1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define FDIR_DESC_RXDID 0x40 24 #define ICE_FDIR_CLEAN_DELAY 10 25 26 /** 27 * ice_prgm_fdir_fltr - Program a Flow Director filter 28 * @vsi: VSI to send dummy packet 29 * @fdir_desc: flow director descriptor 30 * @raw_packet: allocated buffer for flow director 31 */ 32 int 33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 34 u8 *raw_packet) 35 { 36 struct ice_tx_buf *tx_buf, *first; 37 struct ice_fltr_desc *f_desc; 38 struct ice_tx_desc *tx_desc; 39 struct ice_tx_ring *tx_ring; 40 struct device *dev; 41 dma_addr_t dma; 42 u32 td_cmd; 43 u16 i; 44 45 /* VSI and Tx ring */ 46 if (!vsi) 47 return -ENOENT; 48 tx_ring = vsi->tx_rings[0]; 49 if (!tx_ring || !tx_ring->desc) 50 return -ENOENT; 51 dev = tx_ring->dev; 52 53 /* we are using two descriptors to add/del a filter and we can wait */ 54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 55 if (!i) 56 return -EAGAIN; 57 msleep_interruptible(1); 58 } 59 60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 61 DMA_TO_DEVICE); 62 63 if (dma_mapping_error(dev, dma)) 64 return -EINVAL; 65 66 /* grab the next descriptor */ 67 i = tx_ring->next_to_use; 68 first = &tx_ring->tx_buf[i]; 69 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 70 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 71 72 i++; 73 i = (i < tx_ring->count) ? i : 0; 74 tx_desc = ICE_TX_DESC(tx_ring, i); 75 tx_buf = &tx_ring->tx_buf[i]; 76 77 i++; 78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 79 80 memset(tx_buf, 0, sizeof(*tx_buf)); 81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 82 dma_unmap_addr_set(tx_buf, dma, dma); 83 84 tx_desc->buf_addr = cpu_to_le64(dma); 85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 86 ICE_TX_DESC_CMD_RE; 87 88 tx_buf->type = ICE_TX_BUF_DUMMY; 89 tx_buf->raw_buf = raw_packet; 90 91 tx_desc->cmd_type_offset_bsz = 92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 93 94 /* Force memory write to complete before letting h/w know 95 * there are new descriptors to fetch. 96 */ 97 wmb(); 98 99 /* mark the data descriptor to be watched */ 100 first->next_to_watch = tx_desc; 101 102 writel(tx_ring->next_to_use, tx_ring->tail); 103 104 return 0; 105 } 106 107 /** 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer 109 * @ring: the ring that owns the buffer 110 * @tx_buf: the buffer to free 111 */ 112 static void 113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 114 { 115 if (dma_unmap_len(tx_buf, len)) 116 dma_unmap_page(ring->dev, 117 dma_unmap_addr(tx_buf, dma), 118 dma_unmap_len(tx_buf, len), 119 DMA_TO_DEVICE); 120 121 switch (tx_buf->type) { 122 case ICE_TX_BUF_DUMMY: 123 devm_kfree(ring->dev, tx_buf->raw_buf); 124 break; 125 case ICE_TX_BUF_SKB: 126 dev_kfree_skb_any(tx_buf->skb); 127 break; 128 case ICE_TX_BUF_XDP_TX: 129 page_frag_free(tx_buf->raw_buf); 130 break; 131 case ICE_TX_BUF_XDP_XMIT: 132 xdp_return_frame(tx_buf->xdpf); 133 break; 134 } 135 136 tx_buf->next_to_watch = NULL; 137 tx_buf->type = ICE_TX_BUF_EMPTY; 138 dma_unmap_len_set(tx_buf, len, 0); 139 /* tx_buf must be completely set up in the transmit path */ 140 } 141 142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 143 { 144 return netdev_get_tx_queue(ring->netdev, ring->q_index); 145 } 146 147 /** 148 * ice_clean_tx_ring - Free any empty Tx buffers 149 * @tx_ring: ring to be cleaned 150 */ 151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 152 { 153 u32 size; 154 u16 i; 155 156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 157 ice_xsk_clean_xdp_ring(tx_ring); 158 goto tx_skip_free; 159 } 160 161 /* ring already cleared, nothing to do */ 162 if (!tx_ring->tx_buf) 163 return; 164 165 /* Free all the Tx ring sk_buffs */ 166 for (i = 0; i < tx_ring->count; i++) 167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 168 169 tx_skip_free: 170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 171 172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 173 PAGE_SIZE); 174 /* Zero out the descriptor ring */ 175 memset(tx_ring->desc, 0, size); 176 177 tx_ring->next_to_use = 0; 178 tx_ring->next_to_clean = 0; 179 180 if (!tx_ring->netdev) 181 return; 182 183 /* cleanup Tx queue statistics */ 184 netdev_tx_reset_queue(txring_txq(tx_ring)); 185 } 186 187 /** 188 * ice_free_tx_ring - Free Tx resources per queue 189 * @tx_ring: Tx descriptor ring for a specific queue 190 * 191 * Free all transmit software resources 192 */ 193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 194 { 195 u32 size; 196 197 ice_clean_tx_ring(tx_ring); 198 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 199 tx_ring->tx_buf = NULL; 200 201 if (tx_ring->desc) { 202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 203 PAGE_SIZE); 204 dmam_free_coherent(tx_ring->dev, size, 205 tx_ring->desc, tx_ring->dma); 206 tx_ring->desc = NULL; 207 } 208 } 209 210 /** 211 * ice_clean_tx_irq - Reclaim resources after transmit completes 212 * @tx_ring: Tx ring to clean 213 * @napi_budget: Used to determine if we are in netpoll 214 * 215 * Returns true if there's any budget left (e.g. the clean is finished) 216 */ 217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 218 { 219 unsigned int total_bytes = 0, total_pkts = 0; 220 unsigned int budget = ICE_DFLT_IRQ_WORK; 221 struct ice_vsi *vsi = tx_ring->vsi; 222 s16 i = tx_ring->next_to_clean; 223 struct ice_tx_desc *tx_desc; 224 struct ice_tx_buf *tx_buf; 225 226 /* get the bql data ready */ 227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 228 229 tx_buf = &tx_ring->tx_buf[i]; 230 tx_desc = ICE_TX_DESC(tx_ring, i); 231 i -= tx_ring->count; 232 233 prefetch(&vsi->state); 234 235 do { 236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 237 238 /* if next_to_watch is not set then there is no work pending */ 239 if (!eop_desc) 240 break; 241 242 /* follow the guidelines of other drivers */ 243 prefetchw(&tx_buf->skb->users); 244 245 smp_rmb(); /* prevent any other reads prior to eop_desc */ 246 247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 248 /* if the descriptor isn't done, no work yet to do */ 249 if (!(eop_desc->cmd_type_offset_bsz & 250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 251 break; 252 253 /* clear next_to_watch to prevent false hangs */ 254 tx_buf->next_to_watch = NULL; 255 256 /* update the statistics for this packet */ 257 total_bytes += tx_buf->bytecount; 258 total_pkts += tx_buf->gso_segs; 259 260 /* free the skb */ 261 napi_consume_skb(tx_buf->skb, napi_budget); 262 263 /* unmap skb header data */ 264 dma_unmap_single(tx_ring->dev, 265 dma_unmap_addr(tx_buf, dma), 266 dma_unmap_len(tx_buf, len), 267 DMA_TO_DEVICE); 268 269 /* clear tx_buf data */ 270 tx_buf->type = ICE_TX_BUF_EMPTY; 271 dma_unmap_len_set(tx_buf, len, 0); 272 273 /* unmap remaining buffers */ 274 while (tx_desc != eop_desc) { 275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 276 tx_buf++; 277 tx_desc++; 278 i++; 279 if (unlikely(!i)) { 280 i -= tx_ring->count; 281 tx_buf = tx_ring->tx_buf; 282 tx_desc = ICE_TX_DESC(tx_ring, 0); 283 } 284 285 /* unmap any remaining paged data */ 286 if (dma_unmap_len(tx_buf, len)) { 287 dma_unmap_page(tx_ring->dev, 288 dma_unmap_addr(tx_buf, dma), 289 dma_unmap_len(tx_buf, len), 290 DMA_TO_DEVICE); 291 dma_unmap_len_set(tx_buf, len, 0); 292 } 293 } 294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 295 296 /* move us one more past the eop_desc for start of next pkt */ 297 tx_buf++; 298 tx_desc++; 299 i++; 300 if (unlikely(!i)) { 301 i -= tx_ring->count; 302 tx_buf = tx_ring->tx_buf; 303 tx_desc = ICE_TX_DESC(tx_ring, 0); 304 } 305 306 prefetch(tx_desc); 307 308 /* update budget accounting */ 309 budget--; 310 } while (likely(budget)); 311 312 i += tx_ring->count; 313 tx_ring->next_to_clean = i; 314 315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 317 318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 321 /* Make sure that anybody stopping the queue after this 322 * sees the new next_to_clean. 323 */ 324 smp_mb(); 325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 326 !test_bit(ICE_VSI_DOWN, vsi->state)) { 327 netif_tx_wake_queue(txring_txq(tx_ring)); 328 ++tx_ring->ring_stats->tx_stats.restart_q; 329 } 330 } 331 332 return !!budget; 333 } 334 335 /** 336 * ice_setup_tx_ring - Allocate the Tx descriptors 337 * @tx_ring: the Tx ring to set up 338 * 339 * Return 0 on success, negative on error 340 */ 341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 342 { 343 struct device *dev = tx_ring->dev; 344 u32 size; 345 346 if (!dev) 347 return -ENOMEM; 348 349 /* warn if we are about to overwrite the pointer */ 350 WARN_ON(tx_ring->tx_buf); 351 tx_ring->tx_buf = 352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 353 GFP_KERNEL); 354 if (!tx_ring->tx_buf) 355 return -ENOMEM; 356 357 /* round up to nearest page */ 358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 359 PAGE_SIZE); 360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 361 GFP_KERNEL); 362 if (!tx_ring->desc) { 363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 364 size); 365 goto err; 366 } 367 368 tx_ring->next_to_use = 0; 369 tx_ring->next_to_clean = 0; 370 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 371 return 0; 372 373 err: 374 devm_kfree(dev, tx_ring->tx_buf); 375 tx_ring->tx_buf = NULL; 376 return -ENOMEM; 377 } 378 379 /** 380 * ice_clean_rx_ring - Free Rx buffers 381 * @rx_ring: ring to be cleaned 382 */ 383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 384 { 385 struct xdp_buff *xdp = &rx_ring->xdp; 386 struct device *dev = rx_ring->dev; 387 u32 size; 388 u16 i; 389 390 /* ring already cleared, nothing to do */ 391 if (!rx_ring->rx_buf) 392 return; 393 394 if (rx_ring->xsk_pool) { 395 ice_xsk_clean_rx_ring(rx_ring); 396 goto rx_skip_free; 397 } 398 399 if (xdp->data) { 400 xdp_return_buff(xdp); 401 xdp->data = NULL; 402 } 403 404 /* Free all the Rx ring sk_buffs */ 405 for (i = 0; i < rx_ring->count; i++) { 406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 407 408 if (!rx_buf->page) 409 continue; 410 411 /* Invalidate cache lines that may have been written to by 412 * device so that we avoid corrupting memory. 