1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/xdp.h> 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 #include "ice.h" 15 #include "ice_trace.h" 16 #include "ice_dcb_lib.h" 17 #include "ice_xsk.h" 18 #include "ice_eswitch.h" 19 20 #define ICE_RX_HDR_SIZE 256 21 22 #define FDIR_DESC_RXDID 0x40 23 #define ICE_FDIR_CLEAN_DELAY 10 24 25 /** 26 * ice_prgm_fdir_fltr - Program a Flow Director filter 27 * @vsi: VSI to send dummy packet 28 * @fdir_desc: flow director descriptor 29 * @raw_packet: allocated buffer for flow director 30 */ 31 int 32 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 33 u8 *raw_packet) 34 { 35 struct ice_tx_buf *tx_buf, *first; 36 struct ice_fltr_desc *f_desc; 37 struct ice_tx_desc *tx_desc; 38 struct ice_tx_ring *tx_ring; 39 struct device *dev; 40 dma_addr_t dma; 41 u32 td_cmd; 42 u16 i; 43 44 /* VSI and Tx ring */ 45 if (!vsi) 46 return -ENOENT; 47 tx_ring = vsi->tx_rings[0]; 48 if (!tx_ring || !tx_ring->desc) 49 return -ENOENT; 50 dev = tx_ring->dev; 51 52 /* we are using two descriptors to add/del a filter and we can wait */ 53 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 54 if (!i) 55 return -EAGAIN; 56 msleep_interruptible(1); 57 } 58 59 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 60 DMA_TO_DEVICE); 61 62 if (dma_mapping_error(dev, dma)) 63 return -EINVAL; 64 65 /* grab the next descriptor */ 66 i = tx_ring->next_to_use; 67 first = &tx_ring->tx_buf[i]; 68 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 69 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 70 71 i++; 72 i = (i < tx_ring->count) ? i : 0; 73 tx_desc = ICE_TX_DESC(tx_ring, i); 74 tx_buf = &tx_ring->tx_buf[i]; 75 76 i++; 77 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 78 79 memset(tx_buf, 0, sizeof(*tx_buf)); 80 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 81 dma_unmap_addr_set(tx_buf, dma, dma); 82 83 tx_desc->buf_addr = cpu_to_le64(dma); 84 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 85 ICE_TX_DESC_CMD_RE; 86 87 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 88 tx_buf->raw_buf = raw_packet; 89 90 tx_desc->cmd_type_offset_bsz = 91 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 92 93 /* Force memory write to complete before letting h/w know 94 * there are new descriptors to fetch. 95 */ 96 wmb(); 97 98 /* mark the data descriptor to be watched */ 99 first->next_to_watch = tx_desc; 100 101 writel(tx_ring->next_to_use, tx_ring->tail); 102 103 return 0; 104 } 105 106 /** 107 * ice_unmap_and_free_tx_buf - Release a Tx buffer 108 * @ring: the ring that owns the buffer 109 * @tx_buf: the buffer to free 110 */ 111 static void 112 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 113 { 114 if (tx_buf->skb) { 115 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 116 devm_kfree(ring->dev, tx_buf->raw_buf); 117 else if (ice_ring_is_xdp(ring)) 118 page_frag_free(tx_buf->raw_buf); 119 else 120 dev_kfree_skb_any(tx_buf->skb); 121 if (dma_unmap_len(tx_buf, len)) 122 dma_unmap_single(ring->dev, 123 dma_unmap_addr(tx_buf, dma), 124 dma_unmap_len(tx_buf, len), 125 DMA_TO_DEVICE); 126 } else if (dma_unmap_len(tx_buf, len)) { 127 dma_unmap_page(ring->dev, 128 dma_unmap_addr(tx_buf, dma), 129 dma_unmap_len(tx_buf, len), 130 DMA_TO_DEVICE); 131 } 132 133 tx_buf->next_to_watch = NULL; 134 tx_buf->skb = NULL; 135 dma_unmap_len_set(tx_buf, len, 0); 136 /* tx_buf must be completely set up in the transmit path */ 137 } 138 139 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 140 { 141 return netdev_get_tx_queue(ring->netdev, ring->q_index); 142 } 143 144 /** 145 * ice_clean_tx_ring - Free any empty Tx buffers 146 * @tx_ring: ring to be cleaned 147 */ 148 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 149 { 150 u32 size; 151 u16 i; 152 153 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 154 ice_xsk_clean_xdp_ring(tx_ring); 155 goto tx_skip_free; 156 } 157 158 /* ring already cleared, nothing to do */ 159 if (!tx_ring->tx_buf) 160 return; 161 162 /* Free all the Tx ring sk_buffs */ 163 for (i = 0; i < tx_ring->count; i++) 164 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 165 166 tx_skip_free: 167 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 168 169 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 170 PAGE_SIZE); 171 /* Zero out the descriptor ring */ 172 memset(tx_ring->desc, 0, size); 173 174 tx_ring->next_to_use = 0; 175 tx_ring->next_to_clean = 0; 176 tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1; 177 tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1; 178 179 if (!tx_ring->netdev) 180 return; 181 182 /* cleanup Tx queue statistics */ 183 netdev_tx_reset_queue(txring_txq(tx_ring)); 184 } 185 186 /** 187 * ice_free_tx_ring - Free Tx resources per queue 188 * @tx_ring: Tx descriptor ring for a specific queue 189 * 190 * Free all transmit software resources 191 */ 192 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 193 { 194 u32 size; 195 196 ice_clean_tx_ring(tx_ring); 197 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 198 tx_ring->tx_buf = NULL; 199 200 if (tx_ring->desc) { 201 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 202 PAGE_SIZE); 203 dmam_free_coherent(tx_ring->dev, size, 204 tx_ring->desc, tx_ring->dma); 205 tx_ring->desc = NULL; 206 } 207 } 208 209 /** 210 * ice_clean_tx_irq - Reclaim resources after transmit completes 211 * @tx_ring: Tx ring to clean 212 * @napi_budget: Used to determine if we are in netpoll 213 * 214 * Returns true if there's any budget left (e.g. the clean is finished) 215 */ 216 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 217 { 218 unsigned int total_bytes = 0, total_pkts = 0; 219 unsigned int budget = ICE_DFLT_IRQ_WORK; 220 struct ice_vsi *vsi = tx_ring->vsi; 221 s16 i = tx_ring->next_to_clean; 222 struct ice_tx_desc *tx_desc; 223 struct ice_tx_buf *tx_buf; 224 225 /* get the bql data ready */ 226 if (!ice_ring_is_xdp(tx_ring)) 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->skb = NULL; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 317 if (ice_ring_is_xdp(tx_ring)) 318 return !!budget; 319 320 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 321 322 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 323 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 324 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 325 /* Make sure that anybody stopping the queue after this 326 * sees the new next_to_clean. 327 */ 328 smp_mb(); 329 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 330 !test_bit(ICE_VSI_DOWN, vsi->state)) { 331 netif_tx_wake_queue(txring_txq(tx_ring)); 332 ++tx_ring->tx_stats.restart_q; 333 } 334 } 335 336 return !!budget; 337 } 338 339 /** 340 * ice_setup_tx_ring - Allocate the Tx descriptors 341 * @tx_ring: the Tx ring to set up 342 * 343 * Return 0 on success, negative on error 344 */ 345 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 346 { 347 struct device *dev = tx_ring->dev; 348 u32 size; 349 350 if (!dev) 351 return -ENOMEM; 352 353 /* warn if we are about to overwrite the pointer */ 354 WARN_ON(tx_ring->tx_buf); 355 tx_ring->tx_buf = 356 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 357 GFP_KERNEL); 358 if (!tx_ring->tx_buf) 359 return -ENOMEM; 360 361 /* round up to nearest page */ 362 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 363 PAGE_SIZE); 364 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 365 GFP_KERNEL); 366 if (!tx_ring->desc) { 367 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 368 size); 369 goto err; 370 } 371 372 tx_ring->next_to_use = 0; 373 tx_ring->next_to_clean = 0; 374 tx_ring->tx_stats.prev_pkt = -1; 375 return 0; 376 377 err: 378 devm_kfree(dev, tx_ring->tx_buf); 379 tx_ring->tx_buf = NULL; 380 return -ENOMEM; 381 } 382 383 /** 384 * ice_clean_rx_ring - Free Rx buffers 385 * @rx_ring: ring to be cleaned 386 */ 387 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 388 { 389 struct device *dev = rx_ring->dev; 390 u32 size; 391 u16 i; 392 393 /* ring already cleared, nothing to do */ 394 if (!rx_ring->rx_buf) 395 return; 396 397 if (rx_ring->skb) { 398 dev_kfree_skb(rx_ring->skb); 399 rx_ring->skb = NULL; 400 } 401 402 if (rx_ring->xsk_pool) { 403 ice_xsk_clean_rx_ring(rx_ring); 404 goto rx_skip_free; 405 } 406 407 /* Free all the Rx ring sk_buffs */ 408 for (i = 0; i < rx_ring->count; i++) { 409 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 410 411 if (!rx_buf->page) 412 continue; 413 414 /* Invalidate cache lines that may have been written to by 415 * device so that we avoid corrupting memory. 