1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/xdp.h> 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 #include "ice.h" 15 #include "ice_trace.h" 16 #include "ice_dcb_lib.h" 17 #include "ice_xsk.h" 18 #include "ice_eswitch.h" 19 20 #define ICE_RX_HDR_SIZE 256 21 22 #define FDIR_DESC_RXDID 0x40 23 #define ICE_FDIR_CLEAN_DELAY 10 24 25 /** 26 * ice_prgm_fdir_fltr - Program a Flow Director filter 27 * @vsi: VSI to send dummy packet 28 * @fdir_desc: flow director descriptor 29 * @raw_packet: allocated buffer for flow director 30 */ 31 int 32 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 33 u8 *raw_packet) 34 { 35 struct ice_tx_buf *tx_buf, *first; 36 struct ice_fltr_desc *f_desc; 37 struct ice_tx_desc *tx_desc; 38 struct ice_tx_ring *tx_ring; 39 struct device *dev; 40 dma_addr_t dma; 41 u32 td_cmd; 42 u16 i; 43 44 /* VSI and Tx ring */ 45 if (!vsi) 46 return -ENOENT; 47 tx_ring = vsi->tx_rings[0]; 48 if (!tx_ring || !tx_ring->desc) 49 return -ENOENT; 50 dev = tx_ring->dev; 51 52 /* we are using two descriptors to add/del a filter and we can wait */ 53 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 54 if (!i) 55 return -EAGAIN; 56 msleep_interruptible(1); 57 } 58 59 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 60 DMA_TO_DEVICE); 61 62 if (dma_mapping_error(dev, dma)) 63 return -EINVAL; 64 65 /* grab the next descriptor */ 66 i = tx_ring->next_to_use; 67 first = &tx_ring->tx_buf[i]; 68 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 69 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 70 71 i++; 72 i = (i < tx_ring->count) ? i : 0; 73 tx_desc = ICE_TX_DESC(tx_ring, i); 74 tx_buf = &tx_ring->tx_buf[i]; 75 76 i++; 77 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 78 79 memset(tx_buf, 0, sizeof(*tx_buf)); 80 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 81 dma_unmap_addr_set(tx_buf, dma, dma); 82 83 tx_desc->buf_addr = cpu_to_le64(dma); 84 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 85 ICE_TX_DESC_CMD_RE; 86 87 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; 88 tx_buf->raw_buf = raw_packet; 89 90 tx_desc->cmd_type_offset_bsz = 91 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 92 93 /* Force memory write to complete before letting h/w know 94 * there are new descriptors to fetch. 95 */ 96 wmb(); 97 98 /* mark the data descriptor to be watched */ 99 first->next_to_watch = tx_desc; 100 101 writel(tx_ring->next_to_use, tx_ring->tail); 102 103 return 0; 104 } 105 106 /** 107 * ice_unmap_and_free_tx_buf - Release a Tx buffer 108 * @ring: the ring that owns the buffer 109 * @tx_buf: the buffer to free 110 */ 111 static void 112 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 113 { 114 if (tx_buf->skb) { 115 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 116 devm_kfree(ring->dev, tx_buf->raw_buf); 117 else if (ice_ring_is_xdp(ring)) 118 page_frag_free(tx_buf->raw_buf); 119 else 120 dev_kfree_skb_any(tx_buf->skb); 121 if (dma_unmap_len(tx_buf, len)) 122 dma_unmap_single(ring->dev, 123 dma_unmap_addr(tx_buf, dma), 124 dma_unmap_len(tx_buf, len), 125 DMA_TO_DEVICE); 126 } else if (dma_unmap_len(tx_buf, len)) { 127 dma_unmap_page(ring->dev, 128 dma_unmap_addr(tx_buf, dma), 129 dma_unmap_len(tx_buf, len), 130 DMA_TO_DEVICE); 131 } 132 133 tx_buf->next_to_watch = NULL; 134 tx_buf->skb = NULL; 135 dma_unmap_len_set(tx_buf, len, 0); 136 /* tx_buf must be completely set up in the transmit path */ 137 } 138 139 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 140 { 141 return netdev_get_tx_queue(ring->netdev, ring->q_index); 142 } 143 144 /** 145 * ice_clean_tx_ring - Free any empty Tx buffers 146 * @tx_ring: ring to be cleaned 147 */ 148 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 149 { 150 u32 size; 151 u16 i; 152 153 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 154 ice_xsk_clean_xdp_ring(tx_ring); 155 goto tx_skip_free; 156 } 157 158 /* ring already cleared, nothing to do */ 159 if (!tx_ring->tx_buf) 160 return; 161 162 /* Free all the Tx ring sk_buffs */ 163 for (i = 0; i < tx_ring->count; i++) 164 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 165 166 tx_skip_free: 167 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 168 169 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 170 PAGE_SIZE); 171 /* Zero out the descriptor ring */ 172 memset(tx_ring->desc, 0, size); 173 174 tx_ring->next_to_use = 0; 175 tx_ring->next_to_clean = 0; 176 177 if (!tx_ring->netdev) 178 return; 179 180 /* cleanup Tx queue statistics */ 181 netdev_tx_reset_queue(txring_txq(tx_ring)); 182 } 183 184 /** 185 * ice_free_tx_ring - Free Tx resources per queue 186 * @tx_ring: Tx descriptor ring for a specific queue 187 * 188 * Free all transmit software resources 189 */ 190 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 191 { 192 u32 size; 193 194 ice_clean_tx_ring(tx_ring); 195 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 196 tx_ring->tx_buf = NULL; 197 198 if (tx_ring->desc) { 199 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 200 PAGE_SIZE); 201 dmam_free_coherent(tx_ring->dev, size, 202 tx_ring->desc, tx_ring->dma); 203 tx_ring->desc = NULL; 204 } 205 } 206 207 /** 208 * ice_clean_tx_irq - Reclaim resources after transmit completes 209 * @tx_ring: Tx ring to clean 210 * @napi_budget: Used to determine if we are in netpoll 211 * 212 * Returns true if there's any budget left (e.g. the clean is finished) 213 */ 214 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 215 { 216 unsigned int total_bytes = 0, total_pkts = 0; 217 unsigned int budget = ICE_DFLT_IRQ_WORK; 218 struct ice_vsi *vsi = tx_ring->vsi; 219 s16 i = tx_ring->next_to_clean; 220 struct ice_tx_desc *tx_desc; 221 struct ice_tx_buf *tx_buf; 222 223 /* get the bql data ready */ 224 if (!ice_ring_is_xdp(tx_ring)) 225 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 226 227 tx_buf = &tx_ring->tx_buf[i]; 228 tx_desc = ICE_TX_DESC(tx_ring, i); 229 i -= tx_ring->count; 230 231 prefetch(&vsi->state); 232 233 do { 234 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 235 236 /* if next_to_watch is not set then there is no work pending */ 237 if (!eop_desc) 238 break; 239 240 /* follow the guidelines of other drivers */ 241 prefetchw(&tx_buf->skb->users); 242 243 smp_rmb(); /* prevent any other reads prior to eop_desc */ 244 245 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 246 /* if the descriptor isn't done, no work yet to do */ 247 if (!(eop_desc->cmd_type_offset_bsz & 248 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 249 break; 250 251 /* clear next_to_watch to prevent false hangs */ 252 tx_buf->next_to_watch = NULL; 253 254 /* update the statistics for this packet */ 255 total_bytes += tx_buf->bytecount; 256 total_pkts += tx_buf->gso_segs; 257 258 /* free the skb */ 259 napi_consume_skb(tx_buf->skb, napi_budget); 260 261 /* unmap skb header data */ 262 dma_unmap_single(tx_ring->dev, 263 dma_unmap_addr(tx_buf, dma), 264 dma_unmap_len(tx_buf, len), 265 DMA_TO_DEVICE); 266 267 /* clear tx_buf data */ 268 tx_buf->skb = NULL; 269 dma_unmap_len_set(tx_buf, len, 0); 270 271 /* unmap remaining buffers */ 272 while (tx_desc != eop_desc) { 273 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 274 tx_buf++; 275 tx_desc++; 276 i++; 277 if (unlikely(!i)) { 278 i -= tx_ring->count; 279 tx_buf = tx_ring->tx_buf; 280 tx_desc = ICE_TX_DESC(tx_ring, 0); 281 } 282 283 /* unmap any remaining paged data */ 284 if (dma_unmap_len(tx_buf, len)) { 285 dma_unmap_page(tx_ring->dev, 286 dma_unmap_addr(tx_buf, dma), 287 dma_unmap_len(tx_buf, len), 288 DMA_TO_DEVICE); 289 dma_unmap_len_set(tx_buf, len, 0); 290 } 291 } 292 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 293 294 /* move us one more past the eop_desc for start of next pkt */ 295 tx_buf++; 296 tx_desc++; 297 i++; 298 if (unlikely(!i)) { 299 i -= tx_ring->count; 300 tx_buf = tx_ring->tx_buf; 301 tx_desc = ICE_TX_DESC(tx_ring, 0); 302 } 303 304 prefetch(tx_desc); 305 306 /* update budget accounting */ 307 budget--; 308 } while (likely(budget)); 309 310 i += tx_ring->count; 311 tx_ring->next_to_clean = i; 312 313 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 314 315 if (ice_ring_is_xdp(tx_ring)) 316 return !!budget; 317 318 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 319 320 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 321 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 322 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 323 /* Make sure that anybody stopping the queue after this 324 * sees the new next_to_clean. 