413 */ 414 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 415 rx_buf->page_offset, 416 rx_ring->rx_buf_len, 417 DMA_FROM_DEVICE); 418 419 /* free resources associated with mapping */ 420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 423 424 rx_buf->page = NULL; 425 rx_buf->page_offset = 0; 426 } 427 428 rx_skip_free: 429 if (rx_ring->xsk_pool) 430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 431 else 432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 433 434 /* Zero out the descriptor ring */ 435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 436 PAGE_SIZE); 437 memset(rx_ring->desc, 0, size); 438 439 rx_ring->next_to_alloc = 0; 440 rx_ring->next_to_clean = 0; 441 rx_ring->first_desc = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 rx_ring->xdp_prog = NULL; 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 rx_ring->first_desc = 0; 512 513 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 515 516 return 0; 517 518 err: 519 kfree(rx_ring->rx_buf); 520 rx_ring->rx_buf = NULL; 521 return -ENOMEM; 522 } 523 524 /** 525 * ice_rx_frame_truesize 526 * @rx_ring: ptr to Rx ring 527 * @size: size 528 * 529 * calculate the truesize with taking into the account PAGE_SIZE of 530 * underlying arch 531 */ 532 static unsigned int 533 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size) 534 { 535 unsigned int truesize; 536 537 #if (PAGE_SIZE < 8192) 538 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 539 #else 540 truesize = rx_ring->rx_offset ? 541 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 542 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 543 SKB_DATA_ALIGN(size); 544 #endif 545 return truesize; 546 } 547 548 /** 549 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 550 * @rx_ring: Rx ring 551 * @xdp: xdp_buff used as input to the XDP program 552 * @xdp_prog: XDP program to run 553 * @xdp_ring: ring to be used for XDP_TX action 554 * @rx_buf: Rx buffer to store the XDP action 555 * @eop_desc: Last descriptor in packet to read metadata from 556 * 557 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 558 */ 559 static void 560 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 561 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 562 struct ice_rx_buf *rx_buf, union ice_32b_rx_flex_desc *eop_desc) 563 { 564 unsigned int ret = ICE_XDP_PASS; 565 u32 act; 566 567 if (!xdp_prog) 568 goto exit; 569 570 ice_xdp_meta_set_desc(xdp, eop_desc); 571 572 act = bpf_prog_run_xdp(xdp_prog, xdp); 573 switch (act) { 574 case XDP_PASS: 575 break; 576 case XDP_TX: 577 if (static_branch_unlikely(&ice_xdp_locking_key)) 578 spin_lock(&xdp_ring->tx_lock); 579 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 580 if (static_branch_unlikely(&ice_xdp_locking_key)) 581 spin_unlock(&xdp_ring->tx_lock); 582 if (ret == ICE_XDP_CONSUMED) 583 goto out_failure; 584 break; 585 case XDP_REDIRECT: 586 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 587 goto out_failure; 588 ret = ICE_XDP_REDIR; 589 break; 590 default: 591 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 592 fallthrough; 593 case XDP_ABORTED: 594 out_failure: 595 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 596 fallthrough; 597 case XDP_DROP: 598 ret = ICE_XDP_CONSUMED; 599 } 600 exit: 601 ice_set_rx_bufs_act(xdp, rx_ring, ret); 602 } 603 604 /** 605 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 606 * @xdpf: XDP frame that will be converted to XDP buff 607 * @xdp_ring: XDP ring for transmission 608 */ 609 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 610 struct ice_tx_ring *xdp_ring) 611 { 612 struct xdp_buff xdp; 613 614 xdp.data_hard_start = (void *)xdpf; 615 xdp.data = xdpf->data; 616 xdp.data_end = xdp.data + xdpf->len; 617 xdp.frame_sz = xdpf->frame_sz; 618 xdp.flags = xdpf->flags; 619 620 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 621 } 622 623 /** 624 * ice_xdp_xmit - submit packets to XDP ring for transmission 625 * @dev: netdev 626 * @n: number of XDP frames to be transmitted 627 * @frames: XDP frames to be transmitted 628 * @flags: transmit flags 629 * 630 * Returns number of frames successfully sent. Failed frames 631 * will be free'ed by XDP core. 632 * For error cases, a negative errno code is returned and no-frames 633 * are transmitted (caller must handle freeing frames). 634 */ 635 int 636 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 637 u32 flags) 638 { 639 struct ice_netdev_priv *np = netdev_priv(dev); 640 unsigned int queue_index = smp_processor_id(); 641 struct ice_vsi *vsi = np->vsi; 642 struct ice_tx_ring *xdp_ring; 643 struct ice_tx_buf *tx_buf; 644 int nxmit = 0, i; 645 646 if (test_bit(ICE_VSI_DOWN, vsi->state)) 647 return -ENETDOWN; 648 649 if (!ice_is_xdp_ena_vsi(vsi)) 650 return -ENXIO; 651 652 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 653 return -EINVAL; 654 655 if (static_branch_unlikely(&ice_xdp_locking_key)) { 656 queue_index %= vsi->num_xdp_txq; 657 xdp_ring = vsi->xdp_rings[queue_index]; 658 spin_lock(&xdp_ring->tx_lock); 659 } else { 660 /* Generally, should not happen */ 661 if (unlikely(queue_index >= vsi->num_xdp_txq)) 662 return -ENXIO; 663 xdp_ring = vsi->xdp_rings[queue_index]; 664 } 665 666 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 667 for (i = 0; i < n; i++) { 668 const struct xdp_frame *xdpf = frames[i]; 669 int err; 670 671 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 672 if (err != ICE_XDP_TX) 673 break; 674 nxmit++; 675 } 676 677 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 678 if (unlikely(flags & XDP_XMIT_FLUSH)) 679 ice_xdp_ring_update_tail(xdp_ring); 680 681 if (static_branch_unlikely(&ice_xdp_locking_key)) 682 spin_unlock(&xdp_ring->tx_lock); 683 684 return nxmit; 685 } 686 687 /** 688 * ice_alloc_mapped_page - recycle or make a new page 689 * @rx_ring: ring to use 690 * @bi: rx_buf struct to modify 691 * 692 * Returns true if the page was successfully allocated or 693 * reused. 694 */ 695 static bool 696 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 697 { 698 struct page *page = bi->page; 699 dma_addr_t dma; 700 701 /* since we are recycling buffers we should seldom need to alloc */ 702 if (likely(page)) 703 return true; 704 705 /* alloc new page for storage */ 706 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 707 if (unlikely(!page)) { 708 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 709 return false; 710 } 711 712 /* map page for use */ 713 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 714 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 715 716 /* if mapping failed free memory back to system since 717 * there isn't much point in holding memory we can't use 718 */ 719 if (dma_mapping_error(rx_ring->dev, dma)) { 720 __free_pages(page, ice_rx_pg_order(rx_ring)); 721 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 722 return false; 723 } 724 725 bi->dma = dma; 726 bi->page = page; 727 bi->page_offset = rx_ring->rx_offset; 728 page_ref_add(page, USHRT_MAX - 1); 729 bi->pagecnt_bias = USHRT_MAX; 730 731 return true; 732 } 733 734 /** 735 * ice_alloc_rx_bufs - Replace used receive buffers 736 * @rx_ring: ring to place buffers on 737 * @cleaned_count: number of buffers to replace 738 * 739 * Returns false if all allocations were successful, true if any fail. Returning 740 * true signals to the caller that we didn't replace cleaned_count buffers and 741 * there is more work to do. 742 * 743 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 744 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 745 * multiple tail writes per call. 746 */ 747 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 748 { 749 union ice_32b_rx_flex_desc *rx_desc; 750 u16 ntu = rx_ring->next_to_use; 751 struct ice_rx_buf *bi; 752 753 /* do nothing if no valid netdev defined */ 754 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 755 !cleaned_count) 756 return false; 757 758 /* get the Rx descriptor and buffer based on next_to_use */ 759 rx_desc = ICE_RX_DESC(rx_ring, ntu); 760 bi = &rx_ring->rx_buf[ntu]; 761 762 do { 763 /* if we fail here, we have work remaining */ 764 if (!ice_alloc_mapped_page(rx_ring, bi)) 765 break; 766 767 /* sync the buffer for use by the device */ 768 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 769 bi->page_offset, 770 rx_ring->rx_buf_len, 771 DMA_FROM_DEVICE); 772 773 /* Refresh the desc even if buffer_addrs didn't change 774 * because each write-back erases this info. 775 */ 776 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 777 778 rx_desc++; 779 bi++; 780 ntu++; 781 if (unlikely(ntu == rx_ring->count)) { 782 rx_desc = ICE_RX_DESC(rx_ring, 0); 783 bi = rx_ring->rx_buf; 784 ntu = 0; 785 } 786 787 /* clear the status bits for the next_to_use descriptor */ 788 rx_desc->wb.status_error0 = 0; 789 790 cleaned_count--; 791 } while (cleaned_count); 792 793 if (rx_ring->next_to_use != ntu) 794 ice_release_rx_desc(rx_ring, ntu); 795 796 return !!cleaned_count; 797 } 798 799 /** 800 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 801 * @rx_buf: Rx buffer to adjust 802 * @size: Size of adjustment 803 * 804 * Update the offset within page so that Rx buf will be ready to be reused. 