1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* The driver transmit and receive code */ 5 6 #include <linux/mm.h> 7 #include <linux/netdevice.h> 8 #include <linux/prefetch.h> 9 #include <linux/bpf_trace.h> 10 #include <net/dsfield.h> 11 #include <net/mpls.h> 12 #include <net/xdp.h> 13 #include "ice_txrx_lib.h" 14 #include "ice_lib.h" 15 #include "ice.h" 16 #include "ice_trace.h" 17 #include "ice_dcb_lib.h" 18 #include "ice_xsk.h" 19 #include "ice_eswitch.h" 20 21 #define ICE_RX_HDR_SIZE 256 22 23 #define ICE_FDIR_CLEAN_DELAY 10 24 25 /** 26 * ice_prgm_fdir_fltr - Program a Flow Director filter 27 * @vsi: VSI to send dummy packet 28 * @fdir_desc: flow director descriptor 29 * @raw_packet: allocated buffer for flow director 30 */ 31 int 32 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 33 u8 *raw_packet) 34 { 35 struct ice_tx_buf *tx_buf, *first; 36 struct ice_fltr_desc *f_desc; 37 struct ice_tx_desc *tx_desc; 38 struct ice_tx_ring *tx_ring; 39 struct device *dev; 40 dma_addr_t dma; 41 u32 td_cmd; 42 u16 i; 43 44 /* VSI and Tx ring */ 45 if (!vsi) 46 return -ENOENT; 47 tx_ring = vsi->tx_rings[0]; 48 if (!tx_ring || !tx_ring->desc) 49 return -ENOENT; 50 dev = tx_ring->dev; 51 52 /* we are using two descriptors to add/del a filter and we can wait */ 53 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { 54 if (!i) 55 return -EAGAIN; 56 msleep_interruptible(1); 57 } 58 59 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, 60 DMA_TO_DEVICE); 61 62 if (dma_mapping_error(dev, dma)) 63 return -EINVAL; 64 65 /* grab the next descriptor */ 66 i = tx_ring->next_to_use; 67 first = &tx_ring->tx_buf[i]; 68 f_desc = ICE_TX_FDIRDESC(tx_ring, i); 69 memcpy(f_desc, fdir_desc, sizeof(*f_desc)); 70 71 i++; 72 i = (i < tx_ring->count) ? i : 0; 73 tx_desc = ICE_TX_DESC(tx_ring, i); 74 tx_buf = &tx_ring->tx_buf[i]; 75 76 i++; 77 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 78 79 memset(tx_buf, 0, sizeof(*tx_buf)); 80 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); 81 dma_unmap_addr_set(tx_buf, dma, dma); 82 83 tx_desc->buf_addr = cpu_to_le64(dma); 84 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | 85 ICE_TX_DESC_CMD_RE; 86 87 tx_buf->type = ICE_TX_BUF_DUMMY; 88 tx_buf->raw_buf = raw_packet; 89 90 tx_desc->cmd_type_offset_bsz = 91 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); 92 93 /* Force memory write to complete before letting h/w know 94 * there are new descriptors to fetch. 95 */ 96 wmb(); 97 98 /* mark the data descriptor to be watched */ 99 first->next_to_watch = tx_desc; 100 101 writel(tx_ring->next_to_use, tx_ring->tail); 102 103 return 0; 104 } 105 106 /** 107 * ice_unmap_and_free_tx_buf - Release a Tx buffer 108 * @ring: the ring that owns the buffer 109 * @tx_buf: the buffer to free 110 */ 111 static void 112 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) 113 { 114 if (dma_unmap_len(tx_buf, len)) 115 dma_unmap_page(ring->dev, 116 dma_unmap_addr(tx_buf, dma), 117 dma_unmap_len(tx_buf, len), 118 DMA_TO_DEVICE); 119 120 switch (tx_buf->type) { 121 case ICE_TX_BUF_DUMMY: 122 devm_kfree(ring->dev, tx_buf->raw_buf); 123 break; 124 case ICE_TX_BUF_SKB: 125 dev_kfree_skb_any(tx_buf->skb); 126 break; 127 case ICE_TX_BUF_XDP_TX: 128 page_frag_free(tx_buf->raw_buf); 129 break; 130 case ICE_TX_BUF_XDP_XMIT: 131 xdp_return_frame(tx_buf->xdpf); 132 break; 133 } 134 135 tx_buf->next_to_watch = NULL; 136 tx_buf->type = ICE_TX_BUF_EMPTY; 137 dma_unmap_len_set(tx_buf, len, 0); 138 /* tx_buf must be completely set up in the transmit path */ 139 } 140 141 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) 142 { 143 return netdev_get_tx_queue(ring->netdev, ring->q_index); 144 } 145 146 /** 147 * ice_clean_tstamp_ring - clean time stamp ring 148 * @tx_ring: Tx ring to clean the Time Stamp ring for 149 */ 150 static void ice_clean_tstamp_ring(struct ice_tx_ring *tx_ring) 151 { 152 struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring; 153 u32 size; 154 155 if (!tstamp_ring->desc) 156 return; 157 158 size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc), 159 PAGE_SIZE); 160 memset(tstamp_ring->desc, 0, size); 161 tstamp_ring->next_to_use = 0; 162 } 163 164 /** 165 * ice_free_tstamp_ring - free time stamp resources per queue 166 * @tx_ring: Tx ring to free the Time Stamp ring for 167 */ 168 void ice_free_tstamp_ring(struct ice_tx_ring *tx_ring) 169 { 170 struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring; 171 u32 size; 172 173 if (!tstamp_ring->desc) 174 return; 175 176 ice_clean_tstamp_ring(tx_ring); 177 size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc), 178 PAGE_SIZE); 179 dmam_free_coherent(tx_ring->dev, size, tstamp_ring->desc, 180 tstamp_ring->dma); 181 tstamp_ring->desc = NULL; 182 } 183 184 /** 185 * ice_free_tx_tstamp_ring - free time stamp resources per Tx ring 186 * @tx_ring: Tx ring to free the Time Stamp ring for 187 */ 188 void ice_free_tx_tstamp_ring(struct ice_tx_ring *tx_ring) 189 { 190 ice_free_tstamp_ring(tx_ring); 191 kfree_rcu(tx_ring->tstamp_ring, rcu); 192 tx_ring->tstamp_ring = NULL; 193 tx_ring->flags &= ~ICE_TX_FLAGS_TXTIME; 194 } 195 196 /** 197 * ice_clean_tx_ring - Free any empty Tx buffers 198 * @tx_ring: ring to be cleaned 199 */ 200 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) 201 { 202 u32 size; 203 u16 i; 204 205 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 206 ice_xsk_clean_xdp_ring(tx_ring); 207 goto tx_skip_free; 208 } 209 210 /* ring already cleared, nothing to do */ 211 if (!tx_ring->tx_buf) 212 return; 213 214 /* Free all the Tx ring sk_buffs */ 215 for (i = 0; i < tx_ring->count; i++) 216 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); 217 218 tx_skip_free: 219 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); 220 221 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 222 PAGE_SIZE); 223 /* Zero out the descriptor ring */ 224 memset(tx_ring->desc, 0, size); 225 226 tx_ring->next_to_use = 0; 227 tx_ring->next_to_clean = 0; 228 229 if (!tx_ring->netdev) 230 return; 231 232 /* cleanup Tx queue statistics */ 233 netdev_tx_reset_queue(txring_txq(tx_ring)); 234 235 if (ice_is_txtime_cfg(tx_ring)) 236 ice_free_tx_tstamp_ring(tx_ring); 237 } 238 239 /** 240 * ice_free_tx_ring - Free Tx resources per queue 241 * @tx_ring: Tx descriptor ring for a specific queue 242 * 243 * Free all transmit software resources 244 */ 245 void ice_free_tx_ring(struct ice_tx_ring *tx_ring) 246 { 247 u32 size; 248 249 ice_clean_tx_ring(tx_ring); 250 devm_kfree(tx_ring->dev, tx_ring->tx_buf); 251 tx_ring->tx_buf = NULL; 252 253 if (tx_ring->desc) { 254 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 255 PAGE_SIZE); 256 dmam_free_coherent(tx_ring->dev, size, 257 tx_ring->desc, tx_ring->dma); 258 tx_ring->desc = NULL; 259 } 260 } 261 262 /** 263 * ice_clean_tx_irq - Reclaim resources after transmit completes 264 * @tx_ring: Tx ring to clean 265 * @napi_budget: Used to determine if we are in netpoll 266 * 267 * Returns true if there's any budget left (e.g. the clean is finished) 268 */ 269 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) 270 { 271 unsigned int total_bytes = 0, total_pkts = 0; 272 unsigned int budget = ICE_DFLT_IRQ_WORK; 273 struct ice_vsi *vsi = tx_ring->vsi; 274 s16 i = tx_ring->next_to_clean; 275 struct ice_tx_desc *tx_desc; 276 struct ice_tx_buf *tx_buf; 277 278 /* get the bql data ready */ 279 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); 280 281 tx_buf = &tx_ring->tx_buf[i]; 282 tx_desc = ICE_TX_DESC(tx_ring, i); 283 i -= tx_ring->count; 284 285 prefetch(&vsi->state); 286 287 do { 288 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 289 290 /* if next_to_watch is not set then there is no work pending */ 291 if (!eop_desc) 292 break; 293 294 /* follow the guidelines of other drivers */ 295 prefetchw(&tx_buf->skb->users); 296 297 smp_rmb(); /* prevent any other reads prior to eop_desc */ 298 299 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 300 /* if the descriptor isn't done, no work yet to do */ 301 if (!(eop_desc->cmd_type_offset_bsz & 302 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 303 break; 304 305 /* clear next_to_watch to prevent false hangs */ 306 tx_buf->next_to_watch = NULL; 307 308 /* update the statistics for this packet */ 309 total_bytes += tx_buf->bytecount; 310 total_pkts += tx_buf->gso_segs; 311 312 /* free the skb */ 313 napi_consume_skb(tx_buf->skb, napi_budget); 314 315 /* unmap skb header data */ 316 dma_unmap_single(tx_ring->dev, 317 dma_unmap_addr(tx_buf, dma), 318 dma_unmap_len(tx_buf, len), 319 DMA_TO_DEVICE); 320 321 /* clear tx_buf data */ 322 tx_buf->type = ICE_TX_BUF_EMPTY; 323 dma_unmap_len_set(tx_buf, len, 0); 324 325 /* unmap remaining buffers */ 326 while (tx_desc != eop_desc) { 327 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); 328 tx_buf++; 329 tx_desc++; 330 i++; 331 if (unlikely(!i)) { 332 i -= tx_ring->count; 333 tx_buf = tx_ring->tx_buf; 334 tx_desc = ICE_TX_DESC(tx_ring, 0); 335 } 336 337 /* unmap any remaining paged data */ 338 if (dma_unmap_len(tx_buf, len)) { 339 dma_unmap_page(tx_ring->dev, 340 dma_unmap_addr(tx_buf, dma), 341 dma_unmap_len(tx_buf, len), 342 DMA_TO_DEVICE); 343 dma_unmap_len_set(tx_buf, len, 0); 344 } 345 } 346 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); 347 348 /* move us one more past the eop_desc for start of next pkt */ 349 tx_buf++; 350 tx_desc++; 351 i++; 352 if (unlikely(!i)) { 353 i -= tx_ring->count; 354 tx_buf = tx_ring->tx_buf; 355 tx_desc = ICE_TX_DESC(tx_ring, 0); 356 } 357 358 prefetch(tx_desc); 359 360 /* update budget accounting */ 361 budget--; 362 } while (likely(budget)); 363 364 i += tx_ring->count; 365 tx_ring->next_to_clean = i; 366 367 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); 368 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); 369 370 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 371 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && 372 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 373 /* Make sure that anybody stopping the queue after this 374 * sees the new next_to_clean. 