325 */ 326 smp_mb(); 327 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 328 !test_bit(ICE_VSI_DOWN, vsi->state)) { 329 netif_tx_wake_queue(txring_txq(tx_ring)); 330 ++tx_ring->tx_stats.restart_q; 331 } 332 } 333 334 return !!budget; 335 } 336 337 /** 338 * ice_setup_tx_ring - Allocate the Tx descriptors 339 * @tx_ring: the Tx ring to set up 340 * 341 * Return 0 on success, negative on error 342 */ 343 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 344 { 345 struct device *dev = tx_ring->dev; 346 u32 size; 347 348 if (!dev) 349 return -ENOMEM; 350 351 /* warn if we are about to overwrite the pointer */ 352 WARN_ON(tx_ring->tx_buf); 353 tx_ring->tx_buf = 354 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 355 GFP_KERNEL); 356 if (!tx_ring->tx_buf) 357 return -ENOMEM; 358 359 /* round up to nearest page */ 360 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 361 PAGE_SIZE); 362 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 363 GFP_KERNEL); 364 if (!tx_ring->desc) { 365 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 366 size); 367 goto err; 368 } 369 370 tx_ring->next_to_use = 0; 371 tx_ring->next_to_clean = 0; 372 tx_ring->tx_stats.prev_pkt = -1; 373 return 0; 374 375 err: 376 devm_kfree(dev, tx_ring->tx_buf); 377 tx_ring->tx_buf = NULL; 378 return -ENOMEM; 379 } 380 381 /** 382 * ice_clean_rx_ring - Free Rx buffers 383 * @rx_ring: ring to be cleaned 384 */ 385 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 386 { 387 struct device *dev = rx_ring->dev; 388 u32 size; 389 u16 i; 390 391 /* ring already cleared, nothing to do */ 392 if (!rx_ring->rx_buf) 393 return; 394 395 if (rx_ring->skb) { 396 dev_kfree_skb(rx_ring->skb); 397 rx_ring->skb = NULL; 398 } 399 400 if (rx_ring->xsk_pool) { 401 ice_xsk_clean_rx_ring(rx_ring); 402 goto rx_skip_free; 403 } 404 405 /* Free all the Rx ring sk_buffs */ 406 for (i = 0; i < rx_ring->count; i++) { 407 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 408 409 if (!rx_buf->page) 410 continue; 411 412 /* Invalidate cache lines that may have been written to by 413 * device so that we avoid corrupting memory. 414 */ 415 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 416 rx_buf->page_offset, 417 rx_ring->rx_buf_len, 418 DMA_FROM_DEVICE); 419 420 /* free resources associated with mapping */ 421 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 422 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 423 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 424 425 rx_buf->page = NULL; 426 rx_buf->page_offset = 0; 427 } 428 429 rx_skip_free: 430 if (rx_ring->xsk_pool) 431 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 432 else 433 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 434 435 /* Zero out the descriptor ring */ 436 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 437 PAGE_SIZE); 438 memset(rx_ring->desc, 0, size); 439 440 rx_ring->next_to_alloc = 0; 441 rx_ring->next_to_clean = 0; 442 rx_ring->next_to_use = 0; 443 } 444 445 /** 446 * ice_free_rx_ring - Free Rx resources 447 * @rx_ring: ring to clean the resources from 448 * 449 * Free all receive software resources 450 */ 451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 452 { 453 u32 size; 454 455 ice_clean_rx_ring(rx_ring); 456 if (rx_ring->vsi->type == ICE_VSI_PF) 457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 459 rx_ring->xdp_prog = NULL; 460 if (rx_ring->xsk_pool) { 461 kfree(rx_ring->xdp_buf); 462 rx_ring->xdp_buf = NULL; 463 } else { 464 kfree(rx_ring->rx_buf); 465 rx_ring->rx_buf = NULL; 466 } 467 468 if (rx_ring->desc) { 469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 470 PAGE_SIZE); 471 dmam_free_coherent(rx_ring->dev, size, 472 rx_ring->desc, rx_ring->dma); 473 rx_ring->desc = NULL; 474 } 475 } 476 477 /** 478 * ice_setup_rx_ring - Allocate the Rx descriptors 479 * @rx_ring: the Rx ring to set up 480 * 481 * Return 0 on success, negative on error 482 */ 483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 484 { 485 struct device *dev = rx_ring->dev; 486 u32 size; 487 488 if (!dev) 489 return -ENOMEM; 490 491 /* warn if we are about to overwrite the pointer */ 492 WARN_ON(rx_ring->rx_buf); 493 rx_ring->rx_buf = 494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 495 if (!rx_ring->rx_buf) 496 return -ENOMEM; 497 498 /* round up to nearest page */ 499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 500 PAGE_SIZE); 501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 502 GFP_KERNEL); 503 if (!rx_ring->desc) { 504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 505 size); 506 goto err; 507 } 508 509 rx_ring->next_to_use = 0; 510 rx_ring->next_to_clean = 0; 511 512 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 513 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 514 515 if (rx_ring->vsi->type == ICE_VSI_PF && 516 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 517 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 518 rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) 519 goto err; 520 return 0; 521 522 err: 523 kfree(rx_ring->rx_buf); 524 rx_ring->rx_buf = NULL; 525 return -ENOMEM; 526 } 527 528 static unsigned int 529 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) 530 { 531 unsigned int truesize; 532 533 #if (PAGE_SIZE < 8192) 534 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 535 #else 536 truesize = rx_ring->rx_offset ? 537 SKB_DATA_ALIGN(rx_ring->rx_offset + size) + 538 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 539 SKB_DATA_ALIGN(size); 540 #endif 541 return truesize; 542 } 543 544 /** 545 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 546 * @rx_ring: Rx ring 547 * @xdp: xdp_buff used as input to the XDP program 548 * @xdp_prog: XDP program to run 549 * @xdp_ring: ring to be used for XDP_TX action 550 * 551 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 552 */ 553 static int 554 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 555 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 556 { 557 int err; 558 u32 act; 559 560 act = bpf_prog_run_xdp(xdp_prog, xdp); 561 switch (act) { 562 case XDP_PASS: 563 return ICE_XDP_PASS; 564 case XDP_TX: 565 if (static_branch_unlikely(&ice_xdp_locking_key)) 566 spin_lock(&xdp_ring->tx_lock); 567 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); 568 if (static_branch_unlikely(&ice_xdp_locking_key)) 569 spin_unlock(&xdp_ring->tx_lock); 570 if (err == ICE_XDP_CONSUMED) 571 goto out_failure; 572 return err; 573 case XDP_REDIRECT: 574 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 575 if (err) 576 goto out_failure; 577 return ICE_XDP_REDIR; 578 default: 579 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 580 fallthrough; 581 case XDP_ABORTED: 582 out_failure: 583 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 584 fallthrough; 585 case XDP_DROP: 586 return ICE_XDP_CONSUMED; 587 } 588 } 589 590 /** 591 * ice_xdp_xmit - submit packets to XDP ring for transmission 592 * @dev: netdev 593 * @n: number of XDP frames to be transmitted 594 * @frames: XDP frames to be transmitted 595 * @flags: transmit flags 596 * 597 * Returns number of frames successfully sent. Failed frames 598 * will be free'ed by XDP core. 599 * For error cases, a negative errno code is returned and no-frames 600 * are transmitted (caller must handle freeing frames). 601 */ 602 int 603 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 604 u32 flags) 605 { 606 struct ice_netdev_priv *np = netdev_priv(dev); 607 unsigned int queue_index = smp_processor_id(); 608 struct ice_vsi *vsi = np->vsi; 609 struct ice_tx_ring *xdp_ring; 610 int nxmit = 0, i; 611 612 if (test_bit(ICE_VSI_DOWN, vsi->state)) 613 return -ENETDOWN; 614 615 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) 616 return -ENXIO; 617 618 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 619 return -EINVAL; 620 621 if (static_branch_unlikely(&ice_xdp_locking_key)) { 622 queue_index %= vsi->num_xdp_txq; 623 xdp_ring = vsi->xdp_rings[queue_index]; 624 spin_lock(&xdp_ring->tx_lock); 625 } else { 626 xdp_ring = vsi->xdp_rings[queue_index]; 627 } 628 629 for (i = 0; i < n; i++) { 630 struct xdp_frame *xdpf = frames[i]; 631 int err; 632 633 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 634 if (err != ICE_XDP_TX) 635 break; 636 nxmit++; 637 } 638 639 if (unlikely(flags & XDP_XMIT_FLUSH)) 640 ice_xdp_ring_update_tail(xdp_ring); 641 642 if (static_branch_unlikely(&ice_xdp_locking_key)) 643 spin_unlock(&xdp_ring->tx_lock); 644 645 return nxmit; 646 } 647 648 /** 649 * ice_alloc_mapped_page - recycle or make a new page 650 * @rx_ring: ring to use 651 * @bi: rx_buf struct to modify 652 * 653 * Returns true if the page was successfully allocated or 654 * reused. 655 */ 656 static bool 657 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 658 { 659 struct page *page = bi->page; 660 dma_addr_t dma; 661 662 /* since we are recycling buffers we should seldom need to alloc */ 663 if (likely(page)) 664 return true; 665 666 /* alloc new page for storage */ 667 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 668 if (unlikely(!page)) { 669 rx_ring->rx_stats.alloc_page_failed++; 670 return false; 671 } 672 673 /* map page for use */ 674 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 675 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 676 677 /* if mapping failed free memory back to system since 678 * there isn't much point in holding memory we can't use 679 */ 680 if (dma_mapping_error(rx_ring->dev, dma)) { 681 __free_pages(page, ice_rx_pg_order(rx_ring)); 682 rx_ring->rx_stats.alloc_page_failed++; 683 return false; 684 } 685 686 bi->dma = dma; 687 bi->page = page; 688 bi->page_offset = rx_ring->rx_offset; 689 page_ref_add(page, USHRT_MAX - 1); 690 bi->pagecnt_bias = USHRT_MAX; 691 692 return true; 693 } 694 695 /** 696 * ice_alloc_rx_bufs - Replace used receive buffers 697 * @rx_ring: ring to place buffers on 698 * @cleaned_count: number of buffers to replace 699 * 700 * Returns false if all allocations were successful, true if any fail. Returning 701 * true signals to the caller that we didn't replace cleaned_count buffers and 702 * there is more work to do. 703 * 704 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 705 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 706 * multiple tail writes per call. 707 */ 708 