805 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 806 * so the second half of page assigned to Rx buffer will be used, otherwise 807 * the offset is moved by "size" bytes 808 */ 809 static void 810 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 811 { 812 #if (PAGE_SIZE < 8192) 813 /* flip page offset to other buffer */ 814 rx_buf->page_offset ^= size; 815 #else 816 /* move offset up to the next cache line */ 817 rx_buf->page_offset += size; 818 #endif 819 } 820 821 /** 822 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 823 * @rx_buf: buffer containing the page 824 * 825 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 826 * which will assign the current buffer to the buffer that next_to_alloc is 827 * pointing to; otherwise, the DMA mapping needs to be destroyed and 828 * page freed 829 */ 830 static bool 831 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 832 { 833 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 834 struct page *page = rx_buf->page; 835 836 /* avoid re-using remote and pfmemalloc pages */ 837 if (!dev_page_is_reusable(page)) 838 return false; 839 840 #if (PAGE_SIZE < 8192) 841 /* if we are only owner of page we can reuse it */ 842 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 843 return false; 844 #else 845 #define ICE_LAST_OFFSET \ 846 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 847 if (rx_buf->page_offset > ICE_LAST_OFFSET) 848 return false; 849 #endif /* PAGE_SIZE < 8192) */ 850 851 /* If we have drained the page fragment pool we need to update 852 * the pagecnt_bias and page count so that we fully restock the 853 * number of references the driver holds. 854 */ 855 if (unlikely(pagecnt_bias == 1)) { 856 page_ref_add(page, USHRT_MAX - 1); 857 rx_buf->pagecnt_bias = USHRT_MAX; 858 } 859 860 return true; 861 } 862 863 /** 864 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 865 * @rx_ring: Rx descriptor ring to transact packets on 866 * @xdp: xdp buff to place the data into 867 * @rx_buf: buffer containing page to add 868 * @size: packet length from rx_desc 869 * 870 * This function will add the data contained in rx_buf->page to the xdp buf. 871 * It will just attach the page as a frag. 872 */ 873 static int 874 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 875 struct ice_rx_buf *rx_buf, const unsigned int size) 876 { 877 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 878 879 if (!size) 880 return 0; 881 882 if (!xdp_buff_has_frags(xdp)) { 883 sinfo->nr_frags = 0; 884 sinfo->xdp_frags_size = 0; 885 xdp_buff_set_frags_flag(xdp); 886 } 887 888 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 889 ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED); 890 return -ENOMEM; 891 } 892 893 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 894 rx_buf->page_offset, size); 895 sinfo->xdp_frags_size += size; 896 /* remember frag count before XDP prog execution; bpf_xdp_adjust_tail() 897 * can pop off frags but driver has to handle it on its own 898 */ 899 rx_ring->nr_frags = sinfo->nr_frags; 900 901 if (page_is_pfmemalloc(rx_buf->page)) 902 xdp_buff_set_frag_pfmemalloc(xdp); 903 904 return 0; 905 } 906 907 /** 908 * ice_reuse_rx_page - page flip buffer and store it back on the ring 909 * @rx_ring: Rx descriptor ring to store buffers on 910 * @old_buf: donor buffer to have page reused 911 * 912 * Synchronizes page for reuse by the adapter 913 */ 914 static void 915 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 916 { 917 u16 nta = rx_ring->next_to_alloc; 918 struct ice_rx_buf *new_buf; 919 920 new_buf = &rx_ring->rx_buf[nta]; 921 922 /* update, and store next to alloc */ 923 nta++; 924 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 925 926 /* Transfer page from old buffer to new buffer. 927 * Move each member individually to avoid possible store 928 * forwarding stalls and unnecessary copy of skb. 929 */ 930 new_buf->dma = old_buf->dma; 931 new_buf->page = old_buf->page; 932 new_buf->page_offset = old_buf->page_offset; 933 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 934 } 935 936 /** 937 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 938 * @rx_ring: Rx descriptor ring to transact packets on 939 * @size: size of buffer to add to skb 940 * @ntc: index of next to clean element 941 * 942 * This function will pull an Rx buffer from the ring and synchronize it 943 * for use by the CPU. 944 */ 945 static struct ice_rx_buf * 946 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 947 const unsigned int ntc) 948 { 949 struct ice_rx_buf *rx_buf; 950 951 rx_buf = &rx_ring->rx_buf[ntc]; 952 rx_buf->pgcnt = 953 #if (PAGE_SIZE < 8192) 954 page_count(rx_buf->page); 955 #else 956 0; 957 #endif 958 prefetchw(rx_buf->page); 959 960 if (!size) 961 return rx_buf; 962 /* we are reusing so sync this buffer for CPU use */ 963 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 964 rx_buf->page_offset, size, 965 DMA_FROM_DEVICE); 966 967 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 968 rx_buf->pagecnt_bias--; 969 970 return rx_buf; 971 } 972 973 /** 974 * ice_build_skb - Build skb around an existing buffer 975 * @rx_ring: Rx descriptor ring to transact packets on 976 * @xdp: xdp_buff pointing to the data 977 * 978 * This function builds an skb around an existing XDP buffer, taking care 979 * to set up the skb correctly and avoid any memcpy overhead. Driver has 980 * already combined frags (if any) to skb_shared_info. 981 */ 982 static struct sk_buff * 983 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 984 { 985 u8 metasize = xdp->data - xdp->data_meta; 986 struct skb_shared_info *sinfo = NULL; 987 unsigned int nr_frags; 988 struct sk_buff *skb; 989 990 if (unlikely(xdp_buff_has_frags(xdp))) { 991 sinfo = xdp_get_shared_info_from_buff(xdp); 992 nr_frags = sinfo->nr_frags; 993 } 994 995 /* Prefetch first cache line of first page. If xdp->data_meta 996 * is unused, this points exactly as xdp->data, otherwise we 997 * likely have a consumer accessing first few bytes of meta 998 * data, and then actual data. 999 */ 1000 net_prefetch(xdp->data_meta); 1001 /* build an skb around the page buffer */ 1002 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 1003 if (unlikely(!skb)) 1004 return NULL; 1005 1006 /* must to record Rx queue, otherwise OS features such as 1007 * symmetric queue won't work 1008 */ 1009 skb_record_rx_queue(skb, rx_ring->q_index); 1010 1011 /* update pointers within the skb to store the data */ 1012 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1013 __skb_put(skb, xdp->data_end - xdp->data); 1014 if (metasize) 1015 skb_metadata_set(skb, metasize); 1016 1017 if (unlikely(xdp_buff_has_frags(xdp))) 1018 xdp_update_skb_shared_info(skb, nr_frags, 1019 sinfo->xdp_frags_size, 1020 nr_frags * xdp->frame_sz, 1021 xdp_buff_is_frag_pfmemalloc(xdp)); 1022 1023 return skb; 1024 } 1025 1026 /** 1027 * ice_construct_skb - Allocate skb and populate it 1028 * @rx_ring: Rx descriptor ring to transact packets on 1029 * @xdp: xdp_buff pointing to the data 1030 * 1031 * This function allocates an skb. It then populates it with the page 1032 * data from the current receive descriptor, taking care to set up the 1033 * skb correctly. 1034 */ 1035 static struct sk_buff * 1036 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1037 { 1038 unsigned int size = xdp->data_end - xdp->data; 1039 struct skb_shared_info *sinfo = NULL; 1040 struct ice_rx_buf *rx_buf; 1041 unsigned int nr_frags = 0; 1042 unsigned int headlen; 1043 struct sk_buff *skb; 1044 1045 /* prefetch first cache line of first page */ 1046 net_prefetch(xdp->data); 1047 1048 if (unlikely(xdp_buff_has_frags(xdp))) { 1049 sinfo = xdp_get_shared_info_from_buff(xdp); 1050 nr_frags = sinfo->nr_frags; 1051 } 1052 1053 /* allocate a skb to store the frags */ 1054 skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE); 1055 if (unlikely(!skb)) 1056 return NULL; 1057 1058 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1059 skb_record_rx_queue(skb, rx_ring->q_index); 1060 /* Determine available headroom for copy */ 1061 headlen = size; 1062 if (headlen > ICE_RX_HDR_SIZE) 1063 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1064 1065 /* align pull length to size of long to optimize memcpy performance */ 1066 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1067 sizeof(long))); 1068 1069 /* if we exhaust the linear part then add what is left as a frag */ 1070 size -= headlen; 1071 if (size) { 1072 /* besides adding here a partial frag, we are going to add 1073 * frags from xdp_buff, make sure there is enough space for 1074 * them 1075 */ 1076 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1077 dev_kfree_skb(skb); 1078 return NULL; 1079 } 1080 skb_add_rx_frag(skb, 0, rx_buf->page, 1081 rx_buf->page_offset + headlen, size, 1082 xdp->frame_sz); 1083 } else { 1084 /* buffer is unused, change the act that should be taken later 1085 * on; data was copied onto skb's linear part so there's no 1086 * need for adjusting page offset and we can reuse this buffer 1087 * as-is 1088 */ 1089 rx_buf->act = ICE_SKB_CONSUMED; 1090 } 1091 1092 if (unlikely(xdp_buff_has_frags(xdp))) { 1093 struct skb_shared_info *skinfo = skb_shinfo(skb); 1094 1095 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1096 sizeof(skb_frag_t) * nr_frags); 1097 1098 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 1099 sinfo->xdp_frags_size, 1100 nr_frags * xdp->frame_sz, 1101 xdp_buff_is_frag_pfmemalloc(xdp)); 1102 } 1103 1104 return skb; 1105 } 1106 1107 /** 1108 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1109 * @rx_ring: Rx descriptor ring to transact packets on 1110 * @rx_buf: Rx buffer to pull data from 1111 * 1112 * This function will clean up the contents of the rx_buf. It will either 1113 * recycle the buffer or unmap it and free the associated resources. 