375 */ 376 smp_mb(); 377 if (netif_tx_queue_stopped(txring_txq(tx_ring)) && 378 !test_bit(ICE_VSI_DOWN, vsi->state)) { 379 netif_tx_wake_queue(txring_txq(tx_ring)); 380 ++tx_ring->ring_stats->tx_stats.restart_q; 381 } 382 } 383 384 return !!budget; 385 } 386 387 /** 388 * ice_alloc_tstamp_ring - allocate the Time Stamp ring 389 * @tx_ring: Tx ring to allocate the Time Stamp ring for 390 * 391 * Return: 0 on success, negative on error 392 */ 393 static int ice_alloc_tstamp_ring(struct ice_tx_ring *tx_ring) 394 { 395 struct ice_tstamp_ring *tstamp_ring; 396 397 /* allocate with kzalloc(), free with kfree_rcu() */ 398 tstamp_ring = kzalloc(sizeof(*tstamp_ring), GFP_KERNEL); 399 if (!tstamp_ring) 400 return -ENOMEM; 401 402 tstamp_ring->tx_ring = tx_ring; 403 tx_ring->tstamp_ring = tstamp_ring; 404 tstamp_ring->desc = NULL; 405 tstamp_ring->count = ice_calc_ts_ring_count(tx_ring); 406 tx_ring->flags |= ICE_TX_FLAGS_TXTIME; 407 return 0; 408 } 409 410 /** 411 * ice_setup_tstamp_ring - allocate the Time Stamp ring 412 * @tx_ring: Tx ring to set up the Time Stamp ring for 413 * 414 * Return: 0 on success, negative on error 415 */ 416 static int ice_setup_tstamp_ring(struct ice_tx_ring *tx_ring) 417 { 418 struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring; 419 struct device *dev = tx_ring->dev; 420 u32 size; 421 422 /* round up to nearest page */ 423 size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc), 424 PAGE_SIZE); 425 tstamp_ring->desc = dmam_alloc_coherent(dev, size, &tstamp_ring->dma, 426 GFP_KERNEL); 427 if (!tstamp_ring->desc) { 428 dev_err(dev, "Unable to allocate memory for Time stamp Ring, size=%d\n", 429 size); 430 return -ENOMEM; 431 } 432 433 tstamp_ring->next_to_use = 0; 434 return 0; 435 } 436 437 /** 438 * ice_alloc_setup_tstamp_ring - Allocate and setup the Time Stamp ring 439 * @tx_ring: Tx ring to allocate and setup the Time Stamp ring for 440 * 441 * Return: 0 on success, negative on error 442 */ 443 int ice_alloc_setup_tstamp_ring(struct ice_tx_ring *tx_ring) 444 { 445 struct device *dev = tx_ring->dev; 446 int err; 447 448 err = ice_alloc_tstamp_ring(tx_ring); 449 if (err) { 450 dev_err(dev, "Unable to allocate Time stamp ring for Tx ring %d\n", 451 tx_ring->q_index); 452 return err; 453 } 454 455 err = ice_setup_tstamp_ring(tx_ring); 456 if (err) { 457 dev_err(dev, "Unable to setup Time stamp ring for Tx ring %d\n", 458 tx_ring->q_index); 459 ice_free_tx_tstamp_ring(tx_ring); 460 return err; 461 } 462 return 0; 463 } 464 465 /** 466 * ice_setup_tx_ring - Allocate the Tx descriptors 467 * @tx_ring: the Tx ring to set up 468 * 469 * Return 0 on success, negative on error 470 */ 471 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) 472 { 473 struct device *dev = tx_ring->dev; 474 u32 size; 475 476 if (!dev) 477 return -ENOMEM; 478 479 /* warn if we are about to overwrite the pointer */ 480 WARN_ON(tx_ring->tx_buf); 481 tx_ring->tx_buf = 482 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, 483 GFP_KERNEL); 484 if (!tx_ring->tx_buf) 485 return -ENOMEM; 486 487 /* round up to nearest page */ 488 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), 489 PAGE_SIZE); 490 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, 491 GFP_KERNEL); 492 if (!tx_ring->desc) { 493 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 494 size); 495 goto err; 496 } 497 498 tx_ring->next_to_use = 0; 499 tx_ring->next_to_clean = 0; 500 tx_ring->ring_stats->tx_stats.prev_pkt = -1; 501 return 0; 502 503 err: 504 devm_kfree(dev, tx_ring->tx_buf); 505 tx_ring->tx_buf = NULL; 506 return -ENOMEM; 507 } 508 509 /** 510 * ice_clean_rx_ring - Free Rx buffers 511 * @rx_ring: ring to be cleaned 512 */ 513 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) 514 { 515 struct xdp_buff *xdp = &rx_ring->xdp; 516 struct device *dev = rx_ring->dev; 517 u32 size; 518 u16 i; 519 520 /* ring already cleared, nothing to do */ 521 if (!rx_ring->rx_buf) 522 return; 523 524 if (rx_ring->xsk_pool) { 525 ice_xsk_clean_rx_ring(rx_ring); 526 goto rx_skip_free; 527 } 528 529 if (xdp->data) { 530 xdp_return_buff(xdp); 531 xdp->data = NULL; 532 } 533 534 /* Free all the Rx ring sk_buffs */ 535 for (i = 0; i < rx_ring->count; i++) { 536 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 537 538 if (!rx_buf->page) 539 continue; 540 541 /* Invalidate cache lines that may have been written to by 542 * device so that we avoid corrupting memory. 543 */ 544 dma_sync_single_range_for_cpu(dev, rx_buf->dma, 545 rx_buf->page_offset, 546 rx_ring->rx_buf_len, 547 DMA_FROM_DEVICE); 548 549 /* free resources associated with mapping */ 550 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), 551 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 552 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 553 554 rx_buf->page = NULL; 555 rx_buf->page_offset = 0; 556 } 557 558 rx_skip_free: 559 if (rx_ring->xsk_pool) 560 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); 561 else 562 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); 563 564 /* Zero out the descriptor ring */ 565 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 566 PAGE_SIZE); 567 memset(rx_ring->desc, 0, size); 568 569 rx_ring->next_to_alloc = 0; 570 rx_ring->next_to_clean = 0; 571 rx_ring->first_desc = 0; 572 rx_ring->next_to_use = 0; 573 } 574 575 /** 576 * ice_free_rx_ring - Free Rx resources 577 * @rx_ring: ring to clean the resources from 578 * 579 * Free all receive software resources 580 */ 581 void ice_free_rx_ring(struct ice_rx_ring *rx_ring) 582 { 583 u32 size; 584 585 ice_clean_rx_ring(rx_ring); 586 if (rx_ring->vsi->type == ICE_VSI_PF) 587 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 588 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 589 WRITE_ONCE(rx_ring->xdp_prog, NULL); 590 if (rx_ring->xsk_pool) { 591 kfree(rx_ring->xdp_buf); 592 rx_ring->xdp_buf = NULL; 593 } else { 594 kfree(rx_ring->rx_buf); 595 rx_ring->rx_buf = NULL; 596 } 597 598 if (rx_ring->desc) { 599 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 600 PAGE_SIZE); 601 dmam_free_coherent(rx_ring->dev, size, 602 rx_ring->desc, rx_ring->dma); 603 rx_ring->desc = NULL; 604 } 605 } 606 607 /** 608 * ice_setup_rx_ring - Allocate the Rx descriptors 609 * @rx_ring: the Rx ring to set up 610 * 611 * Return 0 on success, negative on error 612 */ 613 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) 614 { 615 struct device *dev = rx_ring->dev; 616 u32 size; 617 618 if (!dev) 619 return -ENOMEM; 620 621 /* warn if we are about to overwrite the pointer */ 622 WARN_ON(rx_ring->rx_buf); 623 rx_ring->rx_buf = 624 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 625 if (!rx_ring->rx_buf) 626 return -ENOMEM; 627 628 /* round up to nearest page */ 629 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), 630 PAGE_SIZE); 631 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, 632 GFP_KERNEL); 633 if (!rx_ring->desc) { 634 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 635 size); 636 goto err; 637 } 638 639 rx_ring->next_to_use = 0; 640 rx_ring->next_to_clean = 0; 641 rx_ring->first_desc = 0; 642 643 if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 644 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); 645 646 return 0; 647 648 err: 649 kfree(rx_ring->rx_buf); 650 rx_ring->rx_buf = NULL; 651 return -ENOMEM; 652 } 653 654 /** 655 * ice_run_xdp - Executes an XDP program on initialized xdp_buff 656 * @rx_ring: Rx ring 657 * @xdp: xdp_buff used as input to the XDP program 658 * @xdp_prog: XDP program to run 659 * @xdp_ring: ring to be used for XDP_TX action 660 * @eop_desc: Last descriptor in packet to read metadata from 661 * 662 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 663 */ 664 static u32 665 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 666 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring, 667 union ice_32b_rx_flex_desc *eop_desc) 668 { 669 unsigned int ret = ICE_XDP_PASS; 670 u32 act; 671 672 if (!xdp_prog) 673 goto exit; 674 675 ice_xdp_meta_set_desc(xdp, eop_desc); 676 677 act = bpf_prog_run_xdp(xdp_prog, xdp); 678 switch (act) { 679 case XDP_PASS: 680 break; 681 case XDP_TX: 682 if (static_branch_unlikely(&ice_xdp_locking_key)) 683 spin_lock(&xdp_ring->tx_lock); 684 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false); 685 if (static_branch_unlikely(&ice_xdp_locking_key)) 686 spin_unlock(&xdp_ring->tx_lock); 687 if (ret == ICE_XDP_CONSUMED) 688 goto out_failure; 689 break; 690 case XDP_REDIRECT: 691 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog)) 692 goto out_failure; 693 ret = ICE_XDP_REDIR; 694 break; 695 default: 696 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 697 fallthrough; 698 case XDP_ABORTED: 699 out_failure: 700 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 701 fallthrough; 702 case XDP_DROP: 703 ret = ICE_XDP_CONSUMED; 704 } 705 exit: 706 return ret; 707 } 708 709 /** 710 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission 711 * @xdpf: XDP frame that will be converted to XDP buff 712 * @xdp_ring: XDP ring for transmission 713 */ 714 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf, 715 struct ice_tx_ring *xdp_ring) 716 { 717 struct xdp_buff xdp; 718 719 xdp.data_hard_start = (void *)xdpf; 720 xdp.data = xdpf->data; 721 xdp.data_end = xdp.data + xdpf->len; 722 xdp.frame_sz = xdpf->frame_sz; 723 xdp.flags = xdpf->flags; 724 725 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true); 726 } 727 728 /** 729 * ice_xdp_xmit - submit packets to XDP ring for transmission 730 * @dev: netdev 731 * @n: number of XDP frames to be transmitted 732 * @frames: XDP frames to be transmitted 733 * @flags: transmit flags 734 * 735 * Returns number of frames successfully sent. Failed frames 736 * will be free'ed by XDP core. 737 * For error cases, a negative errno code is returned and no-frames 738 * are transmitted (caller must handle freeing frames). 739 */ 740 int 741 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 742 u32 flags) 743 { 744 struct ice_netdev_priv *np = netdev_priv(dev); 745 unsigned int queue_index = smp_processor_id(); 746 struct ice_vsi *vsi = np->vsi; 747 struct ice_tx_ring *xdp_ring; 748 struct ice_tx_buf *tx_buf; 749 int nxmit = 0, i; 750 751 if (test_bit(ICE_VSI_DOWN, vsi->state)) 752 return -ENETDOWN; 753 754 if (!ice_is_xdp_ena_vsi(vsi)) 755 return -ENXIO; 756 757 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 758 return -EINVAL; 759 760 if (static_branch_unlikely(&ice_xdp_locking_key)) { 761 queue_index %= vsi->num_xdp_txq; 762 xdp_ring = vsi->xdp_rings[queue_index]; 763 spin_lock(&xdp_ring->tx_lock); 764 } else { 765 /* Generally, should not happen */ 766 if (unlikely(queue_index >= vsi->num_xdp_txq)) 767 return -ENXIO; 768 xdp_ring = vsi->xdp_rings[queue_index]; 769 } 770 771 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 772 for (i = 0; i < n; i++) { 773 const struct xdp_frame *xdpf = frames[i]; 774 int err; 775 776 err = ice_xmit_xdp_ring(xdpf, xdp_ring); 777 if (err != ICE_XDP_TX) 778 break; 779 nxmit++; 780 } 781 782 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 783 if (unlikely(flags & XDP_XMIT_FLUSH)) 784 ice_xdp_ring_update_tail(xdp_ring); 785 786 if (static_branch_unlikely(&ice_xdp_locking_key)) 787 spin_unlock(&xdp_ring->tx_lock); 788 789 return nxmit; 790 } 791 792 /** 793 * ice_alloc_mapped_page - recycle or make a new page 794 * @rx_ring: ring to use 795 * @bi: rx_buf struct to modify 796 * 797 * Returns true if the page was successfully allocated or 798 * reused. 