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) 709 { 710 union ice_32b_rx_flex_desc *rx_desc; 711 u16 ntu = rx_ring->next_to_use; 712 struct ice_rx_buf *bi; 713 714 /* do nothing if no valid netdev defined */ 715 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || 716 !cleaned_count) 717 return false; 718 719 /* get the Rx descriptor and buffer based on next_to_use */ 720 rx_desc = ICE_RX_DESC(rx_ring, ntu); 721 bi = &rx_ring->rx_buf[ntu]; 722 723 do { 724 /* if we fail here, we have work remaining */ 725 if (!ice_alloc_mapped_page(rx_ring, bi)) 726 break; 727 728 /* sync the buffer for use by the device */ 729 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 730 bi->page_offset, 731 rx_ring->rx_buf_len, 732 DMA_FROM_DEVICE); 733 734 /* Refresh the desc even if buffer_addrs didn't change 735 * because each write-back erases this info. 736 */ 737 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 738 739 rx_desc++; 740 bi++; 741 ntu++; 742 if (unlikely(ntu == rx_ring->count)) { 743 rx_desc = ICE_RX_DESC(rx_ring, 0); 744 bi = rx_ring->rx_buf; 745 ntu = 0; 746 } 747 748 /* clear the status bits for the next_to_use descriptor */ 749 rx_desc->wb.status_error0 = 0; 750 751 cleaned_count--; 752 } while (cleaned_count); 753 754 if (rx_ring->next_to_use != ntu) 755 ice_release_rx_desc(rx_ring, ntu); 756 757 return !!cleaned_count; 758 } 759 760 /** 761 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 762 * @rx_buf: Rx buffer to adjust 763 * @size: Size of adjustment 764 * 765 * Update the offset within page so that Rx buf will be ready to be reused. 766 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 767 * so the second half of page assigned to Rx buffer will be used, otherwise 768 * the offset is moved by "size" bytes 769 */ 770 static void 771 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 772 { 773 #if (PAGE_SIZE < 8192) 774 /* flip page offset to other buffer */ 775 rx_buf->page_offset ^= size; 776 #else 777 /* move offset up to the next cache line */ 778 rx_buf->page_offset += size; 779 #endif 780 } 781 782 /** 783 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 784 * @rx_buf: buffer containing the page 785 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call 786 * 787 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 788 * which will assign the current buffer to the buffer that next_to_alloc is 789 * pointing to; otherwise, the DMA mapping needs to be destroyed and 790 * page freed 791 */ 792 static bool 793 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) 794 { 795 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 796 struct page *page = rx_buf->page; 797 798 /* avoid re-using remote and pfmemalloc pages */ 799 if (!dev_page_is_reusable(page)) 800 return false; 801 802 #if (PAGE_SIZE < 8192) 803 /* if we are only owner of page we can reuse it */ 804 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 805 return false; 806 #else 807 #define ICE_LAST_OFFSET \ 808 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) 809 if (rx_buf->page_offset > ICE_LAST_OFFSET) 810 return false; 811 #endif /* PAGE_SIZE < 8192) */ 812 813 /* If we have drained the page fragment pool we need to update 814 * the pagecnt_bias and page count so that we fully restock the 815 * number of references the driver holds. 816 */ 817 if (unlikely(pagecnt_bias == 1)) { 818 page_ref_add(page, USHRT_MAX - 1); 819 rx_buf->pagecnt_bias = USHRT_MAX; 820 } 821 822 return true; 823 } 824 825 /** 826 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag 827 * @rx_ring: Rx descriptor ring to transact packets on 828 * @rx_buf: buffer containing page to add 829 * @skb: sk_buff to place the data into 830 * @size: packet length from rx_desc 831 * 832 * This function will add the data contained in rx_buf->page to the skb. 833 * It will just attach the page as a frag to the skb. 834 * The function will then update the page offset. 835 */ 836 static void 837 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 838 struct sk_buff *skb, unsigned int size) 839 { 840 #if (PAGE_SIZE >= 8192) 841 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 842 #else 843 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 844 #endif 845 846 if (!size) 847 return; 848 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, 849 rx_buf->page_offset, size, truesize); 850 851 /* page is being used so we must update the page offset */ 852 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 853 } 854 855 /** 856 * ice_reuse_rx_page - page flip buffer and store it back on the ring 857 * @rx_ring: Rx descriptor ring to store buffers on 858 * @old_buf: donor buffer to have page reused 859 * 860 * Synchronizes page for reuse by the adapter 861 */ 862 static void 863 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 864 { 865 u16 nta = rx_ring->next_to_alloc; 866 struct ice_rx_buf *new_buf; 867 868 new_buf = &rx_ring->rx_buf[nta]; 869 870 /* update, and store next to alloc */ 871 nta++; 872 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 873 874 /* Transfer page from old buffer to new buffer. 875 * Move each member individually to avoid possible store 876 * forwarding stalls and unnecessary copy of skb. 877 */ 878 new_buf->dma = old_buf->dma; 879 new_buf->page = old_buf->page; 880 new_buf->page_offset = old_buf->page_offset; 881 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 882 } 883 884 /** 885 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 886 * @rx_ring: Rx descriptor ring to transact packets on 887 * @size: size of buffer to add to skb 888 * @rx_buf_pgcnt: rx_buf page refcount 889 * 890 * This function will pull an Rx buffer from the ring and synchronize it 891 * for use by the CPU. 892 */ 893 static struct ice_rx_buf * 894 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 895 int *rx_buf_pgcnt) 896 { 897 struct ice_rx_buf *rx_buf; 898 899 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 900 *rx_buf_pgcnt = 901 #if (PAGE_SIZE < 8192) 902 page_count(rx_buf->page); 903 #else 904 0; 905 #endif 906 prefetchw(rx_buf->page); 907 908 if (!size) 909 return rx_buf; 910 /* we are reusing so sync this buffer for CPU use */ 911 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 912 rx_buf->page_offset, size, 913 DMA_FROM_DEVICE); 914 915 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 916 rx_buf->pagecnt_bias--; 917 918 return rx_buf; 919 } 920 921 /** 922 * ice_build_skb - Build skb around an existing buffer 923 * @rx_ring: Rx descriptor ring to transact packets on 924 * @rx_buf: Rx buffer to pull data from 925 * @xdp: xdp_buff pointing to the data 926 * 927 * This function builds an skb around an existing Rx buffer, taking care 928 * to set up the skb correctly and avoid any memcpy overhead. 929 */ 930 static struct sk_buff * 931 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 932 struct xdp_buff *xdp) 933 { 934 u8 metasize = xdp->data - xdp->data_meta; 935 #if (PAGE_SIZE < 8192) 936 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 937 #else 938 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 939 SKB_DATA_ALIGN(xdp->data_end - 940 xdp->data_hard_start); 941 #endif 942 struct sk_buff *skb; 943 944 /* Prefetch first cache line of first page. If xdp->data_meta 945 * is unused, this points exactly as xdp->data, otherwise we 946 * likely have a consumer accessing first few bytes of meta 947 * data, and then actual data. 948 */ 949 net_prefetch(xdp->data_meta); 950 /* build an skb around the page buffer */ 951 skb = napi_build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* must to record Rx queue, otherwise OS features such as 956 * symmetric queue won't work 957 */ 958 skb_record_rx_queue(skb, rx_ring->q_index); 959 960 /* update pointers within the skb to store the data */ 961 skb_reserve(skb, xdp->data - xdp->data_hard_start); 962 __skb_put(skb, xdp->data_end - xdp->data); 963 if (metasize) 964 skb_metadata_set(skb, metasize); 965 966 /* buffer is used by skb, update page_offset */ 967 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 968 969 return skb; 970 } 971 972 /** 973 * ice_construct_skb - Allocate skb and populate it 974 * @rx_ring: Rx descriptor ring to transact packets on 975 * @rx_buf: Rx buffer to pull data from 976 * @xdp: xdp_buff pointing to the data 977 * 978 * This function allocates an skb. It then populates it with the page 979 * data from the current receive descriptor, taking care to set up the 980 * skb correctly. 