1114 */ 1115 static void 1116 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1117 { 1118 if (!rx_buf) 1119 return; 1120 1121 if (ice_can_reuse_rx_page(rx_buf)) { 1122 /* hand second half of page back to the ring */ 1123 ice_reuse_rx_page(rx_ring, rx_buf); 1124 } else { 1125 /* we are not reusing the buffer so unmap it */ 1126 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1127 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1128 ICE_RX_DMA_ATTR); 1129 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1130 } 1131 1132 /* clear contents of buffer_info */ 1133 rx_buf->page = NULL; 1134 } 1135 1136 /** 1137 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1138 * @rx_ring: Rx descriptor ring to transact packets on 1139 * @budget: Total limit on number of packets to process 1140 * 1141 * This function provides a "bounce buffer" approach to Rx interrupt 1142 * processing. The advantage to this is that on systems that have 1143 * expensive overhead for IOMMU access this provides a means of avoiding 1144 * it by maintaining the mapping of the page to the system. 1145 * 1146 * Returns amount of work completed 1147 */ 1148 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1149 { 1150 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1151 unsigned int offset = rx_ring->rx_offset; 1152 struct xdp_buff *xdp = &rx_ring->xdp; 1153 u32 cached_ntc = rx_ring->first_desc; 1154 struct ice_tx_ring *xdp_ring = NULL; 1155 struct bpf_prog *xdp_prog = NULL; 1156 u32 ntc = rx_ring->next_to_clean; 1157 u32 cnt = rx_ring->count; 1158 u32 xdp_xmit = 0; 1159 u32 cached_ntu; 1160 bool failure; 1161 u32 first; 1162 1163 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1164 #if (PAGE_SIZE < 8192) 1165 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1166 #endif 1167 1168 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1169 if (xdp_prog) { 1170 xdp_ring = rx_ring->xdp_ring; 1171 cached_ntu = xdp_ring->next_to_use; 1172 } 1173 1174 /* start the loop to process Rx packets bounded by 'budget' */ 1175 while (likely(total_rx_pkts < (unsigned int)budget)) { 1176 union ice_32b_rx_flex_desc *rx_desc; 1177 struct ice_rx_buf *rx_buf; 1178 struct sk_buff *skb; 1179 unsigned int size; 1180 u16 stat_err_bits; 1181 u16 vlan_tci; 1182 1183 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1184 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1185 1186 /* status_error_len will always be zero for unused descriptors 1187 * because it's cleared in cleanup, and overlaps with hdr_addr 1188 * which is always zero because packet split isn't used, if the 1189 * hardware wrote DD then it will be non-zero 1190 */ 1191 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1192 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1193 break; 1194 1195 /* This memory barrier is needed to keep us from reading 1196 * any other fields out of the rx_desc until we know the 1197 * DD bit is set. 1198 */ 1199 dma_rmb(); 1200 1201 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1202 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1203 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1204 1205 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1206 ctrl_vsi->vf) 1207 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1208 if (++ntc == cnt) 1209 ntc = 0; 1210 rx_ring->first_desc = ntc; 1211 continue; 1212 } 1213 1214 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1215 ICE_RX_FLX_DESC_PKT_LEN_M; 1216 1217 /* retrieve a buffer from the ring */ 1218 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1219 1220 if (!xdp->data) { 1221 void *hard_start; 1222 1223 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1224 offset; 1225 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1226 #if (PAGE_SIZE > 4096) 1227 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1228 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size); 1229 #endif 1230 xdp_buff_clear_frags_flag(xdp); 1231 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1232 break; 1233 } 1234 if (++ntc == cnt) 1235 ntc = 0; 1236 1237 /* skip if it is NOP desc */ 1238 if (ice_is_non_eop(rx_ring, rx_desc)) 1239 continue; 1240 1241 ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf, rx_desc); 1242 if (rx_buf->act == ICE_XDP_PASS) 1243 goto construct_skb; 1244 total_rx_bytes += xdp_get_buff_len(xdp); 1245 total_rx_pkts++; 1246 1247 xdp->data = NULL; 1248 rx_ring->first_desc = ntc; 1249 rx_ring->nr_frags = 0; 1250 continue; 1251 construct_skb: 1252 if (likely(ice_ring_uses_build_skb(rx_ring))) 1253 skb = ice_build_skb(rx_ring, xdp); 1254 else 1255 skb = ice_construct_skb(rx_ring, xdp); 1256 /* exit if we failed to retrieve a buffer */ 1257 if (!skb) { 1258 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 1259 rx_buf->act = ICE_XDP_CONSUMED; 1260 if (unlikely(xdp_buff_has_frags(xdp))) 1261 ice_set_rx_bufs_act(xdp, rx_ring, 1262 ICE_XDP_CONSUMED); 1263 xdp->data = NULL; 1264 rx_ring->first_desc = ntc; 1265 rx_ring->nr_frags = 0; 1266 break; 1267 } 1268 xdp->data = NULL; 1269 rx_ring->first_desc = ntc; 1270 rx_ring->nr_frags = 0; 1271 1272 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1273 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1274 stat_err_bits))) { 1275 dev_kfree_skb_any(skb); 1276 continue; 1277 } 1278 1279 vlan_tci = ice_get_vlan_tci(rx_desc); 1280 1281 /* pad the skb if needed, to make a valid ethernet frame */ 1282 if (eth_skb_pad(skb)) 1283 continue; 1284 1285 /* probably a little skewed due to removing CRC */ 1286 total_rx_bytes += skb->len; 1287 1288 /* populate checksum, VLAN, and protocol */ 1289 ice_process_skb_fields(rx_ring, rx_desc, skb); 1290 1291 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1292 /* send completed skb up the stack */ 1293 ice_receive_skb(rx_ring, skb, vlan_tci); 1294 1295 /* update budget accounting */ 1296 total_rx_pkts++; 1297 } 1298 1299 first = rx_ring->first_desc; 1300 while (cached_ntc != first) { 1301 struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc]; 1302 1303 if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1304 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1305 xdp_xmit |= buf->act; 1306 } else if (buf->act & ICE_XDP_CONSUMED) { 1307 buf->pagecnt_bias++; 1308 } else if (buf->act == ICE_XDP_PASS) { 1309 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1310 } 1311 1312 ice_put_rx_buf(rx_ring, buf); 1313 if (++cached_ntc >= cnt) 1314 cached_ntc = 0; 1315 } 1316 rx_ring->next_to_clean = ntc; 1317 /* return up to cleaned_count buffers to hardware */ 1318 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1319 1320 if (xdp_xmit) 1321 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1322 1323 if (rx_ring->ring_stats) 1324 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1325 total_rx_bytes); 1326 1327 /* guarantee a trip back through this routine if there was a failure */ 1328 return failure ? budget : (int)total_rx_pkts; 1329 } 1330 1331 static void __ice_update_sample(struct ice_q_vector *q_vector, 1332 struct ice_ring_container *rc, 1333 struct dim_sample *sample, 1334 bool is_tx) 1335 { 1336 u64 packets = 0, bytes = 0; 1337 1338 if (is_tx) { 1339 struct ice_tx_ring *tx_ring; 1340 1341 ice_for_each_tx_ring(tx_ring, *rc) { 1342 struct ice_ring_stats *ring_stats; 1343 1344 ring_stats = tx_ring->ring_stats; 1345 if (!ring_stats) 1346 continue; 1347 packets += ring_stats->stats.pkts; 1348 bytes += ring_stats->stats.bytes; 1349 } 1350 } else { 1351 struct ice_rx_ring *rx_ring; 1352 1353 ice_for_each_rx_ring(rx_ring, *rc) { 1354 struct ice_ring_stats *ring_stats; 1355 1356 ring_stats = rx_ring->ring_stats; 1357 if (!ring_stats) 1358 continue; 1359 packets += ring_stats->stats.pkts; 1360 bytes += ring_stats->stats.bytes; 1361 } 1362 } 1363 1364 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1365 sample->comp_ctr = 0; 1366 1367 /* if dim settings get stale, like when not updated for 1 1368 * second or longer, force it to start again. This addresses the 1369 * frequent case of an idle queue being switched to by the 1370 * scheduler. The 1,000 here means 1,000 milliseconds. 1371 */ 1372 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1373 rc->dim.state = DIM_START_MEASURE; 1374 } 1375 1376 /** 1377 * ice_net_dim - Update net DIM algorithm 1378 * @q_vector: the vector associated with the interrupt 1379 * 1380 * Create a DIM sample and notify net_dim() so that it can possibly decide 1381 * a new ITR value based on incoming packets, bytes, and interrupts. 