
464  * @rx_ring: the Rx ring to set up
465  *
466  * Return 0 on success, negative on error
467  */
468 int ice_setup_rx_ring(struct ice_ring *rx_ring)
469 {
470 	struct device *dev = rx_ring->dev;
471 
472 	if (!dev)
473 		return -ENOMEM;
474 
475 	/* warn if we are about to overwrite the pointer */
476 	WARN_ON(rx_ring->rx_buf);
477 	rx_ring->rx_buf =
478 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
479 			     GFP_KERNEL);
480 	if (!rx_ring->rx_buf)
481 		return -ENOMEM;
482 
483 	/* round up to nearest page */
484 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
485 			      PAGE_SIZE);
486 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
487 					    GFP_KERNEL);
488 	if (!rx_ring->desc) {
489 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
490 			rx_ring->size);
491 		goto err;
492 	}
493 
494 	rx_ring->next_to_use = 0;
495 	rx_ring->next_to_clean = 0;
496 	rx_ring->rx_offset = ice_rx_offset(rx_ring);
497 
498 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
499 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
500 
501 	if (rx_ring->vsi->type == ICE_VSI_PF &&
502 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
503 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
504 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
505 			goto err;
506 	return 0;
507 
508 err:
509 	devm_kfree(dev, rx_ring->rx_buf);
510 	rx_ring->rx_buf = NULL;
511 	return -ENOMEM;
512 }
513 
514 static unsigned int
515 ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
516 {
517 	unsigned int truesize;
518 
519 #if (PAGE_SIZE < 8192)
520 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
521 #else
522 	truesize = rx_ring->rx_offset ?
523 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
524 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
525 		SKB_DATA_ALIGN(size);
526 #endif
527 	return truesize;
528 }
529 
530 /**
531  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
532  * @rx_ring: Rx ring
533  * @xdp: xdp_buff used as input to the XDP program
534  * @xdp_prog: XDP program to run
535  *
536  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
537  */
538 static int
539 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
540 	    struct bpf_prog *xdp_prog)
541 {
542 	struct ice_ring *xdp_ring;
543 	int err;
544 	u32 act;
545 
546 	act = bpf_prog_run_xdp(xdp_prog, xdp);
547 	switch (act) {
548 	case XDP_PASS:
549 		return ICE_XDP_PASS;
550 	case XDP_TX:
551 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
552 		return ice_xmit_xdp_buff(xdp, xdp_ring);
553 	case XDP_REDIRECT:
554 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
555 		return !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
556 	default:
557 		bpf_warn_invalid_xdp_action(act);
558 		fallthrough;
559 	case XDP_ABORTED:
560 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
561 		fallthrough;
562 	case XDP_DROP:
563 		return ICE_XDP_CONSUMED;
564 	}
565 }
566 
567 /**
568  * ice_xdp_xmit - submit packets to XDP ring for transmission
569  * @dev: netdev
570  * @n: number of XDP frames to be transmitted
571  * @frames: XDP frames to be transmitted
572  * @flags: transmit flags
573  *
574  * Returns number of frames successfully sent. Frames that fail are
575  * free'ed via XDP return API.
576  * For error cases, a negative errno code is returned and no-frames
577  * are transmitted (caller must handle freeing frames).
578  */
579 int
580 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
581 	     u32 flags)
582 {
583 	struct ice_netdev_priv *np = netdev_priv(dev);
584 	unsigned int queue_index = smp_processor_id();
585 	struct ice_vsi *vsi = np->vsi;
586 	struct ice_ring *xdp_ring;
587 	int drops = 0, i;
588 
589 	if (test_bit(__ICE_DOWN, vsi->state))
590 		return -ENETDOWN;
591 
592 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
593 		return -ENXIO;
594 
595 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
596 		return -EINVAL;
597 
598 	xdp_ring = vsi->xdp_rings[queue_index];
599 	for (i = 0; i < n; i++) {
600 		struct xdp_frame *xdpf = frames[i];
601 		int err;
602 
603 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
604 		if (err != ICE_XDP_TX) {
605 			xdp_return_frame_rx_napi(xdpf);
606 			drops++;
607 		}
608 	}
609 
610 	if (unlikely(flags & XDP_XMIT_FLUSH))
611 		ice_xdp_ring_update_tail(xdp_ring);
612 
613 	return n - drops;
614 }
615 
616 /**
617  * ice_alloc_mapped_page - recycle or make a new page
618  * @rx_ring: ring to use
619  * @bi: rx_buf struct to modify
620  *
621  * Returns true if the page was successfully allocated or
622  * reused.
623  */
624 static bool
625 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
626 {
627 	struct page *page = bi->page;
628 	dma_addr_t dma;
629 
630 	/* since we are recycling buffers we should seldom need to alloc */
631 	if (likely(page))
632 		return true;
633 
634 	/* alloc new page for storage */
635 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
636 	if (unlikely(!page)) {
637 		rx_ring->rx_stats.alloc_page_failed++;
638 		return false;
639 	}
640 
641 	/* map page for use */
642 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
643 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
644 
645 	/* if mapping failed free memory back to system since
646 	 * there isn't much point in holding memory we can't use
647 	 */
648 	if (dma_mapping_error(rx_ring->dev, dma)) {
649 		__free_pages(page, ice_rx_pg_order(rx_ring));
650 		rx_ring->rx_stats.alloc_page_failed++;
651 		return false;
652 	}
653 
654 	bi->dma = dma;
655 	bi->page = page;
656 	bi->page_offset = rx_ring->rx_offset;
657 	page_ref_add(page, USHRT_MAX - 1);
658 	bi->pagecnt_bias = USHRT_MAX;
659 
660 	return true;
661 }
662 
663 /**
664  * ice_alloc_rx_bufs - Replace used receive buffers
665  * @rx_ring: ring to place buffers on
666  * @cleaned_count: number of buffers to replace
667  *
668  * Returns false if all allocations were successful, true if any fail. Returning
669  * true signals to the caller that we didn't replace cleaned_count buffers and
670  * there is more work to do.
671  *
672  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
673  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
674  * multiple tail writes per call.
675  */
676 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
677 {
678 	union ice_32b_rx_flex_desc *rx_desc;
679 	u16 ntu = rx_ring->next_to_use;
680 	struct ice_rx_buf *bi;
681 
682 	/* do nothing if no valid netdev defined */
683 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
684 	    !cleaned_count)
685 		return false;
686 
687 	/* get the Rx descriptor and buffer based on next_to_use */
688 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
689 	bi = &rx_ring->rx_buf[ntu];
690 
691 	do {
692 		/* if we fail here, we have work remaining */
693 		if (!ice_alloc_mapped_page(rx_ring, bi))
694 			break;
695 
696 		/* sync the buffer for use by the device */
697 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
698 						 bi->page_offset,
699 						 rx_ring->rx_buf_len,
700 						 DMA_FROM_DEVICE);
701 
702 		/* Refresh the desc even if buffer_addrs didn't change
703 		 * because each write-back erases this info.
704 		 */
705 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
706 
707 		rx_desc++;
708 		bi++;
709 		ntu++;
710 		if (unlikely(ntu == rx_ring->count)) {
711 			rx_desc = ICE_RX_DESC(rx_ring, 0);
712 			bi = rx_ring->rx_buf;
713 			ntu = 0;
714 		}
715 
716 		/* clear the status bits for the next_to_use descriptor */
717 		rx_desc->wb.status_error0 = 0;
718 
719 		cleaned_count--;
720 	} while (cleaned_count);
721 
722 	if (rx_ring->next_to_use != ntu)
723 		ice_release_rx_desc(rx_ring, ntu);
724 
725 	return !!cleaned_count;
726 }
727 
728 /**
729  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
730  * @rx_buf: Rx buffer to adjust
731  * @size: Size of adjustment
732  *
733  * Update the offset within page so that Rx buf will be ready to be reused.
