xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 2c63221cd9e5c0dad0424029aeb1c40faada8330)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 /**
19  * ice_unmap_and_free_tx_buf - Release a Tx buffer
20  * @ring: the ring that owns the buffer
21  * @tx_buf: the buffer to free
22  */
23 static void
24 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
25 {
26 	if (tx_buf->skb) {
27 		if (ice_ring_is_xdp(ring))
28 			page_frag_free(tx_buf->raw_buf);
29 		else
30 			dev_kfree_skb_any(tx_buf->skb);
31 		if (dma_unmap_len(tx_buf, len))
32 			dma_unmap_single(ring->dev,
33 					 dma_unmap_addr(tx_buf, dma),
34 					 dma_unmap_len(tx_buf, len),
35 					 DMA_TO_DEVICE);
36 	} else if (dma_unmap_len(tx_buf, len)) {
37 		dma_unmap_page(ring->dev,
38 			       dma_unmap_addr(tx_buf, dma),
39 			       dma_unmap_len(tx_buf, len),
40 			       DMA_TO_DEVICE);
41 	}
42 
43 	tx_buf->next_to_watch = NULL;
44 	tx_buf->skb = NULL;
45 	dma_unmap_len_set(tx_buf, len, 0);
46 	/* tx_buf must be completely set up in the transmit path */
47 }
48 
49 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
50 {
51 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
52 }
53 
54 /**
55  * ice_clean_tx_ring - Free any empty Tx buffers
56  * @tx_ring: ring to be cleaned
57  */
58 void ice_clean_tx_ring(struct ice_ring *tx_ring)
59 {
60 	u16 i;
61 
62 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
63 		ice_xsk_clean_xdp_ring(tx_ring);
64 		goto tx_skip_free;
65 	}
66 
67 	/* ring already cleared, nothing to do */
68 	if (!tx_ring->tx_buf)
69 		return;
70 
71 	/* Free all the Tx ring sk_buffs */
72 	for (i = 0; i < tx_ring->count; i++)
73 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
74 
75 tx_skip_free:
76 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
77 
78 	/* Zero out the descriptor ring */
79 	memset(tx_ring->desc, 0, tx_ring->size);
80 
81 	tx_ring->next_to_use = 0;
82 	tx_ring->next_to_clean = 0;
83 
84 	if (!tx_ring->netdev)
85 		return;
86 
87 	/* cleanup Tx queue statistics */
88 	netdev_tx_reset_queue(txring_txq(tx_ring));
89 }
90 
91 /**
92  * ice_free_tx_ring - Free Tx resources per queue
93  * @tx_ring: Tx descriptor ring for a specific queue
94  *
95  * Free all transmit software resources
96  */
97 void ice_free_tx_ring(struct ice_ring *tx_ring)
98 {
99 	ice_clean_tx_ring(tx_ring);
100 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
101 	tx_ring->tx_buf = NULL;
102 
103 	if (tx_ring->desc) {
104 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
105 				   tx_ring->desc, tx_ring->dma);
106 		tx_ring->desc = NULL;
107 	}
108 }
109 
110 /**
111  * ice_clean_tx_irq - Reclaim resources after transmit completes
112  * @tx_ring: Tx ring to clean
113  * @napi_budget: Used to determine if we are in netpoll
114  *
115  * Returns true if there's any budget left (e.g. the clean is finished)
116  */
117 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
118 {
119 	unsigned int total_bytes = 0, total_pkts = 0;
120 	unsigned int budget = ICE_DFLT_IRQ_WORK;
121 	struct ice_vsi *vsi = tx_ring->vsi;
122 	s16 i = tx_ring->next_to_clean;
123 	struct ice_tx_desc *tx_desc;
124 	struct ice_tx_buf *tx_buf;
125 
126 	tx_buf = &tx_ring->tx_buf[i];
127 	tx_desc = ICE_TX_DESC(tx_ring, i);
128 	i -= tx_ring->count;
129 
130 	prefetch(&vsi->state);
131 
132 	do {
133 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
134 
135 		/* if next_to_watch is not set then there is no work pending */
136 		if (!eop_desc)
137 			break;
138 
139 		smp_rmb();	/* prevent any other reads prior to eop_desc */
140 
141 		/* if the descriptor isn't done, no work yet to do */
142 		if (!(eop_desc->cmd_type_offset_bsz &
143 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
144 			break;
145 
146 		/* clear next_to_watch to prevent false hangs */
147 		tx_buf->next_to_watch = NULL;
148 
149 		/* update the statistics for this packet */
150 		total_bytes += tx_buf->bytecount;
151 		total_pkts += tx_buf->gso_segs;
152 
153 		if (ice_ring_is_xdp(tx_ring))
154 			page_frag_free(tx_buf->raw_buf);
155 		else
156 			/* free the skb */
157 			napi_consume_skb(tx_buf->skb, napi_budget);
158 
159 		/* unmap skb header data */
160 		dma_unmap_single(tx_ring->dev,
161 				 dma_unmap_addr(tx_buf, dma),
162 				 dma_unmap_len(tx_buf, len),
163 				 DMA_TO_DEVICE);
164 
165 		/* clear tx_buf data */
166 		tx_buf->skb = NULL;
167 		dma_unmap_len_set(tx_buf, len, 0);
168 
169 		/* unmap remaining buffers */
170 		while (tx_desc != eop_desc) {
171 			tx_buf++;
172 			tx_desc++;
173 			i++;
174 			if (unlikely(!i)) {
175 				i -= tx_ring->count;
176 				tx_buf = tx_ring->tx_buf;
177 				tx_desc = ICE_TX_DESC(tx_ring, 0);
178 			}
179 
180 			/* unmap any remaining paged data */
181 			if (dma_unmap_len(tx_buf, len)) {
182 				dma_unmap_page(tx_ring->dev,
183 					       dma_unmap_addr(tx_buf, dma),
184 					       dma_unmap_len(tx_buf, len),
185 					       DMA_TO_DEVICE);
186 				dma_unmap_len_set(tx_buf, len, 0);
187 			}
188 		}
189 
190 		/* move us one more past the eop_desc for start of next pkt */
191 		tx_buf++;
192 		tx_desc++;
193 		i++;
194 		if (unlikely(!i)) {
195 			i -= tx_ring->count;
196 			tx_buf = tx_ring->tx_buf;
197 			tx_desc = ICE_TX_DESC(tx_ring, 0);
198 		}
199 
200 		prefetch(tx_desc);
201 
202 		/* update budget accounting */
203 		budget--;
204 	} while (likely(budget));
205 
206 	i += tx_ring->count;
207 	tx_ring->next_to_clean = i;
208 
209 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
210 
211 	if (ice_ring_is_xdp(tx_ring))
212 		return !!budget;
213 
214 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
215 				  total_bytes);
216 
217 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
218 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
219 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
220 		/* Make sure that anybody stopping the queue after this
221 		 * sees the new next_to_clean.
222 		 */
223 		smp_mb();
224 		if (__netif_subqueue_stopped(tx_ring->netdev,
225 					     tx_ring->q_index) &&
226 		    !test_bit(__ICE_DOWN, vsi->state)) {
227 			netif_wake_subqueue(tx_ring->netdev,
228 					    tx_ring->q_index);
229 			++tx_ring->tx_stats.restart_q;
230 		}
231 	}
232 
233 	return !!budget;
234 }
235 
236 /**
237  * ice_setup_tx_ring - Allocate the Tx descriptors
238  * @tx_ring: the Tx ring to set up
239  *
240  * Return 0 on success, negative on error
241  */
242 int ice_setup_tx_ring(struct ice_ring *tx_ring)
243 {
244 	struct device *dev = tx_ring->dev;
245 
246 	if (!dev)
247 		return -ENOMEM;
248 
249 	/* warn if we are about to overwrite the pointer */
250 	WARN_ON(tx_ring->tx_buf);
251 	tx_ring->tx_buf =
252 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
253 			     GFP_KERNEL);
254 	if (!tx_ring->tx_buf)
255 		return -ENOMEM;
256 
257 	/* round up to nearest page */
258 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
259 			      PAGE_SIZE);
260 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
261 					    GFP_KERNEL);
262 	if (!tx_ring->desc) {
263 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
264 			tx_ring->size);
265 		goto err;
266 	}
267 
268 	tx_ring->next_to_use = 0;
269 	tx_ring->next_to_clean = 0;
270 	tx_ring->tx_stats.prev_pkt = -1;
271 	return 0;
272 
273 err:
274 	devm_kfree(dev, tx_ring->tx_buf);
275 	tx_ring->tx_buf = NULL;
276 	return -ENOMEM;
277 }
278 
279 /**
280  * ice_clean_rx_ring - Free Rx buffers
281  * @rx_ring: ring to be cleaned
282  */
283 void ice_clean_rx_ring(struct ice_ring *rx_ring)
284 {
285 	struct device *dev = rx_ring->dev;
286 	u16 i;
287 
288 	/* ring already cleared, nothing to do */
289 	if (!rx_ring->rx_buf)
290 		return;
291 
292 	if (rx_ring->xsk_umem) {
293 		ice_xsk_clean_rx_ring(rx_ring);
294 		goto rx_skip_free;
295 	}
296 
297 	/* Free all the Rx ring sk_buffs */
298 	for (i = 0; i < rx_ring->count; i++) {
299 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
300 
301 		if (rx_buf->skb) {
302 			dev_kfree_skb(rx_buf->skb);
303 			rx_buf->skb = NULL;
304 		}
305 		if (!rx_buf->page)
306 			continue;
307 
308 		/* Invalidate cache lines that may have been written to by
309 		 * device so that we avoid corrupting memory.