799 */ 800 static bool 801 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) 802 { 803 struct page *page = bi->page; 804 dma_addr_t dma; 805 806 /* since we are recycling buffers we should seldom need to alloc */ 807 if (likely(page)) 808 return true; 809 810 /* alloc new page for storage */ 811 page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); 812 if (unlikely(!page)) { 813 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 814 return false; 815 } 816 817 /* map page for use */ 818 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), 819 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); 820 821 /* if mapping failed free memory back to system since 822 * there isn't much point in holding memory we can't use 823 */ 824 if (dma_mapping_error(rx_ring->dev, dma)) { 825 __free_pages(page, ice_rx_pg_order(rx_ring)); 826 rx_ring->ring_stats->rx_stats.alloc_page_failed++; 827 return false; 828 } 829 830 bi->dma = dma; 831 bi->page = page; 832 bi->page_offset = rx_ring->rx_offset; 833 page_ref_add(page, USHRT_MAX - 1); 834 bi->pagecnt_bias = USHRT_MAX; 835 836 return true; 837 } 838 839 /** 840 * ice_init_ctrl_rx_descs - Initialize Rx descriptors for control vsi. 841 * @rx_ring: ring to init descriptors on 842 * @count: number of descriptors to initialize 843 */ 844 void ice_init_ctrl_rx_descs(struct ice_rx_ring *rx_ring, u32 count) 845 { 846 union ice_32b_rx_flex_desc *rx_desc; 847 u32 ntu = rx_ring->next_to_use; 848 849 if (!count) 850 return; 851 852 rx_desc = ICE_RX_DESC(rx_ring, ntu); 853 854 do { 855 rx_desc++; 856 ntu++; 857 if (unlikely(ntu == rx_ring->count)) { 858 rx_desc = ICE_RX_DESC(rx_ring, 0); 859 ntu = 0; 860 } 861 862 rx_desc->wb.status_error0 = 0; 863 count--; 864 } while (count); 865 866 if (rx_ring->next_to_use != ntu) 867 ice_release_rx_desc(rx_ring, ntu); 868 } 869 870 /** 871 * ice_alloc_rx_bufs - Replace used receive buffers 872 * @rx_ring: ring to place buffers on 873 * @cleaned_count: number of buffers to replace 874 * 875 * Returns false if all allocations were successful, true if any fail. Returning 876 * true signals to the caller that we didn't replace cleaned_count buffers and 877 * there is more work to do. 878 * 879 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx 880 * buffers. Then bump tail at most one time. Grouping like this lets us avoid 881 * multiple tail writes per call. 882 */ 883 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count) 884 { 885 union ice_32b_rx_flex_desc *rx_desc; 886 u16 ntu = rx_ring->next_to_use; 887 struct ice_rx_buf *bi; 888 889 /* do nothing if no valid netdev defined */ 890 if (!rx_ring->netdev || !cleaned_count) 891 return false; 892 893 /* get the Rx descriptor and buffer based on next_to_use */ 894 rx_desc = ICE_RX_DESC(rx_ring, ntu); 895 bi = &rx_ring->rx_buf[ntu]; 896 897 do { 898 /* if we fail here, we have work remaining */ 899 if (!ice_alloc_mapped_page(rx_ring, bi)) 900 break; 901 902 /* sync the buffer for use by the device */ 903 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 904 bi->page_offset, 905 rx_ring->rx_buf_len, 906 DMA_FROM_DEVICE); 907 908 /* Refresh the desc even if buffer_addrs didn't change 909 * because each write-back erases this info. 910 */ 911 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 912 913 rx_desc++; 914 bi++; 915 ntu++; 916 if (unlikely(ntu == rx_ring->count)) { 917 rx_desc = ICE_RX_DESC(rx_ring, 0); 918 bi = rx_ring->rx_buf; 919 ntu = 0; 920 } 921 922 /* clear the status bits for the next_to_use descriptor */ 923 rx_desc->wb.status_error0 = 0; 924 925 cleaned_count--; 926 } while (cleaned_count); 927 928 if (rx_ring->next_to_use != ntu) 929 ice_release_rx_desc(rx_ring, ntu); 930 931 return !!cleaned_count; 932 } 933 934 /** 935 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse 936 * @rx_buf: Rx buffer to adjust 937 * @size: Size of adjustment 938 * 939 * Update the offset within page so that Rx buf will be ready to be reused. 940 * For systems with PAGE_SIZE < 8192 this function will flip the page offset 941 * so the second half of page assigned to Rx buffer will be used, otherwise 942 * the offset is moved by "size" bytes 943 */ 944 static void 945 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) 946 { 947 #if (PAGE_SIZE < 8192) 948 /* flip page offset to other buffer */ 949 rx_buf->page_offset ^= size; 950 #else 951 /* move offset up to the next cache line */ 952 rx_buf->page_offset += size; 953 #endif 954 } 955 956 /** 957 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx 958 * @rx_buf: buffer containing the page 959 * 960 * If page is reusable, we have a green light for calling ice_reuse_rx_page, 961 * which will assign the current buffer to the buffer that next_to_alloc is 962 * pointing to; otherwise, the DMA mapping needs to be destroyed and 963 * page freed 964 */ 965 static bool 966 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) 967 { 968 unsigned int pagecnt_bias = rx_buf->pagecnt_bias; 969 struct page *page = rx_buf->page; 970 971 /* avoid re-using remote and pfmemalloc pages */ 972 if (!dev_page_is_reusable(page)) 973 return false; 974 975 /* if we are only owner of page we can reuse it */ 976 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1)) 977 return false; 978 #if (PAGE_SIZE >= 8192) 979 #define ICE_LAST_OFFSET \ 980 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072) 981 if (rx_buf->page_offset > ICE_LAST_OFFSET) 982 return false; 983 #endif /* PAGE_SIZE >= 8192) */ 984 985 /* If we have drained the page fragment pool we need to update 986 * the pagecnt_bias and page count so that we fully restock the 987 * number of references the driver holds. 988 */ 989 if (unlikely(pagecnt_bias == 1)) { 990 page_ref_add(page, USHRT_MAX - 1); 991 rx_buf->pagecnt_bias = USHRT_MAX; 992 } 993 994 return true; 995 } 996 997 /** 998 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag 999 * @rx_ring: Rx descriptor ring to transact packets on 1000 * @xdp: xdp buff to place the data into 1001 * @rx_buf: buffer containing page to add 1002 * @size: packet length from rx_desc 1003 * 1004 * This function will add the data contained in rx_buf->page to the xdp buf. 1005 * It will just attach the page as a frag. 1006 */ 1007 static int 1008 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 1009 struct ice_rx_buf *rx_buf, const unsigned int size) 1010 { 1011 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 1012 1013 if (!size) 1014 return 0; 1015 1016 if (!xdp_buff_has_frags(xdp)) { 1017 sinfo->nr_frags = 0; 1018 sinfo->xdp_frags_size = 0; 1019 xdp_buff_set_frags_flag(xdp); 1020 } 1021 1022 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) 1023 return -ENOMEM; 1024 1025 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page, 1026 rx_buf->page_offset, size); 1027 sinfo->xdp_frags_size += size; 1028 1029 if (page_is_pfmemalloc(rx_buf->page)) 1030 xdp_buff_set_frag_pfmemalloc(xdp); 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * ice_reuse_rx_page - page flip buffer and store it back on the ring 1037 * @rx_ring: Rx descriptor ring to store buffers on 1038 * @old_buf: donor buffer to have page reused 1039 * 1040 * Synchronizes page for reuse by the adapter 1041 */ 1042 static void 1043 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) 1044 { 1045 u16 nta = rx_ring->next_to_alloc; 1046 struct ice_rx_buf *new_buf; 1047 1048 new_buf = &rx_ring->rx_buf[nta]; 1049 1050 /* update, and store next to alloc */ 1051 nta++; 1052 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1053 1054 /* Transfer page from old buffer to new buffer. 1055 * Move each member individually to avoid possible store 1056 * forwarding stalls and unnecessary copy of skb. 1057 */ 1058 new_buf->dma = old_buf->dma; 1059 new_buf->page = old_buf->page; 1060 new_buf->page_offset = old_buf->page_offset; 1061 new_buf->pagecnt_bias = old_buf->pagecnt_bias; 1062 } 1063 1064 /** 1065 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use 1066 * @rx_ring: Rx descriptor ring to transact packets on 1067 * @size: size of buffer to add to skb 1068 * @ntc: index of next to clean element 1069 * 1070 * This function will pull an Rx buffer from the ring and synchronize it 1071 * for use by the CPU. 1072 */ 1073 static struct ice_rx_buf * 1074 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, 1075 const unsigned int ntc) 1076 { 1077 struct ice_rx_buf *rx_buf; 1078 1079 rx_buf = &rx_ring->rx_buf[ntc]; 1080 prefetchw(rx_buf->page); 1081 1082 if (!size) 1083 return rx_buf; 1084 /* we are reusing so sync this buffer for CPU use */ 1085 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 1086 rx_buf->page_offset, size, 1087 DMA_FROM_DEVICE); 1088 1089 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1090 rx_buf->pagecnt_bias--; 1091 1092 return rx_buf; 1093 } 1094 1095 /** 1096 * ice_get_pgcnts - grab page_count() for gathered fragments 1097 * @rx_ring: Rx descriptor ring to store the page counts on 1098 * @ntc: the next to clean element (not included in this frame!) 1099 * 1100 * This function is intended to be called right before running XDP 1101 * program so that the page recycling mechanism will be able to take 1102 * a correct decision regarding underlying pages; this is done in such 1103 * way as XDP program can change the refcount of page 1104 */ 1105 static void ice_get_pgcnts(struct ice_rx_ring *rx_ring, unsigned int ntc) 1106 { 1107 u32 idx = rx_ring->first_desc; 1108 struct ice_rx_buf *rx_buf; 1109 u32 cnt = rx_ring->count; 1110 1111 while (idx != ntc) { 1112 rx_buf = &rx_ring->rx_buf[idx]; 1113 rx_buf->pgcnt = page_count(rx_buf->page); 1114 1115 if (++idx == cnt) 1116 idx = 0; 1117 } 1118 } 1119 1120 /** 1121 * ice_build_skb - Build skb around an existing buffer 1122 * @rx_ring: Rx descriptor ring to transact packets on 1123 * @xdp: xdp_buff pointing to the data 1124 * 1125 * This function builds an skb around an existing XDP buffer, taking care 1126 * to set up the skb correctly and avoid any memcpy overhead. Driver has 1127 * already combined frags (if any) to skb_shared_info. 1128 */ 1129 static struct sk_buff * 1130 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1131 { 1132 u8 metasize = xdp->data - xdp->data_meta; 1133 struct skb_shared_info *sinfo = NULL; 1134 unsigned int nr_frags; 1135 struct sk_buff *skb; 1136 1137 if (unlikely(xdp_buff_has_frags(xdp))) { 1138 sinfo = xdp_get_shared_info_from_buff(xdp); 1139 nr_frags = sinfo->nr_frags; 1140 } 1141 1142 /* Prefetch first cache line of first page. If xdp->data_meta 1143 * is unused, this points exactly as xdp->data, otherwise we 1144 * likely have a consumer accessing first few bytes of meta 1145 * data, and then actual data. 1146 */ 1147 net_prefetch(xdp->data_meta); 1148 /* build an skb around the page buffer */ 1149 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 1150 if (unlikely(!skb)) 1151 return NULL; 1152 1153 /* must to record Rx queue, otherwise OS features such as 1154 * symmetric queue won't work 1155 */ 1156 skb_record_rx_queue(skb, rx_ring->q_index); 1157 1158 /* update pointers within the skb to store the data */ 1159 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1160 __skb_put(skb, xdp->data_end - xdp->data); 1161 if (metasize) 1162 skb_metadata_set(skb, metasize); 1163 1164 if (unlikely(xdp_buff_has_frags(xdp))) 1165 xdp_update_skb_frags_info(skb, nr_frags, sinfo->xdp_frags_size, 1166 nr_frags * xdp->frame_sz, 1167 xdp_buff_get_skb_flags(xdp)); 1168 1169 return skb; 1170 } 1171 1172 /** 1173 * ice_construct_skb - Allocate skb and populate it 1174 * @rx_ring: Rx descriptor ring to transact packets on 1175 * @xdp: xdp_buff pointing to the data 1176 * 1177 * This function allocates an skb. It then populates it with the page 1178 * data from the current receive descriptor, taking care to set up the 1179 * skb correctly. 