734  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
735  * so the second half of page assigned to Rx buffer will be used, otherwise
736  * the offset is moved by "size" bytes
737  */
738 static void
739 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
740 {
741 #if (PAGE_SIZE < 8192)
742 	/* flip page offset to other buffer */
743 	rx_buf->page_offset ^= size;
744 #else
745 	/* move offset up to the next cache line */
746 	rx_buf->page_offset += size;
747 #endif
748 }
749 
750 /**
751  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
752  * @rx_buf: buffer containing the page
753  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
754  *
755  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
756  * which will assign the current buffer to the buffer that next_to_alloc is
757  * pointing to; otherwise, the DMA mapping needs to be destroyed and
758  * page freed
759  */
760 static bool
761 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
762 {
763 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
764 	struct page *page = rx_buf->page;
765 
766 	/* avoid re-using remote and pfmemalloc pages */
767 	if (!dev_page_is_reusable(page))
768 		return false;
769 
770 #if (PAGE_SIZE < 8192)
771 	/* if we are only owner of page we can reuse it */
772 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
773 		return false;
774 #else
775 #define ICE_LAST_OFFSET \
776 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
777 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
778 		return false;
779 #endif /* PAGE_SIZE < 8192) */
780 
781 	/* If we have drained the page fragment pool we need to update
782 	 * the pagecnt_bias and page count so that we fully restock the
783 	 * number of references the driver holds.
784 	 */
785 	if (unlikely(pagecnt_bias == 1)) {
786 		page_ref_add(page, USHRT_MAX - 1);
787 		rx_buf->pagecnt_bias = USHRT_MAX;
788 	}
789 
790 	return true;
791 }
792 
793 /**
794  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
795  * @rx_ring: Rx descriptor ring to transact packets on
796  * @rx_buf: buffer containing page to add
797  * @skb: sk_buff to place the data into
798  * @size: packet length from rx_desc
799  *
800  * This function will add the data contained in rx_buf->page to the skb.
801  * It will just attach the page as a frag to the skb.
802  * The function will then update the page offset.
803  */
804 static void
805 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
806 		struct sk_buff *skb, unsigned int size)
807 {
808 #if (PAGE_SIZE >= 8192)
809 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
810 #else
811 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
812 #endif
813 
814 	if (!size)
815 		return;
816 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
817 			rx_buf->page_offset, size, truesize);
818 
819 	/* page is being used so we must update the page offset */
820 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
821 }
822 
823 /**
824  * ice_reuse_rx_page - page flip buffer and store it back on the ring
825  * @rx_ring: Rx descriptor ring to store buffers on
826  * @old_buf: donor buffer to have page reused
827  *
828  * Synchronizes page for reuse by the adapter
829  */
830 static void
831 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
832 {
833 	u16 nta = rx_ring->next_to_alloc;
834 	struct ice_rx_buf *new_buf;
835 
836 	new_buf = &rx_ring->rx_buf[nta];
837 
838 	/* update, and store next to alloc */
839 	nta++;
840 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
841 
842 	/* Transfer page from old buffer to new buffer.
843 	 * Move each member individually to avoid possible store
844 	 * forwarding stalls and unnecessary copy of skb.
845 	 */
846 	new_buf->dma = old_buf->dma;
847 	new_buf->page = old_buf->page;
848 	new_buf->page_offset = old_buf->page_offset;
849 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
850 }
851 
852 /**
853  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
854  * @rx_ring: Rx descriptor ring to transact packets on
855  * @size: size of buffer to add to skb
856  * @rx_buf_pgcnt: rx_buf page refcount
857  *
858  * This function will pull an Rx buffer from the ring and synchronize it
859  * for use by the CPU.
860  */
861 static struct ice_rx_buf *
862 ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
863 	       int *rx_buf_pgcnt)
864 {
865 	struct ice_rx_buf *rx_buf;
866 
867 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
868 	*rx_buf_pgcnt =
869 #if (PAGE_SIZE < 8192)
870 		page_count(rx_buf->page);
871 #else
872 		0;
873 #endif
874 	prefetchw(rx_buf->page);
875 
876 	if (!size)
877 		return rx_buf;
878 	/* we are reusing so sync this buffer for CPU use */
879 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
880 				      rx_buf->page_offset, size,
881 				      DMA_FROM_DEVICE);
882 
883 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
884 	rx_buf->pagecnt_bias--;
885 
886 	return rx_buf;
887 }
888 
889 /**
890  * ice_build_skb - Build skb around an existing buffer
891  * @rx_ring: Rx descriptor ring to transact packets on
892  * @rx_buf: Rx buffer to pull data from
893  * @xdp: xdp_buff pointing to the data
894  *
895  * This function builds an skb around an existing Rx buffer, taking care
896  * to set up the skb correctly and avoid any memcpy overhead.
897  */
898 static struct sk_buff *
899 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
900 	      struct xdp_buff *xdp)
901 {
902 	u8 metasize = xdp->data - xdp->data_meta;
903 #if (PAGE_SIZE < 8192)
904 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
905 #else
906 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
907 				SKB_DATA_ALIGN(xdp->data_end -
908 					       xdp->data_hard_start);
909 #endif
910 	struct sk_buff *skb;
911 
912 	/* Prefetch first cache line of first page. If xdp->data_meta
913 	 * is unused, this points exactly as xdp->data, otherwise we
914 	 * likely have a consumer accessing first few bytes of meta
915 	 * data, and then actual data.
916 	 */
917 	net_prefetch(xdp->data_meta);
918 	/* build an skb around the page buffer */
919 	skb = build_skb(xdp->data_hard_start, truesize);
920 	if (unlikely(!skb))
921 		return NULL;
922 
923 	/* must to record Rx queue, otherwise OS features such as
924 	 * symmetric queue won't work
925 	 */
926 	skb_record_rx_queue(skb, rx_ring->q_index);
927 
928 	/* update pointers within the skb to store the data */
929 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
930 	__skb_put(skb, xdp->data_end - xdp->data);
931 	if (metasize)
932 		skb_metadata_set(skb, metasize);
933 
934 	/* buffer is used by skb, update page_offset */
935 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
936 
937 	return skb;
938 }
939 
940 /**
941  * ice_construct_skb - Allocate skb and populate it
942  * @rx_ring: Rx descriptor ring to transact packets on
943  * @rx_buf: Rx buffer to pull data from
944  * @xdp: xdp_buff pointing to the data
945  *
946  * This function allocates an skb. It then populates it with the page
947  * data from the current receive descriptor, taking care to set up the
948  * skb correctly.
949  */
950 static struct sk_buff *
951 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
952 		  struct xdp_buff *xdp)
953 {
954 	unsigned int size = xdp->data_end - xdp->data;
955 	unsigned int headlen;
956 	struct sk_buff *skb;
957 
958 	/* prefetch first cache line of first page */
959 	net_prefetch(xdp->data);
960 
961 	/* allocate a skb to store the frags */
962 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
963 			       GFP_ATOMIC | __GFP_NOWARN);
964 	if (unlikely(!skb))
965 		return NULL;
966 
967 	skb_record_rx_queue(skb, rx_ring->q_index);
968 	/* Determine available headroom for copy */
969 	headlen = size;
970 	if (headlen > ICE_RX_HDR_SIZE)
971 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
972 
973 	/* align pull length to size of long to optimize memcpy performance */
974 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
975 							 sizeof(long)));
976 
977 	/* if we exhaust the linear part then add what is left as a frag */
978 	size -= headlen;
979 	if (size) {
980 #if (PAGE_SIZE >= 8192)
981 		unsigned int truesize = SKB_DATA_ALIGN(size);
982 #else
983 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
984 #endif
985 		skb_add_rx_frag(skb, 0, rx_buf->page,
986 				rx_buf->page_offset + headlen, size, truesize);
987 		/* buffer is used by skb, update page_offset */
988 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
989 	} else {
990 		/* buffer is unused, reset bias back to rx_buf; data was copied
991 		 * onto skb's linear part so there's no need for adjusting
992 		 * page offset and we can reuse this buffer as-is
993 		 */
994 		rx_buf->pagecnt_bias++;
995 	}
996 
997 	return skb;
998 }
999 
1000 /**
1001  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1002  * @rx_ring: Rx descriptor ring to transact packets on
1003  * @rx_buf: Rx buffer to pull data from
1004  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1005  *
1006  * This function will update next_to_clean and then clean up the contents
1007  * of the rx_buf. It will either recycle the buffer or unmap it and free
1008  * the associated resources.