981 */ 982 static struct sk_buff * 983 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 984 struct xdp_buff *xdp) 985 { 986 unsigned int metasize = xdp->data - xdp->data_meta; 987 unsigned int size = xdp->data_end - xdp->data; 988 unsigned int headlen; 989 struct sk_buff *skb; 990 991 /* prefetch first cache line of first page */ 992 net_prefetch(xdp->data_meta); 993 994 /* allocate a skb to store the frags */ 995 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 996 ICE_RX_HDR_SIZE + metasize, 997 GFP_ATOMIC | __GFP_NOWARN); 998 if (unlikely(!skb)) 999 return NULL; 1000 1001 skb_record_rx_queue(skb, rx_ring->q_index); 1002 /* Determine available headroom for copy */ 1003 headlen = size; 1004 if (headlen > ICE_RX_HDR_SIZE) 1005 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1006 1007 /* align pull length to size of long to optimize memcpy performance */ 1008 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1009 ALIGN(headlen + metasize, sizeof(long))); 1010 1011 if (metasize) { 1012 skb_metadata_set(skb, metasize); 1013 __skb_pull(skb, metasize); 1014 } 1015 1016 /* if we exhaust the linear part then add what is left as a frag */ 1017 size -= headlen; 1018 if (size) { 1019 #if (PAGE_SIZE >= 8192) 1020 unsigned int truesize = SKB_DATA_ALIGN(size); 1021 #else 1022 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; 1023 #endif 1024 skb_add_rx_frag(skb, 0, rx_buf->page, 1025 rx_buf->page_offset + headlen, size, truesize); 1026 /* buffer is used by skb, update page_offset */ 1027 ice_rx_buf_adjust_pg_offset(rx_buf, truesize); 1028 } else { 1029 /* buffer is unused, reset bias back to rx_buf; data was copied 1030 * onto skb's linear part so there's no need for adjusting 1031 * page offset and we can reuse this buffer as-is 1032 */ 1033 rx_buf->pagecnt_bias++; 1034 } 1035 1036 return skb; 1037 } 1038 1039 /** 1040 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1041 * @rx_ring: Rx descriptor ring to transact packets on 1042 * @rx_buf: Rx buffer to pull data from 1043 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() 1044 * 1045 * This function will update next_to_clean and then clean up the contents 1046 * of the rx_buf. It will either recycle the buffer or unmap it and free 1047 * the associated resources. 1048 */ 1049 static void 1050 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, 1051 int rx_buf_pgcnt) 1052 { 1053 u16 ntc = rx_ring->next_to_clean + 1; 1054 1055 /* fetch, update, and store next to clean */ 1056 ntc = (ntc < rx_ring->count) ? ntc : 0; 1057 rx_ring->next_to_clean = ntc; 1058 1059 if (!rx_buf) 1060 return; 1061 1062 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { 1063 /* hand second half of page back to the ring */ 1064 ice_reuse_rx_page(rx_ring, rx_buf); 1065 } else { 1066 /* we are not reusing the buffer so unmap it */ 1067 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1068 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1069 ICE_RX_DMA_ATTR); 1070 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1071 } 1072 1073 /* clear contents of buffer_info */ 1074 rx_buf->page = NULL; 1075 } 1076 1077 /** 1078 * ice_is_non_eop - process handling of non-EOP buffers 1079 * @rx_ring: Rx ring being processed 1080 * @rx_desc: Rx descriptor for current buffer 1081 * 1082 * If the buffer is an EOP buffer, this function exits returning false, 1083 * otherwise return true indicating that this is in fact a non-EOP buffer. 1084 */ 1085 static bool 1086 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) 1087 { 1088 /* if we are the last buffer then there is nothing else to do */ 1089 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) 1090 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) 1091 return false; 1092 1093 rx_ring->rx_stats.non_eop_descs++; 1094 1095 return true; 1096 } 1097 1098 /** 1099 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1100 * @rx_ring: Rx descriptor ring to transact packets on 1101 * @budget: Total limit on number of packets to process 1102 * 1103 * This function provides a "bounce buffer" approach to Rx interrupt 1104 * processing. The advantage to this is that on systems that have 1105 * expensive overhead for IOMMU access this provides a means of avoiding 1106 * it by maintaining the mapping of the page to the system. 1107 * 1108 * Returns amount of work completed 1109 */ 1110 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1111 { 1112 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; 1113 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 1114 unsigned int offset = rx_ring->rx_offset; 1115 struct ice_tx_ring *xdp_ring = NULL; 1116 unsigned int xdp_res, xdp_xmit = 0; 1117 struct sk_buff *skb = rx_ring->skb; 1118 struct bpf_prog *xdp_prog = NULL; 1119 struct xdp_buff xdp; 1120 bool failure; 1121 1122 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1123 #if (PAGE_SIZE < 8192) 1124 frame_sz = ice_rx_frame_truesize(rx_ring, 0); 1125 #endif 1126 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1127 1128 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1129 if (xdp_prog) 1130 xdp_ring = rx_ring->xdp_ring; 1131 1132 /* start the loop to process Rx packets bounded by 'budget' */ 1133 while (likely(total_rx_pkts < (unsigned int)budget)) { 1134 union ice_32b_rx_flex_desc *rx_desc; 1135 struct ice_rx_buf *rx_buf; 1136 unsigned char *hard_start; 1137 unsigned int size; 1138 u16 stat_err_bits; 1139 int rx_buf_pgcnt; 1140 u16 vlan_tag = 0; 1141 u16 rx_ptype; 1142 1143 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1144 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 1145 1146 /* status_error_len will always be zero for unused descriptors 1147 * because it's cleared in cleanup, and overlaps with hdr_addr 1148 * which is always zero because packet split isn't used, if the 1149 * hardware wrote DD then it will be non-zero 1150 */ 1151 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1152 if (!ice_test_staterr(rx_desc, stat_err_bits)) 1153 break; 1154 1155 /* This memory barrier is needed to keep us from reading 1156 * any other fields out of the rx_desc until we know the 1157 * DD bit is set. 1158 */ 1159 dma_rmb(); 1160 1161 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1162 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { 1163 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1164 1165 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && 1166 ctrl_vsi->vf_id != ICE_INVAL_VFID) 1167 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1168 ice_put_rx_buf(rx_ring, NULL, 0); 1169 cleaned_count++; 1170 continue; 1171 } 1172 1173 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1174 ICE_RX_FLX_DESC_PKT_LEN_M; 1175 1176 /* retrieve a buffer from the ring */ 1177 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); 1178 1179 if (!size) { 1180 xdp.data = NULL; 1181 xdp.data_end = NULL; 1182 xdp.data_hard_start = NULL; 1183 xdp.data_meta = NULL; 1184 goto construct_skb; 1185 } 1186 1187 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1188 offset; 1189 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1190 #if (PAGE_SIZE > 4096) 1191 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1192 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); 1193 #endif 1194 1195 if (!xdp_prog) 1196 goto construct_skb; 1197 1198 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); 1199 if (!xdp_res) 1200 goto construct_skb; 1201 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { 1202 xdp_xmit |= xdp_res; 1203 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); 1204 } else { 1205 rx_buf->pagecnt_bias++; 1206 } 1207 total_rx_bytes += size; 1208 total_rx_pkts++; 1209 1210 cleaned_count++; 1211 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1212 continue; 1213 construct_skb: 1214 if (skb) { 1215 ice_add_rx_frag(rx_ring, rx_buf, skb, size); 1216 } else if (likely(xdp.data)) { 1217 if (ice_ring_uses_build_skb(rx_ring)) 1218 skb = ice_build_skb(rx_ring, rx_buf, &xdp); 1219 else 1220 skb = ice_construct_skb(rx_ring, rx_buf, &xdp); 1221 } 1222 /* exit if we failed to retrieve a buffer */ 1223 if (!skb) { 1224 rx_ring->rx_stats.alloc_buf_failed++; 1225 if (rx_buf) 1226 rx_buf->pagecnt_bias++; 1227 break; 1228 } 1229 1230 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); 1231 cleaned_count++; 1232 1233 /* skip if it is NOP desc */ 1234 if (ice_is_non_eop(rx_ring, rx_desc)) 1235 continue; 1236 1237 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1238 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { 1239 dev_kfree_skb_any(skb); 1240 continue; 1241 } 1242 1243 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 1244 if (ice_test_staterr(rx_desc, stat_err_bits)) 1245 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 1246 1247 /* pad the skb if needed, to make a valid ethernet frame */ 1248 if (eth_skb_pad(skb)) { 1249 skb = NULL; 1250 continue; 1251 } 1252 1253 /* probably a little skewed due to removing CRC */ 1254 total_rx_bytes += skb->len; 1255 1256 /* populate checksum, VLAN, and protocol */ 1257 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 1258 ICE_RX_FLEX_DESC_PTYPE_M; 1259 1260 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1261 1262 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1263 /* send completed skb up the stack */ 1264 ice_receive_skb(rx_ring, skb, vlan_tag); 1265 skb = NULL; 1266 1267 /* update budget accounting */ 1268 total_rx_pkts++; 1269 } 1270 1271 /* return up to cleaned_count buffers to hardware */ 1272 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); 1273 1274 if (xdp_prog) 1275 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 1276 rx_ring->skb = skb; 1277 1278 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); 1279 1280 /* guarantee a trip back through this routine if there was a failure */ 1281 return failure ? budget : (int)total_rx_pkts; 1282 } 1283 1284 static void __ice_update_sample(struct ice_q_vector *q_vector, 1285 struct ice_ring_container *rc, 1286 struct dim_sample *sample, 1287 bool is_tx) 1288 { 1289 u64 packets = 0, bytes = 0; 1290 1291 if (is_tx) { 1292 struct ice_tx_ring *tx_ring; 1293 1294 ice_for_each_tx_ring(tx_ring, *rc) { 1295 packets += tx_ring->stats.pkts; 1296 bytes += tx_ring->stats.bytes; 1297 } 1298 } else { 1299 struct ice_rx_ring *rx_ring; 1300 1301 ice_for_each_rx_ring(rx_ring, *rc) { 1302 packets += rx_ring->stats.pkts; 1303 bytes += rx_ring->stats.bytes; 1304 } 1305 } 1306 1307 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1308 sample->comp_ctr = 0; 1309 1310 /* if dim settings get stale, like when not updated for 1 1311 * second or longer, force it to start again. This addresses the 1312 * frequent case of an idle queue being switched to by the 1313 * scheduler. The 1,000 here means 1,000 milliseconds. 