1180 */ 1181 static struct sk_buff * 1182 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 1183 { 1184 unsigned int size = xdp->data_end - xdp->data; 1185 struct skb_shared_info *sinfo = NULL; 1186 struct ice_rx_buf *rx_buf; 1187 unsigned int nr_frags = 0; 1188 unsigned int headlen; 1189 struct sk_buff *skb; 1190 1191 /* prefetch first cache line of first page */ 1192 net_prefetch(xdp->data); 1193 1194 if (unlikely(xdp_buff_has_frags(xdp))) { 1195 sinfo = xdp_get_shared_info_from_buff(xdp); 1196 nr_frags = sinfo->nr_frags; 1197 } 1198 1199 /* allocate a skb to store the frags */ 1200 skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE); 1201 if (unlikely(!skb)) 1202 return NULL; 1203 1204 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc]; 1205 skb_record_rx_queue(skb, rx_ring->q_index); 1206 /* Determine available headroom for copy */ 1207 headlen = size; 1208 if (headlen > ICE_RX_HDR_SIZE) 1209 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); 1210 1211 /* align pull length to size of long to optimize memcpy performance */ 1212 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, 1213 sizeof(long))); 1214 1215 /* if we exhaust the linear part then add what is left as a frag */ 1216 size -= headlen; 1217 if (size) { 1218 /* besides adding here a partial frag, we are going to add 1219 * frags from xdp_buff, make sure there is enough space for 1220 * them 1221 */ 1222 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) { 1223 dev_kfree_skb(skb); 1224 return NULL; 1225 } 1226 skb_add_rx_frag(skb, 0, rx_buf->page, 1227 rx_buf->page_offset + headlen, size, 1228 xdp->frame_sz); 1229 } else { 1230 /* buffer is unused, restore biased page count in Rx buffer; 1231 * data was copied onto skb's linear part so there's no 1232 * need for adjusting page offset and we can reuse this buffer 1233 * as-is 1234 */ 1235 rx_buf->pagecnt_bias++; 1236 } 1237 1238 if (unlikely(xdp_buff_has_frags(xdp))) { 1239 struct skb_shared_info *skinfo = skb_shinfo(skb); 1240 1241 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 1242 sizeof(skb_frag_t) * nr_frags); 1243 1244 xdp_update_skb_frags_info(skb, skinfo->nr_frags + nr_frags, 1245 sinfo->xdp_frags_size, 1246 nr_frags * xdp->frame_sz, 1247 xdp_buff_get_skb_flags(xdp)); 1248 } 1249 1250 return skb; 1251 } 1252 1253 /** 1254 * ice_put_rx_buf - Clean up used buffer and either recycle or free 1255 * @rx_ring: Rx descriptor ring to transact packets on 1256 * @rx_buf: Rx buffer to pull data from 1257 * 1258 * This function will clean up the contents of the rx_buf. It will either 1259 * recycle the buffer or unmap it and free the associated resources. 1260 */ 1261 static void 1262 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf) 1263 { 1264 if (!rx_buf) 1265 return; 1266 1267 if (ice_can_reuse_rx_page(rx_buf)) { 1268 /* hand second half of page back to the ring */ 1269 ice_reuse_rx_page(rx_ring, rx_buf); 1270 } else { 1271 /* we are not reusing the buffer so unmap it */ 1272 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, 1273 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1274 ICE_RX_DMA_ATTR); 1275 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); 1276 } 1277 1278 /* clear contents of buffer_info */ 1279 rx_buf->page = NULL; 1280 } 1281 1282 /** 1283 * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all buffers in frame 1284 * @rx_ring: Rx ring with all the auxiliary data 1285 * @xdp: XDP buffer carrying linear + frags part 1286 * @ntc: the next to clean element (not included in this frame!) 1287 * @verdict: return code from XDP program execution 1288 * 1289 * Called after XDP program is completed, or on error with verdict set to 1290 * ICE_XDP_CONSUMED. 1291 * 1292 * Walk through buffers from first_desc to the end of the frame, releasing 1293 * buffers and satisfying internal page recycle mechanism. The action depends 1294 * on verdict from XDP program. 1295 */ 1296 static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 1297 u32 ntc, u32 verdict) 1298 { 1299 u32 idx = rx_ring->first_desc; 1300 u32 cnt = rx_ring->count; 1301 struct ice_rx_buf *buf; 1302 u32 xdp_frags = 0; 1303 int i = 0; 1304 1305 if (unlikely(xdp_buff_has_frags(xdp))) 1306 xdp_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; 1307 1308 while (idx != ntc) { 1309 buf = &rx_ring->rx_buf[idx]; 1310 if (++idx == cnt) 1311 idx = 0; 1312 1313 /* An XDP program could release fragments from the end of the 1314 * buffer. For these, we need to keep the pagecnt_bias as-is. 1315 * To do this, only adjust pagecnt_bias for fragments up to 1316 * the total remaining after the XDP program has run. 1317 */ 1318 if (verdict != ICE_XDP_CONSUMED) 1319 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz); 1320 else if (i++ <= xdp_frags) 1321 buf->pagecnt_bias++; 1322 1323 ice_put_rx_buf(rx_ring, buf); 1324 } 1325 1326 xdp->data = NULL; 1327 rx_ring->first_desc = ntc; 1328 } 1329 1330 /** 1331 * ice_clean_ctrl_rx_irq - Clean descriptors from flow director Rx ring 1332 * @rx_ring: Rx descriptor ring for ctrl_vsi to transact packets on 1333 * 1334 * This function cleans Rx descriptors from the ctrl_vsi Rx ring used 1335 * to set flow director rules on VFs. 1336 */ 1337 void ice_clean_ctrl_rx_irq(struct ice_rx_ring *rx_ring) 1338 { 1339 u32 ntc = rx_ring->next_to_clean; 1340 unsigned int total_rx_pkts = 0; 1341 u32 cnt = rx_ring->count; 1342 1343 while (likely(total_rx_pkts < ICE_DFLT_IRQ_WORK)) { 1344 struct ice_vsi *ctrl_vsi = rx_ring->vsi; 1345 union ice_32b_rx_flex_desc *rx_desc; 1346 u16 stat_err_bits; 1347 1348 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1349 1350 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1351 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1352 break; 1353 1354 dma_rmb(); 1355 1356 if (ctrl_vsi->vf) 1357 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); 1358 1359 if (++ntc == cnt) 1360 ntc = 0; 1361 total_rx_pkts++; 1362 } 1363 1364 rx_ring->first_desc = ntc; 1365 rx_ring->next_to_clean = ntc; 1366 ice_init_ctrl_rx_descs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1367 } 1368 1369 /** 1370 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1371 * @rx_ring: Rx descriptor ring to transact packets on 1372 * @budget: Total limit on number of packets to process 1373 * 1374 * This function provides a "bounce buffer" approach to Rx interrupt 1375 * processing. The advantage to this is that on systems that have 1376 * expensive overhead for IOMMU access this provides a means of avoiding 1377 * it by maintaining the mapping of the page to the system. 1378 * 1379 * Returns amount of work completed 1380 */ 1381 static int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) 1382 { 1383 unsigned int total_rx_bytes = 0, total_rx_pkts = 0; 1384 unsigned int offset = rx_ring->rx_offset; 1385 struct xdp_buff *xdp = &rx_ring->xdp; 1386 struct ice_tx_ring *xdp_ring = NULL; 1387 struct bpf_prog *xdp_prog = NULL; 1388 u32 ntc = rx_ring->next_to_clean; 1389 u32 cached_ntu, xdp_verdict; 1390 u32 cnt = rx_ring->count; 1391 u32 xdp_xmit = 0; 1392 bool failure; 1393 1394 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1395 if (xdp_prog) { 1396 xdp_ring = rx_ring->xdp_ring; 1397 cached_ntu = xdp_ring->next_to_use; 1398 } 1399 1400 /* start the loop to process Rx packets bounded by 'budget' */ 1401 while (likely(total_rx_pkts < (unsigned int)budget)) { 1402 union ice_32b_rx_flex_desc *rx_desc; 1403 struct ice_rx_buf *rx_buf; 1404 struct sk_buff *skb; 1405 unsigned int size; 1406 u16 stat_err_bits; 1407 u16 vlan_tci; 1408 1409 /* get the Rx desc from Rx ring based on 'next_to_clean' */ 1410 rx_desc = ICE_RX_DESC(rx_ring, ntc); 1411 1412 /* status_error_len will always be zero for unused descriptors 1413 * because it's cleared in cleanup, and overlaps with hdr_addr 1414 * which is always zero because packet split isn't used, if the 1415 * hardware wrote DD then it will be non-zero 1416 */ 1417 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 1418 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 1419 break; 1420 1421 /* This memory barrier is needed to keep us from reading 1422 * any other fields out of the rx_desc until we know the 1423 * DD bit is set. 1424 */ 1425 dma_rmb(); 1426 1427 ice_trace(clean_rx_irq, rx_ring, rx_desc); 1428 1429 size = le16_to_cpu(rx_desc->wb.pkt_len) & 1430 ICE_RX_FLX_DESC_PKT_LEN_M; 1431 1432 /* retrieve a buffer from the ring */ 1433 rx_buf = ice_get_rx_buf(rx_ring, size, ntc); 1434 1435 /* Increment ntc before calls to ice_put_rx_mbuf() */ 1436 if (++ntc == cnt) 1437 ntc = 0; 1438 1439 if (!xdp->data) { 1440 void *hard_start; 1441 1442 hard_start = page_address(rx_buf->page) + rx_buf->page_offset - 1443 offset; 1444 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset); 1445 xdp_buff_clear_frags_flag(xdp); 1446 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) { 1447 ice_put_rx_mbuf(rx_ring, xdp, ntc, ICE_XDP_CONSUMED); 1448 break; 1449 } 1450 1451 /* skip if it is NOP desc */ 1452 if (ice_is_non_eop(rx_ring, rx_desc)) 1453 continue; 1454 1455 ice_get_pgcnts(rx_ring, ntc); 1456 xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc); 1457 if (xdp_verdict == ICE_XDP_PASS) 1458 goto construct_skb; 1459 total_rx_bytes += xdp_get_buff_len(xdp); 1460 total_rx_pkts++; 1461 1462 ice_put_rx_mbuf(rx_ring, xdp, ntc, xdp_verdict); 1463 xdp_xmit |= xdp_verdict & (ICE_XDP_TX | ICE_XDP_REDIR); 1464 1465 continue; 1466 construct_skb: 1467 if (likely(ice_ring_uses_build_skb(rx_ring))) 1468 skb = ice_build_skb(rx_ring, xdp); 1469 else 1470 skb = ice_construct_skb(rx_ring, xdp); 1471 /* exit if we failed to retrieve a buffer */ 1472 if (!skb) { 1473 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 1474 xdp_verdict = ICE_XDP_CONSUMED; 1475 } 1476 ice_put_rx_mbuf(rx_ring, xdp, ntc, xdp_verdict); 