1009  */
1010 static void
1011 ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1012 	       int rx_buf_pgcnt)
1013 {
1014 	u16 ntc = rx_ring->next_to_clean + 1;
1015 
1016 	/* fetch, update, and store next to clean */
1017 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1018 	rx_ring->next_to_clean = ntc;
1019 
1020 	if (!rx_buf)
1021 		return;
1022 
1023 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1024 		/* hand second half of page back to the ring */
1025 		ice_reuse_rx_page(rx_ring, rx_buf);
1026 	} else {
1027 		/* we are not reusing the buffer so unmap it */
1028 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1029 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1030 				     ICE_RX_DMA_ATTR);
1031 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1032 	}
1033 
1034 	/* clear contents of buffer_info */
1035 	rx_buf->page = NULL;
1036 }
1037 
1038 /**
1039  * ice_is_non_eop - process handling of non-EOP buffers
1040  * @rx_ring: Rx ring being processed
1041  * @rx_desc: Rx descriptor for current buffer
1042  *
1043  * If the buffer is an EOP buffer, this function exits returning false,
1044  * otherwise return true indicating that this is in fact a non-EOP buffer.
1045  */
1046 static bool
1047 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1048 {
1049 	/* if we are the last buffer then there is nothing else to do */
1050 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1051 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1052 		return false;
1053 
1054 	rx_ring->rx_stats.non_eop_descs++;
1055 
1056 	return true;
1057 }
1058 
1059 /**
1060  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1061  * @rx_ring: Rx descriptor ring to transact packets on
1062  * @budget: Total limit on number of packets to process
1063  *
1064  * This function provides a "bounce buffer" approach to Rx interrupt
1065  * processing. The advantage to this is that on systems that have
1066  * expensive overhead for IOMMU access this provides a means of avoiding
1067  * it by maintaining the mapping of the page to the system.
1068  *
1069  * Returns amount of work completed
1070  */
1071 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1072 {
1073 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1074 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1075 	unsigned int offset = rx_ring->rx_offset;
1076 	unsigned int xdp_res, xdp_xmit = 0;
1077 	struct sk_buff *skb = rx_ring->skb;
1078 	struct bpf_prog *xdp_prog = NULL;
1079 	struct xdp_buff xdp;
1080 	bool failure;
1081 
1082 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1083 #if (PAGE_SIZE < 8192)
1084 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1085 #endif
1086 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1087 
1088 	/* start the loop to process Rx packets bounded by 'budget' */
1089 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1090 		union ice_32b_rx_flex_desc *rx_desc;
1091 		struct ice_rx_buf *rx_buf;
1092 		unsigned char *hard_start;
1093 		unsigned int size;
1094 		u16 stat_err_bits;
1095 		int rx_buf_pgcnt;
1096 		u16 vlan_tag = 0;
1097 		u8 rx_ptype;
1098 
1099 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1100 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1101 
1102 		/* status_error_len will always be zero for unused descriptors
1103 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1104 		 * which is always zero because packet split isn't used, if the
1105 		 * hardware wrote DD then it will be non-zero
1106 		 */
1107 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1108 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1109 			break;
1110 
1111 		/* This memory barrier is needed to keep us from reading
1112 		 * any other fields out of the rx_desc until we know the
1113 		 * DD bit is set.
1114 		 */
1115 		dma_rmb();
1116 
1117 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1118 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1119 
1120 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1121 			    ctrl_vsi->vf_id != ICE_INVAL_VFID)
1122 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1123 			ice_put_rx_buf(rx_ring, NULL, 0);
1124 			cleaned_count++;
1125 			continue;
1126 		}
1127 
1128 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1129 			ICE_RX_FLX_DESC_PKT_LEN_M;
1130 
1131 		/* retrieve a buffer from the ring */
1132 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1133 
1134 		if (!size) {
1135 			xdp.data = NULL;
1136 			xdp.data_end = NULL;
1137 			xdp.data_hard_start = NULL;
1138 			xdp.data_meta = NULL;
1139 			goto construct_skb;
1140 		}
1141 
1142 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1143 			     offset;
1144 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1145 #if (PAGE_SIZE > 4096)
1146 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1147 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1148 #endif
1149 
1150 		rcu_read_lock();
1151 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1152 		if (!xdp_prog) {
1153 			rcu_read_unlock();
1154 			goto construct_skb;
1155 		}
1156 
1157 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1158 		rcu_read_unlock();
1159 		if (!xdp_res)
1160 			goto construct_skb;
1161 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1162 			xdp_xmit |= xdp_res;
1163 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1164 		} else {
1165 			rx_buf->pagecnt_bias++;
1166 		}
1167 		total_rx_bytes += size;
1168 		total_rx_pkts++;
1169 
1170 		cleaned_count++;
1171 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1172 		continue;
1173 construct_skb:
1174 		if (skb) {
1175 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1176 		} else if (likely(xdp.data)) {
1177 			if (ice_ring_uses_build_skb(rx_ring))
1178 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1179 			else
1180 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1181 		}
1182 		/* exit if we failed to retrieve a buffer */
1183 		if (!skb) {
1184 			rx_ring->rx_stats.alloc_buf_failed++;
1185 			if (rx_buf)
1186 				rx_buf->pagecnt_bias++;
1187 			break;
1188 		}
1189 
1190 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1191 		cleaned_count++;
1192 
1193 		/* skip if it is NOP desc */
1194 		if (ice_is_non_eop(rx_ring, rx_desc))
1195 			continue;
1196 
1197 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1198 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1199 			dev_kfree_skb_any(skb);
1200 			continue;
1201 		}
1202 
1203 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1204 		if (ice_test_staterr(rx_desc, stat_err_bits))
1205 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1206 
1207 		/* pad the skb if needed, to make a valid ethernet frame */
1208 		if (eth_skb_pad(skb)) {
1209 			skb = NULL;
1210 			continue;
1211 		}
1212 
1213 		/* probably a little skewed due to removing CRC */
1214 		total_rx_bytes += skb->len;
1215 
1216 		/* populate checksum, VLAN, and protocol */
1217 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1218 			ICE_RX_FLEX_DESC_PTYPE_M;
1219 
1220 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1221 
1222 		/* send completed skb up the stack */
1223 		ice_receive_skb(rx_ring, skb, vlan_tag);
1224 		skb = NULL;
1225 
1226 		/* update budget accounting */
1227 		total_rx_pkts++;
1228 	}
1229 
1230 	/* return up to cleaned_count buffers to hardware */
1231 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1232 
1233 	if (xdp_prog)
1234 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1235 	rx_ring->skb = skb;
1236 
1237 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1238 
1239 	/* guarantee a trip back through this routine if there was a failure */
1240 	return failure ? budget : (int)total_rx_pkts;
1241 }
1242 
1243 /**
1244  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1245  * @port_info: port_info structure containing the current link speed
1246  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1247  * @itr: ITR value to update
1248  *
1249  * Calculate how big of an increment should be applied to the ITR value passed
1250  * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1251  * link speed.