1314 */ 1315 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1316 rc->dim.state = DIM_START_MEASURE; 1317 } 1318 1319 /** 1320 * ice_net_dim - Update net DIM algorithm 1321 * @q_vector: the vector associated with the interrupt 1322 * 1323 * Create a DIM sample and notify net_dim() so that it can possibly decide 1324 * a new ITR value based on incoming packets, bytes, and interrupts. 1325 * 1326 * This function is a no-op if the ring is not configured to dynamic ITR. 1327 */ 1328 static void ice_net_dim(struct ice_q_vector *q_vector) 1329 { 1330 struct ice_ring_container *tx = &q_vector->tx; 1331 struct ice_ring_container *rx = &q_vector->rx; 1332 1333 if (ITR_IS_DYNAMIC(tx)) { 1334 struct dim_sample dim_sample; 1335 1336 __ice_update_sample(q_vector, tx, &dim_sample, true); 1337 net_dim(&tx->dim, dim_sample); 1338 } 1339 1340 if (ITR_IS_DYNAMIC(rx)) { 1341 struct dim_sample dim_sample; 1342 1343 __ice_update_sample(q_vector, rx, &dim_sample, false); 1344 net_dim(&rx->dim, dim_sample); 1345 } 1346 } 1347 1348 /** 1349 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1350 * @itr_idx: interrupt throttling index 1351 * @itr: interrupt throttling value in usecs 1352 */ 1353 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1354 { 1355 /* The ITR value is reported in microseconds, and the register value is 1356 * recorded in 2 microsecond units. For this reason we only need to 1357 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1358 * granularity as a shift instead of division. The mask makes sure the 1359 * ITR value is never odd so we don't accidentally write into the field 1360 * prior to the ITR field. 1361 */ 1362 itr &= ICE_ITR_MASK; 1363 1364 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1365 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1366 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1367 } 1368 1369 /** 1370 * ice_enable_interrupt - re-enable MSI-X interrupt 1371 * @q_vector: the vector associated with the interrupt to enable 1372 * 1373 * If the VSI is down, the interrupt will not be re-enabled. Also, 1374 * when enabling the interrupt always reset the wb_on_itr to false 1375 * and trigger a software interrupt to clean out internal state. 1376 */ 1377 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1378 { 1379 struct ice_vsi *vsi = q_vector->vsi; 1380 bool wb_en = q_vector->wb_on_itr; 1381 u32 itr_val; 1382 1383 if (test_bit(ICE_DOWN, vsi->state)) 1384 return; 1385 1386 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1387 * make sure to catch any pending cleanups that might have been missed 1388 * due to interrupt state transition. If busy poll or poll isn't 1389 * enabled, then don't update ITR, and just enable the interrupt. 1390 */ 1391 if (!wb_en) { 1392 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1393 } else { 1394 q_vector->wb_on_itr = false; 1395 1396 /* do two things here with a single write. Set up the third ITR 1397 * index to be used for software interrupt moderation, and then 1398 * trigger a software interrupt with a rate limit of 20K on 1399 * software interrupts, this will help avoid high interrupt 1400 * loads due to frequently polling and exiting polling. 1401 */ 1402 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1403 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1404 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1405 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1406 } 1407 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1408 } 1409 1410 /** 1411 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1412 * @q_vector: q_vector to set WB_ON_ITR on 1413 * 1414 * We need to tell hardware to write-back completed descriptors even when 1415 * interrupts are disabled. Descriptors will be written back on cache line 1416 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1417 * descriptors may not be written back if they don't fill a cache line until 1418 * the next interrupt. 1419 * 1420 * This sets the write-back frequency to whatever was set previously for the 1421 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1422 * aren't meddling with the INTENA_M bit. 1423 */ 1424 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1425 { 1426 struct ice_vsi *vsi = q_vector->vsi; 1427 1428 /* already in wb_on_itr mode no need to change it */ 1429 if (q_vector->wb_on_itr) 1430 return; 1431 1432 /* use previously set ITR values for all of the ITR indices by 1433 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1434 * be static in non-adaptive mode (user configured) 1435 */ 1436 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1437 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & 1438 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | 1439 GLINT_DYN_CTL_WB_ON_ITR_M); 1440 1441 q_vector->wb_on_itr = true; 1442 } 1443 1444 /** 1445 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1446 * @napi: napi struct with our devices info in it 1447 * @budget: amount of work driver is allowed to do this pass, in packets 1448 * 1449 * This function will clean all queues associated with a q_vector. 1450 * 1451 * Returns the amount of work done 1452 */ 1453 int ice_napi_poll(struct napi_struct *napi, int budget) 1454 { 1455 struct ice_q_vector *q_vector = 1456 container_of(napi, struct ice_q_vector, napi); 1457 struct ice_tx_ring *tx_ring; 1458 struct ice_rx_ring *rx_ring; 1459 bool clean_complete = true; 1460 int budget_per_ring; 1461 int work_done = 0; 1462 1463 /* Since the actual Tx work is minimal, we can give the Tx a larger 1464 * budget and be more aggressive about cleaning up the Tx descriptors. 1465 */ 1466 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1467 bool wd; 1468 1469 if (tx_ring->xsk_pool) 1470 wd = ice_clean_tx_irq_zc(tx_ring, budget); 1471 else if (ice_ring_is_xdp(tx_ring)) 1472 wd = true; 1473 else 1474 wd = ice_clean_tx_irq(tx_ring, budget); 1475 1476 if (!wd) 1477 clean_complete = false; 1478 } 1479 1480 /* Handle case where we are called by netpoll with a budget of 0 */ 1481 if (unlikely(budget <= 0)) 1482 return budget; 1483 1484 /* normally we have 1 Rx ring per q_vector */ 1485 if (unlikely(q_vector->num_ring_rx > 1)) 1486 /* We attempt to distribute budget to each Rx queue fairly, but 1487 * don't allow the budget to go below 1 because that would exit 1488 * polling early. 1489 */ 1490 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1491 else 1492 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1493 budget_per_ring = budget; 1494 1495 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1496 int cleaned; 1497 1498 /* A dedicated path for zero-copy allows making a single 1499 * comparison in the irq context instead of many inside the 1500 * ice_clean_rx_irq function and makes the codebase cleaner. 1501 */ 1502 cleaned = rx_ring->xsk_pool ? 1503 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : 1504 ice_clean_rx_irq(rx_ring, budget_per_ring); 1505 work_done += cleaned; 1506 /* if we clean as many as budgeted, we must not be done */ 1507 if (cleaned >= budget_per_ring) 1508 clean_complete = false; 1509 } 1510 1511 /* If work not completed, return budget and polling will return */ 1512 if (!clean_complete) { 1513 /* Set the writeback on ITR so partial completions of 1514 * cache-lines will still continue even if we're polling. 1515 */ 1516 ice_set_wb_on_itr(q_vector); 1517 return budget; 1518 } 1519 1520 /* Exit the polling mode, but don't re-enable interrupts if stack might 1521 * poll us due to busy-polling 1522 */ 1523 if (likely(napi_complete_done(napi, work_done))) { 1524 ice_net_dim(q_vector); 1525 ice_enable_interrupt(q_vector); 1526 } else { 1527 ice_set_wb_on_itr(q_vector); 1528 } 1529 1530 return min_t(int, work_done, budget - 1); 1531 } 1532 1533 /** 1534 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1535 * @tx_ring: the ring to be checked 1536 * @size: the size buffer we want to assure is available 1537 * 1538 * Returns -EBUSY if a stop is needed, else 0 1539 */ 1540 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1541 { 1542 netif_tx_stop_queue(txring_txq(tx_ring)); 1543 /* Memory barrier before checking head and tail */ 1544 smp_mb(); 1545 1546 /* Check again in a case another CPU has just made room available. */ 1547 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1548 return -EBUSY; 1549 1550 /* A reprieve! - use start_queue because it doesn't call schedule */ 1551 netif_tx_start_queue(txring_txq(tx_ring)); 1552 ++tx_ring->tx_stats.restart_q; 1553 return 0; 1554 } 1555 1556 /** 1557 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1558 * @tx_ring: the ring to be checked 1559 * @size: the size buffer we want to assure is available 1560 * 1561 * Returns 0 if stop is not needed 1562 */ 1563 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1564 { 1565 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1566 return 0; 1567 1568 return __ice_maybe_stop_tx(tx_ring, size); 1569 } 1570 1571 /** 1572 * ice_tx_map - Build the Tx descriptor 1573 * @tx_ring: ring to send buffer on 1574 * @first: first buffer info buffer to use 1575 * @off: pointer to struct that holds offload parameters 1576 * 1577 * This function loops over the skb data pointed to by *first 1578 * and gets a physical address for each memory location and programs 1579 * it and the length into the transmit descriptor. 