310 		 */
311 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
312 					      rx_buf->page_offset,
313 					      rx_ring->rx_buf_len,
314 					      DMA_FROM_DEVICE);
315 
316 		/* free resources associated with mapping */
317 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
318 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
319 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
320 
321 		rx_buf->page = NULL;
322 		rx_buf->page_offset = 0;
323 	}
324 
325 rx_skip_free:
326 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
327 
328 	/* Zero out the descriptor ring */
329 	memset(rx_ring->desc, 0, rx_ring->size);
330 
331 	rx_ring->next_to_alloc = 0;
332 	rx_ring->next_to_clean = 0;
333 	rx_ring->next_to_use = 0;
334 }
335 
336 /**
337  * ice_free_rx_ring - Free Rx resources
338  * @rx_ring: ring to clean the resources from
339  *
340  * Free all receive software resources
341  */
342 void ice_free_rx_ring(struct ice_ring *rx_ring)
343 {
344 	ice_clean_rx_ring(rx_ring);
345 	if (rx_ring->vsi->type == ICE_VSI_PF)
346 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
347 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
348 	rx_ring->xdp_prog = NULL;
349 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
350 	rx_ring->rx_buf = NULL;
351 
352 	if (rx_ring->desc) {
353 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
354 				   rx_ring->desc, rx_ring->dma);
355 		rx_ring->desc = NULL;
356 	}
357 }
358 
359 /**
360  * ice_setup_rx_ring - Allocate the Rx descriptors
361  * @rx_ring: the Rx ring to set up
362  *
363  * Return 0 on success, negative on error
364  */
365 int ice_setup_rx_ring(struct ice_ring *rx_ring)
366 {
367 	struct device *dev = rx_ring->dev;
368 
369 	if (!dev)
370 		return -ENOMEM;
371 
372 	/* warn if we are about to overwrite the pointer */
373 	WARN_ON(rx_ring->rx_buf);
374 	rx_ring->rx_buf =
375 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
376 			     GFP_KERNEL);
377 	if (!rx_ring->rx_buf)
378 		return -ENOMEM;
379 
380 	/* round up to nearest page */
381 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
382 			      PAGE_SIZE);
383 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
384 					    GFP_KERNEL);
385 	if (!rx_ring->desc) {
386 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
387 			rx_ring->size);
388 		goto err;
389 	}
390 
391 	rx_ring->next_to_use = 0;
392 	rx_ring->next_to_clean = 0;
393 
394 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
395 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
396 
397 	if (rx_ring->vsi->type == ICE_VSI_PF &&
398 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
399 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
400 				     rx_ring->q_index))
401 			goto err;
402 	return 0;
403 
404 err:
405 	devm_kfree(dev, rx_ring->rx_buf);
406 	rx_ring->rx_buf = NULL;
407 	return -ENOMEM;
408 }
409 
410 /**
411  * ice_rx_offset - Return expected offset into page to access data
412  * @rx_ring: Ring we are requesting offset of
413  *
414  * Returns the offset value for ring into the data buffer.
415  */
416 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
417 {
418 	if (ice_ring_uses_build_skb(rx_ring))
419 		return ICE_SKB_PAD;
420 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
421 		return XDP_PACKET_HEADROOM;
422 
423 	return 0;
424 }
425 
426 /**
427  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
428  * @rx_ring: Rx ring
429  * @xdp: xdp_buff used as input to the XDP program
430  * @xdp_prog: XDP program to run
431  *
432  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
433  */
434 static int
435 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
436 	    struct bpf_prog *xdp_prog)
437 {
438 	int err, result = ICE_XDP_PASS;
439 	struct ice_ring *xdp_ring;
440 	u32 act;
441 
442 	act = bpf_prog_run_xdp(xdp_prog, xdp);
443 	switch (act) {
444 	case XDP_PASS:
445 		break;
446 	case XDP_TX:
447 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
448 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
449 		break;
450 	case XDP_REDIRECT:
451 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
452 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
453 		break;
454 	default:
455 		bpf_warn_invalid_xdp_action(act);
456 		/* fallthrough -- not supported action */
457 	case XDP_ABORTED:
458 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
459 		/* fallthrough -- handle aborts by dropping frame */
460 	case XDP_DROP:
461 		result = ICE_XDP_CONSUMED;
462 		break;
463 	}
464 
465 	return result;
466 }
467 
468 /**
469  * ice_xdp_xmit - submit packets to XDP ring for transmission
470  * @dev: netdev
471  * @n: number of XDP frames to be transmitted
472  * @frames: XDP frames to be transmitted
473  * @flags: transmit flags
474  *
475  * Returns number of frames successfully sent. Frames that fail are
476  * free'ed via XDP return API.
477  * For error cases, a negative errno code is returned and no-frames
478  * are transmitted (caller must handle freeing frames).
479  */
480 int
481 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
482 	     u32 flags)
483 {
484 	struct ice_netdev_priv *np = netdev_priv(dev);
485 	unsigned int queue_index = smp_processor_id();
486 	struct ice_vsi *vsi = np->vsi;
487 	struct ice_ring *xdp_ring;
488 	int drops = 0, i;
489 
490 	if (test_bit(__ICE_DOWN, vsi->state))
491 		return -ENETDOWN;
492 
493 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
494 		return -ENXIO;
495 
496 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
497 		return -EINVAL;
498 
499 	xdp_ring = vsi->xdp_rings[queue_index];
500 	for (i = 0; i < n; i++) {
501 		struct xdp_frame *xdpf = frames[i];
502 		int err;
503 
504 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
505 		if (err != ICE_XDP_TX) {
506 			xdp_return_frame_rx_napi(xdpf);
507 			drops++;
508 		}
509 	}
510 
511 	if (unlikely(flags & XDP_XMIT_FLUSH))
512 		ice_xdp_ring_update_tail(xdp_ring);
513 
514 	return n - drops;
515 }
516 
517 /**
518  * ice_alloc_mapped_page - recycle or make a new page
519  * @rx_ring: ring to use
520  * @bi: rx_buf struct to modify
521  *
522  * Returns true if the page was successfully allocated or
523  * reused.
524  */
525 static bool
526 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
527 {
528 	struct page *page = bi->page;
529 	dma_addr_t dma;
530 
531 	/* since we are recycling buffers we should seldom need to alloc */
532 	if (likely(page)) {
533 		rx_ring->rx_stats.page_reuse_count++;
534 		return true;
535 	}
536 
537 	/* alloc new page for storage */
538 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
539 	if (unlikely(!page)) {
540 		rx_ring->rx_stats.alloc_page_failed++;
541 		return false;
542 	}
543 
544 	/* map page for use */
545 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
546 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
547 
548 	/* if mapping failed free memory back to system since
549 	 * there isn't much point in holding memory we can't use
550 	 */
551 	if (dma_mapping_error(rx_ring->dev, dma)) {
552 		__free_pages(page, ice_rx_pg_order(rx_ring));
553 		rx_ring->rx_stats.alloc_page_failed++;
554 		return false;
555 	}
556 
557 	bi->dma = dma;
558 	bi->page = page;
559 	bi->page_offset = ice_rx_offset(rx_ring);
560 	page_ref_add(page, USHRT_MAX - 1);
561 	bi->pagecnt_bias = USHRT_MAX;
562 
563 	return true;
564 }
565 
566 /**
567  * ice_alloc_rx_bufs - Replace used receive buffers
568  * @rx_ring: ring to place buffers on
569  * @cleaned_count: number of buffers to replace
570  *
571  * Returns false if all allocations were successful, true if any fail. Returning
572  * true signals to the caller that we didn't replace cleaned_count buffers and
573  * there is more work to do.
574  *
575  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
576  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
577  * multiple tail writes per call.