1252  *
1253  * The following is a calculation derived from:
1254  *  wmem_default / (size + overhead) = desired_pkts_per_int
1255  *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1256  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1257  *
1258  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1259  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1260  * formula down to:
1261  *
1262  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1263  * ITR = -------------------------------------------- * --------------
1264  *			     rate			pkt_size + 640
1265  */
1266 static unsigned int
1267 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1268 				 unsigned int avg_pkt_size,
1269 				 unsigned int itr)
1270 {
1271 	switch (port_info->phy.link_info.link_speed) {
1272 	case ICE_AQ_LINK_SPEED_100GB:
1273 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1274 				    avg_pkt_size + 640);
1275 		break;
1276 	case ICE_AQ_LINK_SPEED_50GB:
1277 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1278 				    avg_pkt_size + 640);
1279 		break;
1280 	case ICE_AQ_LINK_SPEED_40GB:
1281 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1282 				    avg_pkt_size + 640);
1283 		break;
1284 	case ICE_AQ_LINK_SPEED_25GB:
1285 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1286 				    avg_pkt_size + 640);
1287 		break;
1288 	case ICE_AQ_LINK_SPEED_20GB:
1289 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1290 				    avg_pkt_size + 640);
1291 		break;
1292 	case ICE_AQ_LINK_SPEED_10GB:
1293 	default:
1294 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1295 				    avg_pkt_size + 640);
1296 		break;
1297 	}
1298 
1299 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1300 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1301 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1302 	}
1303 
1304 	return itr;
1305 }
1306 
1307 /**
1308  * ice_update_itr - update the adaptive ITR value based on statistics
1309  * @q_vector: structure containing interrupt and ring information
1310  * @rc: structure containing ring performance data
1311  *
1312  * Stores a new ITR value based on packets and byte
1313  * counts during the last interrupt.  The advantage of per interrupt
1314  * computation is faster updates and more accurate ITR for the current
1315  * traffic pattern.  Constants in this function were computed
1316  * based on theoretical maximum wire speed and thresholds were set based
1317  * on testing data as well as attempting to minimize response time
1318  * while increasing bulk throughput.
1319  */
1320 static void
1321 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1322 {
1323 	unsigned long next_update = jiffies;
1324 	unsigned int packets, bytes, itr;
1325 	bool container_is_rx;
1326 
1327 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1328 		return;
1329 
1330 	/* If itr_countdown is set it means we programmed an ITR within
1331 	 * the last 4 interrupt cycles. This has a side effect of us
1332 	 * potentially firing an early interrupt. In order to work around
1333 	 * this we need to throw out any data received for a few
1334 	 * interrupts following the update.
1335 	 */
1336 	if (q_vector->itr_countdown) {
1337 		itr = rc->target_itr;
1338 		goto clear_counts;
1339 	}
1340 
1341 	container_is_rx = (&q_vector->rx == rc);
1342 	/* For Rx we want to push the delay up and default to low latency.
1343 	 * for Tx we want to pull the delay down and default to high latency.
1344 	 */
1345 	itr = container_is_rx ?
1346 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1347 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1348 
1349 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1350 	 * that either packets are coming in so slow there hasn't been
1351 	 * any work, or that there is so much work that NAPI is dealing
1352 	 * with interrupt moderation and we don't need to do anything.
1353 	 */
1354 	if (time_after(next_update, rc->next_update))
1355 		goto clear_counts;
1356 
1357 	prefetch(q_vector->vsi->port_info);
1358 
1359 	packets = rc->total_pkts;
1360 	bytes = rc->total_bytes;
1361 
1362 	if (container_is_rx) {
1363 		/* If Rx there are 1 to 4 packets and bytes are less than
1364 		 * 9000 assume insufficient data to use bulk rate limiting
1365 		 * approach unless Tx is already in bulk rate limiting. We
1366 		 * are likely latency driven.
1367 		 */
1368 		if (packets && packets < 4 && bytes < 9000 &&
1369 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1370 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1371 			goto adjust_by_size_and_speed;
1372 		}
1373 	} else if (packets < 4) {
1374 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1375 		 * bulk mode and we are receiving 4 or fewer packets just
1376 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1377 		 * that the Rx can relax.
1378 		 */
1379 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1380 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1381 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1382 			goto clear_counts;
1383 	} else if (packets > 32) {
1384 		/* If we have processed over 32 packets in a single interrupt
1385 		 * for Tx assume we need to switch over to "bulk" mode.
1386 		 */
1387 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1388 	}
1389 
1390 	/* We have no packets to actually measure against. This means
1391 	 * either one of the other queues on this vector is active or
1392 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1393 	 *
1394 	 * Between 4 and 56 we can assume that our current interrupt delay
1395 	 * is only slightly too low. As such we should increase it by a small
1396 	 * fixed amount.
1397 	 */
1398 	if (packets < 56) {
1399 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1400 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1401 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1402 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1403 		}
1404 		goto clear_counts;
1405 	}
1406 
1407 	if (packets <= 256) {
1408 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1409 		itr &= ICE_ITR_MASK;
1410 
1411 		/* Between 56 and 112 is our "goldilocks" zone where we are
1412 		 * working out "just right". Just report that our current
1413 		 * ITR is good for us.
1414 		 */
1415 		if (packets <= 112)
1416 			goto clear_counts;
1417 
1418 		/* If packet count is 128 or greater we are likely looking
1419 		 * at a slight overrun of the delay we want. Try halving
1420 		 * our delay to see if that will cut the number of packets
1421 		 * in half per interrupt.
1422 		 */
1423 		itr >>= 1;
1424 		itr &= ICE_ITR_MASK;
1425 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1426 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1427 
1428 		goto clear_counts;
1429 	}
1430 
1431 	/* The paths below assume we are dealing with a bulk ITR since
1432 	 * number of packets is greater than 256. We are just going to have
1433 	 * to compute a value and try to bring the count under control,
1434 	 * though for smaller packet sizes there isn't much we can do as
1435 	 * NAPI polling will likely be kicking in sooner rather than later.
1436 	 */
1437 	itr = ICE_ITR_ADAPTIVE_BULK;
1438 
1439 adjust_by_size_and_speed:
1440 
1441 	/* based on checks above packets cannot be 0 so division is safe */
1442 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1443 					       bytes / packets, itr);
1444 
1445 clear_counts:
1446 	/* write back value */
1447 	rc->target_itr = itr;
1448 
1449 	/* next update should occur within next jiffy */
1450 	rc->next_update = next_update + 1;
1451 
1452 	rc->total_bytes = 0;
1453 	rc->total_pkts = 0;
1454 }
1455 
1456 /**
1457  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1458  * @itr_idx: interrupt throttling index
1459  * @itr: interrupt throttling value in usecs
1460  */
1461 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1462 {
1463 	/* The ITR value is reported in microseconds, and the register value is
1464 	 * recorded in 2 microsecond units. For this reason we only need to
1465 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1466 	 * granularity as a shift instead of division. The mask makes sure the
1467 	 * ITR value is never odd so we don't accidentally write into the field
1468 	 * prior to the ITR field.
1469 	 */
1470 	itr &= ICE_ITR_MASK;
1471 
1472 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1473 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1474 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1475 }
1476 
1477 /* The act of updating the ITR will cause it to immediately trigger. In order
1478  * to prevent this from throwing off adaptive update statistics we defer the
1479  * update so that it can only happen so often. So after either Tx or Rx are
1480  * updated we make the adaptive scheme wait until either the ITR completely
1481  * expires via the next_update expiration or we have been through at least
1482  * 3 interrupts.
1483  */
1484 #define ITR_COUNTDOWN_START 3
1485 
1486 /**
1487  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1488  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1489  */
1490 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1491 {
1492 	struct ice_ring_container *tx = &q_vector->tx;
1493 	struct ice_ring_container *rx = &q_vector->rx;
1494 	struct ice_vsi *vsi = q_vector->vsi;
1495 	u32 itr_val;
1496 
1497 	/* when exiting WB_ON_ITR just reset the countdown and let ITR
1498 	 * resume it's normal "interrupts-enabled" path
1499 	 */
1500 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1501 		q_vector->itr_countdown = 0;
1502 
1503 	/* This will do nothing if dynamic updates are not enabled */
1504 	ice_update_itr(q_vector, tx);
1505 	ice_update_itr(q_vector, rx);
1506 
1507 	/* This block of logic allows us to get away with only updating
1508 	 * one ITR value with each interrupt. The idea is to perform a
1509 	 * pseudo-lazy update with the following criteria.