1382 * 1383 * This function is a no-op if the ring is not configured to dynamic ITR. 1384 */ 1385 static void ice_net_dim(struct ice_q_vector *q_vector) 1386 { 1387 struct ice_ring_container *tx = &q_vector->tx; 1388 struct ice_ring_container *rx = &q_vector->rx; 1389 1390 if (ITR_IS_DYNAMIC(tx)) { 1391 struct dim_sample dim_sample; 1392 1393 __ice_update_sample(q_vector, tx, &dim_sample, true); 1394 net_dim(&tx->dim, dim_sample); 1395 } 1396 1397 if (ITR_IS_DYNAMIC(rx)) { 1398 struct dim_sample dim_sample; 1399 1400 __ice_update_sample(q_vector, rx, &dim_sample, false); 1401 net_dim(&rx->dim, dim_sample); 1402 } 1403 } 1404 1405 /** 1406 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1407 * @itr_idx: interrupt throttling index 1408 * @itr: interrupt throttling value in usecs 1409 */ 1410 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1411 { 1412 /* The ITR value is reported in microseconds, and the register value is 1413 * recorded in 2 microsecond units. For this reason we only need to 1414 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1415 * granularity as a shift instead of division. The mask makes sure the 1416 * ITR value is never odd so we don't accidentally write into the field 1417 * prior to the ITR field. 1418 */ 1419 itr &= ICE_ITR_MASK; 1420 1421 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1422 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1423 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1424 } 1425 1426 /** 1427 * ice_enable_interrupt - re-enable MSI-X interrupt 1428 * @q_vector: the vector associated with the interrupt to enable 1429 * 1430 * If the VSI is down, the interrupt will not be re-enabled. Also, 1431 * when enabling the interrupt always reset the wb_on_itr to false 1432 * and trigger a software interrupt to clean out internal state. 1433 */ 1434 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1435 { 1436 struct ice_vsi *vsi = q_vector->vsi; 1437 bool wb_en = q_vector->wb_on_itr; 1438 u32 itr_val; 1439 1440 if (test_bit(ICE_DOWN, vsi->state)) 1441 return; 1442 1443 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1444 * make sure to catch any pending cleanups that might have been missed 1445 * due to interrupt state transition. If busy poll or poll isn't 1446 * enabled, then don't update ITR, and just enable the interrupt. 1447 */ 1448 if (!wb_en) { 1449 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1450 } else { 1451 q_vector->wb_on_itr = false; 1452 1453 /* do two things here with a single write. Set up the third ITR 1454 * index to be used for software interrupt moderation, and then 1455 * trigger a software interrupt with a rate limit of 20K on 1456 * software interrupts, this will help avoid high interrupt 1457 * loads due to frequently polling and exiting polling. 1458 */ 1459 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1460 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1461 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1462 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1463 } 1464 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1465 } 1466 1467 /** 1468 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1469 * @q_vector: q_vector to set WB_ON_ITR on 1470 * 1471 * We need to tell hardware to write-back completed descriptors even when 1472 * interrupts are disabled. Descriptors will be written back on cache line 1473 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1474 * descriptors may not be written back if they don't fill a cache line until 1475 * the next interrupt. 1476 * 1477 * This sets the write-back frequency to whatever was set previously for the 1478 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1479 * aren't meddling with the INTENA_M bit. 1480 */ 1481 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1482 { 1483 struct ice_vsi *vsi = q_vector->vsi; 1484 1485 /* already in wb_on_itr mode no need to change it */ 1486 if (q_vector->wb_on_itr) 1487 return; 1488 1489 /* use previously set ITR values for all of the ITR indices by 1490 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1491 * be static in non-adaptive mode (user configured) 1492 */ 1493 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1494 FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) | 1495 FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) | 1496 FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1)); 1497 1498 q_vector->wb_on_itr = true; 1499 } 1500 1501 /** 1502 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1503 * @napi: napi struct with our devices info in it 1504 * @budget: amount of work driver is allowed to do this pass, in packets 1505 * 1506 * This function will clean all queues associated with a q_vector. 1507 * 1508 * Returns the amount of work done 1509 */ 1510 int ice_napi_poll(struct napi_struct *napi, int budget) 1511 { 1512 struct ice_q_vector *q_vector = 1513 container_of(napi, struct ice_q_vector, napi); 1514 struct ice_tx_ring *tx_ring; 1515 struct ice_rx_ring *rx_ring; 1516 bool clean_complete = true; 1517 int budget_per_ring; 1518 int work_done = 0; 1519 1520 /* Since the actual Tx work is minimal, we can give the Tx a larger 1521 * budget and be more aggressive about cleaning up the Tx descriptors. 1522 */ 1523 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1524 bool wd; 1525 1526 if (tx_ring->xsk_pool) 1527 wd = ice_xmit_zc(tx_ring); 1528 else if (ice_ring_is_xdp(tx_ring)) 1529 wd = true; 1530 else 1531 wd = ice_clean_tx_irq(tx_ring, budget); 1532 1533 if (!wd) 1534 clean_complete = false; 1535 } 1536 1537 /* Handle case where we are called by netpoll with a budget of 0 */ 1538 if (unlikely(budget <= 0)) 1539 return budget; 1540 1541 /* normally we have 1 Rx ring per q_vector */ 1542 if (unlikely(q_vector->num_ring_rx > 1)) 1543 /* We attempt to distribute budget to each Rx queue fairly, but 1544 * don't allow the budget to go below 1 because that would exit 1545 * polling early. 1546 */ 1547 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1548 else 1549 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1550 budget_per_ring = budget; 1551 1552 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1553 int cleaned; 1554 1555 /* A dedicated path for zero-copy allows making a single 1556 * comparison in the irq context instead of many inside the 1557 * ice_clean_rx_irq function and makes the codebase cleaner. 1558 */ 1559 cleaned = rx_ring->xsk_pool ? 1560 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1561 ice_clean_rx_irq(rx_ring, budget_per_ring); 1562 work_done += cleaned; 1563 /* if we clean as many as budgeted, we must not be done */ 1564 if (cleaned >= budget_per_ring) 1565 clean_complete = false; 1566 } 1567 1568 /* If work not completed, return budget and polling will return */ 1569 if (!clean_complete) { 1570 /* Set the writeback on ITR so partial completions of 1571 * cache-lines will still continue even if we're polling. 1572 */ 1573 ice_set_wb_on_itr(q_vector); 1574 return budget; 1575 } 1576 1577 /* Exit the polling mode, but don't re-enable interrupts if stack might 1578 * poll us due to busy-polling 1579 */ 1580 if (napi_complete_done(napi, work_done)) { 1581 ice_net_dim(q_vector); 1582 ice_enable_interrupt(q_vector); 1583 } else { 1584 ice_set_wb_on_itr(q_vector); 1585 } 1586 1587 return min_t(int, work_done, budget - 1); 1588 } 1589 1590 /** 1591 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1592 * @tx_ring: the ring to be checked 1593 * @size: the size buffer we want to assure is available 1594 * 1595 * Returns -EBUSY if a stop is needed, else 0 1596 */ 1597 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1598 { 1599 netif_tx_stop_queue(txring_txq(tx_ring)); 1600 /* Memory barrier before checking head and tail */ 1601 smp_mb(); 1602 1603 /* Check again in a case another CPU has just made room available. */ 1604 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1605 return -EBUSY; 1606 1607 /* A reprieve! - use start_queue because it doesn't call schedule */ 1608 netif_tx_start_queue(txring_txq(tx_ring)); 1609 ++tx_ring->ring_stats->tx_stats.restart_q; 1610 return 0; 1611 } 1612 1613 /** 1614 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1615 * @tx_ring: the ring to be checked 1616 * @size: the size buffer we want to assure is available 1617 * 1618 * Returns 0 if stop is not needed 1619 */ 1620 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1621 { 1622 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1623 return 0; 1624 1625 return __ice_maybe_stop_tx(tx_ring, size); 1626 } 1627 1628 /** 1629 * ice_tx_map - Build the Tx descriptor 1630 * @tx_ring: ring to send buffer on 1631 * @first: first buffer info buffer to use 1632 * @off: pointer to struct that holds offload parameters 1633 * 1634 * This function loops over the skb data pointed to by *first 1635 * and gets a physical address for each memory location and programs 1636 * it and the length into the transmit descriptor. 