416 */ 417 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 418 rx_buf->page_offset, 419 rx_ring->rx_buf_len, 420 DMA_FROM_DEVICE); 421 422 /* free resources associated with mapping */ 423 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 424 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 425 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 426 427 rx_buf->page = NULL; 428 rx_buf->page_offset = 0; 429 } 430 431 rx_skip_free: 432 if (rx_ring->xsk_pool) 433 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 434 else 435 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 436 437 /* Zero out the descriptor ring */ 438 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 439 PAGE_SIZE); 440 memset(rx_ring->desc, 0, size); 441 442 rx_ring->next_to_alloc = 0; 443 rx_ring->next_to_clean = 0; 444 rx_ring->next_to_use = 0; 445 } 446 447 /** 448 * ice_free_rx_ring - Free Rx resources 449 * @rx_ring: ring to clean the resources from 450 * 451 * Free all receive software resources 452 */ 453 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 454 { 455 u32 size; 456 457 ice_clean_rx_ring(rx_ring); 458 if (rx_ring->vsi->type == ICE_VSI_PF) 459 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 460 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 461 rx_ring->xdp_prog = NULL; 462 if (rx_ring->xsk_pool) { 463 kfree(rx_ring->xdp_buf); 464 rx_ring->xdp_buf = NULL; 465 } else { 466 kfree(rx_ring->rx_buf); 467 rx_ring->rx_buf = NULL; 468 } 469 470 if (rx_ring->desc) { 471 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 472 PAGE_SIZE); 473 dmam_free_coherent(rx_ring->dev, size, 474 rx_ring->desc, rx_ring->dma); 475 rx_ring->desc = NULL; 476 } 477 } 478 479 /** 480 * ice_setup_rx_ring - Allocate the Rx descriptors 481 * @rx_ring: the Rx ring to set up 482 * 483 * Return 0 on success, negative on error 484 */ 485 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 486 { 487 struct device *dev = rx_ring->dev; 488 u32 size; 489 490 if (!dev) 491 return -ENOMEM; 492 493 /* warn if we are about to overwrite the pointer */ 494 WARN_ON(rx_ring->rx_buf); 495 rx_ring->rx_buf = 496 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 497 if (!rx_ring->rx_buf) 498 return -ENOMEM; 499 500 /* round up to nearest page */ 501 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 502 PAGE_SIZE); 503 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 504 GFP_KERNEL); 505 if (!rx_ring->desc) { 506 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 507 size); 508 goto err; 509 } 510 511 rx_ring->next_to_use = 0; 512 rx_ring->next_to_clean = 0; 513 514 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 515 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 516 517 if (rx_ring->vsi->type == ICE_VSI_PF && 518 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 519 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 520 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 521 goto err; 522 return 0; 523 524 err: 525 kfree(rx_ring->rx_buf); 526 rx_ring->rx_buf = NULL; 527 return -ENOMEM; 528 } 529 530 static unsigned int 531 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 532 { 533 unsigned int truesize; 534 535 #if (PAGE_SIZE < 8192) 536 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 537 #else 538 truesize = rx_ring->rx_offset ? 539 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 540 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 541 SKB_DATA_ALIGN(size); 542 #endif 543 return truesize; 544 } 545 546 /** 547 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 548 * @rx_ring: Rx ring 549 * @xdp: xdp_buff used as input to the XDP program 550 * @xdp_prog: XDP program to run 551 * @xdp_ring: ring to be used for XDP_TX action 552 * 553 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 554 */ 555 static int 556 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 557 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 558 { 559 int err; 560 u32 act; 561 562 act = bpf_prog_run_xdp(xdp_prog, xdp); 563 switch (act) { 564 case XDP_PASS: 565 return ICE_XDP_PASS; 566 case XDP_TX: 567 if (static_branch_unlikely(&ice_xdp_locking_key)) 568 spin_lock(&xdp_ring->tx_lock); 569 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 570 if (static_branch_unlikely(&ice_xdp_locking_key)) 571 spin_unlock(&xdp_ring->tx_lock); 572 if (err == ICE_XDP_CONSUMED) 573 goto out_failure; 574 return err; 575 case XDP_REDIRECT: 576 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 577 if (err) 578 goto out_failure; 579 return ICE_XDP_REDIR; 580 default: 581 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 582 fallthrough; 583 case XDP_ABORTED: 584 out_failure: 585 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 586 fallthrough; 587 case XDP_DROP: 588 return ICE_XDP_CONSUMED; 589 } 590 } 591 592 /** 593 * ice_xdp_xmit - submit packets to XDP ring for transmission 594 * @dev: netdev 595 * @n: number of XDP frames to be transmitted 596 * @frames: XDP frames to be transmitted 597 * @flags: transmit flags 598 * 599 * Returns number of frames successfully sent. Failed frames 600 * will be free'ed by XDP core. 601 * For error cases, a negative errno code is returned and no-frames 602 * are transmitted (caller must handle freeing frames). 603 */ 604 int 605 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 606 u32 flags) 607 { 608 struct ice_netdev_priv *np = netdev_priv(dev); 609 unsigned int queue_index = smp_processor_id(); 610 struct ice_vsi *vsi = np->vsi; 611 struct ice_tx_ring *xdp_ring; 612 int nxmit = 0, i; 613 614 if (test_bit(ICE_VSI_DOWN, vsi->state)) 615 return -ENETDOWN; 616 617 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 618 return -ENXIO; 619 620 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 621 return -EINVAL; 622 623 if (static_branch_unlikely(&ice_xdp_locking_key)) { 624 queue_index %= vsi->num_xdp_txq; 625 xdp_ring = vsi->xdp_rings[queue_index]; 626 spin_lock(&xdp_ring->tx_lock); 627 } else { 628 xdp_ring = vsi->xdp_rings[queue_index]; 629 } 630 631 for (i = 0; i < n; i++) { 632 struct xdp_frame *xdpf = frames[i]; 633 int err; 634 635 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 636 if (err != ICE_XDP_TX) 637 break; 638 nxmit++; 639 } 640 641 if (unlikely(flags & XDP_XMIT_FLUSH)) 642 ice_xdp_ring_update_tail(xdp_ring); 643 644 if (static_branch_unlikely(&ice_xdp_locking_key)) 645 spin_unlock(&xdp_ring->tx_lock); 646 647 return nxmit; 648 } 649 650 /** 651 * ice_alloc_mapped_page - recycle or make a new page 652 * @rx_ring: ring to use 653 * @bi: rx_buf struct to modify 654 * 655 * Returns true if the page was successfully allocated or 656 * reused. 657 */ 658 static bool 659 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 660 { 661 struct page *page = bi->page; 662 dma_addr_t dma; 663 664 /* since we are recycling buffers we should seldom need to alloc */ 665 if (likely(page)) 666 return true; 667 668 /* alloc new page for storage */ 669 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 670 if (unlikely(!page)) { 671 rx_ring->rx_stats.alloc_page_failed++; 672 return false; 673 } 674 675 /* map page for use */ 676 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 677 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 678 679 /* if mapping failed free memory back to system since 680 * there isn't much point in holding memory we can't use 681 */ 682 if (dma_mapping_error(rx_ring->dev, dma)) { 683 __free_pages(page, ice_rx_pg_order(rx_ring)); 684 rx_ring->rx_stats.alloc_page_failed++; 685 return false; 686 } 687 688 bi->dma = dma; 689 bi->page = page; 690 bi->page_offset = rx_ring->rx_offset; 691 page_ref_add(page, USHRT_MAX - 1); 692 bi->pagecnt_bias = USHRT_MAX; 693 694 return true; 695 } 696 697 /** 698 * ice_alloc_rx_bufs - Replace used receive buffers 699 * @rx_ring: ring to place buffers on 700 * @cleaned_count: number of buffers to replace 701 * 702 * Returns false if all allocations were successful, true if any fail. Returning 703 * true signals to the caller that we didn't replace cleaned_count buffers and 704 * there is more work to do. 705 * 706 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 707 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 708 * multiple tail writes per call. 709 */ 710 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 711 { 712 union ice_32b_rx_flex_desc *rx_desc; 713 u16 ntu = rx_ring->next_to_use; 714 struct ice_rx_buf *bi; 715 716 /* do nothing if no valid netdev defined */ 717 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 718 !cleaned_count) 719 return false; 720 721 /* get the Rx descriptor and buffer based on next_to_use */ 722 rx_desc = ICE_RX_DESC(rx_ring, ntu); 723 bi = &rx_ring->rx_buf[ntu]; 724 725 do { 726 /* if we fail here, we have work remaining */ 727 if (!ice_alloc_mapped_page(rx_ring, bi)) 728 break; 729 730 /* sync the buffer for use by the device */ 731 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 732 bi->page_offset, 733 rx_ring->rx_buf_len, 734 DMA_FROM_DEVICE); 735 736 /* Refresh the desc even if buffer_addrs didn't change 737 * because each write-back erases this info. 738 */ 739 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 740 741 rx_desc++; 742 bi++; 743 ntu++; 744 if (unlikely(ntu == rx_ring->count)) { 745 rx_desc = ICE_RX_DESC(rx_ring, 0); 746 bi = rx_ring->rx_buf; 747 ntu = 0; 748 } 749 750 /* clear the status bits for the next_to_use descriptor */ 751 rx_desc->wb.status_error0 = 0; 752 753 cleaned_count--; 754 } while (cleaned_count); 755 756 if (rx_ring->next_to_use != ntu) 757 ice_release_rx_desc(rx_ring, ntu); 758 759 return !!cleaned_count; 760 } 761 762 /** 763 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 764 * @rx_buf: Rx buffer to adjust 765 * @size: Size of adjustment 766 * 767 * Update the offset within page so that Rx buf will be ready to be reused. 