1510 	 *
1511 	 * 1. Rx is given higher priority than Tx if both are in same state
1512 	 * 2. If we must reduce an ITR that is given highest priority.
1513 	 * 3. We then give priority to increasing ITR based on amount.
1514 	 */
1515 	if (rx->target_itr < rx->current_itr) {
1516 		/* Rx ITR needs to be reduced, this is highest priority */
1517 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1518 		rx->current_itr = rx->target_itr;
1519 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1520 	} else if ((tx->target_itr < tx->current_itr) ||
1521 		   ((rx->target_itr - rx->current_itr) <
1522 		    (tx->target_itr - tx->current_itr))) {
1523 		/* Tx ITR needs to be reduced, this is second priority
1524 		 * Tx ITR needs to be increased more than Rx, fourth priority
1525 		 */
1526 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1527 		tx->current_itr = tx->target_itr;
1528 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1529 	} else if (rx->current_itr != rx->target_itr) {
1530 		/* Rx ITR needs to be increased, third priority */
1531 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1532 		rx->current_itr = rx->target_itr;
1533 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1534 	} else {
1535 		/* Still have to re-enable the interrupts */
1536 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1537 		if (q_vector->itr_countdown)
1538 			q_vector->itr_countdown--;
1539 	}
1540 
1541 	if (!test_bit(__ICE_DOWN, vsi->state))
1542 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1543 }
1544 
1545 /**
1546  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1547  * @q_vector: q_vector to set WB_ON_ITR on
1548  *
1549  * We need to tell hardware to write-back completed descriptors even when
1550  * interrupts are disabled. Descriptors will be written back on cache line
1551  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1552  * descriptors may not be written back if they don't fill a cache line until
1553  * the next interrupt.
1554  *
1555  * This sets the write-back frequency to whatever was set previously for the
1556  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1557  * aren't meddling with the INTENA_M bit.
1558  */
1559 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1560 {
1561 	struct ice_vsi *vsi = q_vector->vsi;
1562 
1563 	/* already in wb_on_itr mode no need to change it */
1564 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1565 		return;
1566 
1567 	/* use previously set ITR values for all of the ITR indices by
1568 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1569 	 * be static in non-adaptive mode (user configured)
1570 	 */
1571 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1572 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1573 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1574 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1575 
1576 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1577 }
1578 
1579 /**
1580  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1581  * @napi: napi struct with our devices info in it
1582  * @budget: amount of work driver is allowed to do this pass, in packets
1583  *
1584  * This function will clean all queues associated with a q_vector.
1585  *
1586  * Returns the amount of work done
1587  */
1588 int ice_napi_poll(struct napi_struct *napi, int budget)
1589 {
1590 	struct ice_q_vector *q_vector =
1591 				container_of(napi, struct ice_q_vector, napi);
1592 	bool clean_complete = true;
1593 	struct ice_ring *ring;
1594 	int budget_per_ring;
1595 	int work_done = 0;
1596 
1597 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1598 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1599 	 */
1600 	ice_for_each_ring(ring, q_vector->tx) {
1601 		bool wd = ring->xsk_pool ?
1602 			  ice_clean_tx_irq_zc(ring, budget) :
1603 			  ice_clean_tx_irq(ring, budget);
1604 
1605 		if (!wd)
1606 			clean_complete = false;
1607 	}
1608 
1609 	/* Handle case where we are called by netpoll with a budget of 0 */
1610 	if (unlikely(budget <= 0))
1611 		return budget;
1612 
1613 	/* normally we have 1 Rx ring per q_vector */
1614 	if (unlikely(q_vector->num_ring_rx > 1))
1615 		/* We attempt to distribute budget to each Rx queue fairly, but
1616 		 * don't allow the budget to go below 1 because that would exit
1617 		 * polling early.
1618 		 */
1619 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1620 	else
1621 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1622 		budget_per_ring = budget;
1623 
1624 	ice_for_each_ring(ring, q_vector->rx) {
1625 		int cleaned;
1626 
1627 		/* A dedicated path for zero-copy allows making a single
1628 		 * comparison in the irq context instead of many inside the
1629 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1630 		 */
1631 		cleaned = ring->xsk_pool ?
1632 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1633 			  ice_clean_rx_irq(ring, budget_per_ring);
1634 		work_done += cleaned;
1635 		/* if we clean as many as budgeted, we must not be done */
1636 		if (cleaned >= budget_per_ring)
1637 			clean_complete = false;
1638 	}
1639 
1640 	/* If work not completed, return budget and polling will return */
1641 	if (!clean_complete) {
1642 		/* Set the writeback on ITR so partial completions of
1643 		 * cache-lines will still continue even if we're polling.
1644 		 */
1645 		ice_set_wb_on_itr(q_vector);
1646 		return budget;
1647 	}
1648 
1649 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1650 	 * poll us due to busy-polling
1651 	 */
1652 	if (likely(napi_complete_done(napi, work_done)))
1653 		ice_update_ena_itr(q_vector);
1654 	else
1655 		ice_set_wb_on_itr(q_vector);
1656 
1657 	return min_t(int, work_done, budget - 1);
1658 }
1659 
1660 /**
1661  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1662  * @tx_ring: the ring to be checked
1663  * @size: the size buffer we want to assure is available
1664  *
1665  * Returns -EBUSY if a stop is needed, else 0
1666  */
1667 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1668 {
1669 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1670 	/* Memory barrier before checking head and tail */
1671 	smp_mb();
1672 
1673 	/* Check again in a case another CPU has just made room available. */
1674 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1675 		return -EBUSY;
1676 
1677 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1678 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1679 	++tx_ring->tx_stats.restart_q;
1680 	return 0;
1681 }
1682 
1683 /**
1684  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1685  * @tx_ring: the ring to be checked
1686  * @size:    the size buffer we want to assure is available
1687  *
1688  * Returns 0 if stop is not needed
1689  */
1690 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1691 {
1692 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1693 		return 0;
1694 
1695 	return __ice_maybe_stop_tx(tx_ring, size);
1696 }
1697 
1698 /**
1699  * ice_tx_map - Build the Tx descriptor
1700  * @tx_ring: ring to send buffer on
1701  * @first: first buffer info buffer to use
1702  * @off: pointer to struct that holds offload parameters
1703  *
1704  * This function loops over the skb data pointed to by *first
1705  * and gets a physical address for each memory location and programs
1706  * it and the length into the transmit descriptor.