1637 */ 1638 static void 1639 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1640 struct ice_tx_offload_params *off) 1641 { 1642 u64 td_offset, td_tag, td_cmd; 1643 u16 i = tx_ring->next_to_use; 1644 unsigned int data_len, size; 1645 struct ice_tx_desc *tx_desc; 1646 struct ice_tx_buf *tx_buf; 1647 struct sk_buff *skb; 1648 skb_frag_t *frag; 1649 dma_addr_t dma; 1650 bool kick; 1651 1652 td_tag = off->td_l2tag1; 1653 td_cmd = off->td_cmd; 1654 td_offset = off->td_offset; 1655 skb = first->skb; 1656 1657 data_len = skb->data_len; 1658 size = skb_headlen(skb); 1659 1660 tx_desc = ICE_TX_DESC(tx_ring, i); 1661 1662 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1663 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1664 td_tag = first->vid; 1665 } 1666 1667 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1668 1669 tx_buf = first; 1670 1671 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1672 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1673 1674 if (dma_mapping_error(tx_ring->dev, dma)) 1675 goto dma_error; 1676 1677 /* record length, and DMA address */ 1678 dma_unmap_len_set(tx_buf, len, size); 1679 dma_unmap_addr_set(tx_buf, dma, dma); 1680 1681 /* align size to end of page */ 1682 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1683 tx_desc->buf_addr = cpu_to_le64(dma); 1684 1685 /* account for data chunks larger than the hardware 1686 * can handle 1687 */ 1688 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1689 tx_desc->cmd_type_offset_bsz = 1690 ice_build_ctob(td_cmd, td_offset, max_data, 1691 td_tag); 1692 1693 tx_desc++; 1694 i++; 1695 1696 if (i == tx_ring->count) { 1697 tx_desc = ICE_TX_DESC(tx_ring, 0); 1698 i = 0; 1699 } 1700 1701 dma += max_data; 1702 size -= max_data; 1703 1704 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1705 tx_desc->buf_addr = cpu_to_le64(dma); 1706 } 1707 1708 if (likely(!data_len)) 1709 break; 1710 1711 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1712 size, td_tag); 1713 1714 tx_desc++; 1715 i++; 1716 1717 if (i == tx_ring->count) { 1718 tx_desc = ICE_TX_DESC(tx_ring, 0); 1719 i = 0; 1720 } 1721 1722 size = skb_frag_size(frag); 1723 data_len -= size; 1724 1725 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1726 DMA_TO_DEVICE); 1727 1728 tx_buf = &tx_ring->tx_buf[i]; 1729 tx_buf->type = ICE_TX_BUF_FRAG; 1730 } 1731 1732 /* record SW timestamp if HW timestamp is not available */ 1733 skb_tx_timestamp(first->skb); 1734 1735 i++; 1736 if (i == tx_ring->count) 1737 i = 0; 1738 1739 /* write last descriptor with RS and EOP bits */ 1740 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1741 tx_desc->cmd_type_offset_bsz = 1742 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1743 1744 /* Force memory writes to complete before letting h/w know there 1745 * are new descriptors to fetch. 1746 * 1747 * We also use this memory barrier to make certain all of the 1748 * status bits have been updated before next_to_watch is written. 1749 */ 1750 wmb(); 1751 1752 /* set next_to_watch value indicating a packet is present */ 1753 first->next_to_watch = tx_desc; 1754 1755 tx_ring->next_to_use = i; 1756 1757 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1758 1759 /* notify HW of packet */ 1760 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1761 netdev_xmit_more()); 1762 if (kick) 1763 /* notify HW of packet */ 1764 writel(i, tx_ring->tail); 1765 1766 return; 1767 1768 dma_error: 1769 /* clear DMA mappings for failed tx_buf map */ 1770 for (;;) { 1771 tx_buf = &tx_ring->tx_buf[i]; 1772 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1773 if (tx_buf == first) 1774 break; 1775 if (i == 0) 1776 i = tx_ring->count; 1777 i--; 1778 } 1779 1780 tx_ring->next_to_use = i; 1781 } 1782 1783 /** 1784 * ice_tx_csum - Enable Tx checksum offloads 1785 * @first: pointer to the first descriptor 1786 * @off: pointer to struct that holds offload parameters 1787 * 1788 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1789 */ 1790 static 1791 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1792 { 1793 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1794 struct sk_buff *skb = first->skb; 1795 union { 1796 struct iphdr *v4; 1797 struct ipv6hdr *v6; 1798 unsigned char *hdr; 1799 } ip; 1800 union { 1801 struct tcphdr *tcp; 1802 unsigned char *hdr; 1803 } l4; 1804 __be16 frag_off, protocol; 1805 unsigned char *exthdr; 1806 u32 offset, cmd = 0; 1807 u8 l4_proto = 0; 1808 1809 if (skb->ip_summed != CHECKSUM_PARTIAL) 1810 return 0; 1811 1812 protocol = vlan_get_protocol(skb); 1813 1814 if (eth_p_mpls(protocol)) { 1815 ip.hdr = skb_inner_network_header(skb); 1816 l4.hdr = skb_checksum_start(skb); 1817 } else { 1818 ip.hdr = skb_network_header(skb); 1819 l4.hdr = skb_transport_header(skb); 1820 } 1821 1822 /* compute outer L2 header size */ 1823 l2_len = ip.hdr - skb->data; 1824 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1825 1826 /* set the tx_flags to indicate the IP protocol type. this is 1827 * required so that checksum header computation below is accurate. 1828 */ 1829 if (ip.v4->version == 4) 1830 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1831 else if (ip.v6->version == 6) 1832 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1833 1834 if (skb->encapsulation) { 1835 bool gso_ena = false; 1836 u32 tunnel = 0; 1837 1838 /* define outer network header type */ 1839 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1840 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1841 ICE_TX_CTX_EIPT_IPV4 : 1842 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1843 l4_proto = ip.v4->protocol; 1844 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1845 int ret; 1846 1847 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1848 exthdr = ip.hdr + sizeof(*ip.v6); 1849 l4_proto = ip.v6->nexthdr; 1850 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1851 &l4_proto, &frag_off); 1852 if (ret < 0) 1853 return -1; 1854 } 1855 1856 /* define outer transport */ 1857 switch (l4_proto) { 1858 case IPPROTO_UDP: 1859 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1860 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1861 break; 1862 case IPPROTO_GRE: 1863 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1864 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1865 break; 1866 case IPPROTO_IPIP: 1867 case IPPROTO_IPV6: 1868 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1869 l4.hdr = skb_inner_network_header(skb); 1870 break; 1871 default: 1872 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1873 return -1; 1874 1875 skb_checksum_help(skb); 1876 return 0; 1877 } 1878 1879 /* compute outer L3 header size */ 1880 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1881 ICE_TXD_CTX_QW0_EIPLEN_S; 1882 1883 /* switch IP header pointer from outer to inner header */ 1884 ip.hdr = skb_inner_network_header(skb); 1885 1886 /* compute tunnel header size */ 1887 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1888 ICE_TXD_CTX_QW0_NATLEN_S; 1889 1890 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1891 /* indicate if we need to offload outer UDP header */ 1892 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1893 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1894 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1895 1896 /* record tunnel offload values */ 1897 off->cd_tunnel_params |= tunnel; 1898 1899 /* set DTYP=1 to indicate that it's an Tx context descriptor 1900 * in IPsec tunnel mode with Tx offloads in Quad word 1 1901 */ 1902 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1903 1904 /* switch L4 header pointer from outer to inner */ 1905 l4.hdr = skb_inner_transport_header(skb); 1906 l4_proto = 0; 1907 1908 /* reset type as we transition from outer to inner headers */ 1909 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1910 if (ip.v4->version == 4) 1911 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1912 if (ip.v6->version == 6) 1913 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1914 } 1915 1916 /* Enable IP checksum offloads */ 1917 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1918 l4_proto = ip.v4->protocol; 1919 /* the stack computes the IP header already, the only time we 1920 * need the hardware to recompute it is in the case of TSO. 1921 */ 1922 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1923 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1924 else 1925 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1926 1927 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1928 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1929 exthdr = ip.hdr + sizeof(*ip.v6); 1930 l4_proto = ip.v6->nexthdr; 1931 if (l4.hdr != exthdr) 1932 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1933 &frag_off); 1934 } else { 1935 return -1; 1936 } 1937 1938 /* compute inner L3 header size */ 1939 l3_len = l4.hdr - ip.hdr; 1940 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1941 1942 /* Enable L4 checksum offloads */ 1943 switch (l4_proto) { 1944 case IPPROTO_TCP: 1945 /* enable checksum offloads */ 1946 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1947 l4_len = l4.tcp->doff; 1948 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1949 break; 1950 case IPPROTO_UDP: 1951 /* enable UDP checksum offload */ 1952 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1953 l4_len = (sizeof(struct udphdr) >> 2); 1954 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1955 break; 1956 case IPPROTO_SCTP: 1957 /* enable SCTP checksum offload */ 1958 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1959 l4_len = sizeof(struct sctphdr) >> 2; 1960 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1961 break; 1962 1963 default: 1964 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1965 return -1; 1966 skb_checksum_help(skb); 1967 return 0; 1968 } 1969 1970 off->td_cmd |= cmd; 1971 off->td_offset |= offset; 1972 return 1; 1973 } 1974 1975 /** 1976 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1977 * @tx_ring: ring to send buffer on 1978 * @first: pointer to struct ice_tx_buf 1979 * 1980 * Checks the skb and set up correspondingly several generic