768 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 769 * so the second half of page assigned to Rx buffer will be used, otherwise 770 * the offset is moved by "size" bytes 771 */ 772 static void 773 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 774 { 775 #if (PAGE_SIZE < 8192) 776 /* flip page offset to other buffer */ 777 rx_buf->page_offset ^= size; 778 #else 779 /* move offset up to the next cache line */ 780 rx_buf->page_offset += size; 781 #endif 782 } 783 784 /** 785 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 786 * @rx_buf: buffer containing the page 787 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 788 * 789 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 790 * which will assign the current buffer to the buffer that next_to_alloc is 791 * pointing to; otherwise, the DMA mapping needs to be destroyed and 792 * page freed 793 */ 794 static bool 795 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 796 { 797 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 798 struct page *page = rx_buf->page; 799 800 /* avoid re-using remote and pfmemalloc pages */ 801 if (!dev_page_is_reusable(page)) 802 return false; 803 804 #if (PAGE_SIZE < 8192) 805 /* if we are only owner of page we can reuse it */ 806 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 807 return false; 808 #else 809 #define ICE_LAST_OFFSET \ 810 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 811 if (rx_buf->page_offset > ICE_LAST_OFFSET) 812 return false; 813 #endif /* PAGE_SIZE < 8192) */ 814 815 /* If we have drained the page fragment pool we need to update 816 * the pagecnt_bias and page count so that we fully restock the 817 * number of references the driver holds. 818 */ 819 if (unlikely(pagecnt_bias == 1)) { 820 page_ref_add(page, USHRT_MAX - 1); 821 rx_buf->pagecnt_bias = USHRT_MAX; 822 } 823 824 return true; 825 } 826 827 /** 828 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 829 * @rx_ring: Rx descriptor ring to transact packets on 830 * @rx_buf: buffer containing page to add 831 * @skb: sk_buff to place the data into 832 * @size: packet length from rx_desc 833 * 834 * This function will add the data contained in rx_buf->page to the skb. 835 * It will just attach the page as a frag to the skb. 836 * The function will then update the page offset. 837 */ 838 static void 839 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 840 struct sk_buff *skb, unsigned int size) 841 { 842 #if (PAGE_SIZE >= 8192) 843 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 844 #else 845 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 846 #endif 847 848 if (!size) 849 return; 850 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 851 rx_buf->page_offset, size, truesize); 852 853 /* page is being used so we must update the page offset */ 854 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 855 } 856 857 /** 858 * ice_reuse_rx_page - page flip buffer and store it back on the ring 859 * @rx_ring: Rx descriptor ring to store buffers on 860 * @old_buf: donor buffer to have page reused 861 * 862 * Synchronizes page for reuse by the adapter 863 */ 864 static void 865 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 866 { 867 u16 nta = rx_ring->next_to_alloc; 868 struct ice_rx_buf *new_buf; 869 870 new_buf = &rx_ring->rx_buf[nta]; 871 872 /* update, and store next to alloc */ 873 nta++; 874 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 875 876 /* Transfer page from old buffer to new buffer. 877 * Move each member individually to avoid possible store 878 * forwarding stalls and unnecessary copy of skb. 879 */ 880 new_buf->dma = old_buf->dma; 881 new_buf->page = old_buf->page; 882 new_buf->page_offset = old_buf->page_offset; 883 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 884 } 885 886 /** 887 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 888 * @rx_ring: Rx descriptor ring to transact packets on 889 * @size: size of buffer to add to skb 890 * @rx_buf_pgcnt: rx_buf page refcount 891 * 892 * This function will pull an Rx buffer from the ring and synchronize it 893 * for use by the CPU. 894 */ 895 static struct ice_rx_buf * 896 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 897 int *rx_buf_pgcnt) 898 { 899 struct ice_rx_buf *rx_buf; 900 901 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 902 *rx_buf_pgcnt = 903 #if (PAGE_SIZE < 8192) 904 page_count(rx_buf->page); 905 #else 906 0; 907 #endif 908 prefetchw(rx_buf->page); 909 910 if (!size) 911 return rx_buf; 912 /* we are reusing so sync this buffer for CPU use */ 913 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 914 rx_buf->page_offset, size, 915 DMA_FROM_DEVICE); 916 917 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 918 rx_buf->pagecnt_bias--; 919 920 return rx_buf; 921 } 922 923 /** 924 * ice_build_skb - Build skb around an existing buffer 925 * @rx_ring: Rx descriptor ring to transact packets on 926 * @rx_buf: Rx buffer to pull data from 927 * @xdp: xdp_buff pointing to the data 928 * 929 * This function builds an skb around an existing Rx buffer, taking care 930 * to set up the skb correctly and avoid any memcpy overhead. 931 */ 932 static struct sk_buff * 933 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 934 struct xdp_buff *xdp) 935 { 936 u8 metasize = xdp->data - xdp->data_meta; 937 #if (PAGE_SIZE < 8192) 938 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 939 #else 940 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 941 SKB_DATA_ALIGN(xdp->data_end - 942 xdp->data_hard_start); 943 #endif 944 struct sk_buff *skb; 945 946 /* Prefetch first cache line of first page. If xdp->data_meta 947 * is unused, this points exactly as xdp->data, otherwise we 948 * likely have a consumer accessing first few bytes of meta 949 * data, and then actual data. 950 */ 951 net_prefetch(xdp->data_meta); 952 /* build an skb around the page buffer */ 953 skb = napi_build_skb(xdp->data_hard_start, truesize); 954 if (unlikely(!skb)) 955 return NULL; 956 957 /* must to record Rx queue, otherwise OS features such as 958 * symmetric queue won't work 959 */ 960 skb_record_rx_queue(skb, rx_ring->q_index); 961 962 /* update pointers within the skb to store the data */ 963 skb_reserve(skb, xdp->data - xdp->data_hard_start); 964 __skb_put(skb, xdp->data_end - xdp->data); 965 if (metasize) 966 skb_metadata_set(skb, metasize); 967 968 /* buffer is used by skb, update page_offset */ 969 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 970 971 return skb; 972 } 973 974 /** 975 * ice_construct_skb - Allocate skb and populate it 976 * @rx_ring: Rx descriptor ring to transact packets on 977 * @rx_buf: Rx buffer to pull data from 978 * @xdp: xdp_buff pointing to the data 979 * 980 * This function allocates an skb. It then populates it with the page 981 * data from the current receive descriptor, taking care to set up the 982 * skb correctly. 983 */ 984 static struct sk_buff * 985 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 986 struct xdp_buff *xdp) 987 { 988 unsigned int metasize = xdp->data - xdp->data_meta; 989 unsigned int size = xdp->data_end - xdp->data; 990 unsigned int headlen; 991 struct sk_buff *skb; 992 993 /* prefetch first cache line of first page */ 994 net_prefetch(xdp->data_meta); 995 996 /* allocate a skb to store the frags */ 997 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 998 ICE_RX_HDR_SIZE + metasize, 999 GFP_ATOMIC | __GFP_NOWARN); 1000 if (unlikely(!skb)) 1001 return NULL; 1002 1003 skb_record_rx_queue(skb, rx_ring->q_index); 1004 /* Determine available headroom for copy */ 1005 headlen = size; 1006 if (headlen > ICE_RX_HDR_SIZE) 1007 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1008 1009 /* align pull length to size of long to optimize memcpy performance */ 1010 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1011 ALIGN(headlen + metasize, sizeof(long))); 1012 1013 if (metasize) { 1014 skb_metadata_set(skb, metasize); 1015 __skb_pull(skb, metasize); 1016 } 1017 1018 /* if we exhaust the linear part then add what is left as a frag */ 1019 size -= headlen; 1020 if (size) { 1021 #if (PAGE_SIZE >= 8192) 1022 unsigned int truesize = SKB_DATA_ALIGN(size); 1023 #else 1024 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1025 #endif 1026 skb_add_rx_frag(skb, 0, rx_buf->page, 1027 rx_buf->page_offset + headlen, size, truesize); 1028 /* buffer is used by skb, update page_offset */ 1029 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1030 } else { 1031 /* buffer is unused, reset bias back to rx_buf; data was copied 1032 * onto skb's linear part so there's no need for adjusting 1033 * page offset and we can reuse this buffer as-is 1034 */ 1035 rx_buf->pagecnt_bias++; 1036 } 1037 1038 return skb; 1039 } 1040 1041 /** 1042 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1043 * @rx_ring: Rx descriptor ring to transact packets on 1044 * @rx_buf: Rx buffer to pull data from 1045 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1046 * 1047 * This function will update next_to_clean and then clean up the contents 1048 * of the rx_buf. It will either recycle the buffer or unmap it and free 1049 * the associated resources. 