578  */
579 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
580 {
581 	union ice_32b_rx_flex_desc *rx_desc;
582 	u16 ntu = rx_ring->next_to_use;
583 	struct ice_rx_buf *bi;
584 
585 	/* do nothing if no valid netdev defined */
586 	if (!rx_ring->netdev || !cleaned_count)
587 		return false;
588 
589 	/* get the Rx descriptor and buffer based on next_to_use */
590 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
591 	bi = &rx_ring->rx_buf[ntu];
592 
593 	do {
594 		/* if we fail here, we have work remaining */
595 		if (!ice_alloc_mapped_page(rx_ring, bi))
596 			break;
597 
598 		/* sync the buffer for use by the device */
599 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
600 						 bi->page_offset,
601 						 rx_ring->rx_buf_len,
602 						 DMA_FROM_DEVICE);
603 
604 		/* Refresh the desc even if buffer_addrs didn't change
605 		 * because each write-back erases this info.
606 		 */
607 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
608 
609 		rx_desc++;
610 		bi++;
611 		ntu++;
612 		if (unlikely(ntu == rx_ring->count)) {
613 			rx_desc = ICE_RX_DESC(rx_ring, 0);
614 			bi = rx_ring->rx_buf;
615 			ntu = 0;
616 		}
617 
618 		/* clear the status bits for the next_to_use descriptor */
619 		rx_desc->wb.status_error0 = 0;
620 
621 		cleaned_count--;
622 	} while (cleaned_count);
623 
624 	if (rx_ring->next_to_use != ntu)
625 		ice_release_rx_desc(rx_ring, ntu);
626 
627 	return !!cleaned_count;
628 }
629 
630 /**
631  * ice_page_is_reserved - check if reuse is possible
632  * @page: page struct to check
633  */
634 static bool ice_page_is_reserved(struct page *page)
635 {
636 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
637 }
638 
639 /**
640  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
641  * @rx_buf: Rx buffer to adjust
642  * @size: Size of adjustment
643  *
644  * Update the offset within page so that Rx buf will be ready to be reused.
645  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
646  * so the second half of page assigned to Rx buffer will be used, otherwise
647  * the offset is moved by the @size bytes
648  */
649 static void
650 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
651 {
652 #if (PAGE_SIZE < 8192)
653 	/* flip page offset to other buffer */
654 	rx_buf->page_offset ^= size;
655 #else
656 	/* move offset up to the next cache line */
657 	rx_buf->page_offset += size;
658 #endif
659 }
660 
661 /**
662  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
663  * @rx_buf: buffer containing the page
664  *
665  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
666  * which will assign the current buffer to the buffer that next_to_alloc is
667  * pointing to; otherwise, the DMA mapping needs to be destroyed and
668  * page freed
669  */
670 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
671 {
672 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
673 	struct page *page = rx_buf->page;
674 
675 	/* avoid re-using remote pages */
676 	if (unlikely(ice_page_is_reserved(page)))
677 		return false;
678 
679 #if (PAGE_SIZE < 8192)
680 	/* if we are only owner of page we can reuse it */
681 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
682 		return false;
683 #else
684 #define ICE_LAST_OFFSET \
685 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
686 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
687 		return false;
688 #endif /* PAGE_SIZE < 8192) */
689 
690 	/* If we have drained the page fragment pool we need to update
691 	 * the pagecnt_bias and page count so that we fully restock the
692 	 * number of references the driver holds.
693 	 */
694 	if (unlikely(pagecnt_bias == 1)) {
695 		page_ref_add(page, USHRT_MAX - 1);
696 		rx_buf->pagecnt_bias = USHRT_MAX;
697 	}
698 
699 	return true;
700 }
701 
702 /**
703  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
704  * @rx_ring: Rx descriptor ring to transact packets on
705  * @rx_buf: buffer containing page to add
706  * @skb: sk_buff to place the data into
707  * @size: packet length from rx_desc
708  *
709  * This function will add the data contained in rx_buf->page to the skb.
710  * It will just attach the page as a frag to the skb.
711  * The function will then update the page offset.
712  */
713 static void
714 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
715 		struct sk_buff *skb, unsigned int size)
716 {
717 #if (PAGE_SIZE >= 8192)
718 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
719 #else
720 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
721 #endif
722 
723 	if (!size)
724 		return;
725 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
726 			rx_buf->page_offset, size, truesize);
727 
728 	/* page is being used so we must update the page offset */
729 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
730 }
731 
732 /**
733  * ice_reuse_rx_page - page flip buffer and store it back on the ring
734  * @rx_ring: Rx descriptor ring to store buffers on
735  * @old_buf: donor buffer to have page reused
736  *
737  * Synchronizes page for reuse by the adapter
738  */
739 static void
740 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
741 {
742 	u16 nta = rx_ring->next_to_alloc;
743 	struct ice_rx_buf *new_buf;
744 
745 	new_buf = &rx_ring->rx_buf[nta];
746 
747 	/* update, and store next to alloc */
748 	nta++;
749 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
750 
751 	/* Transfer page from old buffer to new buffer.
752 	 * Move each member individually to avoid possible store
753 	 * forwarding stalls and unnecessary copy of skb.
754 	 */
755 	new_buf->dma = old_buf->dma;
756 	new_buf->page = old_buf->page;
757 	new_buf->page_offset = old_buf->page_offset;
758 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
759 }
760 
761 /**
762  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
763  * @rx_ring: Rx descriptor ring to transact packets on
764  * @skb: skb to be used
765  * @size: size of buffer to add to skb
766  *
767  * This function will pull an Rx buffer from the ring and synchronize it
768  * for use by the CPU.
769  */
770 static struct ice_rx_buf *
771 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
772 	       const unsigned int size)
773 {
774 	struct ice_rx_buf *rx_buf;
775 
776 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
777 	prefetchw(rx_buf->page);
778 	*skb = rx_buf->skb;
779 
780 	if (!size)
781 		return rx_buf;
782 	/* we are reusing so sync this buffer for CPU use */
783 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
784 				      rx_buf->page_offset, size,
785 				      DMA_FROM_DEVICE);
786 
787 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
788 	rx_buf->pagecnt_bias--;
789 
790 	return rx_buf;
791 }
792 
793 /**
794  * ice_build_skb - Build skb around an existing buffer
795  * @rx_ring: Rx descriptor ring to transact packets on
796  * @rx_buf: Rx buffer to pull data from
797  * @xdp: xdp_buff pointing to the data
798  *
799  * This function builds an skb around an existing Rx buffer, taking care
800  * to set up the skb correctly and avoid any memcpy overhead.
801  */
802 static struct sk_buff *
803 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
804 	      struct xdp_buff *xdp)
805 {
806 	unsigned int metasize = xdp->data - xdp->data_meta;
807 #if (PAGE_SIZE < 8192)
808 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
809 #else
810 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
811 				SKB_DATA_ALIGN(xdp->data_end -
812 					       xdp->data_hard_start);
813 #endif
814 	struct sk_buff *skb;
815 
816 	/* Prefetch first cache line of first page. If xdp->data_meta
817 	 * is unused, this points exactly as xdp->data, otherwise we
818 	 * likely have a consumer accessing first few bytes of meta
819 	 * data, and then actual data.
820 	 */
821 	prefetch(xdp->data_meta);
822 #if L1_CACHE_BYTES < 128
823 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
824 #endif
825 	/* build an skb around the page buffer */
826 	skb = build_skb(xdp->data_hard_start, truesize);
827 	if (unlikely(!skb))
828 		return NULL;
829 
830 	/* must to record Rx queue, otherwise OS features such as
831 	 * symmetric queue won't work
832 	 */
833 	skb_record_rx_queue(skb, rx_ring->q_index);
834 
835 	/* update pointers within the skb to store the data */
836 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
837 	__skb_put(skb, xdp->data_end - xdp->data);
838 	if (metasize)
839 		skb_metadata_set(skb, metasize);
840 
841 	/* buffer is used by skb, update page_offset */
842 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
843 
844 	return skb;
845 }
846 
847 /**
848  * ice_construct_skb - Allocate skb and populate it
849  * @rx_ring: Rx descriptor ring to transact packets on
850  * @rx_buf: Rx buffer to pull data from
851  * @xdp: xdp_buff pointing to the data
852  *
853  * This function allocates an skb. It then populates it with the page
854  * data from the current receive descriptor, taking care to set up the
855  * skb correctly.
