xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 /**
19  * ice_unmap_and_free_tx_buf - Release a Tx buffer
20  * @ring: the ring that owns the buffer
21  * @tx_buf: the buffer to free
22  */
23 static void
24 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
25 {
26 	if (tx_buf->skb) {
27 		if (ice_ring_is_xdp(ring))
28 			page_frag_free(tx_buf->raw_buf);
29 		else
30 			dev_kfree_skb_any(tx_buf->skb);
31 		if (dma_unmap_len(tx_buf, len))
32 			dma_unmap_single(ring->dev,
33 					 dma_unmap_addr(tx_buf, dma),
34 					 dma_unmap_len(tx_buf, len),
35 					 DMA_TO_DEVICE);
36 	} else if (dma_unmap_len(tx_buf, len)) {
37 		dma_unmap_page(ring->dev,
38 			       dma_unmap_addr(tx_buf, dma),
39 			       dma_unmap_len(tx_buf, len),
40 			       DMA_TO_DEVICE);
41 	}
42 
43 	tx_buf->next_to_watch = NULL;
44 	tx_buf->skb = NULL;
45 	dma_unmap_len_set(tx_buf, len, 0);
46 	/* tx_buf must be completely set up in the transmit path */
47 }
48 
49 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
50 {
51 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
52 }
53 
54 /**
55  * ice_clean_tx_ring - Free any empty Tx buffers
56  * @tx_ring: ring to be cleaned
57  */
58 void ice_clean_tx_ring(struct ice_ring *tx_ring)
59 {
60 	u16 i;
61 
62 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
63 		ice_xsk_clean_xdp_ring(tx_ring);
64 		goto tx_skip_free;
65 	}
66 
67 	/* ring already cleared, nothing to do */
68 	if (!tx_ring->tx_buf)
69 		return;
70 
71 	/* Free all the Tx ring sk_buffs */
72 	for (i = 0; i < tx_ring->count; i++)
73 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
74 
75 tx_skip_free:
76 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
77 
78 	/* Zero out the descriptor ring */
79 	memset(tx_ring->desc, 0, tx_ring->size);
80 
81 	tx_ring->next_to_use = 0;
82 	tx_ring->next_to_clean = 0;
83 
84 	if (!tx_ring->netdev)
85 		return;
86 
87 	/* cleanup Tx queue statistics */
88 	netdev_tx_reset_queue(txring_txq(tx_ring));
89 }
90 
91 /**
92  * ice_free_tx_ring - Free Tx resources per queue
93  * @tx_ring: Tx descriptor ring for a specific queue
94  *
95  * Free all transmit software resources
96  */
97 void ice_free_tx_ring(struct ice_ring *tx_ring)
98 {
99 	ice_clean_tx_ring(tx_ring);
100 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
101 	tx_ring->tx_buf = NULL;
102 
103 	if (tx_ring->desc) {
104 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
105 				   tx_ring->desc, tx_ring->dma);
106 		tx_ring->desc = NULL;
107 	}
108 }
109 
110 /**
111  * ice_clean_tx_irq - Reclaim resources after transmit completes
112  * @tx_ring: Tx ring to clean
113  * @napi_budget: Used to determine if we are in netpoll
114  *
115  * Returns true if there's any budget left (e.g. the clean is finished)
116  */
117 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
118 {
119 	unsigned int total_bytes = 0, total_pkts = 0;
120 	unsigned int budget = ICE_DFLT_IRQ_WORK;
121 	struct ice_vsi *vsi = tx_ring->vsi;
122 	s16 i = tx_ring->next_to_clean;
123 	struct ice_tx_desc *tx_desc;
124 	struct ice_tx_buf *tx_buf;
125 
126 	tx_buf = &tx_ring->tx_buf[i];
127 	tx_desc = ICE_TX_DESC(tx_ring, i);
128 	i -= tx_ring->count;
129 
130 	prefetch(&vsi->state);
131 
132 	do {
133 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
134 
135 		/* if next_to_watch is not set then there is no work pending */
136 		if (!eop_desc)
137 			break;
138 
139 		smp_rmb();	/* prevent any other reads prior to eop_desc */
140 
141 		/* if the descriptor isn't done, no work yet to do */
142 		if (!(eop_desc->cmd_type_offset_bsz &
143 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
144 			break;
145 
146 		/* clear next_to_watch to prevent false hangs */
147 		tx_buf->next_to_watch = NULL;
148 
149 		/* update the statistics for this packet */
150 		total_bytes += tx_buf->bytecount;
151 		total_pkts += tx_buf->gso_segs;
152 
153 		if (ice_ring_is_xdp(tx_ring))
154 			page_frag_free(tx_buf->raw_buf);
155 		else
156 			/* free the skb */
157 			napi_consume_skb(tx_buf->skb, napi_budget);