1477 1478 if (!skb) 1479 break; 1480 1481 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); 1482 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, 1483 stat_err_bits))) { 1484 dev_kfree_skb_any(skb); 1485 continue; 1486 } 1487 1488 vlan_tci = ice_get_vlan_tci(rx_desc); 1489 1490 /* pad the skb if needed, to make a valid ethernet frame */ 1491 if (eth_skb_pad(skb)) 1492 continue; 1493 1494 /* probably a little skewed due to removing CRC */ 1495 total_rx_bytes += skb->len; 1496 1497 /* populate checksum, VLAN, and protocol */ 1498 ice_process_skb_fields(rx_ring, rx_desc, skb); 1499 1500 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); 1501 /* send completed skb up the stack */ 1502 ice_receive_skb(rx_ring, skb, vlan_tci); 1503 1504 /* update budget accounting */ 1505 total_rx_pkts++; 1506 } 1507 1508 rx_ring->next_to_clean = ntc; 1509 /* return up to cleaned_count buffers to hardware */ 1510 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring)); 1511 1512 if (xdp_xmit) 1513 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu); 1514 1515 if (rx_ring->ring_stats) 1516 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, 1517 total_rx_bytes); 1518 1519 /* guarantee a trip back through this routine if there was a failure */ 1520 return failure ? budget : (int)total_rx_pkts; 1521 } 1522 1523 static void __ice_update_sample(struct ice_q_vector *q_vector, 1524 struct ice_ring_container *rc, 1525 struct dim_sample *sample, 1526 bool is_tx) 1527 { 1528 u64 packets = 0, bytes = 0; 1529 1530 if (is_tx) { 1531 struct ice_tx_ring *tx_ring; 1532 1533 ice_for_each_tx_ring(tx_ring, *rc) { 1534 struct ice_ring_stats *ring_stats; 1535 1536 ring_stats = tx_ring->ring_stats; 1537 if (!ring_stats) 1538 continue; 1539 packets += ring_stats->stats.pkts; 1540 bytes += ring_stats->stats.bytes; 1541 } 1542 } else { 1543 struct ice_rx_ring *rx_ring; 1544 1545 ice_for_each_rx_ring(rx_ring, *rc) { 1546 struct ice_ring_stats *ring_stats; 1547 1548 ring_stats = rx_ring->ring_stats; 1549 if (!ring_stats) 1550 continue; 1551 packets += ring_stats->stats.pkts; 1552 bytes += ring_stats->stats.bytes; 1553 } 1554 } 1555 1556 dim_update_sample(q_vector->total_events, packets, bytes, sample); 1557 sample->comp_ctr = 0; 1558 1559 /* if dim settings get stale, like when not updated for 1 1560 * second or longer, force it to start again. This addresses the 1561 * frequent case of an idle queue being switched to by the 1562 * scheduler. The 1,000 here means 1,000 milliseconds. 1563 */ 1564 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) 1565 rc->dim.state = DIM_START_MEASURE; 1566 } 1567 1568 /** 1569 * ice_net_dim - Update net DIM algorithm 1570 * @q_vector: the vector associated with the interrupt 1571 * 1572 * Create a DIM sample and notify net_dim() so that it can possibly decide 1573 * a new ITR value based on incoming packets, bytes, and interrupts. 1574 * 1575 * This function is a no-op if the ring is not configured to dynamic ITR. 1576 */ 1577 static void ice_net_dim(struct ice_q_vector *q_vector) 1578 { 1579 struct ice_ring_container *tx = &q_vector->tx; 1580 struct ice_ring_container *rx = &q_vector->rx; 1581 1582 if (ITR_IS_DYNAMIC(tx)) { 1583 struct dim_sample dim_sample; 1584 1585 __ice_update_sample(q_vector, tx, &dim_sample, true); 1586 net_dim(&tx->dim, &dim_sample); 1587 } 1588 1589 if (ITR_IS_DYNAMIC(rx)) { 1590 struct dim_sample dim_sample; 1591 1592 __ice_update_sample(q_vector, rx, &dim_sample, false); 1593 net_dim(&rx->dim, &dim_sample); 1594 } 1595 } 1596 1597 /** 1598 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register 1599 * @itr_idx: interrupt throttling index 1600 * @itr: interrupt throttling value in usecs 1601 */ 1602 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) 1603 { 1604 /* The ITR value is reported in microseconds, and the register value is 1605 * recorded in 2 microsecond units. For this reason we only need to 1606 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this 1607 * granularity as a shift instead of division. The mask makes sure the 1608 * ITR value is never odd so we don't accidentally write into the field 1609 * prior to the ITR field. 1610 */ 1611 itr &= ICE_ITR_MASK; 1612 1613 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 1614 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | 1615 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); 1616 } 1617 1618 /** 1619 * ice_enable_interrupt - re-enable MSI-X interrupt 1620 * @q_vector: the vector associated with the interrupt to enable 1621 * 1622 * If the VSI is down, the interrupt will not be re-enabled. Also, 1623 * when enabling the interrupt always reset the wb_on_itr to false 1624 * and trigger a software interrupt to clean out internal state. 1625 */ 1626 static void ice_enable_interrupt(struct ice_q_vector *q_vector) 1627 { 1628 struct ice_vsi *vsi = q_vector->vsi; 1629 bool wb_en = q_vector->wb_on_itr; 1630 u32 itr_val; 1631 1632 if (test_bit(ICE_DOWN, vsi->state)) 1633 return; 1634 1635 /* trigger an ITR delayed software interrupt when exiting busy poll, to 1636 * make sure to catch any pending cleanups that might have been missed 1637 * due to interrupt state transition. If busy poll or poll isn't 1638 * enabled, then don't update ITR, and just enable the interrupt. 1639 */ 1640 if (!wb_en) { 1641 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); 1642 } else { 1643 q_vector->wb_on_itr = false; 1644 1645 /* do two things here with a single write. Set up the third ITR 1646 * index to be used for software interrupt moderation, and then 1647 * trigger a software interrupt with a rate limit of 20K on 1648 * software interrupts, this will help avoid high interrupt 1649 * loads due to frequently polling and exiting polling. 1650 */ 1651 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); 1652 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | 1653 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | 1654 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; 1655 } 1656 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); 1657 } 1658 1659 /** 1660 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector 1661 * @q_vector: q_vector to set WB_ON_ITR on 1662 * 1663 * We need to tell hardware to write-back completed descriptors even when 1664 * interrupts are disabled. Descriptors will be written back on cache line 1665 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR 1666 * descriptors may not be written back if they don't fill a cache line until 1667 * the next interrupt. 1668 * 1669 * This sets the write-back frequency to whatever was set previously for the 1670 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we 1671 * aren't meddling with the INTENA_M bit. 1672 */ 1673 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) 1674 { 1675 struct ice_vsi *vsi = q_vector->vsi; 1676 1677 /* already in wb_on_itr mode no need to change it */ 1678 if (q_vector->wb_on_itr) 1679 return; 1680 1681 /* use previously set ITR values for all of the ITR indices by 1682 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and 1683 * be static in non-adaptive mode (user configured) 1684 */ 1685 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), 1686 FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) | 1687 FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) | 1688 FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1)); 1689 1690 q_vector->wb_on_itr = true; 1691 } 1692 1693 /** 1694 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine 1695 * @napi: napi struct with our devices info in it 1696 * @budget: amount of work driver is allowed to do this pass, in packets 1697 * 1698 * This function will clean all queues associated with a q_vector. 1699 * 1700 * Returns the amount of work done 1701 */ 1702 int ice_napi_poll(struct napi_struct *napi, int budget) 1703 { 1704 struct ice_q_vector *q_vector = 1705 container_of(napi, struct ice_q_vector, napi); 1706 struct ice_tx_ring *tx_ring; 1707 struct ice_rx_ring *rx_ring; 1708 bool clean_complete = true; 1709 int budget_per_ring; 1710 int work_done = 0; 1711 1712 /* Since the actual Tx work is minimal, we can give the Tx a larger 1713 * budget and be more aggressive about cleaning up the Tx descriptors. 1714 */ 1715 ice_for_each_tx_ring(tx_ring, q_vector->tx) { 1716 struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool); 1717 bool wd; 1718 1719 if (xsk_pool) 1720 wd = ice_xmit_zc(tx_ring, xsk_pool); 1721 else if (ice_ring_is_xdp(tx_ring)) 1722 wd = true; 1723 else 1724 wd = ice_clean_tx_irq(tx_ring, budget); 1725 1726 if (!wd) 1727 clean_complete = false; 1728 } 1729 1730 /* Handle case where we are called by netpoll with a budget of 0 */ 1731 if (unlikely(budget <= 0)) 1732 return budget; 1733 1734 /* normally we have 1 Rx ring per q_vector */ 1735 if (unlikely(q_vector->num_ring_rx > 1)) 1736 /* We attempt to distribute budget to each Rx queue fairly, but 1737 * don't allow the budget to go below 1 because that would exit 1738 * polling early. 1739 */ 1740 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); 1741 else 1742 /* Max of 1 Rx ring in this q_vector so give it the budget */ 1743 budget_per_ring = budget; 1744 1745 ice_for_each_rx_ring(rx_ring, q_vector->rx) { 1746 struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool); 1747 int cleaned; 1748 1749 /* A dedicated path for zero-copy allows making a single 1750 * comparison in the irq context instead of many inside the 1751 * ice_clean_rx_irq function and makes the codebase cleaner. 1752 */ 1753 cleaned = rx_ring->xsk_pool ? 1754 ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) : 1755 ice_clean_rx_irq(rx_ring, budget_per_ring); 1756 work_done += cleaned; 1757 /* if we clean as many as budgeted, we must not be done */ 1758 if (cleaned >= budget_per_ring) 1759 clean_complete = false; 1760 } 1761 1762 /* If work not completed, return budget and polling will return */ 1763 if (!clean_complete) { 1764 /* Set the writeback on ITR so partial completions of 1765 * cache-lines will still continue even if we're polling. 