1050 */ 1051 static void 1052 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1053 int rx_buf_pgcnt) 1054 { 1055 u16 ntc = rx_ring->next_to_clean + 1; 1056 1057 /* fetch, update, and store next to clean */ 1058 ntc = (ntc < rx_ring->count) ? ntc : 0; 1059 rx_ring->next_to_clean = ntc; 1060 1061 if (!rx_buf) 1062 return; 1063 1064 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1065 /* hand second half of page back to the ring */ 1066 ice_reuse_rx_page(rx_ring, rx_buf); 1067 } else { 1068 /* we are not reusing the buffer so unmap it */ 1069 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1070 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1071 ICE_RX_DMA_ATTR); 1072 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1073 } 1074 1075 /* clear contents of buffer_info */ 1076 rx_buf->page = NULL; 1077 } 1078 1079 /** 1080 * ice_is_non_eop - process handling of non-EOP buffers 1081 * @rx_ring: Rx ring being processed 1082 * @rx_desc: Rx descriptor for current buffer 1083 * 1084 * If the buffer is an EOP buffer, this function exits returning false, 1085 * otherwise return true indicating that this is in fact a non-EOP buffer. 1086 */ 1087 static bool 1088 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1089 { 1090 /* if we are the last buffer then there is nothing else to do */ 1091 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1092 if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF))) 1093 return false; 1094 1095 rx_ring->rx_stats.non_eop_descs++; 1096 1097 return true; 1098 } 1099 1100 /** 1101 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1102 * @rx_ring: Rx descriptor ring to transact packets on 1103 * @budget: Total limit on number of packets to process 1104 * 1105 * This function provides a "bounce buffer" approach to Rx interrupt 1106 * processing. The advantage to this is that on systems that have 1107 * expensive overhead for IOMMU access this provides a means of avoiding 1108 * it by maintaining the mapping of the page to the system. 1109 * 1110 * Returns amount of work completed 1111 */ 1112 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1113 { 1114 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1115 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1116 unsigned int offset = rx_ring->rx_offset; 1117 struct ice_tx_ring *xdp_ring = NULL; 1118 unsigned int xdp_res, xdp_xmit = 0; 1119 struct sk_buff *skb = rx_ring->skb; 1120 struct bpf_prog *xdp_prog = NULL; 1121 struct xdp_buff xdp; 1122 bool failure; 1123 1124 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1125 #if (PAGE_SIZE < 8192) 1126 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1127 #endif 1128 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1129 1130 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1131 if (xdp_prog) 1132 xdp_ring = rx_ring->xdp_ring; 1133 1134 /* start the loop to process Rx packets bounded by 'budget' */ 1135 while (likely(total_rx_pkts < (unsigned int)budget)) { 1136 union ice_32b_rx_flex_desc *rx_desc; 1137 struct ice_rx_buf *rx_buf; 1138 unsigned char *hard_start; 1139 unsigned int size; 1140 u16 stat_err_bits; 1141 int rx_buf_pgcnt; 1142 u16 vlan_tag = 0; 1143 u16 rx_ptype; 1144 1145 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1146 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1147 1148 /* status_error_len will always be zero for unused descriptors 1149 * because it's cleared in cleanup, and overlaps with hdr_addr 1150 * which is always zero because packet split isn't used, if the 1151 * hardware wrote DD then it will be non-zero 1152 */ 1153 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1154 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1155 break; 1156 1157 /* This memory barrier is needed to keep us from reading 1158 * any other fields out of the rx_desc until we know the 1159 * DD bit is set. 1160 */ 1161 dma_rmb(); 1162 1163 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1164 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1165 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1166 1167 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1168 ctrl_vsi->vf) 1169 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1170 ice_put_rx_buf(rx_ring, NULL, 0); 1171 cleaned_count++; 1172 continue; 1173 } 1174 1175 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1176 ICE_RX_FLX_DESC_PKT_LEN_M; 1177 1178 /* retrieve a buffer from the ring */ 1179 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1180 1181 if (!size) { 1182 xdp.data = NULL; 1183 xdp.data_end = NULL; 1184 xdp.data_hard_start = NULL; 1185 xdp.data_meta = NULL; 1186 goto construct_skb; 1187 } 1188 1189 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1190 offset; 1191 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1192 #if (PAGE_SIZE > 4096) 1193 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1194 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1195 #endif 1196 1197 if (!xdp_prog) 1198 goto construct_skb; 1199 1200 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1201 if (!xdp_res) 1202 goto construct_skb; 1203 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1204 xdp_xmit |= xdp_res; 1205 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1206 } else { 1207 rx_buf->pagecnt_bias++; 1208 } 1209 total_rx_bytes += size; 1210 total_rx_pkts++; 1211 1212 cleaned_count++; 1213 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1214 continue; 1215 construct_skb: 1216 if (skb) { 1217 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1218 } else if (likely(xdp.data)) { 1219 if (ice_ring_uses_build_skb(rx_ring)) 1220 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1221 else 1222 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1223 } 1224 /* exit if we failed to retrieve a buffer */ 1225 if (!skb) { 1226 rx_ring->rx_stats.alloc_buf_failed++; 1227 if (rx_buf) 1228 rx_buf->pagecnt_bias++; 1229 break; 1230 } 1231 1232 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1233 cleaned_count++; 1234 1235 /* skip if it is NOP desc */ 1236 if (ice_is_non_eop(rx_ring, rx_desc)) 1237 continue; 1238 1239 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1240 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1241 stat_err_bits))) { 1242 dev_kfree_skb_any(skb); 1243 continue; 1244 } 1245 1246 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 1247 1248 /* pad the skb if needed, to make a valid ethernet frame */ 1249 if (eth_skb_pad(skb)) { 1250 skb = NULL; 1251 continue; 1252 } 1253 1254 /* probably a little skewed due to removing CRC */ 1255 total_rx_bytes += skb->len; 1256 1257 /* populate checksum, VLAN, and protocol */ 1258 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1259 ICE_RX_FLEX_DESC_PTYPE_M; 1260 1261 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1262 1263 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1264 /* send completed skb up the stack */ 1265 ice_receive_skb(rx_ring, skb, vlan_tag); 1266 skb = NULL; 1267 1268 /* update budget accounting */ 1269 total_rx_pkts++; 1270 } 1271 1272 /* return up to cleaned_count buffers to hardware */ 1273 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1274 1275 if (xdp_prog) 1276 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1277 rx_ring->skb = skb; 1278 1279 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1280 1281 /* guarantee a trip back through this routine if there was a failure */ 1282 return failure ? budget : (int)total_rx_pkts; 1283 } 1284 1285 static void __ice_update_sample(struct ice_q_vector *q_vector, 1286 struct ice_ring_container *rc, 1287 struct dim_sample *sample, 1288 bool is_tx) 1289 { 1290 u64 packets = 0, bytes = 0; 1291 1292 if (is_tx) { 1293 struct ice_tx_ring *tx_ring; 1294 1295 ice_for_each_tx_ring(tx_ring, *rc) { 1296 packets += tx_ring->stats.pkts; 1297 bytes += tx_ring->stats.bytes; 1298 } 1299 } else { 1300 struct ice_rx_ring *rx_ring; 1301 1302 ice_for_each_rx_ring(rx_ring, *rc) { 1303 packets += rx_ring->stats.pkts; 1304 bytes += rx_ring->stats.bytes; 1305 } 1306 } 1307 1308 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1309 sample->comp_ctr = 0; 1310 1311 /* if dim settings get stale, like when not updated for 1 1312 * second or longer, force it to start again. This addresses the 1313 * frequent case of an idle queue being switched to by the 1314 * scheduler. The 1,000 here means 1,000 milliseconds. 1315 */ 1316 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1317 rc->dim.state = DIM_START_MEASURE; 1318 } 1319 1320 /** 1321 * ice_net_dim - Update net DIM algorithm 1322 * @q_vector: the vector associated with the interrupt 1323 * 1324 * Create a DIM sample and notify net_dim() so that it can possibly decide 1325 * a new ITR value based on incoming packets, bytes, and interrupts. 