1707  */
1708 static void
1709 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1710 	   struct ice_tx_offload_params *off)
1711 {
1712 	u64 td_offset, td_tag, td_cmd;
1713 	u16 i = tx_ring->next_to_use;
1714 	unsigned int data_len, size;
1715 	struct ice_tx_desc *tx_desc;
1716 	struct ice_tx_buf *tx_buf;
1717 	struct sk_buff *skb;
1718 	skb_frag_t *frag;
1719 	dma_addr_t dma;
1720 
1721 	td_tag = off->td_l2tag1;
1722 	td_cmd = off->td_cmd;
1723 	td_offset = off->td_offset;
1724 	skb = first->skb;
1725 
1726 	data_len = skb->data_len;
1727 	size = skb_headlen(skb);
1728 
1729 	tx_desc = ICE_TX_DESC(tx_ring, i);
1730 
1731 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1732 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1733 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1734 			  ICE_TX_FLAGS_VLAN_S;
1735 	}
1736 
1737 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1738 
1739 	tx_buf = first;
1740 
1741 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1742 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1743 
1744 		if (dma_mapping_error(tx_ring->dev, dma))
1745 			goto dma_error;
1746 
1747 		/* record length, and DMA address */
1748 		dma_unmap_len_set(tx_buf, len, size);
1749 		dma_unmap_addr_set(tx_buf, dma, dma);
1750 
1751 		/* align size to end of page */
1752 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1753 		tx_desc->buf_addr = cpu_to_le64(dma);
1754 
1755 		/* account for data chunks larger than the hardware
1756 		 * can handle
1757 		 */
1758 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1759 			tx_desc->cmd_type_offset_bsz =
1760 				ice_build_ctob(td_cmd, td_offset, max_data,
1761 					       td_tag);
1762 
1763 			tx_desc++;
1764 			i++;
1765 
1766 			if (i == tx_ring->count) {
1767 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1768 				i = 0;
1769 			}
1770 
1771 			dma += max_data;
1772 			size -= max_data;
1773 
1774 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1775 			tx_desc->buf_addr = cpu_to_le64(dma);
1776 		}
1777 
1778 		if (likely(!data_len))
1779 			break;
1780 
1781 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1782 							      size, td_tag);
1783 
1784 		tx_desc++;
1785 		i++;
1786 
1787 		if (i == tx_ring->count) {
1788 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1789 			i = 0;
1790 		}
1791 
1792 		size = skb_frag_size(frag);
1793 		data_len -= size;
1794 
1795 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1796 				       DMA_TO_DEVICE);
1797 
1798 		tx_buf = &tx_ring->tx_buf[i];
1799 	}
1800 
1801 	/* record bytecount for BQL */
1802 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1803 
1804 	/* record SW timestamp if HW timestamp is not available */
1805 	skb_tx_timestamp(first->skb);
1806 
1807 	i++;
1808 	if (i == tx_ring->count)
1809 		i = 0;
1810 
1811 	/* write last descriptor with RS and EOP bits */
1812 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1813 	tx_desc->cmd_type_offset_bsz =
1814 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1815 
1816 	/* Force memory writes to complete before letting h/w know there
1817 	 * are new descriptors to fetch.
1818 	 *
1819 	 * We also use this memory barrier to make certain all of the
1820 	 * status bits have been updated before next_to_watch is written.
1821 	 */
1822 	wmb();
1823 
1824 	/* set next_to_watch value indicating a packet is present */
1825 	first->next_to_watch = tx_desc;
1826 
1827 	tx_ring->next_to_use = i;
1828 
1829 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1830 
1831 	/* notify HW of packet */
1832 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1833 		writel(i, tx_ring->tail);
1834 
1835 	return;
1836 
1837 dma_error:
1838 	/* clear DMA mappings for failed tx_buf map */
1839 	for (;;) {
1840 		tx_buf = &tx_ring->tx_buf[i];
1841 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1842 		if (tx_buf == first)
1843 			break;
1844 		if (i == 0)
1845 			i = tx_ring->count;
1846 		i--;
1847 	}
1848 
1849 	tx_ring->next_to_use = i;
1850 }
1851 
1852 /**
1853  * ice_tx_csum - Enable Tx checksum offloads
1854  * @first: pointer to the first descriptor
1855  * @off: pointer to struct that holds offload parameters
1856  *
1857  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1858  */
1859 static
1860 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1861 {
1862 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1863 	struct sk_buff *skb = first->skb;
1864 	union {
1865 		struct iphdr *v4;
1866 		struct ipv6hdr *v6;
1867 		unsigned char *hdr;
1868 	} ip;
1869 	union {
1870 		struct tcphdr *tcp;
1871 		unsigned char *hdr;
1872 	} l4;
1873 	__be16 frag_off, protocol;
1874 	unsigned char *exthdr;
1875 	u32 offset, cmd = 0;
1876 	u8 l4_proto = 0;
1877 
1878 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1879 		return 0;
1880 
1881 	ip.hdr = skb_network_header(skb);
1882 	l4.hdr = skb_transport_header(skb);
1883 
1884 	/* compute outer L2 header size */
1885 	l2_len = ip.hdr - skb->data;
1886 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1887 
1888 	protocol = vlan_get_protocol(skb);
1889 
1890 	if (protocol == htons(ETH_P_IP))
1891 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1892 	else if (protocol == htons(ETH_P_IPV6))
1893 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1894 
1895 	if (skb->encapsulation) {
1896 		bool gso_ena = false;
1897 		u32 tunnel = 0;
1898 
1899 		/* define outer network header type */
1900 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1901 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1902 				  ICE_TX_CTX_EIPT_IPV4 :
1903 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1904 			l4_proto = ip.v4->protocol;
1905 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1906 			int ret;
1907 
1908 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1909 			exthdr = ip.hdr + sizeof(*ip.v6);
1910 			l4_proto = ip.v6->nexthdr;
1911 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1912 					       &l4_proto, &frag_off);
1913 			if (ret < 0)
1914 				return -1;
1915 		}
1916 
1917 		/* define outer transport */
1918 		switch (l4_proto) {
1919 		case IPPROTO_UDP:
1920 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1921 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1922 			break;
1923 		case IPPROTO_GRE:
1924 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1925 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1926 			break;
1927 		case IPPROTO_IPIP:
1928 		case IPPROTO_IPV6:
1929 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1930 			l4.hdr = skb_inner_network_header(skb);
1931 			break;
1932 		default:
1933 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1934 				return -1;
1935 
1936 			skb_checksum_help(skb);
1937 			return 0;
1938 		}
1939 
1940 		/* compute outer L3 header size */
1941 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1942 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1943 
1944 		/* switch IP header pointer from outer to inner header */
1945 		ip.hdr = skb_inner_network_header(skb);
1946 
1947 		/* compute tunnel header size */
1948 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1949 			   ICE_TXD_CTX_QW0_NATLEN_S;
1950 
1951 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1952 		/* indicate if we need to offload outer UDP header */
1953 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1954 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1955 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1956 
1957 		/* record tunnel offload values */
1958 		off->cd_tunnel_params |= tunnel;
1959 
1960 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1961 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1962 		 */
1963 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1964 
1965 		/* switch L4 header pointer from outer to inner */
1966 		l4.hdr = skb_inner_transport_header(skb);
1967 		l4_proto = 0;
1968 
1969 		/* reset type as we transition from outer to inner headers */
1970 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1971 		if (ip.v4->version == 4)
1972 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1973 		if (ip.v6->version == 6)
1974 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1975 	}
1976 
1977 	/* Enable IP checksum offloads */
1978 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1979 		l4_proto = ip.v4->protocol;
1980 		/* the stack computes the IP header already, the only time we
1981 		 * need the hardware to recompute it is in the case of TSO.