1766 */ 1767 ice_set_wb_on_itr(q_vector); 1768 return budget; 1769 } 1770 1771 /* Exit the polling mode, but don't re-enable interrupts if stack might 1772 * poll us due to busy-polling 1773 */ 1774 if (napi_complete_done(napi, work_done)) { 1775 ice_net_dim(q_vector); 1776 ice_enable_interrupt(q_vector); 1777 } else { 1778 ice_set_wb_on_itr(q_vector); 1779 } 1780 1781 return min_t(int, work_done, budget - 1); 1782 } 1783 1784 /** 1785 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions 1786 * @tx_ring: the ring to be checked 1787 * @size: the size buffer we want to assure is available 1788 * 1789 * Returns -EBUSY if a stop is needed, else 0 1790 */ 1791 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1792 { 1793 netif_tx_stop_queue(txring_txq(tx_ring)); 1794 /* Memory barrier before checking head and tail */ 1795 smp_mb(); 1796 1797 /* Check again in a case another CPU has just made room available. */ 1798 if (likely(ICE_DESC_UNUSED(tx_ring) < size)) 1799 return -EBUSY; 1800 1801 /* A reprieve! - use start_queue because it doesn't call schedule */ 1802 netif_tx_start_queue(txring_txq(tx_ring)); 1803 ++tx_ring->ring_stats->tx_stats.restart_q; 1804 return 0; 1805 } 1806 1807 /** 1808 * ice_maybe_stop_tx - 1st level check for Tx stop conditions 1809 * @tx_ring: the ring to be checked 1810 * @size: the size buffer we want to assure is available 1811 * 1812 * Returns 0 if stop is not needed 1813 */ 1814 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) 1815 { 1816 if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) 1817 return 0; 1818 1819 return __ice_maybe_stop_tx(tx_ring, size); 1820 } 1821 1822 /** 1823 * ice_tx_map - Build the Tx descriptor 1824 * @tx_ring: ring to send buffer on 1825 * @first: first buffer info buffer to use 1826 * @off: pointer to struct that holds offload parameters 1827 * 1828 * This function loops over the skb data pointed to by *first 1829 * and gets a physical address for each memory location and programs 1830 * it and the length into the transmit descriptor. 1831 */ 1832 static void 1833 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, 1834 struct ice_tx_offload_params *off) 1835 { 1836 u64 td_offset, td_tag, td_cmd; 1837 u16 i = tx_ring->next_to_use; 1838 unsigned int data_len, size; 1839 struct ice_tx_desc *tx_desc; 1840 struct ice_tx_buf *tx_buf; 1841 struct sk_buff *skb; 1842 skb_frag_t *frag; 1843 dma_addr_t dma; 1844 bool kick; 1845 1846 td_tag = off->td_l2tag1; 1847 td_cmd = off->td_cmd; 1848 td_offset = off->td_offset; 1849 skb = first->skb; 1850 1851 data_len = skb->data_len; 1852 size = skb_headlen(skb); 1853 1854 tx_desc = ICE_TX_DESC(tx_ring, i); 1855 1856 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { 1857 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; 1858 td_tag = first->vid; 1859 } 1860 1861 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1862 1863 tx_buf = first; 1864 1865 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1866 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1867 1868 if (dma_mapping_error(tx_ring->dev, dma)) 1869 goto dma_error; 1870 1871 /* record length, and DMA address */ 1872 dma_unmap_len_set(tx_buf, len, size); 1873 dma_unmap_addr_set(tx_buf, dma, dma); 1874 1875 /* align size to end of page */ 1876 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); 1877 tx_desc->buf_addr = cpu_to_le64(dma); 1878 1879 /* account for data chunks larger than the hardware 1880 * can handle 1881 */ 1882 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { 1883 tx_desc->cmd_type_offset_bsz = 1884 ice_build_ctob(td_cmd, td_offset, max_data, 1885 td_tag); 1886 1887 tx_desc++; 1888 i++; 1889 1890 if (i == tx_ring->count) { 1891 tx_desc = ICE_TX_DESC(tx_ring, 0); 1892 i = 0; 1893 } 1894 1895 dma += max_data; 1896 size -= max_data; 1897 1898 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; 1899 tx_desc->buf_addr = cpu_to_le64(dma); 1900 } 1901 1902 if (likely(!data_len)) 1903 break; 1904 1905 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, 1906 size, td_tag); 1907 1908 tx_desc++; 1909 i++; 1910 1911 if (i == tx_ring->count) { 1912 tx_desc = ICE_TX_DESC(tx_ring, 0); 1913 i = 0; 1914 } 1915 1916 size = skb_frag_size(frag); 1917 data_len -= size; 1918 1919 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1920 DMA_TO_DEVICE); 1921 1922 tx_buf = &tx_ring->tx_buf[i]; 1923 tx_buf->type = ICE_TX_BUF_FRAG; 1924 } 1925 1926 /* record SW timestamp if HW timestamp is not available */ 1927 skb_tx_timestamp(first->skb); 1928 1929 i++; 1930 if (i == tx_ring->count) 1931 i = 0; 1932 1933 /* write last descriptor with RS and EOP bits */ 1934 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; 1935 tx_desc->cmd_type_offset_bsz = 1936 ice_build_ctob(td_cmd, td_offset, size, td_tag); 1937 1938 /* Force memory writes to complete before letting h/w know there 1939 * are new descriptors to fetch. 1940 * 1941 * We also use this memory barrier to make certain all of the 1942 * status bits have been updated before next_to_watch is written. 1943 */ 1944 wmb(); 1945 1946 /* set next_to_watch value indicating a packet is present */ 1947 first->next_to_watch = tx_desc; 1948 1949 tx_ring->next_to_use = i; 1950 1951 ice_maybe_stop_tx(tx_ring, DESC_NEEDED); 1952 1953 /* notify HW of packet */ 1954 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, 1955 netdev_xmit_more()); 1956 if (!kick) 1957 return; 1958 1959 if (ice_is_txtime_cfg(tx_ring)) { 1960 struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring; 1961 u32 tstamp_count = tstamp_ring->count; 1962 u32 j = tstamp_ring->next_to_use; 1963 struct ice_ts_desc *ts_desc; 1964 struct timespec64 ts; 1965 u32 tstamp; 1966 1967 ts = ktime_to_timespec64(first->skb->tstamp); 1968 tstamp = ts.tv_nsec >> ICE_TXTIME_CTX_RESOLUTION_128NS; 1969 1970 ts_desc = ICE_TS_DESC(tstamp_ring, j); 1971 ts_desc->tx_desc_idx_tstamp = ice_build_tstamp_desc(i, tstamp); 1972 1973 j++; 1974 if (j == tstamp_count) { 1975 u32 fetch = tstamp_count - tx_ring->count; 1976 1977 j = 0; 1978 1979 /* To prevent an MDD, when wrapping the tstamp ring 1980 * create additional TS descriptors equal to the number 1981 * of the fetch TS descriptors value. HW will merge the 1982 * TS descriptors with the same timestamp value into a 1983 * single descriptor. 1984 */ 1985 for (; j < fetch; j++) { 1986 ts_desc = ICE_TS_DESC(tstamp_ring, j); 1987 ts_desc->tx_desc_idx_tstamp = 1988 ice_build_tstamp_desc(i, tstamp); 1989 } 1990 } 1991 tstamp_ring->next_to_use = j; 1992 writel_relaxed(j, tstamp_ring->tail); 1993 } else { 1994 writel_relaxed(i, tx_ring->tail); 1995 } 1996 return; 1997 1998 dma_error: 1999 /* clear DMA mappings for failed tx_buf map */ 2000 for (;;) { 2001 tx_buf = &tx_ring->tx_buf[i]; 2002 ice_unmap_and_free_tx_buf(tx_ring, tx_buf); 2003 if (tx_buf == first) 2004 break; 2005 if (i == 0) 2006 i = tx_ring->count; 2007 i--; 2008 } 2009 2010 tx_ring->next_to_use = i; 2011 } 2012 2013 /** 2014 * ice_tx_csum - Enable Tx checksum offloads 2015 * @first: pointer to the first descriptor 2016 * @off: pointer to struct that holds offload parameters 2017 * 2018 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. 2019 */ 2020 static 2021 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2022 { 2023 const struct ice_tx_ring *tx_ring = off->tx_ring; 2024 u32 l4_len = 0, l3_len = 0, l2_len = 0; 2025 struct sk_buff *skb = first->skb; 2026 union { 2027 struct iphdr *v4; 2028 struct ipv6hdr *v6; 2029 unsigned char *hdr; 2030 } ip; 2031 union { 2032 struct tcphdr *tcp; 2033 unsigned char *hdr; 2034 } l4; 2035 __be16 frag_off, protocol; 2036 unsigned char *exthdr; 2037 u32 offset, cmd = 0; 2038 u8 l4_proto = 0; 2039 2040 if (skb->ip_summed != CHECKSUM_PARTIAL) 2041 return 0; 2042 2043 protocol = vlan_get_protocol(skb); 2044 2045 if (eth_p_mpls(protocol)) { 2046 ip.hdr = skb_inner_network_header(skb); 2047 l4.hdr = skb_checksum_start(skb); 2048 } else { 2049 ip.hdr = skb_network_header(skb); 2050 l4.hdr = skb_transport_header(skb); 2051 } 2052 2053 /* compute outer L2 header size */ 2054 l2_len = ip.hdr - skb->data; 2055 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; 2056 2057 /* set the tx_flags to indicate the IP protocol type. this is 2058 * required so that checksum header computation below is accurate. 2059 */ 2060 if (ip.v4->version == 4) 2061 first->tx_flags |= ICE_TX_FLAGS_IPV4; 2062 else if (ip.v6->version == 6) 2063 first->tx_flags |= ICE_TX_FLAGS_IPV6; 2064 2065 if (skb->encapsulation) { 2066 bool gso_ena = false; 2067 u32 tunnel = 0; 2068 2069 /* define outer network header type */ 2070 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 2071 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? 2072 ICE_TX_CTX_EIPT_IPV4 : 2073 ICE_TX_CTX_EIPT_IPV4_NO_CSUM; 2074 l4_proto = ip.v4->protocol; 2075 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 2076 int ret; 2077 2078 tunnel |= ICE_TX_CTX_EIPT_IPV6; 2079 exthdr = ip.hdr + sizeof(*ip.v6); 2080 l4_proto = ip.v6->nexthdr; 2081 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 2082 &l4_proto, &frag_off); 2083 if (ret < 0) 2084 return -1; 2085 } 2086 2087 /* define outer transport */ 2088 switch (l4_proto) { 2089 case IPPROTO_UDP: 2090 tunnel |= ICE_TXD_CTX_UDP_TUNNELING; 2091 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 2092 break; 2093 case IPPROTO_GRE: 2094 tunnel |= ICE_TXD_CTX_GRE_TUNNELING; 2095 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 2096 break; 2097 case IPPROTO_IPIP: 2098 case IPPROTO_IPV6: 2099 first->tx_flags |= ICE_TX_FLAGS_TUNNEL; 2100 l4.hdr = skb_inner_network_header(skb); 2101 break; 2102 default: 2103 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2104 return -1; 2105 2106 skb_checksum_help(skb); 2107 return 0; 2108 } 2109 2110 /* compute outer L3 header size */ 2111 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2112 ICE_TXD_CTX_QW0_EIPLEN_S; 2113 2114 /* switch IP header pointer from outer to inner header */ 2115 ip.hdr = skb_inner_network_header(skb); 2116 2117 /* compute tunnel header size */ 2118 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2119 ICE_TXD_CTX_QW0_NATLEN_S; 2120 2121 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; 2122 /* indicate if we need to offload outer UDP header */ 2123 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && 2124 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2125 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; 2126 2127 /* record tunnel offload values */ 2128 off->cd_tunnel_params |= tunnel; 2129 2130 /* set DTYP=1 to indicate that it's an Tx context descriptor 2131 * in IPsec tunnel mode with Tx offloads in Quad word 1 2132 */ 2133 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; 2134 2135 /* switch L4 header pointer from outer to inner */ 2136 l4.hdr = skb_inner_transport_header(skb); 2137 l4_proto = 0; 2138 2139 /* reset type as we transition from outer to inner headers */ 2140 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); 2141 if (ip.v4->version == 4) 2142 first->tx_flags |= ICE_TX_FLAGS_IPV4; 2143 if (ip.v6->version == 6) 2144 first->tx_flags |= ICE_TX_FLAGS_IPV6; 2145 } 2146 2147 /* Enable IP checksum offloads */ 2148 if (first->tx_flags & ICE_TX_FLAGS_IPV4) { 2149 l4_proto = ip.v4->protocol; 2150 /* the stack computes the IP header already, the only time we 2151 * need the hardware to recompute it is in the case of TSO. 2152 */ 2153 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2154 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; 2155 else 2156 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; 2157 2158 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { 2159 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; 2160 exthdr = ip.hdr + sizeof(*ip.v6); 2161 l4_proto = ip.v6->nexthdr; 2162 if (l4.hdr != exthdr) 2163 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, 2164 &frag_off); 2165 } else { 2166 return -1; 2167 } 2168 2169 /* compute inner L3 header size */ 2170 l3_len = l4.hdr - ip.hdr; 2171 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; 2172 2173 if ((tx_ring->netdev->features & NETIF_F_HW_CSUM) && 2174 !