1326 * 1327 * This function is a no-op if the ring is not configured to dynamic ITR. 1328 */ 1329 static void ice_net_dim(struct ice_q_vector *q_vector) 1330 { 1331 struct ice_ring_container *tx = &q_vector->tx; 1332 struct ice_ring_container *rx = &q_vector->rx; 1333 1334 if (ITR_IS_DYNAMIC(tx)) { 1335 struct dim_sample dim_sample; 1336 1337 __ice_update_sample(q_vector, tx, &dim_sample, true); 1338 net_dim(&tx->dim, dim_sample); 1339 } 1340 1341 if (ITR_IS_DYNAMIC(rx)) { 1342 struct dim_sample dim_sample; 1343 1344 __ice_update_sample(q_vector, rx, &dim_sample, false); 1345 net_dim(&rx->dim, dim_sample); 1346 } 1347 } 1348 1349 /** 1350 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1351 * @itr_idx: interrupt throttling index 1352 * @itr: interrupt throttling value in usecs 1353 */ 1354 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1355 { 1356 /* The ITR value is reported in microseconds, and the register value is 1357 * recorded in 2 microsecond units. For this reason we only need to 1358 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1359 * granularity as a shift instead of division. The mask makes sure the 1360 * ITR value is never odd so we don't accidentally write into the field 1361 * prior to the ITR field. 1362 */ 1363 itr &= ICE_ITR_MASK; 1364 1365 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1366 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1367 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1368 } 1369 1370 /** 1371 * ice_enable_interrupt - re-enable MSI-X interrupt 1372 * @q_vector: the vector associated with the interrupt to enable 1373 * 1374 * If the VSI is down, the interrupt will not be re-enabled. Also, 1375 * when enabling the interrupt always reset the wb_on_itr to false 1376 * and trigger a software interrupt to clean out internal state. 1377 */ 1378 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1379 { 1380 struct ice_vsi *vsi = q_vector->vsi; 1381 bool wb_en = q_vector->wb_on_itr; 1382 u32 itr_val; 1383 1384 if (test_bit(ICE_DOWN, vsi->state)) 1385 return; 1386 1387 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1388 * make sure to catch any pending cleanups that might have been missed 1389 * due to interrupt state transition. If busy poll or poll isn't 1390 * enabled, then don't update ITR, and just enable the interrupt. 1391 */ 1392 if (!wb_en) { 1393 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1394 } else { 1395 q_vector->wb_on_itr = false; 1396 1397 /* do two things here with a single write. Set up the third ITR 1398 * index to be used for software interrupt moderation, and then 1399 * trigger a software interrupt with a rate limit of 20K on 1400 * software interrupts, this will help avoid high interrupt 1401 * loads due to frequently polling and exiting polling. 1402 */ 1403 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1404 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1405 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1406 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1407 } 1408 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1409 } 1410 1411 /** 1412 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1413 * @q_vector: q_vector to set WB_ON_ITR on 1414 * 1415 * We need to tell hardware to write-back completed descriptors even when 1416 * interrupts are disabled. Descriptors will be written back on cache line 1417 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1418 * descriptors may not be written back if they don't fill a cache line until 1419 * the next interrupt. 1420 * 1421 * This sets the write-back frequency to whatever was set previously for the 1422 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1423 * aren't meddling with the INTENA_M bit. 1424 */ 1425 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1426 { 1427 struct ice_vsi *vsi = q_vector->vsi; 1428 1429 /* already in wb_on_itr mode no need to change it */ 1430 if (q_vector->wb_on_itr) 1431 return; 1432 1433 /* use previously set ITR values for all of the ITR indices by 1434 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1435 * be static in non-adaptive mode (user configured) 1436 */ 1437 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1438 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1439 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1440 GLINT_DYN_CTL_WB_ON_ITR_M); 1441 1442 q_vector->wb_on_itr = true; 1443 } 1444 1445 /** 1446 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1447 * @napi: napi struct with our devices info in it 1448 * @budget: amount of work driver is allowed to do this pass, in packets 1449 * 1450 * This function will clean all queues associated with a q_vector. 1451 * 1452 * Returns the amount of work done 1453 */ 1454 int ice_napi_poll(struct napi_struct *napi, int budget) 1455 { 1456 struct ice_q_vector *q_vector = 1457 container_of(napi, struct ice_q_vector, napi); 1458 struct ice_tx_ring *tx_ring; 1459 struct ice_rx_ring *rx_ring; 1460 bool clean_complete = true; 1461 int budget_per_ring; 1462 int work_done = 0; 1463 1464 /* Since the actual Tx work is minimal, we can give the Tx a larger 1465 * budget and be more aggressive about cleaning up the Tx descriptors. 1466 */ 1467 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1468 bool wd; 1469 1470 if (tx_ring->xsk_pool) 1471 wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget); 1472 else if (ice_ring_is_xdp(tx_ring)) 1473 wd = true; 1474 else 1475 wd = ice_clean_tx_irq(tx_ring, budget); 1476 1477 if (!wd) 1478 clean_complete = false; 1479 } 1480 1481 /* Handle case where we are called by netpoll with a budget of 0 */ 1482 if (unlikely(budget <= 0)) 1483 return budget; 1484 1485 /* normally we have 1 Rx ring per q_vector */ 1486 if (unlikely(q_vector->num_ring_rx > 1)) 1487 /* We attempt to distribute budget to each Rx queue fairly, but 1488 * don't allow the budget to go below 1 because that would exit 1489 * polling early. 1490 */ 1491 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1492 else 1493 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1494 budget_per_ring = budget; 1495 1496 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1497 int cleaned; 1498 1499 /* A dedicated path for zero-copy allows making a single 1500 * comparison in the irq context instead of many inside the 1501 * ice_clean_rx_irq function and makes the codebase cleaner. 1502 */ 1503 cleaned = rx_ring->xsk_pool ? 1504 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1505 ice_clean_rx_irq(rx_ring, budget_per_ring); 1506 work_done += cleaned; 1507 /* if we clean as many as budgeted, we must not be done */ 1508 if (cleaned >= budget_per_ring) 1509 clean_complete = false; 1510 } 1511 1512 /* If work not completed, return budget and polling will return */ 1513 if (!clean_complete) { 1514 /* Set the writeback on ITR so partial completions of 1515 * cache-lines will still continue even if we're polling. 1516 */ 1517 ice_set_wb_on_itr(q_vector); 1518 return budget; 1519 } 1520 1521 /* Exit the polling mode, but don't re-enable interrupts if stack might 1522 * poll us due to busy-polling 1523 */ 1524 if (napi_complete_done(napi, work_done)) { 1525 ice_net_dim(q_vector); 1526 ice_enable_interrupt(q_vector); 1527 } else { 1528 ice_set_wb_on_itr(q_vector); 1529 } 1530 1531 return min_t(int, work_done, budget - 1); 1532 } 1533 1534 /** 1535 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1536 * @tx_ring: the ring to be checked 1537 * @size: the size buffer we want to assure is available 1538 * 1539 * Returns -EBUSY if a stop is needed, else 0 1540 */ 1541 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1542 { 1543 netif_tx_stop_queue(txring_txq(tx_ring)); 1544 /* Memory barrier before checking head and tail */ 1545 smp_mb(); 1546 1547 /* Check again in a case another CPU has just made room available. */ 1548 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1549 return -EBUSY; 1550 1551 /* A reprieve! - use start_queue because it doesn't call schedule */ 1552 netif_tx_start_queue(txring_txq(tx_ring)); 1553 ++tx_ring->tx_stats.restart_q; 1554 return 0; 1555 } 1556 1557 /** 1558 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1559 * @tx_ring: the ring to be checked 1560 * @size: the size buffer we want to assure is available 1561 * 1562 * Returns 0 if stop is not needed 1563 */ 1564 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1565 { 1566 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1567 return 0; 1568 1569 return __ice_maybe_stop_tx(tx_ring, size); 1570 } 1571 1572 /** 1573 * ice_tx_map - Build the Tx descriptor 1574 * @tx_ring: ring to send buffer on 1575 * @first: first buffer info buffer to use 1576 * @off: pointer to struct that holds offload parameters 1577 * 1578 * This function loops over the skb data pointed to by *first 1579 * and gets a physical address for each memory location and programs 1580 * it and the length into the transmit descriptor. 