1580 */ 1581 static void 1582 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1583 struct ice_tx_offload_params *off) 1584 { 1585 u64 td_offset, td_tag, td_cmd; 1586 u16 i = tx_ring->next_to_use; 1587 unsigned int data_len, size; 1588 struct ice_tx_desc *tx_desc; 1589 struct ice_tx_buf *tx_buf; 1590 struct sk_buff *skb; 1591 skb_frag_t *frag; 1592 dma_addr_t dma; 1593 bool kick; 1594 1595 td_tag = off->td_l2tag1; 1596 td_cmd = off->td_cmd; 1597 td_offset = off->td_offset; 1598 skb = first->skb; 1599 1600 data_len = skb->data_len; 1601 size = skb_headlen(skb); 1602 1603 tx_desc = ICE_TX_DESC(tx_ring, i); 1604 1605 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1606 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1607 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> 1608 ICE_TX_FLAGS_VLAN_S; 1609 } 1610 1611 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1612 1613 tx_buf = first; 1614 1615 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1616 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1617 1618 if (dma_mapping_error(tx_ring->dev, dma)) 1619 goto dma_error; 1620 1621 /* record length, and DMA address */ 1622 dma_unmap_len_set(tx_buf, len, size); 1623 dma_unmap_addr_set(tx_buf, dma, dma); 1624 1625 /* align size to end of page */ 1626 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1627 tx_desc->buf_addr = cpu_to_le64(dma); 1628 1629 /* account for data chunks larger than the hardware 1630 * can handle 1631 */ 1632 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1633 tx_desc->cmd_type_offset_bsz = 1634 ice_build_ctob(td_cmd, td_offset, max_data, 1635 td_tag); 1636 1637 tx_desc++; 1638 i++; 1639 1640 if (i == tx_ring->count) { 1641 tx_desc = ICE_TX_DESC(tx_ring, 0); 1642 i = 0; 1643 } 1644 1645 dma += max_data; 1646 size -= max_data; 1647 1648 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1649 tx_desc->buf_addr = cpu_to_le64(dma); 1650 } 1651 1652 if (likely(!data_len)) 1653 break; 1654 1655 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1656 size, td_tag); 1657 1658 tx_desc++; 1659 i++; 1660 1661 if (i == tx_ring->count) { 1662 tx_desc = ICE_TX_DESC(tx_ring, 0); 1663 i = 0; 1664 } 1665 1666 size = skb_frag_size(frag); 1667 data_len -= size; 1668 1669 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1670 DMA_TO_DEVICE); 1671 1672 tx_buf = &tx_ring->tx_buf[i]; 1673 } 1674 1675 /* record SW timestamp if HW timestamp is not available */ 1676 skb_tx_timestamp(first->skb); 1677 1678 i++; 1679 if (i == tx_ring->count) 1680 i = 0; 1681 1682 /* write last descriptor with RS and EOP bits */ 1683 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1684 tx_desc->cmd_type_offset_bsz = 1685 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1686 1687 /* Force memory writes to complete before letting h/w know there 1688 * are new descriptors to fetch. 1689 * 1690 * We also use this memory barrier to make certain all of the 1691 * status bits have been updated before next_to_watch is written. 1692 */ 1693 wmb(); 1694 1695 /* set next_to_watch value indicating a packet is present */ 1696 first->next_to_watch = tx_desc; 1697 1698 tx_ring->next_to_use = i; 1699 1700 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1701 1702 /* notify HW of packet */ 1703 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1704 netdev_xmit_more()); 1705 if (kick) 1706 /* notify HW of packet */ 1707 writel(i, tx_ring->tail); 1708 1709 return; 1710 1711 dma_error: 1712 /* clear DMA mappings for failed tx_buf map */ 1713 for (;;) { 1714 tx_buf = &tx_ring->tx_buf[i]; 1715 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 1716 if (tx_buf == first) 1717 break; 1718 if (i == 0) 1719 i = tx_ring->count; 1720 i--; 1721 } 1722 1723 tx_ring->next_to_use = i; 1724 } 1725 1726 /** 1727 * ice_tx_csum - Enable Tx checksum offloads 1728 * @first: pointer to the first descriptor 1729 * @off: pointer to struct that holds offload parameters 1730 * 1731 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 1732 */ 1733 static 1734 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1735 { 1736 u32 l4_len = 0, l3_len = 0, l2_len = 0; 1737 struct sk_buff *skb = first->skb; 1738 union { 1739 struct iphdr *v4; 1740 struct ipv6hdr *v6; 1741 unsigned char *hdr; 1742 } ip; 1743 union { 1744 struct tcphdr *tcp; 1745 unsigned char *hdr; 1746 } l4; 1747 __be16 frag_off, protocol; 1748 unsigned char *exthdr; 1749 u32 offset, cmd = 0; 1750 u8 l4_proto = 0; 1751 1752 if (skb->ip_summed != CHECKSUM_PARTIAL) 1753 return 0; 1754 1755 ip.hdr = skb_network_header(skb); 1756 l4.hdr = skb_transport_header(skb); 1757 1758 /* compute outer L2 header size */ 1759 l2_len = ip.hdr - skb->data; 1760 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 1761 1762 protocol = vlan_get_protocol(skb); 1763 1764 if (protocol == htons(ETH_P_IP)) 1765 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1766 else if (protocol == htons(ETH_P_IPV6)) 1767 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1768 1769 if (skb->encapsulation) { 1770 bool gso_ena = false; 1771 u32 tunnel = 0; 1772 1773 /* define outer network header type */ 1774 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1775 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 1776 ICE_TX_CTX_EIPT_IPV4 : 1777 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 1778 l4_proto = ip.v4->protocol; 1779 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1780 int ret; 1781 1782 tunnel |= ICE_TX_CTX_EIPT_IPV6; 1783 exthdr = ip.hdr + sizeof(*ip.v6); 1784 l4_proto = ip.v6->nexthdr; 1785 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 1786 &l4_proto, &frag_off); 1787 if (ret < 0) 1788 return -1; 1789 } 1790 1791 /* define outer transport */ 1792 switch (l4_proto) { 1793 case IPPROTO_UDP: 1794 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 1795 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1796 break; 1797 case IPPROTO_GRE: 1798 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 1799 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1800 break; 1801 case IPPROTO_IPIP: 1802 case IPPROTO_IPV6: 1803 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 1804 l4.hdr = skb_inner_network_header(skb); 1805 break; 1806 default: 1807 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1808 return -1; 1809 1810 skb_checksum_help(skb); 1811 return 0; 1812 } 1813 1814 /* compute outer L3 header size */ 1815 tunnel |= ((l4.hdr - ip.hdr) / 4) << 1816 ICE_TXD_CTX_QW0_EIPLEN_S; 1817 1818 /* switch IP header pointer from outer to inner header */ 1819 ip.hdr = skb_inner_network_header(skb); 1820 1821 /* compute tunnel header size */ 1822 tunnel |= ((ip.hdr - l4.hdr) / 2) << 1823 ICE_TXD_CTX_QW0_NATLEN_S; 1824 1825 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 1826 /* indicate if we need to offload outer UDP header */ 1827 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 1828 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 1829 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 1830 1831 /* record tunnel offload values */ 1832 off->cd_tunnel_params |= tunnel; 1833 1834 /* set DTYP=1 to indicate that it's an Tx context descriptor 1835 * in IPsec tunnel mode with Tx offloads in Quad word 1 1836 */ 1837 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 1838 1839 /* switch L4 header pointer from outer to inner */ 1840 l4.hdr = skb_inner_transport_header(skb); 1841 l4_proto = 0; 1842 1843 /* reset type as we transition from outer to inner headers */ 1844 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 1845 if (ip.v4->version == 4) 1846 first->tx_flags |= ICE_TX_FLAGS_IPV4; 1847 if (ip.v6->version == 6) 1848 first->tx_flags |= ICE_TX_FLAGS_IPV6; 1849 } 1850 1851 /* Enable IP checksum offloads */ 1852 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 1853 l4_proto = ip.v4->protocol; 1854 /* the stack computes the IP header already, the only time we 1855 * need the hardware to recompute it is in the case of TSO. 1856 */ 1857 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1858 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 1859 else 1860 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 1861 1862 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 1863 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 1864 exthdr = ip.hdr + sizeof(*ip.v6); 1865 l4_proto = ip.v6->nexthdr; 1866 if (l4.hdr != exthdr) 1867 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 1868 &frag_off); 1869 } else { 1870 return -1; 1871 } 1872 1873 /* compute inner L3 header size */ 1874 l3_len = l4.hdr - ip.hdr; 1875 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 1876 1877 /* Enable L4 checksum offloads */ 1878 switch (l4_proto) { 1879 case IPPROTO_TCP: 1880 /* enable checksum offloads */ 1881 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 1882 l4_len = l4.tcp->doff; 1883 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1884 break; 1885 case IPPROTO_UDP: 1886 /* enable UDP checksum offload */ 1887 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 1888 l4_len = (sizeof(struct udphdr) >> 2); 1889 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1890 break; 1891 case IPPROTO_SCTP: 1892 /* enable SCTP checksum offload */ 