1982 		 */
1983 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1984 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1985 		else
1986 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1987 
1988 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1989 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1990 		exthdr = ip.hdr + sizeof(*ip.v6);
1991 		l4_proto = ip.v6->nexthdr;
1992 		if (l4.hdr != exthdr)
1993 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1994 					 &frag_off);
1995 	} else {
1996 		return -1;
1997 	}
1998 
1999 	/* compute inner L3 header size */
2000 	l3_len = l4.hdr - ip.hdr;
2001 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2002 
2003 	/* Enable L4 checksum offloads */
2004 	switch (l4_proto) {
2005 	case IPPROTO_TCP:
2006 		/* enable checksum offloads */
2007 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2008 		l4_len = l4.tcp->doff;
2009 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2010 		break;
2011 	case IPPROTO_UDP:
2012 		/* enable UDP checksum offload */
2013 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2014 		l4_len = (sizeof(struct udphdr) >> 2);
2015 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2016 		break;
2017 	case IPPROTO_SCTP:
2018 		/* enable SCTP checksum offload */
2019 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2020 		l4_len = sizeof(struct sctphdr) >> 2;
2021 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2022 		break;
2023 
2024 	default:
2025 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2026 			return -1;
2027 		skb_checksum_help(skb);
2028 		return 0;
2029 	}
2030 
2031 	off->td_cmd |= cmd;
2032 	off->td_offset |= offset;
2033 	return 1;
2034 }
2035 
2036 /**
2037  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2038  * @tx_ring: ring to send buffer on
2039  * @first: pointer to struct ice_tx_buf
2040  *
2041  * Checks the skb and set up correspondingly several generic transmit flags
2042  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2043  */
2044 static void
2045 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2046 {
2047 	struct sk_buff *skb = first->skb;
2048 
2049 	/* nothing left to do, software offloaded VLAN */
2050 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2051 		return;
2052 
2053 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2054 	 * insertion for 802.1AD is not supported
2055 	 */
2056 	if (skb_vlan_tag_present(skb)) {
2057 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2058 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2059 	}
2060 
2061 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2062 }
2063 
2064 /**
2065  * ice_tso - computes mss and TSO length to prepare for TSO
2066  * @first: pointer to struct ice_tx_buf
2067  * @off: pointer to struct that holds offload parameters
2068  *
2069  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2070  */
2071 static
2072 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2073 {
2074 	struct sk_buff *skb = first->skb;
2075 	union {
2076 		struct iphdr *v4;
2077 		struct ipv6hdr *v6;
2078 		unsigned char *hdr;
2079 	} ip;
2080 	union {
2081 		struct tcphdr *tcp;
2082 		struct udphdr *udp;
2083 		unsigned char *hdr;
2084 	} l4;
2085 	u64 cd_mss, cd_tso_len;
2086 	u32 paylen;
2087 	u8 l4_start;
2088 	int err;
2089 
2090 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2091 		return 0;
2092 
2093 	if (!skb_is_gso(skb))
2094 		return 0;
2095 
2096 	err = skb_cow_head(skb, 0);
2097 	if (err < 0)
2098 		return err;
2099 
2100 	/* cppcheck-suppress unreadVariable */
2101 	ip.hdr = skb_network_header(skb);
2102 	l4.hdr = skb_transport_header(skb);
2103 
2104 	/* initialize outer IP header fields */
2105 	if (ip.v4->version == 4) {
2106 		ip.v4->tot_len = 0;
2107 		ip.v4->check = 0;
2108 	} else {
2109 		ip.v6->payload_len = 0;
2110 	}
2111 
2112 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2113 					 SKB_GSO_GRE_CSUM |
2114 					 SKB_GSO_IPXIP4 |
2115 					 SKB_GSO_IPXIP6 |
2116 					 SKB_GSO_UDP_TUNNEL |
2117 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2118 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2119 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2120 			l4.udp->len = 0;
2121 
2122 			/* determine offset of outer transport header */
2123 			l4_start = (u8)(l4.hdr - skb->data);
2124 
2125 			/* remove payload length from outer checksum */
2126 			paylen = skb->len - l4_start;
2127 			csum_replace_by_diff(&l4.udp->check,
2128 					     (__force __wsum)htonl(paylen));
2129 		}
2130 
2131 		/* reset pointers to inner headers */
2132 
2133 		/* cppcheck-suppress unreadVariable */
2134 		ip.hdr = skb_inner_network_header(skb);
2135 		l4.hdr = skb_inner_transport_header(skb);
2136 
2137 		/* initialize inner IP header fields */
2138 		if (ip.v4->version == 4) {
2139 			ip.v4->tot_len = 0;
2140 			ip.v4->check = 0;
2141 		} else {
2142 			ip.v6->payload_len = 0;
2143 		}
2144 	}
2145 
2146 	/* determine offset of transport header */
2147 	l4_start = (u8)(l4.hdr - skb->data);
2148 
2149 	/* remove payload length from checksum */
2150 	paylen = skb->len - l4_start;
2151 
2152 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2153 		csum_replace_by_diff(&l4.udp->check,
2154 				     (__force __wsum)htonl(paylen));
2155 		/* compute length of UDP segmentation header */
2156 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2157 	} else {
2158 		csum_replace_by_diff(&l4.tcp->check,
2159 				     (__force __wsum)htonl(paylen));
2160 		/* compute length of TCP segmentation header */
2161 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2162 	}
2163 
2164 	/* update gso_segs and bytecount */
2165 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2166 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2167 
2168 	cd_tso_len = skb->len - off->header_len;
2169 	cd_mss = skb_shinfo(skb)->gso_size;
2170 
2171 	/* record cdesc_qw1 with TSO parameters */
2172 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2173 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2174 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2175 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2176 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2177 	return 1;
2178 }
2179 
2180 /**
2181  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2182  * @size: transmit request size in bytes
2183  *
2184  * Due to hardware alignment restrictions (4K alignment), we need to
2185  * assume that we can have no more than 12K of data per descriptor, even
2186  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2187  * Thus, we need to divide by 12K. But division is slow! Instead,
2188  * we decompose the operation into shifts and one relatively cheap
2189  * multiply operation.
2190  *
2191  * To divide by 12K, we first divide by 4K, then divide by 3:
2192  *     To divide by 4K, shift right by 12 bits
2193  *     To divide by 3, multiply by 85, then divide by 256
2194  *     (Divide by 256 is done by shifting right by 8 bits)
2195  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2196  * 3, we'll underestimate near each multiple of 12K. This is actually more
2197  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2198  * segment. For our purposes this is accurate out to 1M which is orders of
2199  * magnitude greater than our largest possible GSO size.
2200  *
2201  * This would then be implemented as:
2202  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2203  *
2204  * Since multiplication and division are commutative, we can reorder
2205  * operations into:
2206  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2207  */
2208 static unsigned int ice_txd_use_count(unsigned int size)
2209 {
2210 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2211 }
2212 
2213 /**
2214  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2215  * @skb: send buffer
2216  *
2217  * Returns number of data descriptors needed for this skb.
2218  */
2219 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2220 {
2221 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2222 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2223 	unsigned int count = 0, size = skb_headlen(skb);
2224 
2225 	for (;;) {
2226 		count += ice_txd_use_count(size);
2227 
2228 		if (!nr_frags--)
2229 			break;
2230 
2231 		size = skb_frag_size(frag++);
2232 	}
2233 
2234 	return count;
2235 }
2236 
2237 /**
2238  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2239  * @skb: send buffer
2240  *
2241  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2242  * and so we need to figure out the cases where we need to linearize the skb.
2243  *
2244  * For TSO we need to count the TSO header and segment payload separately.
2245  * As such we need to check cases where we have 7 fragments or more as we
2246  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2247  * the segment payload in the first descriptor, and another 7 for the
2248  * fragments.
2249  */
2250 static bool __ice_chk_linearize(struct sk_buff *skb)
2251 {
2252 	const skb_frag_t *frag, *stale;
2253 	int nr_frags, sum;
2254 
2255 	/* no need to check if number of frags is less than 7 */
2256 	nr_frags = skb_shinfo(skb)->nr_frags;
2257 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2258 		return false;
2259 
2260 	/* We need to walk through the list and validate that each group
2261 	 * of 6 fragments totals at least gso_size.
2262 	 */
2263 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2264 	frag = &skb_shinfo(skb)->frags[0];
2265 
2266 	/* Initialize size to the negative value of gso_size minus 1. We
2267 	 * use this as the worst case scenario in which the frag ahead
2268 	 * of us only provides one byte which is why we are limited to 6
2269 	 * descriptors for a single transmit as the header and previous
2270 	 * fragment are already consuming 2 descriptors.
2271 	 */
2272 	sum = 1 - skb_shinfo(skb)->gso_size;
2273 
2274 	/* Add size of frags 0 through 4 to create our initial sum */
2275 	sum += skb_frag_size(frag++);
2276 	sum += skb_frag_size(frag++);
2277 	sum += skb_frag_size(frag++);
2278 	sum += skb_frag_size(frag++);
2279 	sum += skb_frag_size(frag++);
2280 
2281 	/* Walk through fragments adding latest fragment, testing it, and
2282 	 * then removing stale fragments from the sum.
2283 	 */
2284 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2285 		int stale_size = skb_frag_size(stale);
2286 
2287 		sum += skb_frag_size(frag++);
2288 
2289 		/* The stale fragment may present us with a smaller
2290 		 * descriptor than the actual fragment size. To account
2291 		 * for that we need to remove all the data on the front and
2292 		 * figure out what the remainder would be in the last
2293 		 * descriptor associated with the fragment.