1581 */ 1582 static void 1583 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1584 struct ice_tx_offload_params *off) 1585 { 1586 u64 td_offset, td_tag, td_cmd; 1587 u16 i = tx_ring->next_to_use; 1588 unsigned int data_len, size; 1589 struct ice_tx_desc *tx_desc; 1590 struct ice_tx_buf *tx_buf; 1591 struct sk_buff *skb; 1592 skb_frag_t *frag; 1593 dma_addr_t dma; 1594 bool kick; 1595 1596 td_tag = off->td_l2tag1; 1597 td_cmd = off->td_cmd; 1598 td_offset = off->td_offset; 1599 skb = first->skb; 1600 1601 data_len = skb->data_len; 1602 size = skb_headlen(skb); 1603 1604 tx_desc = ICE_TX_DESC(tx_ring, i); 1605 1606 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1607 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1608 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1609 ICE_TX_FLAGS_VLAN_S; 1610 } 1611 1612 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1613 1614 tx_buf = first; 1615 1616 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1617 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1618 1619 if (dma_mapping_error(tx_ring->dev, dma)) 1620 goto dma_error; 1621 1622 /* record length, and DMA address */ 1623 dma_unmap_len_set(tx_buf, len, size); 1624 dma_unmap_addr_set(tx_buf, dma, dma); 1625 1626 /* align size to end of page */ 1627 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1628 tx_desc->buf_addr = cpu_to_le64(dma); 1629 1630 /* account for data chunks larger than the hardware 1631 * can handle 1632 */ 1633 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1634 tx_desc->cmd_type_offset_bsz = 1635 ice_build_ctob(td_cmd, td_offset, max_data, 1636 td_tag); 1637 1638 tx_desc++; 1639 i++; 1640 1641 if (i == tx_ring->count) { 1642 tx_desc = ICE_TX_DESC(tx_ring, 0); 1643 i = 0; 1644 } 1645 1646 dma += max_data; 1647 size -= max_data; 1648 1649 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1650 tx_desc->buf_addr = cpu_to_le64(dma); 1651 } 1652 1653 if (likely(!data_len)) 1654 break; 1655 1656 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1657 size, td_tag); 1658 1659 tx_desc++; 1660 i++; 1661 1662 if (i == tx_ring->count) { 1663 tx_desc = ICE_TX_DESC(tx_ring, 0); 1664 i = 0; 1665 } 1666 1667 size = skb_frag_size(frag); 1668 data_len -= size; 1669 1670 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1671 DMA_TO_DEVICE); 1672 1673 tx_buf = &tx_ring->tx_buf[i]; 1674 } 1675 1676 /* record SW timestamp if HW timestamp is not available */ 1677 skb_tx_timestamp(first->skb); 1678 1679 i++; 1680 if (i == tx_ring->count) 1681 i = 0; 1682 1683 /* write last descriptor with RS and EOP bits */ 1684 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1685 tx_desc->cmd_type_offset_bsz = 1686 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1687 1688 /* Force memory writes to complete before letting h/w know there 1689 * are new descriptors to fetch. 1690 * 1691 * We also use this memory barrier to make certain all of the 1692 * status bits have been updated before next_to_watch is written. 1693 */ 1694 wmb(); 1695 1696 /* set next_to_watch value indicating a packet is present */ 1697 first->next_to_watch = tx_desc; 1698 1699 tx_ring->next_to_use = i; 1700 1701 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1702 1703 /* notify HW of packet */ 1704 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1705 netdev_xmit_more()); 1706 if (kick) 1707 /* notify HW of packet */ 1708 writel(i, tx_ring->tail); 1709 1710 return; 1711 1712 dma_error: 1713 /* clear DMA mappings for failed tx_buf map */ 1714 for (;;) { 1715 tx_buf = &tx_ring->tx_buf[i]; 1716 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1717 if (tx_buf == first) 1718 break; 1719 if (i == 0) 1720 i = tx_ring->count; 1721 i--; 1722 } 1723 1724 tx_ring->next_to_use = i; 1725 } 1726 1727 /** 1728 * ice_tx_csum - Enable Tx checksum offloads 1729 * @first: pointer to the first descriptor 1730 * @off: pointer to struct that holds offload parameters 1731 * 1732 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1733 */ 1734 static 1735 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1736 { 1737 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1738 struct sk_buff *skb = first->skb; 1739 union { 1740 struct iphdr *v4; 1741 struct ipv6hdr *v6; 1742 unsigned char *hdr; 1743 } ip; 1744 union { 1745 struct tcphdr *tcp; 1746 unsigned char *hdr; 1747 } l4; 1748 __be16 frag_off, protocol; 1749 unsigned char *exthdr; 1750 u32 offset, cmd = 0; 1751 u8 l4_proto = 0; 1752 1753 if (skb->ip_summed != CHECKSUM_PARTIAL) 1754 return 0; 1755 1756 ip.hdr = skb_network_header(skb); 1757 l4.hdr = skb_transport_header(skb); 1758 1759 /* compute outer L2 header size */ 1760 l2_len = ip.hdr - skb->data; 1761 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1762 1763 protocol = vlan_get_protocol(skb); 1764 1765 if (protocol == htons(ETH_P_IP)) 1766 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1767 else if (protocol == htons(ETH_P_IPV6)) 1768 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1769 1770 if (skb->encapsulation) { 1771 bool gso_ena = false; 1772 u32 tunnel = 0; 1773 1774 /* define outer network header type */ 1775 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1776 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1777 ICE_TX_CTX_EIPT_IPV4 : 1778 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1779 l4_proto = ip.v4->protocol; 1780 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1781 int ret; 1782 1783 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1784 exthdr = ip.hdr + sizeof(*ip.v6); 1785 l4_proto = ip.v6->nexthdr; 1786 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1787 &l4_proto, &frag_off); 1788 if (ret < 0) 1789 return -1; 1790 } 1791 1792 /* define outer transport */ 1793 switch (l4_proto) { 1794 case IPPROTO_UDP: 1795 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1796 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1797 break; 1798 case IPPROTO_GRE: 1799 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1800 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1801 break; 1802 case IPPROTO_IPIP: 1803 case IPPROTO_IPV6: 1804 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1805 l4.hdr = skb_inner_network_header(skb); 1806 break; 1807 default: 1808 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1809 return -1; 1810 1811 skb_checksum_help(skb); 1812 return 0; 1813 } 1814 1815 /* compute outer L3 header size */ 1816 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1817 ICE_TXD_CTX_QW0_EIPLEN_S; 1818 1819 /* switch IP header pointer from outer to inner header */ 1820 ip.hdr = skb_inner_network_header(skb); 1821 1822 /* compute tunnel header size */ 1823 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1824 ICE_TXD_CTX_QW0_NATLEN_S; 1825 1826 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1827 /* indicate if we need to offload outer UDP header */ 1828 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1829 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1830 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1831 1832 /* record tunnel offload values */ 1833 off->cd_tunnel_params |= tunnel; 1834 1835 /* set DTYP=1 to indicate that it's an Tx context descriptor 1836 * in IPsec tunnel mode with Tx offloads in Quad word 1 1837 */ 1838 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1839 1840 /* switch L4 header pointer from outer to inner */ 1841 l4.hdr = skb_inner_transport_header(skb); 1842 l4_proto = 0; 1843 1844 /* reset type as we transition from outer to inner headers */ 1845 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1846 if (ip.v4->version == 4) 1847 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1848 if (ip.v6->version == 6) 1849 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1850 } 1851 1852 /* Enable IP checksum offloads */ 1853 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1854 l4_proto = ip.v4->protocol; 1855 /* the stack computes the IP header already, the only time we 1856 * need the hardware to recompute it is in the case of TSO. 1857 */ 1858 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1859 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1860 else 1861 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1862 1863 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1864 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1865 exthdr = ip.hdr + sizeof(*ip.v6); 1866 l4_proto = ip.v6->nexthdr; 1867 if (l4.hdr != exthdr) 1868 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1869 &frag_off); 1870 } else { 1871 return -1; 1872 } 1873 1874 /* compute inner L3 header size */ 1875 l3_len = l4.hdr - ip.hdr; 1876 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1877 1878 /* Enable L4 checksum offloads */ 1879 switch (l4_proto) { 1880 case IPPROTO_TCP: 1881 /* enable checksum offloads */ 1882 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1883 l4_len = l4.tcp->doff; 1884 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1885 break; 1886 case IPPROTO_UDP: 1887 /* enable UDP checksum offload */ 1888 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1889 l4_len = (sizeof(struct udphdr) >> 2); 1890 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1891 break; 1892 case IPPROTO_SCTP: 1893 /* enable SCTP checksum offload */ 1894 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1895 l4_len = sizeof(struct sctphdr) >> 2; 1896 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1897 break; 1898 1899 default: 1900 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1901 return -1; 1902 skb_checksum_help(skb); 1903 return 0; 1904 } 1905 1906 off->td_cmd |= cmd; 1907 off->td_offset |= offset; 1908 return 1; 1909 } 1910 1911 /** 1912 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1913 * @tx_ring: ring to send buffer on 1914 * @first: pointer to struct ice_tx_buf 1915 * 1916 * Checks the skb and set up correspondingly several generic transmit flags 1917 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1918 */ 1919 static void 1920 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1921 { 1922 struct sk_buff *skb = first->skb; 1923 1924 /* nothing left to do, software