158 
159 		/* unmap skb header data */
160 		dma_unmap_single(tx_ring->dev,
161 				 dma_unmap_addr(tx_buf, dma),
162 				 dma_unmap_len(tx_buf, len),
163 				 DMA_TO_DEVICE);
164 
165 		/* clear tx_buf data */
166 		tx_buf->skb = NULL;
167 		dma_unmap_len_set(tx_buf, len, 0);
168 
169 		/* unmap remaining buffers */
170 		while (tx_desc != eop_desc) {
171 			tx_buf++;
172 			tx_desc++;
173 			i++;
174 			if (unlikely(!i)) {
175 				i -= tx_ring->count;
176 				tx_buf = tx_ring->tx_buf;
177 				tx_desc = ICE_TX_DESC(tx_ring, 0);
178 			}
179 
180 			/* unmap any remaining paged data */
181 			if (dma_unmap_len(tx_buf, len)) {
182 				dma_unmap_page(tx_ring->dev,
183 					       dma_unmap_addr(tx_buf, dma),
184 					       dma_unmap_len(tx_buf, len),
185 					       DMA_TO_DEVICE);
186 				dma_unmap_len_set(tx_buf, len, 0);
187 			}
188 		}
189 
190 		/* move us one more past the eop_desc for start of next pkt */
191 		tx_buf++;
192 		tx_desc++;
193 		i++;
194 		if (unlikely(!i)) {
195 			i -= tx_ring->count;
196 			tx_buf = tx_ring->tx_buf;
197 			tx_desc = ICE_TX_DESC(tx_ring, 0);
198 		}
199 
200 		prefetch(tx_desc);
201 
202 		/* update budget accounting */
203 		budget--;
204 	} while (likely(budget));
205 
206 	i += tx_ring->count;
207 	tx_ring->next_to_clean = i;
208 
209 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
210 
211 	if (ice_ring_is_xdp(tx_ring))
212 		return !!budget;
213 
214 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
215 				  total_bytes);
216 
217 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
218 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
219 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
220 		/* Make sure that anybody stopping the queue after this
221 		 * sees the new next_to_clean.
222 		 */
223 		smp_mb();
224 		if (__netif_subqueue_stopped(tx_ring->netdev,
225 					     tx_ring->q_index) &&
226 		    !test_bit(__ICE_DOWN, vsi->state)) {
227 			netif_wake_subqueue(tx_ring->netdev,
228 					    tx_ring->q_index);
229 			++tx_ring->tx_stats.restart_q;
230 		}
231 	}
232 
233 	return !!budget;
234 }
235 
236 /**
237  * ice_setup_tx_ring - Allocate the Tx descriptors
238  * @tx_ring: the Tx ring to set up
239  *
240  * Return 0 on success, negative on error
241  */
242 int ice_setup_tx_ring(struct ice_ring *tx_ring)
243 {
244 	struct device *dev = tx_ring->dev;
245 
246 	if (!dev)
247 		return -ENOMEM;
248 
249 	/* warn if we are about to overwrite the pointer */
250 	WARN_ON(tx_ring->tx_buf);
251 	tx_ring->tx_buf =
252 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
253 			     GFP_KERNEL);
254 	if (!tx_ring->tx_buf)
255 		return -ENOMEM;
256 
257 	/* round up to nearest page */
258 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
259 			      PAGE_SIZE);
260 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
261 					    GFP_KERNEL);
262 	if (!tx_ring->desc) {
263 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
264 			tx_ring->size);
265 		goto err;
266 	}
267 
268 	tx_ring->next_to_use = 0;
269 	tx_ring->next_to_clean = 0;
270 	tx_ring->tx_stats.prev_pkt = -1;
271 	return 0;
272 
273 err:
274 	devm_kfree(dev, tx_ring->tx_buf);
275 	tx_ring->tx_buf = NULL;
276 	return -ENOMEM;
277 }
278 
279 /**
280  * ice_clean_rx_ring - Free Rx buffers
281  * @rx_ring: ring to be cleaned
282  */
283 void ice_clean_rx_ring(struct ice_ring *rx_ring)
284 {
285 	struct device *dev = rx_ring->dev;
286 	u16 i;
287 
288 	/* ring already cleared, nothing to do */
289 	if (!rx_ring->rx_buf)
290 		return;
291 
292 	if (rx_ring->xsk_umem) {
293 		ice_xsk_clean_rx_ring(rx_ring);
294 		goto rx_skip_free;
295 	}
296 
297 	/* Free all the Rx ring sk_buffs */
298 	for (i = 0; i < rx_ring->count; i++) {
299 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
300 
301 		if (rx_buf->skb) {
302 			dev_kfree_skb(rx_buf->skb);
303 			rx_buf->skb = NULL;
304 		}
305 		if (!rx_buf->page)
306 			continue;
307 
308 		/* Invalidate cache lines that may have been written to by
309 		 * device so that we avoid corrupting memory.