2294 		 */
2295 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2296 			int align_pad = -(skb_frag_off(stale)) &
2297 					(ICE_MAX_READ_REQ_SIZE - 1);
2298 
2299 			sum -= align_pad;
2300 			stale_size -= align_pad;
2301 
2302 			do {
2303 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2304 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2305 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2306 		}
2307 
2308 		/* if sum is negative we failed to make sufficient progress */
2309 		if (sum < 0)
2310 			return true;
2311 
2312 		if (!nr_frags--)
2313 			break;
2314 
2315 		sum -= stale_size;
2316 	}
2317 
2318 	return false;
2319 }
2320 
2321 /**
2322  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2323  * @skb:      send buffer
2324  * @count:    number of buffers used
2325  *
2326  * Note: Our HW can't scatter-gather more than 8 fragments to build
2327  * a packet on the wire and so we need to figure out the cases where we
2328  * need to linearize the skb.
2329  */
2330 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2331 {
2332 	/* Both TSO and single send will work if count is less than 8 */
2333 	if (likely(count < ICE_MAX_BUF_TXD))
2334 		return false;
2335 
2336 	if (skb_is_gso(skb))
2337 		return __ice_chk_linearize(skb);
2338 
2339 	/* we can support up to 8 data buffers for a single send */
2340 	return count != ICE_MAX_BUF_TXD;
2341 }
2342 
2343 /**
2344  * ice_xmit_frame_ring - Sends buffer on Tx ring
2345  * @skb: send buffer
2346  * @tx_ring: ring to send buffer on
2347  *
2348  * Returns NETDEV_TX_OK if sent, else an error code
2349  */
2350 static netdev_tx_t
2351 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2352 {
2353 	struct ice_tx_offload_params offload = { 0 };
2354 	struct ice_vsi *vsi = tx_ring->vsi;
2355 	struct ice_tx_buf *first;
2356 	unsigned int count;
2357 	int tso, csum;
2358 
2359 	count = ice_xmit_desc_count(skb);
2360 	if (ice_chk_linearize(skb, count)) {
2361 		if (__skb_linearize(skb))
2362 			goto out_drop;
2363 		count = ice_txd_use_count(skb->len);
2364 		tx_ring->tx_stats.tx_linearize++;
2365 	}
2366 
2367 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2368 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2369 	 *       + 4 desc gap to avoid the cache line where head is,
2370 	 *       + 1 desc for context descriptor,
2371 	 * otherwise try next time
2372 	 */
2373 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2374 			      ICE_DESCS_FOR_CTX_DESC)) {
2375 		tx_ring->tx_stats.tx_busy++;
2376 		return NETDEV_TX_BUSY;
2377 	}
2378 
2379 	offload.tx_ring = tx_ring;
2380 
2381 	/* record the location of the first descriptor for this packet */
2382 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2383 	first->skb = skb;
2384 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2385 	first->gso_segs = 1;
2386 	first->tx_flags = 0;
2387 
2388 	/* prepare the VLAN tagging flags for Tx */
2389 	ice_tx_prepare_vlan_flags(tx_ring, first);
2390 
2391 	/* set up TSO offload */
2392 	tso = ice_tso(first, &offload);
2393 	if (tso < 0)
2394 		goto out_drop;
2395 
2396 	/* always set up Tx checksum offload */
2397 	csum = ice_tx_csum(first, &offload);
2398 	if (csum < 0)
2399 		goto out_drop;
2400 
2401 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2402 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2403 		     vsi->type == ICE_VSI_PF &&
2404 		     vsi->port_info->qos_cfg.is_sw_lldp))
2405 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2406 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2407 					ICE_TXD_CTX_QW1_CMD_S);
2408 
2409 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2410 		struct ice_tx_ctx_desc *cdesc;
2411 		u16 i = tx_ring->next_to_use;
2412 
2413 		/* grab the next descriptor */
2414 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2415 		i++;
2416 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2417 
2418 		/* setup context descriptor */
2419 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2420 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2421 		cdesc->rsvd = cpu_to_le16(0);
2422 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2423 	}
2424 
2425 	ice_tx_map(tx_ring, first, &offload);
2426 	return NETDEV_TX_OK;
2427 
2428 out_drop:
2429 	dev_kfree_skb_any(skb);
2430 	return NETDEV_TX_OK;
2431 }
2432 
2433 /**
2434  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2435  * @skb: send buffer
2436  * @netdev: network interface device structure
2437  *
2438  * Returns NETDEV_TX_OK if sent, else an error code
2439  */
2440 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2441 {
2442 	struct ice_netdev_priv *np = netdev_priv(netdev);
2443 	struct ice_vsi *vsi = np->vsi;
2444 	struct ice_ring *tx_ring;
2445 
2446 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2447 
2448 	/* hardware can't handle really short frames, hardware padding works
2449 	 * beyond this point
2450 	 */
2451 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2452 		return NETDEV_TX_OK;
2453 
2454 	return ice_xmit_frame_ring(skb, tx_ring);
2455 }
2456 
2457 /**
2458  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2459  * @tx_ring: tx_ring to clean
2460  */
2461 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2462 {
2463 	struct ice_vsi *vsi = tx_ring->vsi;
2464 	s16 i = tx_ring->next_to_clean;
2465 	int budget = ICE_DFLT_IRQ_WORK;
2466 	struct ice_tx_desc *tx_desc;
2467 	struct ice_tx_buf *tx_buf;
2468 
2469 	tx_buf = &tx_ring->tx_buf[i];
2470 	tx_desc = ICE_TX_DESC(tx_ring, i);
2471 	i -= tx_ring->count;
2472 
2473 	do {
2474 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2475 
2476 		/* if next_to_watch is not set then there is no pending work */
2477 		if (!eop_desc)
2478 			break;
2479 
2480 		/* prevent any other reads prior to eop_desc */
2481 		smp_rmb();
2482 
2483 		/* if the descriptor isn't done, no work to do */
2484 		if (!(eop_desc->cmd_type_offset_bsz &
2485 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2486 			break;
2487 
2488 		/* clear next_to_watch to prevent false hangs */
2489 		tx_buf->next_to_watch = NULL;
2490 		tx_desc->buf_addr = 0;
2491 		tx_desc->cmd_type_offset_bsz = 0;
2492 
2493 		/* move past filter desc */
2494 		tx_buf++;
2495 		tx_desc++;
2496 		i++;
2497 		if (unlikely(!i)) {
2498 			i -= tx_ring->count;
2499 			tx_buf = tx_ring->tx_buf;
2500 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2501 		}
2502 
2503 		/* unmap the data header */
2504 		if (dma_unmap_len(tx_buf, len))
2505 			dma_unmap_single(tx_ring->dev,
2506 					 dma_unmap_addr(tx_buf, dma),
2507 					 dma_unmap_len(tx_buf, len),
2508 					 DMA_TO_DEVICE);
2509 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2510 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2511 
2512 		/* clear next_to_watch to prevent false hangs */
2513 		tx_buf->raw_buf = NULL;
2514 		tx_buf->tx_flags = 0;
2515 		tx_buf->next_to_watch = NULL;
2516 		dma_unmap_len_set(tx_buf, len, 0);
2517 		tx_desc->buf_addr = 0;
2518 		tx_desc->cmd_type_offset_bsz = 0;
2519 
2520 		/* move past eop_desc for start of next FD desc */
2521 		tx_buf++;
2522 		tx_desc++;
2523 		i++;
2524 		if (unlikely(!i)) {
2525 			i -= tx_ring->count;
2526 			tx_buf = tx_ring->tx_buf;
2527 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2528 		}
2529 
2530 		budget--;
2531 	} while (likely(budget));
2532 
2533 	i += tx_ring->count;
2534 	tx_ring->next_to_clean = i;
2535 
2536 	/* re-enable interrupt if needed */
2537 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2538 }
2539