856  */
857 static struct sk_buff *
858 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
859 		  struct xdp_buff *xdp)
860 {
861 	unsigned int size = xdp->data_end - xdp->data;
862 	unsigned int headlen;
863 	struct sk_buff *skb;
864 
865 	/* prefetch first cache line of first page */
866 	prefetch(xdp->data);
867 #if L1_CACHE_BYTES < 128
868 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
869 #endif /* L1_CACHE_BYTES */
870 
871 	/* allocate a skb to store the frags */
872 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
873 			       GFP_ATOMIC | __GFP_NOWARN);
874 	if (unlikely(!skb))
875 		return NULL;
876 
877 	skb_record_rx_queue(skb, rx_ring->q_index);
878 	/* Determine available headroom for copy */
879 	headlen = size;
880 	if (headlen > ICE_RX_HDR_SIZE)
881 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
882 
883 	/* align pull length to size of long to optimize memcpy performance */
884 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
885 							 sizeof(long)));
886 
887 	/* if we exhaust the linear part then add what is left as a frag */
888 	size -= headlen;
889 	if (size) {
890 #if (PAGE_SIZE >= 8192)
891 		unsigned int truesize = SKB_DATA_ALIGN(size);
892 #else
893 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
894 #endif
895 		skb_add_rx_frag(skb, 0, rx_buf->page,
896 				rx_buf->page_offset + headlen, size, truesize);
897 		/* buffer is used by skb, update page_offset */
898 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
899 	} else {
900 		/* buffer is unused, reset bias back to rx_buf; data was copied
901 		 * onto skb's linear part so there's no need for adjusting
902 		 * page offset and we can reuse this buffer as-is
903 		 */
904 		rx_buf->pagecnt_bias++;
905 	}
906 
907 	return skb;
908 }
909 
910 /**
911  * ice_put_rx_buf - Clean up used buffer and either recycle or free
912  * @rx_ring: Rx descriptor ring to transact packets on
913  * @rx_buf: Rx buffer to pull data from
914  *
915  * This function will update next_to_clean and then clean up the contents
916  * of the rx_buf. It will either recycle the buffer or unmap it and free
917  * the associated resources.
918  */
919 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
920 {
921 	u32 ntc = rx_ring->next_to_clean + 1;
922 
923 	/* fetch, update, and store next to clean */
924 	ntc = (ntc < rx_ring->count) ? ntc : 0;
925 	rx_ring->next_to_clean = ntc;
926 
927 	if (!rx_buf)
928 		return;
929 
930 	if (ice_can_reuse_rx_page(rx_buf)) {
931 		/* hand second half of page back to the ring */
932 		ice_reuse_rx_page(rx_ring, rx_buf);
933 		rx_ring->rx_stats.page_reuse_count++;
934 	} else {
935 		/* we are not reusing the buffer so unmap it */
936 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
937 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
938 				     ICE_RX_DMA_ATTR);
939 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
940 	}
941 
942 	/* clear contents of buffer_info */
943 	rx_buf->page = NULL;
944 	rx_buf->skb = NULL;
945 }
946 
947 /**
948  * ice_cleanup_headers - Correct empty headers
949  * @skb: pointer to current skb being fixed
950  *
951  * Also address the case where we are pulling data in on pages only
952  * and as such no data is present in the skb header.
953  *
954  * In addition if skb is not at least 60 bytes we need to pad it so that
955  * it is large enough to qualify as a valid Ethernet frame.
956  *
957  * Returns true if an error was encountered and skb was freed.
958  */
959 static bool ice_cleanup_headers(struct sk_buff *skb)
960 {
961 	/* if eth_skb_pad returns an error the skb was freed */
962 	if (eth_skb_pad(skb))
963 		return true;
964 
965 	return false;
966 }
967 
968 /**
969  * ice_is_non_eop - process handling of non-EOP buffers
970  * @rx_ring: Rx ring being processed
971  * @rx_desc: Rx descriptor for current buffer
972  * @skb: Current socket buffer containing buffer in progress
973  *
974  * If the buffer is an EOP buffer, this function exits returning false,
975  * otherwise return true indicating that this is in fact a non-EOP buffer.
976  */
977 static bool
978 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
979 	       struct sk_buff *skb)
980 {
981 	/* if we are the last buffer then there is nothing else to do */
982 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
983 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
984 		return false;
985 
986 	/* place skb in next buffer to be received */
987 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
988 	rx_ring->rx_stats.non_eop_descs++;
989 
990 	return true;
991 }
992 
993 /**
994  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
995  * @rx_ring: Rx descriptor ring to transact packets on
996  * @budget: Total limit on number of packets to process
997  *
998  * This function provides a "bounce buffer" approach to Rx interrupt
999  * processing. The advantage to this is that on systems that have
1000  * expensive overhead for IOMMU access this provides a means of avoiding
1001  * it by maintaining the mapping of the page to the system.
1002  *
1003  * Returns amount of work completed
1004  */
1005 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1006 {
1007 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1008 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1009 	unsigned int xdp_res, xdp_xmit = 0;
1010 	struct bpf_prog *xdp_prog = NULL;
1011 	struct xdp_buff xdp;
1012 	bool failure;
1013 
1014 	xdp.rxq = &rx_ring->xdp_rxq;
1015 
1016 	/* start the loop to process Rx packets bounded by 'budget' */
1017 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1018 		union ice_32b_rx_flex_desc *rx_desc;
1019 		struct ice_rx_buf *rx_buf;
1020 		struct sk_buff *skb;
1021 		unsigned int size;
1022 		u16 stat_err_bits;
1023 		u16 vlan_tag = 0;
1024 		u8 rx_ptype;
1025 
1026 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1027 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1028 
1029 		/* status_error_len will always be zero for unused descriptors
1030 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1031 		 * which is always zero because packet split isn't used, if the
1032 		 * hardware wrote DD then it will be non-zero
1033 		 */
1034 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1035 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1036 			break;
1037 
1038 		/* This memory barrier is needed to keep us from reading
1039 		 * any other fields out of the rx_desc until we know the
1040 		 * DD bit is set.
1041 		 */
1042 		dma_rmb();
1043 
1044 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1045 			ICE_RX_FLX_DESC_PKT_LEN_M;
1046 
1047 		/* retrieve a buffer from the ring */
1048 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1049 
1050 		if (!size) {
1051 			xdp.data = NULL;
1052 			xdp.data_end = NULL;
1053 			xdp.data_hard_start = NULL;
1054 			xdp.data_meta = NULL;
1055 			goto construct_skb;
1056 		}
1057 
1058 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1059 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1060 		xdp.data_meta = xdp.data;
1061 		xdp.data_end = xdp.data + size;
1062 
1063 		rcu_read_lock();
1064 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1065 		if (!xdp_prog) {
1066 			rcu_read_unlock();
1067 			goto construct_skb;
1068 		}
1069 
1070 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1071 		rcu_read_unlock();
1072 		if (!xdp_res)
1073 			goto construct_skb;
1074 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1075 			unsigned int truesize;
1076 
1077 #if (PAGE_SIZE < 8192)
1078 			truesize = ice_rx_pg_size(rx_ring) / 2;
1079 #else
1080 			truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) +
1081 						  size);
1082 #endif
1083 			xdp_xmit |= xdp_res;
1084 			ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1085 		} else {
1086 			rx_buf->pagecnt_bias++;
1087 		}
1088 		total_rx_bytes += size;
1089 		total_rx_pkts++;
1090 
1091 		cleaned_count++;
1092 		ice_put_rx_buf(rx_ring, rx_buf);
1093 		continue;
1094 construct_skb:
1095 		if (skb)
1096 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1097 		else if (ice_ring_uses_build_skb(rx_ring))
1098 			skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1099 		else
1100 			skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1101 
1102 		/* exit if we failed to retrieve a buffer */
1103 		if (!skb) {
1104 			rx_ring->rx_stats.alloc_buf_failed++;
1105 			if (rx_buf)
1106 				rx_buf->pagecnt_bias++;
1107 			break;
1108 		}
1109 
1110 		ice_put_rx_buf(rx_ring, rx_buf);
1111 		cleaned_count++;
1112 
1113 		/* skip if it is NOP desc */
1114 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1115 			continue;
1116 
1117 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1118 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1119 			dev_kfree_skb_any(skb);
1120 			continue;
1121 		}
1122 
1123 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1124 		if (ice_test_staterr(rx_desc, stat_err_bits))
1125 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1126 
1127 		/* correct empty headers and pad skb if needed (to make valid
1128 		 * ethernet frame
1129 		 */
1130 		if (ice_cleanup_headers(skb)) {
1131 			skb = NULL;
1132 			continue;
1133 		}
1134 
1135 		/* probably a little skewed due to removing CRC */
1136 		total_rx_bytes += skb->len;
1137 
1138 		/* populate checksum, VLAN, and protocol */
1139 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1140 			ICE_RX_FLEX_DESC_PTYPE_M;
1141 
1142 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1143 
1144 		/* send completed skb up the stack */
1145 		ice_receive_skb(rx_ring, skb, vlan_tag);
1146 
1147 		/* update budget accounting */
1148 		total_rx_pkts++;
1149 	}
1150 
1151 	/* return up to cleaned_count buffers to hardware */
1152 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1153 
1154 	if (xdp_prog)
1155 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1156 
1157 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1158 
1159 	/* guarantee a trip back through this routine if there was a failure */
1160 	return failure ? budget : (int)total_rx_pkts;
1161 }
1162 
1163 /**
1164  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1165  * @port_info: port_info structure containing the current link speed
1166  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1167  * @itr: ITR value to update
1168  *
1169  * Calculate how big of an increment should be applied to the ITR value passed
1170  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1171  * link speed.