310 		 */
311 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
312 					      rx_buf->page_offset,
313 					      rx_ring->rx_buf_len,
314 					      DMA_FROM_DEVICE);
315 
316 		/* free resources associated with mapping */
317 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
318 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
319 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
320 
321 		rx_buf->page = NULL;
322 		rx_buf->page_offset = 0;
323 	}
324 
325 rx_skip_free:
326 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
327 
328 	/* Zero out the descriptor ring */
329 	memset(rx_ring->desc, 0, rx_ring->size);
330 
331 	rx_ring->next_to_alloc = 0;
332 	rx_ring->next_to_clean = 0;
333 	rx_ring->next_to_use = 0;
334 }
335 
336 /**
337  * ice_free_rx_ring - Free Rx resources
338  * @rx_ring: ring to clean the resources from
339  *
340  * Free all receive software resources
341  */
342 void ice_free_rx_ring(struct ice_ring *rx_ring)
343 {
344 	ice_clean_rx_ring(rx_ring);
345 	if (rx_ring->vsi->type == ICE_VSI_PF)
346 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
347 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
348 	rx_ring->xdp_prog = NULL;
349 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
350 	rx_ring->rx_buf = NULL;
351 
352 	if (rx_ring->desc) {
353 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
354 				   rx_ring->desc, rx_ring->dma);
355 		rx_ring->desc = NULL;
356 	}
357 }
358 
359 /**
360  * ice_setup_rx_ring - Allocate the Rx descriptors
361  * @rx_ring: the Rx ring to set up
362  *
363  * Return 0 on success, negative on error
364  */
365 int ice_setup_rx_ring(struct ice_ring *rx_ring)
366 {
367 	struct device *dev = rx_ring->dev;
368 
369 	if (!dev)
370 		return -ENOMEM;
371 
372 	/* warn if we are about to overwrite the pointer */
373 	WARN_ON(rx_ring->rx_buf);
374 	rx_ring->rx_buf =
375 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
376 			     GFP_KERNEL);
377 	if (!rx_ring->rx_buf)
378 		return -ENOMEM;
379 
380 	/* round up to nearest page */
381 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
382 			      PAGE_SIZE);
383 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
384 					    GFP_KERNEL);
385 	if (!rx_ring->desc) {
386 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
387 			rx_ring->size);
388 		goto err;
389 	}
390 
391 	rx_ring->next_to_use = 0;
392 	rx_ring->next_to_clean = 0;
393 
394 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
395 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
396 
397 	if (rx_ring->vsi->type == ICE_VSI_PF &&
398 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
399 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
400 				     rx_ring->q_index))
401 			goto err;
402 	return 0;
403 
404 err:
405 	devm_kfree(dev, rx_ring->rx_buf);
406 	rx_ring->rx_buf = NULL;
407 	return -ENOMEM;
408 }
409 
410 /**
411  * ice_rx_offset - Return expected offset into page to access data
412  * @rx_ring: Ring we are requesting offset of
413  *
414  * Returns the offset value for ring into the data buffer.