transmit flags 1981 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1982 */ 1983 static void 1984 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1985 { 1986 struct sk_buff *skb = first->skb; 1987 1988 /* nothing left to do, software offloaded VLAN */ 1989 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1990 return; 1991 1992 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 1993 * feature flags, which the driver only allows either 802.1Q or 802.1ad 1994 * VLAN offloads exclusively so we only care about the VLAN ID here 1995 */ 1996 if (skb_vlan_tag_present(skb)) { 1997 first->vid = skb_vlan_tag_get(skb); 1998 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 1999 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 2000 else 2001 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2002 } 2003 2004 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2005 } 2006 2007 /** 2008 * ice_tso - computes mss and TSO length to prepare for TSO 2009 * @first: pointer to struct ice_tx_buf 2010 * @off: pointer to struct that holds offload parameters 2011 * 2012 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2013 */ 2014 static 2015 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2016 { 2017 struct sk_buff *skb = first->skb; 2018 union { 2019 struct iphdr *v4; 2020 struct ipv6hdr *v6; 2021 unsigned char *hdr; 2022 } ip; 2023 union { 2024 struct tcphdr *tcp; 2025 struct udphdr *udp; 2026 unsigned char *hdr; 2027 } l4; 2028 u64 cd_mss, cd_tso_len; 2029 __be16 protocol; 2030 u32 paylen; 2031 u8 l4_start; 2032 int err; 2033 2034 if (skb->ip_summed != CHECKSUM_PARTIAL) 2035 return 0; 2036 2037 if (!skb_is_gso(skb)) 2038 return 0; 2039 2040 err = skb_cow_head(skb, 0); 2041 if (err < 0) 2042 return err; 2043 2044 protocol = vlan_get_protocol(skb); 2045 2046 if (eth_p_mpls(protocol)) 2047 ip.hdr = skb_inner_network_header(skb); 2048 else 2049 ip.hdr = skb_network_header(skb); 2050 l4.hdr = skb_checksum_start(skb); 2051 2052 /* initialize outer IP header fields */ 2053 if (ip.v4->version == 4) { 2054 ip.v4->tot_len = 0; 2055 ip.v4->check = 0; 2056 } else { 2057 ip.v6->payload_len = 0; 2058 } 2059 2060 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2061 SKB_GSO_GRE_CSUM | 2062 SKB_GSO_IPXIP4 | 2063 SKB_GSO_IPXIP6 | 2064 SKB_GSO_UDP_TUNNEL | 2065 SKB_GSO_UDP_TUNNEL_CSUM)) { 2066 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2067 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2068 l4.udp->len = 0; 2069 2070 /* determine offset of outer transport header */ 2071 l4_start = (u8)(l4.hdr - skb->data); 2072 2073 /* remove payload length from outer checksum */ 2074 paylen = skb->len - l4_start; 2075 csum_replace_by_diff(&l4.udp->check, 2076 (__force __wsum)htonl(paylen)); 2077 } 2078 2079 /* reset pointers to inner headers */ 2080 ip.hdr = skb_inner_network_header(skb); 2081 l4.hdr = skb_inner_transport_header(skb); 2082 2083 /* initialize inner IP header fields */ 2084 if (ip.v4->version == 4) { 2085 ip.v4->tot_len = 0; 2086 ip.v4->check = 0; 2087 } else { 2088 ip.v6->payload_len = 0; 2089 } 2090 } 2091 2092 /* determine offset of transport header */ 2093 l4_start = (u8)(l4.hdr - skb->data); 2094 2095 /* remove payload length from checksum */ 2096 paylen = skb->len - l4_start; 2097 2098 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2099 csum_replace_by_diff(&l4.udp->check, 2100 (__force __wsum)htonl(paylen)); 2101 /* compute length of UDP segmentation header */ 2102 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2103 } else { 2104 csum_replace_by_diff(&l4.tcp->check, 2105 (__force __wsum)htonl(paylen)); 2106 /* compute length of TCP segmentation header */ 2107 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2108 } 2109 2110 /* update gso_segs and bytecount */ 2111 first->gso_segs = skb_shinfo(skb)->gso_segs; 2112 first->bytecount += (first->gso_segs - 1) * off->header_len; 2113 2114 cd_tso_len = skb->len - off->header_len; 2115 cd_mss = skb_shinfo(skb)->gso_size; 2116 2117 /* record cdesc_qw1 with TSO parameters */ 2118 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2119 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2120 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2121 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2122 first->tx_flags |= ICE_TX_FLAGS_TSO; 2123 return 1; 2124 } 2125 2126 /** 2127 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2128 * @size: transmit request size in bytes 2129 * 2130 * Due to hardware alignment restrictions (4K alignment), we need to 2131 * assume that we can have no more than 12K of data per descriptor, even 2132 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2133 * Thus, we need to divide by 12K. But division is slow! Instead, 2134 * we decompose the operation into shifts and one relatively cheap 2135 * multiply operation. 2136 * 2137 * To divide by 12K, we first divide by 4K, then divide by 3: 2138 * To divide by 4K, shift right by 12 bits 2139 * To divide by 3, multiply by 85, then divide by 256 2140 * (Divide by 256 is done by shifting right by 8 bits) 2141 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2142 * 3, we'll underestimate near each multiple of 12K. This is actually more 2143 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2144 * segment. For our purposes this is accurate out to 1M which is orders of 2145 * magnitude greater than our largest possible GSO size. 2146 * 2147 * This would then be implemented as: 2148 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2149 * 2150 * Since multiplication and division are commutative, we can reorder 2151 * operations into: 2152 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2153 */ 2154 static unsigned int ice_txd_use_count(unsigned int size) 2155 { 2156 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2157 } 2158 2159 /** 2160 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2161 * @skb: send buffer 2162 * 2163 * Returns number of data descriptors needed for this skb. 2164 */ 2165 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2166 { 2167 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2168 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2169 unsigned int count = 0, size = skb_headlen(skb); 2170 2171 for (;;) { 2172 count += ice_txd_use_count(size); 2173 2174 if (!nr_frags--) 2175 break; 2176 2177 size = skb_frag_size(frag++); 2178 } 2179 2180 return count; 2181 } 2182 2183 /** 2184 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2185 * @skb: send buffer 2186 * 2187 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2188 * and so we need to figure out the cases where we need to linearize the skb. 2189 * 2190 * For TSO we need to count the TSO header and segment payload separately. 2191 * As such we need to check cases where we have 7 fragments or more as we 2192 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2193 * the segment payload in the first descriptor, and another 7 for the 2194 * fragments. 2195 */ 2196 static bool __ice_chk_linearize(struct sk_buff *skb) 2197 { 2198 const skb_frag_t *frag, *stale; 2199 int nr_frags, sum; 2200 2201 /* no need to check if number of frags is less than 7 */ 2202 nr_frags = skb_shinfo(skb)->nr_frags; 2203 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2204 return false; 2205 2206 /* We need to walk through the list and validate that each group 2207 * of 6 fragments totals at least gso_size. 2208 */ 2209 nr_frags -= ICE_MAX_BUF_TXD - 2; 2210 frag = &skb_shinfo(skb)->frags[0]; 2211 2212 /* Initialize size to the negative value of gso_size minus 1. We 2213 * use this as the worst case scenario in which the frag ahead 2214 * of us only provides one byte which is why we are limited to 6 2215 * descriptors for a single transmit as the header and previous 2216 * fragment are already consuming 2 descriptors. 2217 */ 2218 sum = 1 - skb_shinfo(skb)->gso_size; 2219 2220 /* Add size of frags 0 through 4 to create our initial sum */ 2221 sum += skb_frag_size(frag++); 2222 sum += skb_frag_size(frag++); 2223 sum += skb_frag_size(frag++); 2224 sum += skb_frag_size(frag++); 2225 sum += skb_frag_size(frag++); 2226 2227 /* Walk through fragments adding latest fragment, testing it, and 2228 * then removing stale fragments from the sum. 2229 */ 2230 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2231 int stale_size = skb_frag_size(stale); 2232 2233 sum += skb_frag_size(frag++); 2234 2235 /* The stale fragment may present us with a smaller 2236 * descriptor than the actual fragment size. To account 2237 * for that we need to remove all the data on the front and 2238 * figure out what the remainder would be in the last 2239 * descriptor associated with the fragment. 