1893 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 1894 l4_len = sizeof(struct sctphdr) >> 2; 1895 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 1896 break; 1897 1898 default: 1899 if (first->tx_flags & ICE_TX_FLAGS_TSO) 1900 return -1; 1901 skb_checksum_help(skb); 1902 return 0; 1903 } 1904 1905 off->td_cmd |= cmd; 1906 off->td_offset |= offset; 1907 return 1; 1908 } 1909 1910 /** 1911 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 1912 * @tx_ring: ring to send buffer on 1913 * @first: pointer to struct ice_tx_buf 1914 * 1915 * Checks the skb and set up correspondingly several generic transmit flags 1916 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1917 */ 1918 static void 1919 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 1920 { 1921 struct sk_buff *skb = first->skb; 1922 1923 /* nothing left to do, software offloaded VLAN */ 1924 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 1925 return; 1926 1927 /* currently, we always assume 802.1Q for VLAN insertion as VLAN 1928 * insertion for 802.1AD is not supported 1929 */ 1930 if (skb_vlan_tag_present(skb)) { 1931 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; 1932 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 1933 } 1934 1935 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 1936 } 1937 1938 /** 1939 * ice_tso - computes mss and TSO length to prepare for TSO 1940 * @first: pointer to struct ice_tx_buf 1941 * @off: pointer to struct that holds offload parameters 1942 * 1943 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 1944 */ 1945 static 1946 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 1947 { 1948 struct sk_buff *skb = first->skb; 1949 union { 1950 struct iphdr *v4; 1951 struct ipv6hdr *v6; 1952 unsigned char *hdr; 1953 } ip; 1954 union { 1955 struct tcphdr *tcp; 1956 struct udphdr *udp; 1957 unsigned char *hdr; 1958 } l4; 1959 u64 cd_mss, cd_tso_len; 1960 u32 paylen; 1961 u8 l4_start; 1962 int err; 1963 1964 if (skb->ip_summed != CHECKSUM_PARTIAL) 1965 return 0; 1966 1967 if (!skb_is_gso(skb)) 1968 return 0; 1969 1970 err = skb_cow_head(skb, 0); 1971 if (err < 0) 1972 return err; 1973 1974 /* cppcheck-suppress unreadVariable */ 1975 ip.hdr = skb_network_header(skb); 1976 l4.hdr = skb_transport_header(skb); 1977 1978 /* initialize outer IP header fields */ 1979 if (ip.v4->version == 4) { 1980 ip.v4->tot_len = 0; 1981 ip.v4->check = 0; 1982 } else { 1983 ip.v6->payload_len = 0; 1984 } 1985 1986 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1987 SKB_GSO_GRE_CSUM | 1988 SKB_GSO_IPXIP4 | 1989 SKB_GSO_IPXIP6 | 1990 SKB_GSO_UDP_TUNNEL | 1991 SKB_GSO_UDP_TUNNEL_CSUM)) { 1992 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1993 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1994 l4.udp->len = 0; 1995 1996 /* determine offset of outer transport header */ 1997 l4_start = (u8)(l4.hdr - skb->data); 1998 1999 /* remove payload length from outer checksum */ 2000 paylen = skb->len - l4_start; 2001 csum_replace_by_diff(&l4.udp->check, 2002 (__force __wsum)htonl(paylen)); 2003 } 2004 2005 /* reset pointers to inner headers */ 2006 2007 /* cppcheck-suppress unreadVariable */ 2008 ip.hdr = skb_inner_network_header(skb); 2009 l4.hdr = skb_inner_transport_header(skb); 2010 2011 /* initialize inner IP header fields */ 2012 if (ip.v4->version == 4) { 2013 ip.v4->tot_len = 0; 2014 ip.v4->check = 0; 2015 } else { 2016 ip.v6->payload_len = 0; 2017 } 2018 } 2019 2020 /* determine offset of transport header */ 2021 l4_start = (u8)(l4.hdr - skb->data); 2022 2023 /* remove payload length from checksum */ 2024 paylen = skb->len - l4_start; 2025 2026 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2027 csum_replace_by_diff(&l4.udp->check, 2028 (__force __wsum)htonl(paylen)); 2029 /* compute length of UDP segmentation header */ 2030 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2031 } else { 2032 csum_replace_by_diff(&l4.tcp->check, 2033 (__force __wsum)htonl(paylen)); 2034 /* compute length of TCP segmentation header */ 2035 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2036 } 2037 2038 /* update gso_segs and bytecount */ 2039 first->gso_segs = skb_shinfo(skb)->gso_segs; 2040 first->bytecount += (first->gso_segs - 1) * off->header_len; 2041 2042 cd_tso_len = skb->len - off->header_len; 2043 cd_mss = skb_shinfo(skb)->gso_size; 2044 2045 /* record cdesc_qw1 with TSO parameters */ 2046 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2047 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2048 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2049 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2050 first->tx_flags |= ICE_TX_FLAGS_TSO; 2051 return 1; 2052 } 2053 2054 /** 2055 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2056 * @size: transmit request size in bytes 2057 * 2058 * Due to hardware alignment restrictions (4K alignment), we need to 2059 * assume that we can have no more than 12K of data per descriptor, even 2060 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2061 * Thus, we need to divide by 12K. But division is slow! Instead, 2062 * we decompose the operation into shifts and one relatively cheap 2063 * multiply operation. 2064 * 2065 * To divide by 12K, we first divide by 4K, then divide by 3: 2066 * To divide by 4K, shift right by 12 bits 2067 * To divide by 3, multiply by 85, then divide by 256 2068 * (Divide by 256 is done by shifting right by 8 bits) 2069 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2070 * 3, we'll underestimate near each multiple of 12K. This is actually more 2071 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2072 * segment. For our purposes this is accurate out to 1M which is orders of 2073 * magnitude greater than our largest possible GSO size. 2074 * 2075 * This would then be implemented as: 2076 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2077 * 2078 * Since multiplication and division are commutative, we can reorder 2079 * operations into: 2080 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2081 */ 2082 static unsigned int ice_txd_use_count(unsigned int size) 2083 { 2084 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2085 } 2086 2087 /** 2088 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2089 * @skb: send buffer 2090 * 2091 * Returns number of data descriptors needed for this skb. 2092 */ 2093 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2094 { 2095 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2096 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2097 unsigned int count = 0, size = skb_headlen(skb); 2098 2099 for (;;) { 2100 count += ice_txd_use_count(size); 2101 2102 if (!nr_frags--) 2103 break; 2104 2105 size = skb_frag_size(frag++); 2106 } 2107 2108 return count; 2109 } 2110 2111 /** 2112 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2113 * @skb: send buffer 2114 * 2115 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2116 * and so we need to figure out the cases where we need to linearize the skb. 2117 * 2118 * For TSO we need to count the TSO header and segment payload separately. 2119 * As such we need to check cases where we have 7 fragments or more as we 2120 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2121 * the segment payload in the first descriptor, and another 7 for the 2122 * fragments. 2123 */ 2124 static bool __ice_chk_linearize(struct sk_buff *skb) 2125 { 2126 const skb_frag_t *frag, *stale; 2127 int nr_frags, sum; 2128 2129 /* no need to check if number of frags is less than 7 */ 2130 nr_frags = skb_shinfo(skb)->nr_frags; 2131 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2132 return false; 2133 2134 /* We need to walk through the list and validate that each group 2135 * of 6 fragments totals at least gso_size. 2136 */ 2137 nr_frags -= ICE_MAX_BUF_TXD - 2; 2138 frag = &skb_shinfo(skb)->frags[0]; 2139 2140 /* Initialize size to the negative value of gso_size minus 1. We 2141 * use this as the worst case scenario in which the frag ahead 2142 * of us only provides one byte which is why we are limited to 6 2143 * descriptors for a single transmit as the header and previous 2144 * fragment are already consuming 2 descriptors. 2145 */ 2146 sum = 1 - skb_shinfo(skb)->gso_size; 2147 2148 /* Add size of frags 0 through 4 to create our initial sum */ 2149 sum += skb_frag_size(frag++); 2150 sum += skb_frag_size(frag++); 2151 sum += skb_frag_size(frag++); 2152 sum += skb_frag_size(frag++); 2153 sum += skb_frag_size(frag++); 2154 2155 /* Walk through fragments adding latest fragment, testing it, and 2156 * then removing stale fragments from the sum. 2157 */ 2158 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2159 int stale_size = skb_frag_size(stale); 2160 2161 sum += skb_frag_size(frag++); 2162 2163 /* The stale fragment may present us with a smaller 2164 * descriptor than the actual fragment size. To account 2165 * for that we need to remove all the data on the front and 2166 * figure out what the remainder would be in the last 2167 * descriptor associated with the fragment. 