415  */
416 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
417 {
418 	if (ice_ring_uses_build_skb(rx_ring))
419 		return ICE_SKB_PAD;
420 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
421 		return XDP_PACKET_HEADROOM;
422 
423 	return 0;
424 }
425 
426 static unsigned int ice_rx_frame_truesize(struct ice_ring *rx_ring,
427 					  unsigned int size)
428 {
429 	unsigned int truesize;
430 
431 #if (PAGE_SIZE < 8192)
432 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
433 #else
434 	truesize = ice_rx_offset(rx_ring) ?
435 		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
436 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
437 		SKB_DATA_ALIGN(size);
438 #endif
439 	return truesize;
440 }
441 
442 /**
443  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
444  * @rx_ring: Rx ring
445  * @xdp: xdp_buff used as input to the XDP program
446  * @xdp_prog: XDP program to run
447  *
448  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
449  */
450 static int
451 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
452 	    struct bpf_prog *xdp_prog)
453 {
454 	int err, result = ICE_XDP_PASS;
455 	struct ice_ring *xdp_ring;
456 	u32 act;
457 
458 	act = bpf_prog_run_xdp(xdp_prog, xdp);
459 	switch (act) {
460 	case XDP_PASS:
461 		break;
462 	case XDP_TX:
463 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
464 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
465 		break;
466 	case XDP_REDIRECT:
467 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
468 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
469 		break;
470 	default:
471 		bpf_warn_invalid_xdp_action(act);
472 		fallthrough;
473 	case XDP_ABORTED:
474 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
475 		fallthrough;
476 	case XDP_DROP:
477 		result = ICE_XDP_CONSUMED;
478 		break;
479 	}
480 
481 	return result;
482 }
483 
484 /**
485  * ice_xdp_xmit - submit packets to XDP ring for transmission
486  * @dev: netdev
487  * @n: number of XDP frames to be transmitted
488  * @frames: XDP frames to be transmitted
489  * @flags: transmit flags
490  *
491  * Returns number of frames successfully sent. Frames that fail are
492  * free'ed via XDP return API.
493  * For error cases, a negative errno code is returned and no-frames
494  * are transmitted (caller must handle freeing frames).
495  */
496 int
497 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
498 	     u32 flags)
499 {
500 	struct ice_netdev_priv *np = netdev_priv(dev);
501 	unsigned int queue_index = smp_processor_id();
502 	struct ice_vsi *vsi = np->vsi;
503 	struct ice_ring *xdp_ring;
504 	int drops = 0, i;
505 
506 	if (test_bit(__ICE_DOWN, vsi->state))
507 		return -ENETDOWN;
508 
509 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
510 		return -ENXIO;
511 
512 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
513 		return -EINVAL;
514 
515 	xdp_ring = vsi->xdp_rings[queue_index];
516 	for (i = 0; i < n; i++) {
517 		struct xdp_frame *xdpf = frames[i];
518 		int err;
519 
520 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
521 		if (err != ICE_XDP_TX) {
522 			xdp_return_frame_rx_napi(xdpf);
523 			drops++;
524 		}
525 	}
526 
527 	if (unlikely(flags & XDP_XMIT_FLUSH))
528 		ice_xdp_ring_update_tail(xdp_ring);
529 
530 	return n - drops;
531 }
532 
533 /**
534  * ice_alloc_mapped_page - recycle or make a new page
535  * @rx_ring: ring to use
536  * @bi: rx_buf struct to modify
537  *
538  * Returns true if the page was successfully allocated or
539  * reused.
540  */
541 static bool
542 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
543 {
544 	struct page *page = bi->page;
545 	dma_addr_t dma;
546 
547 	/* since we are recycling buffers we should seldom need to alloc */
548 	if (likely(page)) {
549 		rx_ring->rx_stats.page_reuse_count++;
550 		return true;
551 	}
552 
553 	/* alloc new page for storage */
554 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
555 	if (unlikely(!page)) {
556 		rx_ring->rx_stats.alloc_page_failed++;
557 		return false;
558 	}
559 
560 	/* map page for use */
561 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
562 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
563 
564 	/* if mapping failed free memory back to system since
565 	 * there isn't much point in holding memory we can't use
566 	 */
567 	if (dma_mapping_error(rx_ring->dev, dma)) {
568 		__free_pages(page, ice_rx_pg_order(rx_ring));
569 		rx_ring->rx_stats.alloc_page_failed++;
570 		return false;
571 	}
572 
573 	bi->dma = dma;
574 	bi->page = page;
575 	bi->page_offset = ice_rx_offset(rx_ring);
576 	page_ref_add(page, USHRT_MAX - 1);
577 	bi->pagecnt_bias = USHRT_MAX;
578 
579 	return true;
580 }
581 
582 /**
583  * ice_alloc_rx_bufs - Replace used receive buffers
584  * @rx_ring: ring to place buffers on
585  * @cleaned_count: number of buffers to replace
586  *
587  * Returns false if all allocations were successful, true if any fail. Returning
588  * true signals to the caller that we didn't replace cleaned_count buffers and
589  * there is more work to do.