(first->tx_flags & ICE_TX_FLAGS_TSO) && 2175 !skb_csum_is_sctp(skb)) { 2176 /* Set GCS */ 2177 u16 csum_start = (skb->csum_start - skb->mac_header) / 2; 2178 u16 csum_offset = skb->csum_offset / 2; 2179 u16 gcs_params; 2180 2181 gcs_params = FIELD_PREP(ICE_TX_GCS_DESC_START_M, csum_start) | 2182 FIELD_PREP(ICE_TX_GCS_DESC_OFFSET_M, csum_offset) | 2183 FIELD_PREP(ICE_TX_GCS_DESC_TYPE_M, 2184 ICE_TX_GCS_DESC_CSUM_PSH); 2185 2186 /* Unlike legacy HW checksums, GCS requires a context 2187 * descriptor. 2188 */ 2189 off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX; 2190 off->cd_gcs_params = gcs_params; 2191 /* Fill out CSO info in data descriptors */ 2192 off->td_offset |= offset; 2193 off->td_cmd |= cmd; 2194 return 1; 2195 } 2196 2197 /* Enable L4 checksum offloads */ 2198 switch (l4_proto) { 2199 case IPPROTO_TCP: 2200 /* enable checksum offloads */ 2201 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; 2202 l4_len = l4.tcp->doff; 2203 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2204 break; 2205 case IPPROTO_UDP: 2206 /* enable UDP checksum offload */ 2207 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; 2208 l4_len = (sizeof(struct udphdr) >> 2); 2209 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2210 break; 2211 case IPPROTO_SCTP: 2212 /* enable SCTP checksum offload */ 2213 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; 2214 l4_len = sizeof(struct sctphdr) >> 2; 2215 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; 2216 break; 2217 2218 default: 2219 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2220 return -1; 2221 skb_checksum_help(skb); 2222 return 0; 2223 } 2224 2225 off->td_cmd |= cmd; 2226 off->td_offset |= offset; 2227 return 1; 2228 } 2229 2230 /** 2231 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW 2232 * @tx_ring: ring to send buffer on 2233 * @first: pointer to struct ice_tx_buf 2234 * 2235 * Checks the skb and set up correspondingly several generic transmit flags 2236 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2237 */ 2238 static void 2239 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) 2240 { 2241 struct sk_buff *skb = first->skb; 2242 2243 /* nothing left to do, software offloaded VLAN */ 2244 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) 2245 return; 2246 2247 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev 2248 * feature flags, which the driver only allows either 802.1Q or 802.1ad 2249 * VLAN offloads exclusively so we only care about the VLAN ID here 2250 */ 2251 if (skb_vlan_tag_present(skb)) { 2252 first->vid = skb_vlan_tag_get(skb); 2253 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) 2254 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 2255 else 2256 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; 2257 } 2258 2259 ice_tx_prepare_vlan_flags_dcb(tx_ring, first); 2260 } 2261 2262 /** 2263 * ice_tso - computes mss and TSO length to prepare for TSO 2264 * @first: pointer to struct ice_tx_buf 2265 * @off: pointer to struct that holds offload parameters 2266 * 2267 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. 2268 */ 2269 static 2270 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2271 { 2272 struct sk_buff *skb = first->skb; 2273 union { 2274 struct iphdr *v4; 2275 struct ipv6hdr *v6; 2276 unsigned char *hdr; 2277 } ip; 2278 union { 2279 struct tcphdr *tcp; 2280 struct udphdr *udp; 2281 unsigned char *hdr; 2282 } l4; 2283 u64 cd_mss, cd_tso_len; 2284 __be16 protocol; 2285 u32 paylen; 2286 u8 l4_start; 2287 int err; 2288 2289 if (skb->ip_summed != CHECKSUM_PARTIAL) 2290 return 0; 2291 2292 if (!skb_is_gso(skb)) 2293 return 0; 2294 2295 err = skb_cow_head(skb, 0); 2296 if (err < 0) 2297 return err; 2298 2299 protocol = vlan_get_protocol(skb); 2300 2301 if (eth_p_mpls(protocol)) 2302 ip.hdr = skb_inner_network_header(skb); 2303 else 2304 ip.hdr = skb_network_header(skb); 2305 l4.hdr = skb_checksum_start(skb); 2306 2307 /* initialize outer IP header fields */ 2308 if (ip.v4->version == 4) { 2309 ip.v4->tot_len = 0; 2310 ip.v4->check = 0; 2311 } else { 2312 ip.v6->payload_len = 0; 2313 } 2314 2315 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2316 SKB_GSO_GRE_CSUM | 2317 SKB_GSO_IPXIP4 | 2318 SKB_GSO_IPXIP6 | 2319 SKB_GSO_UDP_TUNNEL | 2320 SKB_GSO_UDP_TUNNEL_CSUM)) { 2321 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2322 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2323 l4.udp->len = 0; 2324 2325 /* determine offset of outer transport header */ 2326 l4_start = (u8)(l4.hdr - skb->data); 2327 2328 /* remove payload length from outer checksum */ 2329 paylen = skb->len - l4_start; 2330 csum_replace_by_diff(&l4.udp->check, 2331 (__force __wsum)htonl(paylen)); 2332 } 2333 2334 /* reset pointers to inner headers */ 2335 ip.hdr = skb_inner_network_header(skb); 2336 l4.hdr = skb_inner_transport_header(skb); 2337 2338 /* initialize inner IP header fields */ 2339 if (ip.v4->version == 4) { 2340 ip.v4->tot_len = 0; 2341 ip.v4->check = 0; 2342 } else { 2343 ip.v6->payload_len = 0; 2344 } 2345 } 2346 2347 /* determine offset of transport header */ 2348 l4_start = (u8)(l4.hdr - skb->data); 2349 2350 /* remove payload length from checksum */ 2351 paylen = skb->len - l4_start; 2352 2353 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2354 csum_replace_by_diff(&l4.udp->check, 2355 (__force __wsum)htonl(paylen)); 2356 /* compute length of UDP segmentation header */ 2357 off->header_len = (u8)sizeof(l4.udp) + l4_start; 2358 } else { 2359 csum_replace_by_diff(&l4.tcp->check, 2360 (__force __wsum)htonl(paylen)); 2361 /* compute length of TCP segmentation header */ 2362 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); 2363 } 2364 2365 /* update gso_segs and bytecount */ 2366 first->gso_segs = skb_shinfo(skb)->gso_segs; 2367 first->bytecount += (first->gso_segs - 1) * off->header_len; 2368 2369 cd_tso_len = skb->len - off->header_len; 2370 cd_mss = skb_shinfo(skb)->gso_size; 2371 2372 /* record cdesc_qw1 with TSO parameters */ 2373 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2374 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | 2375 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | 2376 (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); 2377 first->tx_flags |= ICE_TX_FLAGS_TSO; 2378 return 1; 2379 } 2380 2381 /** 2382 * ice_txd_use_count - estimate the number of descriptors needed for Tx 2383 * @size: transmit request size in bytes 2384 * 2385 * Due to hardware alignment restrictions (4K alignment), we need to 2386 * assume that we can have no more than 12K of data per descriptor, even 2387 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 2388 * Thus, we need to divide by 12K. But division is slow! Instead, 2389 * we decompose the operation into shifts and one relatively cheap 2390 * multiply operation. 2391 * 2392 * To divide by 12K, we first divide by 4K, then divide by 3: 2393 * To divide by 4K, shift right by 12 bits 2394 * To divide by 3, multiply by 85, then divide by 256 2395 * (Divide by 256 is done by shifting right by 8 bits) 2396 * Finally, we add one to round up. Because 256 isn't an exact multiple of 2397 * 3, we'll underestimate near each multiple of 12K. This is actually more 2398 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 2399 * segment. For our purposes this is accurate out to 1M which is orders of 2400 * magnitude greater than our largest possible GSO size. 2401 * 2402 * This would then be implemented as: 2403 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; 2404 * 2405 * Since multiplication and division are commutative, we can reorder 2406 * operations into: 2407 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2408 */ 2409 static unsigned int ice_txd_use_count(unsigned int size) 2410 { 2411 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; 2412 } 2413 2414 /** 2415 * ice_xmit_desc_count - calculate number of Tx descriptors needed 2416 * @skb: send buffer 2417 * 2418 * Returns number of data descriptors needed for this skb. 2419 */ 2420 static unsigned int ice_xmit_desc_count(struct sk_buff *skb) 2421 { 2422 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 2423 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 2424 unsigned int count = 0, size = skb_headlen(skb); 2425 2426 for (;;) { 2427 count += ice_txd_use_count(size); 2428 2429 if (!nr_frags--) 2430 break; 2431 2432 size = skb_frag_size(frag++); 2433 } 2434 2435 return count; 2436 } 2437 2438 /** 2439 * __ice_chk_linearize - Check if there are more than 8 buffers per packet 2440 * @skb: send buffer 2441 * 2442 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire 2443 * and so we need to figure out the cases where we need to linearize the skb. 2444 * 2445 * For TSO we need to count the TSO header and segment payload separately. 2446 * As such we need to check cases where we have 7 fragments or more as we 2447 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2448 * the segment payload in the first descriptor, and another 7 for the 2449 * fragments. 2450 */ 2451 static bool __ice_chk_linearize(struct sk_buff *skb) 2452 { 2453 const skb_frag_t *frag, *stale; 2454 int nr_frags, sum; 2455 2456 /* no need to check if number of frags is less than 7 */ 2457 nr_frags = skb_shinfo(skb)->nr_frags; 2458 if (nr_frags < (ICE_MAX_BUF_TXD - 1)) 2459 return false; 2460 2461 /* We need to walk through the list and validate that each group 2462 * of 6 fragments totals at least gso_size. 2463 */ 2464 nr_frags -= ICE_MAX_BUF_TXD - 2; 2465 frag = &skb_shinfo(skb)->frags[0]; 2466 2467 /* Initialize size to the negative value of gso_size minus 1. We 2468 * use this as the worst case scenario in which the frag ahead 2469 * of us only provides one byte which is why we are limited to 6 2470 * descriptors for a single transmit as the header and previous 2471 * fragment are already consuming 2 descriptors. 