offloaded VLAN */ 1925 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1926 return; 1927 1928 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1929 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1930 * VLAN offloads exclusively so we only care about the VLAN ID here 1931 */ 1932 if (skb_vlan_tag_present(skb)) { 1933 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1934 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 1935 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1936 else 1937 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1938 } 1939 1940 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1941 } 1942 1943 /** 1944 * ice_tso - computes mss and TSO length to prepare for TSO 1945 * @first: pointer to struct ice_tx_buf 1946 * @off: pointer to struct that holds offload parameters 1947 * 1948 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1949 */ 1950 static 1951 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1952 { 1953 struct sk_buff *skb = first->skb; 1954 union { 1955 struct iphdr *v4; 1956 struct ipv6hdr *v6; 1957 unsigned char *hdr; 1958 } ip; 1959 union { 1960 struct tcphdr *tcp; 1961 struct udphdr *udp; 1962 unsigned char *hdr; 1963 } l4; 1964 u64 cd_mss, cd_tso_len; 1965 u32 paylen; 1966 u8 l4_start; 1967 int err; 1968 1969 if (skb->ip_summed != CHECKSUM_PARTIAL) 1970 return 0; 1971 1972 if (!skb_is_gso(skb)) 1973 return 0; 1974 1975 err = skb_cow_head(skb, 0); 1976 if (err < 0) 1977 return err; 1978 1979 /* cppcheck-suppress unreadVariable */ 1980 ip.hdr = skb_network_header(skb); 1981 l4.hdr = skb_transport_header(skb); 1982 1983 /* initialize outer IP header fields */ 1984 if (ip.v4->version == 4) { 1985 ip.v4->tot_len = 0; 1986 ip.v4->check = 0; 1987 } else { 1988 ip.v6->payload_len = 0; 1989 } 1990 1991 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1992 SKB_GSO_GRE_CSUM | 1993 SKB_GSO_IPXIP4 | 1994 SKB_GSO_IPXIP6 | 1995 SKB_GSO_UDP_TUNNEL | 1996 SKB_GSO_UDP_TUNNEL_CSUM)) { 1997 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1998 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1999 l4.udp->len = 0; 2000 2001 /* determine offset of outer transport header */ 2002 l4_start = (u8)(l4.hdr - skb->data); 2003 2004 /* remove payload length from outer checksum */ 2005 paylen = skb->len - l4_start; 2006 csum_replace_by_diff(&l4.udp->check, 2007 (__force __wsum)htonl(paylen)); 2008 } 2009 2010 /* reset pointers to inner headers */ 2011 2012 /* cppcheck-suppress unreadVariable */ 2013 ip.hdr = skb_inner_network_header(skb); 2014 l4.hdr = skb_inner_transport_header(skb); 2015 2016 /* initialize inner IP header fields */ 2017 if (ip.v4->version == 4) { 2018 ip.v4->tot_len = 0; 2019 ip.v4->check = 0; 2020 } else { 2021 ip.v6->payload_len = 0; 2022 } 2023 } 2024 2025 /* determine offset of transport header */ 2026 l4_start = (u8)(l4.hdr - skb->data); 2027 2028 /* remove payload length from checksum */ 2029 paylen = skb->len - l4_start; 2030 2031 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2032 csum_replace_by_diff(&l4.udp->check, 2033 (__force __wsum)htonl(paylen)); 2034 /* compute length of UDP segmentation header */ 2035 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2036 } else { 2037 csum_replace_by_diff(&l4.tcp->check, 2038 (__force __wsum)htonl(paylen)); 2039 /* compute length of TCP segmentation header */ 2040 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2041 } 2042 2043 /* update gso_segs and bytecount */ 2044 first->gso_segs = skb_shinfo(skb)->gso_segs; 2045 first->bytecount += (first->gso_segs - 1) * off->header_len; 2046 2047 cd_tso_len = skb->len - off->header_len; 2048 cd_mss = skb_shinfo(skb)->gso_size; 2049 2050 /* record cdesc_qw1 with TSO parameters */ 2051 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2052 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2053 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2054 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2055 first->tx_flags |= ICE_TX_FLAGS_TSO; 2056 return 1; 2057 } 2058 2059 /** 2060 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2061 * @size: transmit request size in bytes 2062 * 2063 * Due to hardware alignment restrictions (4K alignment), we need to 2064 * assume that we can have no more than 12K of data per descriptor, even 2065 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2066 * Thus, we need to divide by 12K. But division is slow! Instead, 2067 * we decompose the operation into shifts and one relatively cheap 2068 * multiply operation. 2069 * 2070 * To divide by 12K, we first divide by 4K, then divide by 3: 2071 * To divide by 4K, shift right by 12 bits 2072 * To divide by 3, multiply by 85, then divide by 256 2073 * (Divide by 256 is done by shifting right by 8 bits) 2074 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2075 * 3, we'll underestimate near each multiple of 12K. This is actually more 2076 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2077 * segment. For our purposes this is accurate out to 1M which is orders of 2078 * magnitude greater than our largest possible GSO size. 2079 * 2080 * This would then be implemented as: 2081 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2082 * 2083 * Since multiplication and division are commutative, we can reorder 2084 * operations into: 2085 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2086 */ 2087 static unsigned int ice_txd_use_count(unsigned int size) 2088 { 2089 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2090 } 2091 2092 /** 2093 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2094 * @skb: send buffer 2095 * 2096 * Returns number of data descriptors needed for this skb. 2097 */ 2098 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2099 { 2100 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2101 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2102 unsigned int count = 0, size = skb_headlen(skb); 2103 2104 for (;;) { 2105 count += ice_txd_use_count(size); 2106 2107 if (!nr_frags--) 2108 break; 2109 2110 size = skb_frag_size(frag++); 2111 } 2112 2113 return count; 2114 } 2115 2116 /** 2117 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2118 * @skb: send buffer 2119 * 2120 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2121 * and so we need to figure out the cases where we need to linearize the skb. 2122 * 2123 * For TSO we need to count the TSO header and segment payload separately. 2124 * As such we need to check cases where we have 7 fragments or more as we 2125 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2126 * the segment payload in the first descriptor, and another 7 for the 2127 * fragments. 2128 */ 2129 static bool __ice_chk_linearize(struct sk_buff *skb) 2130 { 2131 const skb_frag_t *frag, *stale; 2132 int nr_frags, sum; 2133 2134 /* no need to check if number of frags is less than 7 */ 2135 nr_frags = skb_shinfo(skb)->nr_frags; 2136 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2137 return false; 2138 2139 /* We need to walk through the list and validate that each group 2140 * of 6 fragments totals at least gso_size. 2141 */ 2142 nr_frags -= ICE_MAX_BUF_TXD - 2; 2143 frag = &skb_shinfo(skb)->frags[0]; 2144 2145 /* Initialize size to the negative value of gso_size minus 1. We 2146 * use this as the worst case scenario in which the frag ahead 2147 * of us only provides one byte which is why we are limited to 6 2148 * descriptors for a single transmit as the header and previous 2149 * fragment are already consuming 2 descriptors. 2150 */ 2151 sum = 1 - skb_shinfo(skb)->gso_size; 2152 2153 /* Add size of frags 0 through 4 to create our initial sum */ 2154 sum += skb_frag_size(frag++); 2155 sum += skb_frag_size(frag++); 2156 sum += skb_frag_size(frag++); 2157 sum += skb_frag_size(frag++); 2158 sum += skb_frag_size(frag++); 2159 2160 /* Walk through fragments adding latest fragment, testing it, and 2161 * then removing stale fragments from the sum. 2162 */ 2163 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2164 int stale_size = skb_frag_size(stale); 2165 2166 sum += skb_frag_size(frag++); 2167 2168 /* The stale fragment may present us with a smaller 2169 * descriptor than the actual fragment size. To account 2170 * for that we need to remove all the data on the front and 2171 * figure out what the remainder would be in the last 2172 * descriptor associated with the fragment. 