2240 */ 2241 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2242 int align_pad = -(skb_frag_off(stale)) & 2243 (ICE_MAX_READ_REQ_SIZE - 1); 2244 2245 sum -= align_pad; 2246 stale_size -= align_pad; 2247 2248 do { 2249 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2250 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2251 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2252 } 2253 2254 /* if sum is negative we failed to make sufficient progress */ 2255 if (sum < 0) 2256 return true; 2257 2258 if (!nr_frags--) 2259 break; 2260 2261 sum -= stale_size; 2262 } 2263 2264 return false; 2265 } 2266 2267 /** 2268 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2269 * @skb: send buffer 2270 * @count: number of buffers used 2271 * 2272 * Note: Our HW can't scatter-gather more than 8 fragments to build 2273 * a packet on the wire and so we need to figure out the cases where we 2274 * need to linearize the skb. 2275 */ 2276 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2277 { 2278 /* Both TSO and single send will work if count is less than 8 */ 2279 if (likely(count < ICE_MAX_BUF_TXD)) 2280 return false; 2281 2282 if (skb_is_gso(skb)) 2283 return __ice_chk_linearize(skb); 2284 2285 /* we can support up to 8 data buffers for a single send */ 2286 return count != ICE_MAX_BUF_TXD; 2287 } 2288 2289 /** 2290 * ice_tstamp - set up context descriptor for hardware timestamp 2291 * @tx_ring: pointer to the Tx ring to send buffer on 2292 * @skb: pointer to the SKB we're sending 2293 * @first: Tx buffer 2294 * @off: Tx offload parameters 2295 */ 2296 static void 2297 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2298 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2299 { 2300 s8 idx; 2301 2302 /* only timestamp the outbound packet if the user has requested it */ 2303 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2304 return; 2305 2306 /* Tx timestamps cannot be sampled when doing TSO */ 2307 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2308 return; 2309 2310 /* Grab an open timestamp slot */ 2311 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2312 if (idx < 0) { 2313 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2314 return; 2315 } 2316 2317 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2318 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2319 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2320 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2321 } 2322 2323 /** 2324 * ice_xmit_frame_ring - Sends buffer on Tx ring 2325 * @skb: send buffer 2326 * @tx_ring: ring to send buffer on 2327 * 2328 * Returns NETDEV_TX_OK if sent, else an error code 2329 */ 2330 static netdev_tx_t 2331 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2332 { 2333 struct ice_tx_offload_params offload = { 0 }; 2334 struct ice_vsi *vsi = tx_ring->vsi; 2335 struct ice_tx_buf *first; 2336 struct ethhdr *eth; 2337 unsigned int count; 2338 int tso, csum; 2339 2340 ice_trace(xmit_frame_ring, tx_ring, skb); 2341 2342 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2343 goto out_drop; 2344 2345 count = ice_xmit_desc_count(skb); 2346 if (ice_chk_linearize(skb, count)) { 2347 if (__skb_linearize(skb)) 2348 goto out_drop; 2349 count = ice_txd_use_count(skb->len); 2350 tx_ring->ring_stats->tx_stats.tx_linearize++; 2351 } 2352 2353 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2354 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2355 * + 4 desc gap to avoid the cache line where head is, 2356 * + 1 desc for context descriptor, 2357 * otherwise try next time 2358 */ 2359 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2360 ICE_DESCS_FOR_CTX_DESC)) { 2361 tx_ring->ring_stats->tx_stats.tx_busy++; 2362 return NETDEV_TX_BUSY; 2363 } 2364 2365 /* prefetch for bql data which is infrequently used */ 2366 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2367 2368 offload.tx_ring = tx_ring; 2369 2370 /* record the location of the first descriptor for this packet */ 2371 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2372 first->skb = skb; 2373 first->type = ICE_TX_BUF_SKB; 2374 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2375 first->gso_segs = 1; 2376 first->tx_flags = 0; 2377 2378 /* prepare the VLAN tagging flags for Tx */ 2379 ice_tx_prepare_vlan_flags(tx_ring, first); 2380 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2381 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2382 (ICE_TX_CTX_DESC_IL2TAG2 << 2383 ICE_TXD_CTX_QW1_CMD_S)); 2384 offload.cd_l2tag2 = first->vid; 2385 } 2386 2387 /* set up TSO offload */ 2388 tso = ice_tso(first, &offload); 2389 if (tso < 0) 2390 goto out_drop; 2391 2392 /* always set up Tx checksum offload */ 2393 csum = ice_tx_csum(first, &offload); 2394 if (csum < 0) 2395 goto out_drop; 2396 2397 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2398 eth = (struct ethhdr *)skb_mac_header(skb); 2399 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2400 eth->h_proto == htons(ETH_P_LLDP)) && 2401 vsi->type == ICE_VSI_PF && 2402 vsi->port_info->qos_cfg.is_sw_lldp)) 2403 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2404 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2405 ICE_TXD_CTX_QW1_CMD_S); 2406 2407 ice_tstamp(tx_ring, skb, first, &offload); 2408 if (ice_is_switchdev_running(vsi->back)) 2409 ice_eswitch_set_target_vsi(skb, &offload); 2410 2411 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2412 struct ice_tx_ctx_desc *cdesc; 2413 u16 i = tx_ring->next_to_use; 2414 2415 /* grab the next descriptor */ 2416 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2417 i++; 2418 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2419 2420 /* setup context descriptor */ 2421 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2422 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2423 cdesc->rsvd = cpu_to_le16(0); 2424 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2425 } 2426 2427 ice_tx_map(tx_ring, first, &offload); 2428 return NETDEV_TX_OK; 2429 2430 out_drop: 2431 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2432 dev_kfree_skb_any(skb); 2433 return NETDEV_TX_OK; 2434 } 2435 2436 /** 2437 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2438 * @skb: send buffer 2439 * @netdev: network interface device structure 2440 * 2441 * Returns NETDEV_TX_OK if sent, else an error code 2442 */ 2443 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2444 { 2445 struct ice_netdev_priv *np = netdev_priv(netdev); 2446 struct ice_vsi *vsi = np->vsi; 2447 struct ice_tx_ring *tx_ring; 2448 2449 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2450 2451 /* hardware can't handle really short frames, hardware padding works 2452 * beyond this point 2453 */ 2454 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2455 return NETDEV_TX_OK; 2456 2457 return ice_xmit_frame_ring(skb, tx_ring); 2458 } 2459 2460 /** 2461 * ice_get_dscp_up - return the UP/TC value for a SKB 2462 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2463 * @skb: SKB to query for info to determine UP/TC 2464 * 2465 * This function is to only be called when the PF is in L3 DSCP PFC mode 2466 */ 2467 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2468 { 2469 u8 dscp = 0; 2470 2471 if (skb->protocol == htons(ETH_P_IP)) 2472 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2473 else if (skb->protocol == htons(ETH_P_IPV6)) 2474 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2475 2476 return dcbcfg->dscp_map[dscp]; 2477 } 2478 2479 u16 2480 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2481 struct net_device *sb_dev) 2482 { 2483 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2484 struct ice_dcbx_cfg *dcbcfg; 2485 2486 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2487 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2488 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2489 2490 return netdev_pick_tx(netdev, skb, sb_dev); 2491 } 2492 2493 /** 2494 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2495 * @tx_ring: tx_ring to clean 2496 */ 2497 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2498 { 2499 struct ice_vsi *vsi = tx_ring->vsi; 2500 s16 i = tx_ring->next_to_clean; 2501 int budget = ICE_DFLT_IRQ_WORK; 2502 struct ice_tx_desc *tx_desc; 2503 struct ice_tx_buf *tx_buf; 2504 2505 tx_buf = &tx_ring->tx_buf[i]; 2506 tx_desc = ICE_TX_DESC(tx_ring, i); 2507 i -= tx_ring->count; 2508 2509 do { 2510 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2511 2512 /* if next_to_watch is not set then there is no pending work */ 2513 if (!eop_desc) 2514 break; 2515 2516 /* prevent any other reads prior to eop_desc */ 2517 smp_rmb(); 2518 2519 /* if the descriptor isn't done, no work to do */ 2520 if (!(eop_desc->cmd_type_offset_bsz & 2521 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2522 break; 2523 2524 /* clear next_to_watch to prevent false hangs */ 2525 tx_buf->next_to_watch = NULL; 2526 tx_desc->buf_addr = 0; 2527 tx_desc->cmd_type_offset_bsz = 0; 2528 2529 /* move past filter desc */ 2530 tx_buf++; 2531 tx_desc++; 2532 i++; 2533 if (unlikely(!i)) { 2534 i -= tx_ring->count; 2535 tx_buf = tx_ring->tx_buf; 2536 tx_desc = ICE_TX_DESC(tx_ring, 0); 2537 } 2538 2539 /* unmap the data header */ 2540 if (dma_unmap_len(tx_buf, len)) 2541 dma_unmap_single(tx_ring->dev, 2542 dma_unmap_addr(tx_buf, dma), 2543 dma_unmap_len(tx_buf, len), 2544 DMA_TO_DEVICE); 2545 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2546 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2547 2548 /* clear next_to_watch to prevent false hangs */ 2549 tx_buf->type = ICE_TX_BUF_EMPTY; 2550 tx_buf->tx_flags = 0; 2551 tx_buf->next_to_watch = NULL; 2552 dma_unmap_len_set(tx_buf, len, 0); 2553 tx_desc->buf_addr = 0; 2554 tx_desc->cmd_type_offset_bsz = 0; 2555 2556 /* move past eop_desc for start of next FD desc */ 2557 tx_buf++; 2558 tx_desc++; 2559 i++; 2560 if (unlikely(!i)) { 2561 i -= tx_ring->count; 2562 tx_buf = tx_ring->tx_buf; 2563 tx_desc = ICE_TX_DESC(tx_ring, 0); 2564 } 2565 2566 budget--; 2567 } while (likely(budget)); 2568 2569 i += tx_ring->count; 2570 tx_ring->next_to_clean = i; 2571 2572 /* re-enable interrupt if needed */ 2573 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2574 } 2575