2472 */ 2473 sum = 1 - skb_shinfo(skb)->gso_size; 2474 2475 /* Add size of frags 0 through 4 to create our initial sum */ 2476 sum += skb_frag_size(frag++); 2477 sum += skb_frag_size(frag++); 2478 sum += skb_frag_size(frag++); 2479 sum += skb_frag_size(frag++); 2480 sum += skb_frag_size(frag++); 2481 2482 /* Walk through fragments adding latest fragment, testing it, and 2483 * then removing stale fragments from the sum. 2484 */ 2485 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2486 int stale_size = skb_frag_size(stale); 2487 2488 sum += skb_frag_size(frag++); 2489 2490 /* The stale fragment may present us with a smaller 2491 * descriptor than the actual fragment size. To account 2492 * for that we need to remove all the data on the front and 2493 * figure out what the remainder would be in the last 2494 * descriptor associated with the fragment. 2495 */ 2496 if (stale_size > ICE_MAX_DATA_PER_TXD) { 2497 int align_pad = -(skb_frag_off(stale)) & 2498 (ICE_MAX_READ_REQ_SIZE - 1); 2499 2500 sum -= align_pad; 2501 stale_size -= align_pad; 2502 2503 do { 2504 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2505 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; 2506 } while (stale_size > ICE_MAX_DATA_PER_TXD); 2507 } 2508 2509 /* if sum is negative we failed to make sufficient progress */ 2510 if (sum < 0) 2511 return true; 2512 2513 if (!nr_frags--) 2514 break; 2515 2516 sum -= stale_size; 2517 } 2518 2519 return false; 2520 } 2521 2522 /** 2523 * ice_chk_linearize - Check if there are more than 8 fragments per packet 2524 * @skb: send buffer 2525 * @count: number of buffers used 2526 * 2527 * Note: Our HW can't scatter-gather more than 8 fragments to build 2528 * a packet on the wire and so we need to figure out the cases where we 2529 * need to linearize the skb. 2530 */ 2531 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) 2532 { 2533 /* Both TSO and single send will work if count is less than 8 */ 2534 if (likely(count < ICE_MAX_BUF_TXD)) 2535 return false; 2536 2537 if (skb_is_gso(skb)) 2538 return __ice_chk_linearize(skb); 2539 2540 /* we can support up to 8 data buffers for a single send */ 2541 return count != ICE_MAX_BUF_TXD; 2542 } 2543 2544 /** 2545 * ice_tstamp - set up context descriptor for hardware timestamp 2546 * @tx_ring: pointer to the Tx ring to send buffer on 2547 * @skb: pointer to the SKB we're sending 2548 * @first: Tx buffer 2549 * @off: Tx offload parameters 2550 */ 2551 static void 2552 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, 2553 struct ice_tx_buf *first, struct ice_tx_offload_params *off) 2554 { 2555 s8 idx; 2556 2557 /* only timestamp the outbound packet if the user has requested it */ 2558 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2559 return; 2560 2561 /* Tx timestamps cannot be sampled when doing TSO */ 2562 if (first->tx_flags & ICE_TX_FLAGS_TSO) 2563 return; 2564 2565 /* Grab an open timestamp slot */ 2566 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); 2567 if (idx < 0) { 2568 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; 2569 return; 2570 } 2571 2572 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2573 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | 2574 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); 2575 first->tx_flags |= ICE_TX_FLAGS_TSYN; 2576 } 2577 2578 /** 2579 * ice_xmit_frame_ring - Sends buffer on Tx ring 2580 * @skb: send buffer 2581 * @tx_ring: ring to send buffer on 2582 * 2583 * Returns NETDEV_TX_OK if sent, else an error code 2584 */ 2585 static netdev_tx_t 2586 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) 2587 { 2588 struct ice_tx_offload_params offload = { 0 }; 2589 struct ice_vsi *vsi = tx_ring->vsi; 2590 struct ice_tx_buf *first; 2591 struct ethhdr *eth; 2592 unsigned int count; 2593 int tso, csum; 2594 2595 ice_trace(xmit_frame_ring, tx_ring, skb); 2596 2597 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 2598 goto out_drop; 2599 2600 count = ice_xmit_desc_count(skb); 2601 if (ice_chk_linearize(skb, count)) { 2602 if (__skb_linearize(skb)) 2603 goto out_drop; 2604 count = ice_txd_use_count(skb->len); 2605 tx_ring->ring_stats->tx_stats.tx_linearize++; 2606 } 2607 2608 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, 2609 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, 2610 * + 4 desc gap to avoid the cache line where head is, 2611 * + 1 desc for context descriptor, 2612 * otherwise try next time 2613 */ 2614 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + 2615 ICE_DESCS_FOR_CTX_DESC)) { 2616 tx_ring->ring_stats->tx_stats.tx_busy++; 2617 return NETDEV_TX_BUSY; 2618 } 2619 2620 /* prefetch for bql data which is infrequently used */ 2621 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); 2622 2623 offload.tx_ring = tx_ring; 2624 2625 /* record the location of the first descriptor for this packet */ 2626 first = &tx_ring->tx_buf[tx_ring->next_to_use]; 2627 first->skb = skb; 2628 first->type = ICE_TX_BUF_SKB; 2629 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 2630 first->gso_segs = 1; 2631 first->tx_flags = 0; 2632 2633 /* prepare the VLAN tagging flags for Tx */ 2634 ice_tx_prepare_vlan_flags(tx_ring, first); 2635 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2636 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2637 (ICE_TX_CTX_DESC_IL2TAG2 << 2638 ICE_TXD_CTX_QW1_CMD_S)); 2639 offload.cd_l2tag2 = first->vid; 2640 } 2641 2642 /* set up TSO offload */ 2643 tso = ice_tso(first, &offload); 2644 if (tso < 0) 2645 goto out_drop; 2646 2647 /* always set up Tx checksum offload */ 2648 csum = ice_tx_csum(first, &offload); 2649 if (csum < 0) 2650 goto out_drop; 2651 2652 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ 2653 eth = (struct ethhdr *)skb_mac_header(skb); 2654 2655 if ((ice_is_switchdev_running(vsi->back) || 2656 ice_lag_is_switchdev_running(vsi->back)) && 2657 vsi->type != ICE_VSI_SF) 2658 ice_eswitch_set_target_vsi(skb, &offload); 2659 else if (unlikely((skb->priority == TC_PRIO_CONTROL || 2660 eth->h_proto == htons(ETH_P_LLDP)) && 2661 vsi->type == ICE_VSI_PF && 2662 vsi->port_info->qos_cfg.is_sw_lldp)) 2663 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | 2664 ICE_TX_CTX_DESC_SWTCH_UPLINK << 2665 ICE_TXD_CTX_QW1_CMD_S); 2666 2667 ice_tstamp(tx_ring, skb, first, &offload); 2668 2669 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { 2670 struct ice_tx_ctx_desc *cdesc; 2671 u16 i = tx_ring->next_to_use; 2672 2673 /* grab the next descriptor */ 2674 cdesc = ICE_TX_CTX_DESC(tx_ring, i); 2675 i++; 2676 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2677 2678 /* setup context descriptor */ 2679 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); 2680 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); 2681 cdesc->gcs = cpu_to_le16(offload.cd_gcs_params); 2682 cdesc->qw1 = cpu_to_le64(offload.cd_qw1); 2683 } 2684 2685 ice_tx_map(tx_ring, first, &offload); 2686 return NETDEV_TX_OK; 2687 2688 out_drop: 2689 ice_trace(xmit_frame_ring_drop, tx_ring, skb); 2690 dev_kfree_skb_any(skb); 2691 return NETDEV_TX_OK; 2692 } 2693 2694 /** 2695 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer 2696 * @skb: send buffer 2697 * @netdev: network interface device structure 2698 * 2699 * Returns NETDEV_TX_OK if sent, else an error code 2700 */ 2701 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2702 { 2703 struct ice_netdev_priv *np = netdev_priv(netdev); 2704 struct ice_vsi *vsi = np->vsi; 2705 struct ice_tx_ring *tx_ring; 2706 2707 tx_ring = vsi->tx_rings[skb->queue_mapping]; 2708 2709 /* hardware can't handle really short frames, hardware padding works 2710 * beyond this point 2711 */ 2712 if (skb_put_padto(skb, ICE_MIN_TX_LEN)) 2713 return NETDEV_TX_OK; 2714 2715 return ice_xmit_frame_ring(skb, tx_ring); 2716 } 2717 2718 /** 2719 * ice_get_dscp_up - return the UP/TC value for a SKB 2720 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping 2721 * @skb: SKB to query for info to determine UP/TC 2722 * 2723 * This function is to only be called when the PF is in L3 DSCP PFC mode 2724 */ 2725 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) 2726 { 2727 u8 dscp = 0; 2728 2729 if (skb->protocol == htons(ETH_P_IP)) 2730 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; 2731 else if (skb->protocol == htons(ETH_P_IPV6)) 2732 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; 2733 2734 return dcbcfg->dscp_map[dscp]; 2735 } 2736 2737 u16 2738 ice_select_queue(struct net_device *netdev, struct sk_buff *skb, 2739 struct net_device *sb_dev) 2740 { 2741 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2742 struct ice_dcbx_cfg *dcbcfg; 2743 2744 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 2745 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) 2746 skb->priority = ice_get_dscp_up(dcbcfg, skb); 2747 2748 return netdev_pick_tx(netdev, skb, sb_dev); 2749 } 2750 2751 /** 2752 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue 2753 * @tx_ring: tx_ring to clean 2754 */ 2755 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) 2756 { 2757 struct ice_vsi *vsi = tx_ring->vsi; 2758 s16 i = tx_ring->next_to_clean; 2759 int budget = ICE_DFLT_IRQ_WORK; 2760 struct ice_tx_desc *tx_desc; 2761 struct ice_tx_buf *tx_buf; 2762 2763 tx_buf = &tx_ring->tx_buf[i]; 2764 tx_desc = ICE_TX_DESC(tx_ring, i); 2765 i -= tx_ring->count; 2766 2767 do { 2768 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; 2769 2770 /* if next_to_watch is not set then there is no pending work */ 2771 if (!eop_desc) 2772 break; 2773 2774 /* prevent any other reads prior to eop_desc */ 2775 smp_rmb(); 2776 2777 /* if the descriptor isn't done, no work to do */ 2778 if (!(eop_desc->cmd_type_offset_bsz & 2779 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 2780 break; 2781 2782 /* clear next_to_watch to prevent false hangs */ 2783 tx_buf->next_to_watch = NULL; 2784 tx_desc->buf_addr = 0; 2785 tx_desc->cmd_type_offset_bsz = 0; 2786 2787 /* move past filter desc */ 2788 tx_buf++; 2789 tx_desc++; 2790 i++; 2791 if (unlikely(!i)) { 2792 i -= tx_ring->count; 2793 tx_buf = tx_ring->tx_buf; 2794 tx_desc = ICE_TX_DESC(tx_ring, 0); 2795 } 2796 2797 /* unmap the data header */ 2798 if (dma_unmap_len(tx_buf, len)) 2799 dma_unmap_single(tx_ring->dev, 2800 dma_unmap_addr(tx_buf, dma), 2801 dma_unmap_len(tx_buf, len), 2802 DMA_TO_DEVICE); 2803 if (tx_buf->type == ICE_TX_BUF_DUMMY) 2804 devm_kfree(tx_ring->dev, tx_buf->raw_buf); 2805 2806 /* clear next_to_watch to prevent false hangs */ 2807 tx_buf->type = ICE_TX_BUF_EMPTY; 2808 tx_buf->tx_flags = 0; 2809 tx_buf->next_to_watch = NULL; 2810 dma_unmap_len_set(tx_buf, len, 0); 2811 tx_desc->buf_addr = 0; 2812 tx_desc->cmd_type_offset_bsz = 0; 2813 2814 /* move past eop_desc for start of next FD desc */ 2815 tx_buf++; 2816 tx_desc++; 2817 i++; 2818 if (unlikely(!i)) { 2819 i -= tx_ring->count; 2820 tx_buf = tx_ring->tx_buf; 2821 tx_desc = ICE_TX_DESC(tx_ring, 0); 2822 } 2823 2824 budget--; 2825 } while (likely(budget)); 2826 2827 i += tx_ring->count; 2828 tx_ring->next_to_clean = i; 2829 2830 /* re-enable interrupt if needed */ 2831 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); 2832 } 2833