2173 */ 2174 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2175 int align_pad = -(skb_frag_off(stale)) & 2176 (ICE_MAX_READ_REQ_SIZE - 1); 2177 2178 sum -= align_pad; 2179 stale_size -= align_pad; 2180 2181 do { 2182 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2183 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2184 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2185 } 2186 2187 /* if sum is negative we failed to make sufficient progress */ 2188 if (sum < 0) 2189 return true; 2190 2191 if (!nr_frags--) 2192 break; 2193 2194 sum -= stale_size; 2195 } 2196 2197 return false; 2198 } 2199 2200 /** 2201 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2202 * @skb: send buffer 2203 * @count: number of buffers used 2204 * 2205 * Note: Our HW can't scatter-gather more than 8 fragments to build 2206 * a packet on the wire and so we need to figure out the cases where we 2207 * need to linearize the skb. 2208 */ 2209 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2210 { 2211 /* Both TSO and single send will work if count is less than 8 */ 2212 if (likely(count < ICE_MAX_BUF_TXD)) 2213 return false; 2214 2215 if (skb_is_gso(skb)) 2216 return __ice_chk_linearize(skb); 2217 2218 /* we can support up to 8 data buffers for a single send */ 2219 return count != ICE_MAX_BUF_TXD; 2220 } 2221 2222 /** 2223 * ice_tstamp - set up context descriptor for hardware timestamp 2224 * @tx_ring: pointer to the Tx ring to send buffer on 2225 * @skb: pointer to the SKB we're sending 2226 * @first: Tx buffer 2227 * @off: Tx offload parameters 2228 */ 2229 static void 2230 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2231 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2232 { 2233 s8 idx; 2234 2235 /* only timestamp the outbound packet if the user has requested it */ 2236 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2237 return; 2238 2239 if (!tx_ring->ptp_tx) 2240 return; 2241 2242 /* Tx timestamps cannot be sampled when doing TSO */ 2243 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2244 return; 2245 2246 /* Grab an open timestamp slot */ 2247 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2248 if (idx < 0) 2249 return; 2250 2251 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2252 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2253 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2254 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2255 } 2256 2257 /** 2258 * ice_xmit_frame_ring - Sends buffer on Tx ring 2259 * @skb: send buffer 2260 * @tx_ring: ring to send buffer on 2261 * 2262 * Returns NETDEV_TX_OK if sent, else an error code 2263 */ 2264 static netdev_tx_t 2265 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2266 { 2267 struct ice_tx_offload_params offload = { 0 }; 2268 struct ice_vsi *vsi = tx_ring->vsi; 2269 struct ice_tx_buf *first; 2270 struct ethhdr *eth; 2271 unsigned int count; 2272 int tso, csum; 2273 2274 ice_trace(xmit_frame_ring, tx_ring, skb); 2275 2276 count = ice_xmit_desc_count(skb); 2277 if (ice_chk_linearize(skb, count)) { 2278 if (__skb_linearize(skb)) 2279 goto out_drop; 2280 count = ice_txd_use_count(skb->len); 2281 tx_ring->tx_stats.tx_linearize++; 2282 } 2283 2284 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2285 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2286 * + 4 desc gap to avoid the cache line where head is, 2287 * + 1 desc for context descriptor, 2288 * otherwise try next time 2289 */ 2290 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2291 ICE_DESCS_FOR_CTX_DESC)) { 2292 tx_ring->tx_stats.tx_busy++; 2293 return NETDEV_TX_BUSY; 2294 } 2295 2296 /* prefetch for bql data which is infrequently used */ 2297 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2298 2299 offload.tx_ring = tx_ring; 2300 2301 /* record the location of the first descriptor for this packet */ 2302 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2303 first->skb = skb; 2304 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2305 first->gso_segs = 1; 2306 first->tx_flags = 0; 2307 2308 /* prepare the VLAN tagging flags for Tx */ 2309 ice_tx_prepare_vlan_flags(tx_ring, first); 2310 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2311 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2312 (ICE_TX_CTX_DESC_IL2TAG2 << 2313 ICE_TXD_CTX_QW1_CMD_S)); 2314 offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 2315 ICE_TX_FLAGS_VLAN_S; 2316 } 2317 2318 /* set up TSO offload */ 2319 tso = ice_tso(first, &offload); 2320 if (tso < 0) 2321 goto out_drop; 2322 2323 /* always set up Tx checksum offload */ 2324 csum = ice_tx_csum(first, &offload); 2325 if (csum < 0) 2326 goto out_drop; 2327 2328 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2329 eth = (struct ethhdr *)skb_mac_header(skb); 2330 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2331 eth->h_proto == htons(ETH_P_LLDP)) && 2332 vsi->type == ICE_VSI_PF && 2333 vsi->port_info->qos_cfg.is_sw_lldp)) 2334 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2335 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2336 ICE_TXD_CTX_QW1_CMD_S); 2337 2338 ice_tstamp(tx_ring, skb, first, &offload); 2339 if (ice_is_switchdev_running(vsi->back)) 2340 ice_eswitch_set_target_vsi(skb, &offload); 2341 2342 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2343 struct ice_tx_ctx_desc *cdesc; 2344 u16 i = tx_ring->next_to_use; 2345 2346 /* grab the next descriptor */ 2347 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2348 i++; 2349 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2350 2351 /* setup context descriptor */ 2352 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2353 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2354 cdesc->rsvd = cpu_to_le16(0); 2355 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2356 } 2357 2358 ice_tx_map(tx_ring, first, &offload); 2359 return NETDEV_TX_OK; 2360 2361 out_drop: 2362 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2363 dev_kfree_skb_any(skb); 2364 return NETDEV_TX_OK; 2365 } 2366 2367 /** 2368 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2369 * @skb: send buffer 2370 * @netdev: network interface device structure 2371 * 2372 * Returns NETDEV_TX_OK if sent, else an error code 2373 */ 2374 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2375 { 2376 struct ice_netdev_priv *np = netdev_priv(netdev); 2377 struct ice_vsi *vsi = np->vsi; 2378 struct ice_tx_ring *tx_ring; 2379 2380 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2381 2382 /* hardware can't handle really short frames, hardware padding works 2383 * beyond this point 2384 */ 2385 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2386 return NETDEV_TX_OK; 2387 2388 return ice_xmit_frame_ring(skb, tx_ring); 2389 } 2390 2391 /** 2392 * ice_get_dscp_up - return the UP/TC value for a SKB 2393 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2394 * @skb: SKB to query for info to determine UP/TC 2395 * 2396 * This function is to only be called when the PF is in L3 DSCP PFC mode 2397 */ 2398 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2399 { 2400 u8 dscp = 0; 2401 2402 if (skb->protocol == htons(ETH_P_IP)) 2403 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2404 else if (skb->protocol == htons(ETH_P_IPV6)) 2405 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2406 2407 return dcbcfg->dscp_map[dscp]; 2408 } 2409 2410 u16 2411 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2412 struct net_device *sb_dev) 2413 { 2414 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2415 struct ice_dcbx_cfg *dcbcfg; 2416 2417 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2418 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2419 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2420 2421 return netdev_pick_tx(netdev, skb, sb_dev); 2422 } 2423 2424 /** 2425 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2426 * @tx_ring: tx_ring to clean 2427 */ 2428 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2429 { 2430 struct ice_vsi *vsi = tx_ring->vsi; 2431 s16 i = tx_ring->next_to_clean; 2432 int budget = ICE_DFLT_IRQ_WORK; 2433 struct ice_tx_desc *tx_desc; 2434 struct ice_tx_buf *tx_buf; 2435 2436 tx_buf = &tx_ring->tx_buf[i]; 2437 tx_desc = ICE_TX_DESC(tx_ring, i); 2438 i -= tx_ring->count; 2439 2440 do { 2441 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2442 2443 /* if next_to_watch is not set then there is no pending work */ 2444 if (!eop_desc) 2445 break; 2446 2447 /* prevent any other reads prior to eop_desc */ 2448 smp_rmb(); 2449 2450 /* if the descriptor isn't done, no work to do */ 2451 if (!(eop_desc->cmd_type_offset_bsz & 2452 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2453 break; 2454 2455 /* clear next_to_watch to prevent false hangs */ 2456 tx_buf->next_to_watch = NULL; 2457 tx_desc->buf_addr = 0; 2458 tx_desc->cmd_type_offset_bsz = 0; 2459 2460 /* move past filter desc */ 2461 tx_buf++; 2462 tx_desc++; 2463 i++; 2464 if (unlikely(!i)) { 2465 i -= tx_ring->count; 2466 tx_buf = tx_ring->tx_buf; 2467 tx_desc = ICE_TX_DESC(tx_ring, 0); 2468 } 2469 2470 /* unmap the data header */ 2471 if (dma_unmap_len(tx_buf, len)) 2472 dma_unmap_single(tx_ring->dev, 2473 dma_unmap_addr(tx_buf, dma), 2474 dma_unmap_len(tx_buf, len), 2475 DMA_TO_DEVICE); 2476 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2477 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2478 2479 /* clear next_to_watch to prevent false hangs */ 2480 tx_buf->raw_buf = NULL; 2481 tx_buf->tx_flags = 0; 2482 tx_buf->next_to_watch = NULL; 2483 dma_unmap_len_set(tx_buf, len, 0); 2484 tx_desc->buf_addr = 0; 2485 tx_desc->cmd_type_offset_bsz = 0; 2486 2487 /* move past eop_desc for start of next FD desc */ 2488 tx_buf++; 2489 tx_desc++; 2490 i++; 2491 if (unlikely(!i)) { 2492 i -= tx_ring->count; 2493 tx_buf = tx_ring->tx_buf; 2494 tx_desc = ICE_TX_DESC(tx_ring, 0); 2495 } 2496 2497 budget--; 2498 } while (likely(budget)); 2499 2500 i += tx_ring->count; 2501 tx_ring->next_to_clean = i; 2502 2503 /* re-enable interrupt if needed */ 2504 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2505 } 2506