1172  *
1173  * The following is a calculation derived from:
1174  *  wmem_default / (size + overhead) = desired_pkts_per_int
1175  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1176  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1177  *
1178  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1179  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1180  * formula down to:
1181  *
1182  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1183  * ITR = -------------------------------------------- * --------------
1184  *			     rate			pkt_size + 640
1185  */
1186 static unsigned int
1187 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1188 				 unsigned int avg_pkt_size,
1189 				 unsigned int itr)
1190 {
1191 	switch (port_info->phy.link_info.link_speed) {
1192 	case ICE_AQ_LINK_SPEED_100GB:
1193 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1194 				    avg_pkt_size + 640);
1195 		break;
1196 	case ICE_AQ_LINK_SPEED_50GB:
1197 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1198 				    avg_pkt_size + 640);
1199 		break;
1200 	case ICE_AQ_LINK_SPEED_40GB:
1201 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1202 				    avg_pkt_size + 640);
1203 		break;
1204 	case ICE_AQ_LINK_SPEED_25GB:
1205 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1206 				    avg_pkt_size + 640);
1207 		break;
1208 	case ICE_AQ_LINK_SPEED_20GB:
1209 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1210 				    avg_pkt_size + 640);
1211 		break;
1212 	case ICE_AQ_LINK_SPEED_10GB:
1213 		/* fall through */
1214 	default:
1215 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1216 				    avg_pkt_size + 640);
1217 		break;
1218 	}
1219 
1220 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1221 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1222 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1223 	}
1224 
1225 	return itr;
1226 }
1227 
1228 /**
1229  * ice_update_itr - update the adaptive ITR value based on statistics
1230  * @q_vector: structure containing interrupt and ring information
1231  * @rc: structure containing ring performance data
1232  *
1233  * Stores a new ITR value based on packets and byte
1234  * counts during the last interrupt.  The advantage of per interrupt
1235  * computation is faster updates and more accurate ITR for the current
1236  * traffic pattern.  Constants in this function were computed
1237  * based on theoretical maximum wire speed and thresholds were set based
1238  * on testing data as well as attempting to minimize response time
1239  * while increasing bulk throughput.
1240  */
1241 static void
1242 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1243 {
1244 	unsigned long next_update = jiffies;
1245 	unsigned int packets, bytes, itr;
1246 	bool container_is_rx;
1247 
1248 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1249 		return;
1250 
1251 	/* If itr_countdown is set it means we programmed an ITR within
1252 	 * the last 4 interrupt cycles. This has a side effect of us
1253 	 * potentially firing an early interrupt. In order to work around
1254 	 * this we need to throw out any data received for a few
1255 	 * interrupts following the update.
1256 	 */
1257 	if (q_vector->itr_countdown) {
1258 		itr = rc->target_itr;
1259 		goto clear_counts;
1260 	}
1261 
1262 	container_is_rx = (&q_vector->rx == rc);
1263 	/* For Rx we want to push the delay up and default to low latency.
1264 	 * for Tx we want to pull the delay down and default to high latency.
1265 	 */
1266 	itr = container_is_rx ?
1267 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1268 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1269 
1270 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1271 	 * that either packets are coming in so slow there hasn't been
1272 	 * any work, or that there is so much work that NAPI is dealing
1273 	 * with interrupt moderation and we don't need to do anything.
1274 	 */
1275 	if (time_after(next_update, rc->next_update))
1276 		goto clear_counts;
1277 
1278 	prefetch(q_vector->vsi->port_info);
1279 
1280 	packets = rc->total_pkts;
1281 	bytes = rc->total_bytes;
1282 
1283 	if (container_is_rx) {
1284 		/* If Rx there are 1 to 4 packets and bytes are less than
1285 		 * 9000 assume insufficient data to use bulk rate limiting
1286 		 * approach unless Tx is already in bulk rate limiting. We
1287 		 * are likely latency driven.
1288 		 */
1289 		if (packets && packets < 4 && bytes < 9000 &&
1290 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1291 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1292 			goto adjust_by_size_and_speed;
1293 		}
1294 	} else if (packets < 4) {
1295 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1296 		 * bulk mode and we are receiving 4 or fewer packets just
1297 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1298 		 * that the Rx can relax.
1299 		 */
1300 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1301 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1302 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1303 			goto clear_counts;
1304 	} else if (packets > 32) {
1305 		/* If we have processed over 32 packets in a single interrupt
1306 		 * for Tx assume we need to switch over to "bulk" mode.
1307 		 */
1308 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1309 	}
1310 
1311 	/* We have no packets to actually measure against. This means
1312 	 * either one of the other queues on this vector is active or
1313 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1314 	 *
1315 	 * Between 4 and 56 we can assume that our current interrupt delay
1316 	 * is only slightly too low. As such we should increase it by a small
1317 	 * fixed amount.
1318 	 */
1319 	if (packets < 56) {
1320 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1321 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1322 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1323 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1324 		}
1325 		goto clear_counts;
1326 	}
1327 
1328 	if (packets <= 256) {
1329 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1330 		itr &= ICE_ITR_MASK;
1331 
1332 		/* Between 56 and 112 is our "goldilocks" zone where we are
1333 		 * working out "just right". Just report that our current
1334 		 * ITR is good for us.
1335 		 */
1336 		if (packets <= 112)
1337 			goto clear_counts;
1338 
1339 		/* If packet count is 128 or greater we are likely looking
1340 		 * at a slight overrun of the delay we want. Try halving
1341 		 * our delay to see if that will cut the number of packets
1342 		 * in half per interrupt.
1343 		 */
1344 		itr >>= 1;
1345 		itr &= ICE_ITR_MASK;
1346 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1347 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1348 
1349 		goto clear_counts;
1350 	}
1351 
1352 	/* The paths below assume we are dealing with a bulk ITR since
1353 	 * number of packets is greater than 256. We are just going to have
1354 	 * to compute a value and try to bring the count under control,
1355 	 * though for smaller packet sizes there isn't much we can do as
1356 	 * NAPI polling will likely be kicking in sooner rather than later.
1357 	 */
1358 	itr = ICE_ITR_ADAPTIVE_BULK;
1359 
1360 adjust_by_size_and_speed:
1361 
1362 	/* based on checks above packets cannot be 0 so division is safe */
1363 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1364 					       bytes / packets, itr);
1365 
1366 clear_counts:
1367 	/* write back value */
1368 	rc->target_itr = itr;
1369 
1370 	/* next update should occur within next jiffy */
1371 	rc->next_update = next_update + 1;
1372 
1373 	rc->total_bytes = 0;
1374 	rc->total_pkts = 0;
1375 }
1376 
1377 /**
1378  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1379  * @itr_idx: interrupt throttling index
1380  * @itr: interrupt throttling value in usecs
1381  */
1382 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1383 {
1384 	/* The ITR value is reported in microseconds, and the register value is
1385 	 * recorded in 2 microsecond units. For this reason we only need to
1386 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1387 	 * granularity as a shift instead of division. The mask makes sure the
1388 	 * ITR value is never odd so we don't accidentally write into the field
1389 	 * prior to the ITR field.
1390 	 */
1391 	itr &= ICE_ITR_MASK;
1392 
1393 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1394 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1395 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1396 }
1397 
1398 /* The act of updating the ITR will cause it to immediately trigger. In order
1399  * to prevent this from throwing off adaptive update statistics we defer the
1400  * update so that it can only happen so often. So after either Tx or Rx are
1401  * updated we make the adaptive scheme wait until either the ITR completely
1402  * expires via the next_update expiration or we have been through at least
1403  * 3 interrupts.