2168 */ 2169 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2170 int align_pad = -(skb_frag_off(stale)) & 2171 (ICE_MAX_READ_REQ_SIZE - 1); 2172 2173 sum -= align_pad; 2174 stale_size -= align_pad; 2175 2176 do { 2177 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2178 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2179 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2180 } 2181 2182 /* if sum is negative we failed to make sufficient progress */ 2183 if (sum < 0) 2184 return true; 2185 2186 if (!nr_frags--) 2187 break; 2188 2189 sum -= stale_size; 2190 } 2191 2192 return false; 2193 } 2194 2195 /** 2196 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2197 * @skb: send buffer 2198 * @count: number of buffers used 2199 * 2200 * Note: Our HW can't scatter-gather more than 8 fragments to build 2201 * a packet on the wire and so we need to figure out the cases where we 2202 * need to linearize the skb. 2203 */ 2204 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2205 { 2206 /* Both TSO and single send will work if count is less than 8 */ 2207 if (likely(count < ICE_MAX_BUF_TXD)) 2208 return false; 2209 2210 if (skb_is_gso(skb)) 2211 return __ice_chk_linearize(skb); 2212 2213 /* we can support up to 8 data buffers for a single send */ 2214 return count != ICE_MAX_BUF_TXD; 2215 } 2216 2217 /** 2218 * ice_tstamp - set up context descriptor for hardware timestamp 2219 * @tx_ring: pointer to the Tx ring to send buffer on 2220 * @skb: pointer to the SKB we're sending 2221 * @first: Tx buffer 2222 * @off: Tx offload parameters 2223 */ 2224 static void 2225 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2226 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2227 { 2228 s8 idx; 2229 2230 /* only timestamp the outbound packet if the user has requested it */ 2231 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2232 return; 2233 2234 if (!tx_ring->ptp_tx) 2235 return; 2236 2237 /* Tx timestamps cannot be sampled when doing TSO */ 2238 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2239 return; 2240 2241 /* Grab an open timestamp slot */ 2242 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2243 if (idx < 0) 2244 return; 2245 2246 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2247 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2248 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2249 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2250 } 2251 2252 /** 2253 * ice_xmit_frame_ring - Sends buffer on Tx ring 2254 * @skb: send buffer 2255 * @tx_ring: ring to send buffer on 2256 * 2257 * Returns NETDEV_TX_OK if sent, else an error code 2258 */ 2259 static netdev_tx_t 2260 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2261 { 2262 struct ice_tx_offload_params offload = { 0 }; 2263 struct ice_vsi *vsi = tx_ring->vsi; 2264 struct ice_tx_buf *first; 2265 struct ethhdr *eth; 2266 unsigned int count; 2267 int tso, csum; 2268 2269 ice_trace(xmit_frame_ring, tx_ring, skb); 2270 2271 count = ice_xmit_desc_count(skb); 2272 if (ice_chk_linearize(skb, count)) { 2273 if (__skb_linearize(skb)) 2274 goto out_drop; 2275 count = ice_txd_use_count(skb->len); 2276 tx_ring->tx_stats.tx_linearize++; 2277 } 2278 2279 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2280 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2281 * + 4 desc gap to avoid the cache line where head is, 2282 * + 1 desc for context descriptor, 2283 * otherwise try next time 2284 */ 2285 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2286 ICE_DESCS_FOR_CTX_DESC)) { 2287 tx_ring->tx_stats.tx_busy++; 2288 return NETDEV_TX_BUSY; 2289 } 2290 2291 /* prefetch for bql data which is infrequently used */ 2292 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2293 2294 offload.tx_ring = tx_ring; 2295 2296 /* record the location of the first descriptor for this packet */ 2297 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2298 first->skb = skb; 2299 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2300 first->gso_segs = 1; 2301 first->tx_flags = 0; 2302 2303 /* prepare the VLAN tagging flags for Tx */ 2304 ice_tx_prepare_vlan_flags(tx_ring, first); 2305 2306 /* set up TSO offload */ 2307 tso = ice_tso(first, &offload); 2308 if (tso < 0) 2309 goto out_drop; 2310 2311 /* always set up Tx checksum offload */ 2312 csum = ice_tx_csum(first, &offload); 2313 if (csum < 0) 2314 goto out_drop; 2315 2316 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2317 eth = (struct ethhdr *)skb_mac_header(skb); 2318 if (unlikely((skb->priority == TC_PRIO_CONTROL || 2319 eth->h_proto == htons(ETH_P_LLDP)) && 2320 vsi->type == ICE_VSI_PF && 2321 vsi->port_info->qos_cfg.is_sw_lldp)) 2322 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2323 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2324 ICE_TXD_CTX_QW1_CMD_S); 2325 2326 ice_tstamp(tx_ring, skb, first, &offload); 2327 if (ice_is_switchdev_running(vsi->back)) 2328 ice_eswitch_set_target_vsi(skb, &offload); 2329 2330 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2331 struct ice_tx_ctx_desc *cdesc; 2332 u16 i = tx_ring->next_to_use; 2333 2334 /* grab the next descriptor */ 2335 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2336 i++; 2337 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2338 2339 /* setup context descriptor */ 2340 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2341 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2342 cdesc->rsvd = cpu_to_le16(0); 2343 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2344 } 2345 2346 ice_tx_map(tx_ring, first, &offload); 2347 return NETDEV_TX_OK; 2348 2349 out_drop: 2350 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2351 dev_kfree_skb_any(skb); 2352 return NETDEV_TX_OK; 2353 } 2354 2355 /** 2356 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2357 * @skb: send buffer 2358 * @netdev: network interface device structure 2359 * 2360 * Returns NETDEV_TX_OK if sent, else an error code 2361 */ 2362 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2363 { 2364 struct ice_netdev_priv *np = netdev_priv(netdev); 2365 struct ice_vsi *vsi = np->vsi; 2366 struct ice_tx_ring *tx_ring; 2367 2368 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2369 2370 /* hardware can't handle really short frames, hardware padding works 2371 * beyond this point 2372 */ 2373 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2374 return NETDEV_TX_OK; 2375 2376 return ice_xmit_frame_ring(skb, tx_ring); 2377 } 2378 2379 /** 2380 * ice_get_dscp_up - return the UP/TC value for a SKB 2381 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2382 * @skb: SKB to query for info to determine UP/TC 2383 * 2384 * This function is to only be called when the PF is in L3 DSCP PFC mode 2385 */ 2386 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2387 { 2388 u8 dscp = 0; 2389 2390 if (skb->protocol == htons(ETH_P_IP)) 2391 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2392 else if (skb->protocol == htons(ETH_P_IPV6)) 2393 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2394 2395 return dcbcfg->dscp_map[dscp]; 2396 } 2397 2398 u16 2399 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2400 struct net_device *sb_dev) 2401 { 2402 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2403 struct ice_dcbx_cfg *dcbcfg; 2404 2405 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2406 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2407 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2408 2409 return netdev_pick_tx(netdev, skb, sb_dev); 2410 } 2411 2412 /** 2413 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2414 * @tx_ring: tx_ring to clean 2415 */ 2416 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2417 { 2418 struct ice_vsi *vsi = tx_ring->vsi; 2419 s16 i = tx_ring->next_to_clean; 2420 int budget = ICE_DFLT_IRQ_WORK; 2421 struct ice_tx_desc *tx_desc; 2422 struct ice_tx_buf *tx_buf; 2423 2424 tx_buf = &tx_ring->tx_buf[i]; 2425 tx_desc = ICE_TX_DESC(tx_ring, i); 2426 i -= tx_ring->count; 2427 2428 do { 2429 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2430 2431 /* if next_to_watch is not set then there is no pending work */ 2432 if (!eop_desc) 2433 break; 2434 2435 /* prevent any other reads prior to eop_desc */ 2436 smp_rmb(); 2437 2438 /* if the descriptor isn't done, no work to do */ 2439 if (!(eop_desc->cmd_type_offset_bsz & 2440 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2441 break; 2442 2443 /* clear next_to_watch to prevent false hangs */ 2444 tx_buf->next_to_watch = NULL; 2445 tx_desc->buf_addr = 0; 2446 tx_desc->cmd_type_offset_bsz = 0; 2447 2448 /* move past filter desc */ 2449 tx_buf++; 2450 tx_desc++; 2451 i++; 2452 if (unlikely(!i)) { 2453 i -= tx_ring->count; 2454 tx_buf = tx_ring->tx_buf; 2455 tx_desc = ICE_TX_DESC(tx_ring, 0); 2456 } 2457 2458 /* unmap the data header */ 2459 if (dma_unmap_len(tx_buf, len)) 2460 dma_unmap_single(tx_ring->dev, 2461 dma_unmap_addr(tx_buf, dma), 2462 dma_unmap_len(tx_buf, len), 2463 DMA_TO_DEVICE); 2464 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) 2465 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2466 2467 /* clear next_to_watch to prevent false hangs */ 2468 tx_buf->raw_buf = NULL; 2469 tx_buf->tx_flags = 0; 2470 tx_buf->next_to_watch = NULL; 2471 dma_unmap_len_set(tx_buf, len, 0); 2472 tx_desc->buf_addr = 0; 2473 tx_desc->cmd_type_offset_bsz = 0; 2474 2475 /* move past eop_desc for start of next FD desc */ 2476 tx_buf++; 2477 tx_desc++; 2478 i++; 2479 if (unlikely(!i)) { 2480 i -= tx_ring->count; 2481 tx_buf = tx_ring->tx_buf; 2482 tx_desc = ICE_TX_DESC(tx_ring, 0); 2483 } 2484 2485 budget--; 2486 } while (likely(budget)); 2487 2488 i += tx_ring->count; 2489 tx_ring->next_to_clean = i; 2490 2491 /* re-enable interrupt if needed */ 2492 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2493 } 2494