1404  */
1405 #define ITR_COUNTDOWN_START 3
1406 
1407 /**
1408  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1409  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1410  */
1411 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1412 {
1413 	struct ice_ring_container *tx = &q_vector->tx;
1414 	struct ice_ring_container *rx = &q_vector->rx;
1415 	struct ice_vsi *vsi = q_vector->vsi;
1416 	u32 itr_val;
1417 
1418 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1419 	 * interrupts to expire right away in case we have more work ready to go
1420 	 * already
1421 	 */
1422 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1423 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1424 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1425 		/* set target back to last user set value */
1426 		rx->target_itr = rx->itr_setting;
1427 		/* set current to what we just wrote and dynamic if needed */
1428 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1429 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1430 		/* allow normal interrupt flow to start */
1431 		q_vector->itr_countdown = 0;
1432 		return;
1433 	}
1434 
1435 	/* This will do nothing if dynamic updates are not enabled */
1436 	ice_update_itr(q_vector, tx);
1437 	ice_update_itr(q_vector, rx);
1438 
1439 	/* This block of logic allows us to get away with only updating
1440 	 * one ITR value with each interrupt. The idea is to perform a
1441 	 * pseudo-lazy update with the following criteria.
1442 	 *
1443 	 * 1. Rx is given higher priority than Tx if both are in same state
1444 	 * 2. If we must reduce an ITR that is given highest priority.
1445 	 * 3. We then give priority to increasing ITR based on amount.
1446 	 */
1447 	if (rx->target_itr < rx->current_itr) {
1448 		/* Rx ITR needs to be reduced, this is highest priority */
1449 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1450 		rx->current_itr = rx->target_itr;
1451 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1452 	} else if ((tx->target_itr < tx->current_itr) ||
1453 		   ((rx->target_itr - rx->current_itr) <
1454 		    (tx->target_itr - tx->current_itr))) {
1455 		/* Tx ITR needs to be reduced, this is second priority
1456 		 * Tx ITR needs to be increased more than Rx, fourth priority
1457 		 */
1458 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1459 		tx->current_itr = tx->target_itr;
1460 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1461 	} else if (rx->current_itr != rx->target_itr) {
1462 		/* Rx ITR needs to be increased, third priority */
1463 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1464 		rx->current_itr = rx->target_itr;
1465 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1466 	} else {
1467 		/* Still have to re-enable the interrupts */
1468 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1469 		if (q_vector->itr_countdown)
1470 			q_vector->itr_countdown--;
1471 	}
1472 
1473 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1474 		wr32(&q_vector->vsi->back->hw,
1475 		     GLINT_DYN_CTL(q_vector->reg_idx),
1476 		     itr_val);
1477 }
1478 
1479 /**
1480  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1481  * @q_vector: q_vector to set WB_ON_ITR on
1482  *
1483  * We need to tell hardware to write-back completed descriptors even when
1484  * interrupts are disabled. Descriptors will be written back on cache line
1485  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1486  * descriptors may not be written back if they don't fill a cache line until the
1487  * next interrupt.
1488  *
1489  * This sets the write-back frequency to 2 microseconds as that is the minimum
1490  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1491  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1492  */
1493 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1494 {
1495 	struct ice_vsi *vsi = q_vector->vsi;
1496 
1497 	/* already in WB_ON_ITR mode no need to change it */
1498 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1499 		return;
1500 
1501 	if (q_vector->num_ring_rx)
1502 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1503 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1504 						 ICE_RX_ITR));
1505 
1506 	if (q_vector->num_ring_tx)
1507 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1508 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1509 						 ICE_TX_ITR));
1510 
1511 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1512 }
1513 
1514 /**
1515  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1516  * @napi: napi struct with our devices info in it
1517  * @budget: amount of work driver is allowed to do this pass, in packets
1518  *
1519  * This function will clean all queues associated with a q_vector.
1520  *
1521  * Returns the amount of work done
1522  */
1523 int ice_napi_poll(struct napi_struct *napi, int budget)
1524 {
1525 	struct ice_q_vector *q_vector =
1526 				container_of(napi, struct ice_q_vector, napi);
1527 	bool clean_complete = true;
1528 	struct ice_ring *ring;
1529 	int budget_per_ring;
1530 	int work_done = 0;
1531 
1532 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1533 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1534 	 */
1535 	ice_for_each_ring(ring, q_vector->tx) {
1536 		bool wd = ring->xsk_umem ?
1537 			  ice_clean_tx_irq_zc(ring, budget) :
1538 			  ice_clean_tx_irq(ring, budget);
1539 
1540 		if (!wd)
1541 			clean_complete = false;
1542 	}
1543 
1544 	/* Handle case where we are called by netpoll with a budget of 0 */
1545 	if (unlikely(budget <= 0))
1546 		return budget;
1547 
1548 	/* normally we have 1 Rx ring per q_vector */
1549 	if (unlikely(q_vector->num_ring_rx > 1))
1550 		/* We attempt to distribute budget to each Rx queue fairly, but
1551 		 * don't allow the budget to go below 1 because that would exit
1552 		 * polling early.
1553 		 */
1554 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1555 	else
1556 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1557 		budget_per_ring = budget;
1558 
1559 	ice_for_each_ring(ring, q_vector->rx) {
1560 		int cleaned;
1561 
1562 		/* A dedicated path for zero-copy allows making a single
1563 		 * comparison in the irq context instead of many inside the
1564 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1565 		 */
1566 		cleaned = ring->xsk_umem ?
1567 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1568 			  ice_clean_rx_irq(ring, budget_per_ring);
1569 		work_done += cleaned;
1570 		/* if we clean as many as budgeted, we must not be done */
1571 		if (cleaned >= budget_per_ring)
1572 			clean_complete = false;
1573 	}
1574 
1575 	/* If work not completed, return budget and polling will return */
1576 	if (!clean_complete)
1577 		return budget;
1578 
1579 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1580 	 * poll us due to busy-polling
1581 	 */
1582 	if (likely(napi_complete_done(napi, work_done)))
1583 		ice_update_ena_itr(q_vector);
1584 	else
1585 		ice_set_wb_on_itr(q_vector);
1586 
1587 	return min_t(int, work_done, budget - 1);
1588 }
1589 
1590 /**
1591  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1592  * @tx_ring: the ring to be checked
1593  * @size: the size buffer we want to assure is available
1594  *
1595  * Returns -EBUSY if a stop is needed, else 0
1596  */
1597 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1598 {
1599 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1600 	/* Memory barrier before checking head and tail */
1601 	smp_mb();
1602 
1603 	/* Check again in a case another CPU has just made room available. */
1604 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1605 		return -EBUSY;
1606 
1607 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1608 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1609 	++tx_ring->tx_stats.restart_q;
1610 	return 0;
1611 }
1612 
1613 /**
1614  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1615  * @tx_ring: the ring to be checked
1616  * @size:    the size buffer we want to assure is available
1617  *
1618  * Returns 0 if stop is not needed
1619  */
1620 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1621 {
1622 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1623 		return 0;
1624 
1625 	return __ice_maybe_stop_tx(tx_ring, size);
1626 }
1627 
1628 /**
1629  * ice_tx_map - Build the Tx descriptor
1630  * @tx_ring: ring to send buffer on
1631  * @first: first buffer info buffer to use
1632  * @off: pointer to struct that holds offload parameters
1633  *
1634  * This function loops over the skb data pointed to by *first
1635  * and gets a physical address for each memory location and programs
1636  * it and the length into the transmit descriptor.
1637  */
1638 static void
1639 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1640 	   struct ice_tx_offload_params *off)
1641 {
1642 	u64 td_offset, td_tag, td_cmd;
1643 	u16 i = tx_ring->next_to_use;
1644 	skb_frag_t *frag;
1645 	unsigned int data_len, size;
1646 	struct ice_tx_desc *tx_desc;
1647 	struct ice_tx_buf *tx_buf;
1648 	struct sk_buff *skb;
1649 	dma_addr_t dma;
1650 
1651 	td_tag = off->td_l2tag1;
1652 	td_cmd = off->td_cmd;
1653 	td_offset = off->td_offset;
1654 	skb = first->skb;
1655 
1656 	data_len = skb->data_len;
1657 	size = skb_headlen(skb);
1658 
1659 	tx_desc = ICE_TX_DESC(tx_ring, i);
1660 
1661 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1662 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1663 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1664 			  ICE_TX_FLAGS_VLAN_S;
1665 	}
1666 
1667 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1668 
1669 	tx_buf = first;
1670 
1671 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1672 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1673 
1674 		if (dma_mapping_error(tx_ring->dev, dma))
1675 			goto dma_error;
1676 
1677 		/* record length, and DMA address */
1678 		dma_unmap_len_set(tx_buf, len, size);
1679 		dma_unmap_addr_set(tx_buf, dma, dma);
1680 
1681 		/* align size to end of page */
1682 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1683 		tx_desc->buf_addr = cpu_to_le64(dma);
1684 
1685 		/* account for data chunks larger than the hardware
1686 		 * can handle
1687 		 */
1688 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1689 			tx_desc->cmd_type_offset_bsz =
1690 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1691 
1692 			tx_desc++;
1693 			i++;
1694 
1695 			if (i == tx_ring->count) {
1696 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1697 				i = 0;
1698 			}
1699 
1700 			dma += max_data;
1701 			size -= max_data;
1702 
1703 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1704 			tx_desc->buf_addr = cpu_to_le64(dma);
1705 		}
1706 
1707 		if (likely(!data_len))
1708 			break;
1709 
1710 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1711 							  size, td_tag);
1712 
1713 		tx_desc++;
1714 		i++;
1715 
1716 		if (i == tx_ring->count) {
1717 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1718 			i = 0;
1719 		}
1720 
1721 		size = skb_frag_size(frag);
1722 		data_len -= size;
1723 
1724 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1725 				       DMA_TO_DEVICE);
1726 
1727 		tx_buf = &tx_ring->tx_buf[i];
1728 	}
1729 
1730 	/* record bytecount for BQL */
1731 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1732 
1733 	/* record SW timestamp if HW timestamp is not available */
1734 	skb_tx_timestamp(first->skb);
1735 
1736 	i++;
1737 	if (i == tx_ring->count)
1738 		i = 0;
1739 
1740 	/* write last descriptor with RS and EOP bits */
1741 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1742 	tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
1743 						  td_tag);
1744 
1745 	/* Force memory writes to complete before letting h/w know there
1746 	 * are new descriptors to fetch.
1747 	 *
1748 	 * We also use this memory barrier to make certain all of the
1749 	 * status bits have been updated before next_to_watch is written.
1750 	 */
1751 	wmb();
1752 
1753 	/* set next_to_watch value indicating a packet is present */
1754 	first->next_to_watch = tx_desc;
1755 
1756 	tx_ring->next_to_use = i;
1757 
1758 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1759 
1760 	/* notify HW of packet */
1761 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1762 		writel(i, tx_ring->tail);
1763 	}
1764 
1765 	return;
1766 
1767 dma_error:
1768 	/* clear DMA mappings for failed tx_buf map */
1769 	for (;;) {
1770 		tx_buf = &tx_ring->tx_buf[i];
1771 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1772 		if (tx_buf == first)
1773 			break;
1774 		if (i == 0)
1775 			i = tx_ring->count;
1776 		i--;
1777 	}
1778 
1779 	tx_ring->next_to_use = i;
1780 }
1781 
1782 /**
1783  * ice_tx_csum - Enable Tx checksum offloads
1784  * @first: pointer to the first descriptor
1785  * @off: pointer to struct that holds offload parameters
1786  *
1787  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1788  */
1789 static
1790 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1791 {
1792 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1793 	struct sk_buff *skb = first->skb;
1794 	union {
1795 		struct iphdr *v4;
1796 		struct ipv6hdr *v6;
1797 		unsigned char *hdr;
1798 	} ip;
1799 	union {
1800 		struct tcphdr *tcp;
1801 		unsigned char *hdr;
1802 	} l4;
1803 	__be16 frag_off, protocol;
1804 	unsigned char *exthdr;
1805 	u32 offset, cmd = 0;
1806 	u8 l4_proto = 0;
1807 
1808 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1809 		return 0;
1810 
1811 	ip.hdr = skb_network_header(skb);
1812 	l4.hdr = skb_transport_header(skb);
1813 
1814 	/* compute outer L2 header size */
1815 	l2_len = ip.hdr - skb->data;
1816 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1817 
1818 	if (skb->encapsulation)
1819 		return -1;
1820 
1821 	/* Enable IP checksum offloads */
1822 	protocol = vlan_get_protocol(skb);
1823 	if (protocol == htons(ETH_P_IP)) {
1824 		l4_proto = ip.v4->protocol;
1825 		/* the stack computes the IP header already, the only time we
1826 		 * need the hardware to recompute it is in the case of TSO.
1827 		 */
1828 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1829 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1830 		else
1831 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1832 
1833 	} else if (protocol == htons(ETH_P_IPV6)) {
1834 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1835 		exthdr = ip.hdr + sizeof(*ip.v6);
1836 		l4_proto = ip.v6->nexthdr;
1837 		if (l4.hdr != exthdr)
1838 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1839 					 &frag_off);
1840 	} else {
1841 		return -1;
1842 	}
1843 
1844 	/* compute inner L3 header size */
1845 	l3_len = l4.hdr - ip.hdr;
1846 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1847 
1848 	/* Enable L4 checksum offloads */
1849 	switch (l4_proto) {
1850 	case IPPROTO_TCP:
1851 		/* enable checksum offloads */
1852 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1853 		l4_len = l4.tcp->doff;
1854 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1855 		break;
1856 	case IPPROTO_UDP:
1857 		/* enable UDP checksum offload */
1858 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1859 		l4_len = (sizeof(struct udphdr) >> 2);
1860 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1861 		break;
1862 	case IPPROTO_SCTP:
1863 		/* enable SCTP checksum offload */
1864 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1865 		l4_len = sizeof(struct sctphdr) >> 2;
1866 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1867 		break;
1868 
1869 	default:
1870 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1871 			return -1;
1872 		skb_checksum_help(skb);
1873 		return 0;
1874 	}
1875 
1876 	off->td_cmd |= cmd;
1877 	off->td_offset |= offset;
1878 	return 1;
1879 }
1880 
1881 /**
1882  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1883  * @tx_ring: ring to send buffer on
1884  * @first: pointer to struct ice_tx_buf
1885  *
1886  * Checks the skb and set up correspondingly several generic transmit flags
1887  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1888  *
1889  * Returns error code indicate the frame should be dropped upon error and the
1890  * otherwise returns 0 to indicate the flags has been set properly.
1891  */
1892 static int
1893 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1894 {
1895 	struct sk_buff *skb = first->skb;
1896 	__be16 protocol = skb->protocol;
1897 
1898 	if (protocol == htons(ETH_P_8021Q) &&
1899 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1900 		/* when HW VLAN acceleration is turned off by the user the
1901 		 * stack sets the protocol to 8021q so that the driver
1902 		 * can take any steps required to support the SW only
1903 		 * VLAN handling. In our case the driver doesn't need
1904 		 * to take any further steps so just set the protocol
1905 		 * to the encapsulated ethertype.
1906 		 */
1907 		skb->protocol = vlan_get_protocol(skb);
1908 		return 0;
1909 	}
1910 
1911 	/* if we have a HW VLAN tag being added, default to the HW one */
1912 	if (skb_vlan_tag_present(skb)) {
1913 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1914 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1915 	} else if (protocol == htons(ETH_P_8021Q)) {
1916 		struct vlan_hdr *vhdr, _vhdr;
1917 
1918 		/* for SW VLAN, check the next protocol and store the tag */
1919 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1920 							     sizeof(_vhdr),
1921 							     &_vhdr);
1922 		if (!vhdr)
1923 			return -EINVAL;
1924 
1925 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1926 				   ICE_TX_FLAGS_VLAN_S;
1927 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1928 	}
1929 
1930 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1931 }
1932 
1933 /**
1934  * ice_tso - computes mss and TSO length to prepare for TSO
1935  * @first: pointer to struct ice_tx_buf
1936  * @off: pointer to struct that holds offload parameters
1937  *
1938  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1939  */
1940 static
1941 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1942 {
1943 	struct sk_buff *skb = first->skb;
1944 	union {
1945 		struct iphdr *v4;
1946 		struct ipv6hdr *v6;
1947 		unsigned char *hdr;
1948 	} ip;
1949 	union {
1950 		struct tcphdr *tcp;
1951 		unsigned char *hdr;
1952 	} l4;
1953 	u64 cd_mss, cd_tso_len;
1954 	u32 paylen, l4_start;
1955 	int err;
1956 
1957 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1958 		return 0;
1959 
1960 	if (!skb_is_gso(skb))
1961 		return 0;
1962 
1963 	err = skb_cow_head(skb, 0);
1964 	if (err < 0)
1965 		return err;
1966 
1967 	/* cppcheck-suppress unreadVariable */
1968 	ip.hdr = skb_network_header(skb);
1969 	l4.hdr = skb_transport_header(skb);
1970 
1971 	/* initialize outer IP header fields */
1972 	if (ip.v4->version == 4) {
1973 		ip.v4->tot_len = 0;
1974 		ip.v4->check = 0;
1975 	} else {
1976 		ip.v6->payload_len = 0;
1977 	}
1978 
1979 	/* determine offset of transport header */
1980 	l4_start = l4.hdr - skb->data;
1981 
1982 	/* remove payload length from checksum */
1983 	paylen = skb->len - l4_start;
1984 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1985 
1986 	/* compute length of segmentation header */
1987 	off->header_len = (l4.tcp->doff * 4) + l4_start;
1988 
1989 	/* update gso_segs and bytecount */
1990 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1991 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1992 
1993 	cd_tso_len = skb->len - off->header_len;
1994 	cd_mss = skb_shinfo(skb)->gso_size;
1995 
1996 	/* record cdesc_qw1 with TSO parameters */
1997 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1998 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1999 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2000 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2001 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2002 	return 1;
2003 }
2004 
2005 /**
2006  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2007  * @size: transmit request size in bytes
2008  *
2009  * Due to hardware alignment restrictions (4K alignment), we need to
2010  * assume that we can have no more than 12K of data per descriptor, even
2011  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2012  * Thus, we need to divide by 12K. But division is slow! Instead,
2013  * we decompose the operation into shifts and one relatively cheap
2014  * multiply operation.
2015  *
2016  * To divide by 12K, we first divide by 4K, then divide by 3:
2017  *     To divide by 4K, shift right by 12 bits
2018  *     To divide by 3, multiply by 85, then divide by 256
2019  *     (Divide by 256 is done by shifting right by 8 bits)
2020  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2021  * 3, we'll underestimate near each multiple of 12K. This is actually more
2022  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2023  * segment. For our purposes this is accurate out to 1M which is orders of
2024  * magnitude greater than our largest possible GSO size.
2025  *
2026  * This would then be implemented as:
2027  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2028  *
2029  * Since multiplication and division are commutative, we can reorder
2030  * operations into:
2031  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2032  */
2033 static unsigned int ice_txd_use_count(unsigned int size)
2034 {
2035 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2036 }
2037 
2038 /**
2039  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2040  * @skb: send buffer
2041  *
2042  * Returns number of data descriptors needed for this skb.
2043  */
2044 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2045 {
2046 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2047 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2048 	unsigned int count = 0, size = skb_headlen(skb);
2049 
2050 	for (;;) {
2051 		count += ice_txd_use_count(size);
2052 
2053 		if (!nr_frags--)
2054 			break;
2055 
2056 		size = skb_frag_size(frag++);
2057 	}
2058 
2059 	return count;
2060 }
2061 
2062 /**
2063  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2064  * @skb: send buffer
2065  *
2066  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2067  * and so we need to figure out the cases where we need to linearize the skb.
2068  *
2069  * For TSO we need to count the TSO header and segment payload separately.
2070  * As such we need to check cases where we have 7 fragments or more as we
2071  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2072  * the segment payload in the first descriptor, and another 7 for the
2073  * fragments.
2074  */
2075 static bool __ice_chk_linearize(struct sk_buff *skb)
2076 {
2077 	const skb_frag_t *frag, *stale;
2078 	int nr_frags, sum;
2079 
2080 	/* no need to check if number of frags is less than 7 */
2081 	nr_frags = skb_shinfo(skb)->nr_frags;
2082 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2083 		return false;
2084 
2085 	/* We need to walk through the list and validate that each group
2086 	 * of 6 fragments totals at least gso_size.
2087 	 */
2088 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2089 	frag = &skb_shinfo(skb)->frags[0];
2090 
2091 	/* Initialize size to the negative value of gso_size minus 1. We
2092 	 * use this as the worst case scenerio in which the frag ahead
2093 	 * of us only provides one byte which is why we are limited to 6
2094 	 * descriptors for a single transmit as the header and previous
2095 	 * fragment are already consuming 2 descriptors.
2096 	 */
2097 	sum = 1 - skb_shinfo(skb)->gso_size;
2098 
2099 	/* Add size of frags 0 through 4 to create our initial sum */
2100 	sum += skb_frag_size(frag++);
2101 	sum += skb_frag_size(frag++);
2102 	sum += skb_frag_size(frag++);
2103 	sum += skb_frag_size(frag++);
2104 	sum += skb_frag_size(frag++);
2105 
2106 	/* Walk through fragments adding latest fragment, testing it, and
2107 	 * then removing stale fragments from the sum.
2108 	 */
2109 	stale = &skb_shinfo(skb)->frags[0];
2110 	for (;;) {
2111 		sum += skb_frag_size(frag++);
2112 
2113 		/* if sum is negative we failed to make sufficient progress */
2114 		if (sum < 0)
2115 			return true;
2116 
2117 		if (!nr_frags--)
2118 			break;
2119 
2120 		sum -= skb_frag_size(stale++);
2121 	}
2122 
2123 	return false;
2124 }
2125 
2126 /**
2127  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2128  * @skb:      send buffer
2129  * @count:    number of buffers used
2130  *
2131  * Note: Our HW can't scatter-gather more than 8 fragments to build
2132  * a packet on the wire and so we need to figure out the cases where we
2133  * need to linearize the skb.
2134  */
2135 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2136 {
2137 	/* Both TSO and single send will work if count is less than 8 */
2138 	if (likely(count < ICE_MAX_BUF_TXD))
2139 		return false;
2140 
2141 	if (skb_is_gso(skb))
2142 		return __ice_chk_linearize(skb);
2143 
2144 	/* we can support up to 8 data buffers for a single send */
2145 	return count != ICE_MAX_BUF_TXD;
2146 }
2147 
2148 /**
2149  * ice_xmit_frame_ring - Sends buffer on Tx ring
2150  * @skb: send buffer
2151  * @tx_ring: ring to send buffer on
2152  *
2153  * Returns NETDEV_TX_OK if sent, else an error code
2154  */
2155 static netdev_tx_t
2156 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2157 {
2158 	struct ice_tx_offload_params offload = { 0 };
2159 	struct ice_vsi *vsi = tx_ring->vsi;
2160 	struct ice_tx_buf *first;
2161 	unsigned int count;
2162 	int tso, csum;
2163 
2164 	count = ice_xmit_desc_count(skb);
2165 	if (ice_chk_linearize(skb, count)) {
2166 		if (__skb_linearize(skb))
2167 			goto out_drop;
2168 		count = ice_txd_use_count(skb->len);
2169 		tx_ring->tx_stats.tx_linearize++;
2170 	}
2171 
2172 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2173 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2174 	 *       + 4 desc gap to avoid the cache line where head is,
2175 	 *       + 1 desc for context descriptor,
2176 	 * otherwise try next time
2177 	 */
2178 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2179 			      ICE_DESCS_FOR_CTX_DESC)) {
2180 		tx_ring->tx_stats.tx_busy++;
2181 		return NETDEV_TX_BUSY;
2182 	}
2183 
2184 	offload.tx_ring = tx_ring;
2185 
2186 	/* record the location of the first descriptor for this packet */
2187 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2188 	first->skb = skb;
2189 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2190 	first->gso_segs = 1;
2191 	first->tx_flags = 0;
2192 
2193 	/* prepare the VLAN tagging flags for Tx */
2194 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2195 		goto out_drop;
2196 
2197 	/* set up TSO offload */
2198 	tso = ice_tso(first, &offload);
2199 	if (tso < 0)
2200 		goto out_drop;
2201 
2202 	/* always set up Tx checksum offload */
2203 	csum = ice_tx_csum(first, &offload);
2204 	if (csum < 0)
2205 		goto out_drop;
2206 
2207 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2208 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2209 		     vsi->type == ICE_VSI_PF &&
2210 		     vsi->port_info->is_sw_lldp))
2211 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2212 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2213 					ICE_TXD_CTX_QW1_CMD_S);
2214 
2215 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2216 		struct ice_tx_ctx_desc *cdesc;
2217 		int i = tx_ring->next_to_use;
2218 
2219 		/* grab the next descriptor */
2220 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2221 		i++;
2222 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2223 
2224 		/* setup context descriptor */
2225 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2226 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2227 		cdesc->rsvd = cpu_to_le16(0);
2228 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2229 	}
2230 
2231 	ice_tx_map(tx_ring, first, &offload);
2232 	return NETDEV_TX_OK;
2233 
2234 out_drop:
2235 	dev_kfree_skb_any(skb);
2236 	return NETDEV_TX_OK;
2237 }
2238 
2239 /**
2240  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2241  * @skb: send buffer
2242  * @netdev: network interface device structure
2243  *
2244  * Returns NETDEV_TX_OK if sent, else an error code
2245  */
2246 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2247 {
2248 	struct ice_netdev_priv *np = netdev_priv(netdev);
2249 	struct ice_vsi *vsi = np->vsi;
2250 	struct ice_ring *tx_ring;
2251 
2252 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2253 
2254 	/* hardware can't handle really short frames, hardware padding works
2255 	 * beyond this point
2256 	 */
2257 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2258 		return NETDEV_TX_OK;
2259 
2260 	return ice_xmit_frame_ring(skb, tx_ring);
2261 }
2262