590  *
591  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
592  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
593  * multiple tail writes per call.
594  */
595 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
596 {
597 	union ice_32b_rx_flex_desc *rx_desc;
598 	u16 ntu = rx_ring->next_to_use;
599 	struct ice_rx_buf *bi;
600 
601 	/* do nothing if no valid netdev defined */
602 	if (!rx_ring->netdev || !cleaned_count)
603 		return false;
604 
605 	/* get the Rx descriptor and buffer based on next_to_use */
606 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
607 	bi = &rx_ring->rx_buf[ntu];
608 
609 	do {
610 		/* if we fail here, we have work remaining */
611 		if (!ice_alloc_mapped_page(rx_ring, bi))
612 			break;
613 
614 		/* sync the buffer for use by the device */
615 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
616 						 bi->page_offset,
617 						 rx_ring->rx_buf_len,
618 						 DMA_FROM_DEVICE);
619 
620 		/* Refresh the desc even if buffer_addrs didn't change
621 		 * because each write-back erases this info.
622 		 */
623 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
624 
625 		rx_desc++;
626 		bi++;
627 		ntu++;
628 		if (unlikely(ntu == rx_ring->count)) {
629 			rx_desc = ICE_RX_DESC(rx_ring, 0);
630 			bi = rx_ring->rx_buf;
631 			ntu = 0;
632 		}
633 
634 		/* clear the status bits for the next_to_use descriptor */
635 		rx_desc->wb.status_error0 = 0;
636 
637 		cleaned_count--;
638 	} while (cleaned_count);
639 
640 	if (rx_ring->next_to_use != ntu)
641 		ice_release_rx_desc(rx_ring, ntu);
642 
643 	return !!cleaned_count;
644 }
645 
646 /**
647  * ice_page_is_reserved - check if reuse is possible
648  * @page: page struct to check
649  */
650 static bool ice_page_is_reserved(struct page *page)
651 {
652 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
653 }
654 
655 /**
656  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
657  * @rx_buf: Rx buffer to adjust
658  * @size: Size of adjustment
659  *
660  * Update the offset within page so that Rx buf will be ready to be reused.
661  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
662  * so the second half of page assigned to Rx buffer will be used, otherwise
663  * the offset is moved by "size" bytes
664  */
665 static void
666 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
667 {
668 #if (PAGE_SIZE < 8192)
669 	/* flip page offset to other buffer */
670 	rx_buf->page_offset ^= size;
671 #else
672 	/* move offset up to the next cache line */
673 	rx_buf->page_offset += size;
674 #endif
675 }
676 
677 /**
678  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
679  * @rx_buf: buffer containing the page
680  *
681  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
682  * which will assign the current buffer to the buffer that next_to_alloc is
683  * pointing to; otherwise, the DMA mapping needs to be destroyed and
684  * page freed
685  */
686 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
687 {
688 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
689 	struct page *page = rx_buf->page;
690 
691 	/* avoid re-using remote pages */
692 	if (unlikely(ice_page_is_reserved(page)))
693 		return false;
694 
695 #if (PAGE_SIZE < 8192)
696 	/* if we are only owner of page we can reuse it */
697 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
698 		return false;
699 #else
700 #define ICE_LAST_OFFSET \
701 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
702 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
703 		return false;
704 #endif /* PAGE_SIZE < 8192) */
705 
706 	/* If we have drained the page fragment pool we need to update
707 	 * the pagecnt_bias and page count so that we fully restock the
708 	 * number of references the driver holds.
709 	 */
710 	if (unlikely(pagecnt_bias == 1)) {
711 		page_ref_add(page, USHRT_MAX - 1);
712 		rx_buf->pagecnt_bias = USHRT_MAX;
713 	}
714 
715 	return true;
716 }
717 
718 /**
719  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
720  * @rx_ring: Rx descriptor ring to transact packets on
721  * @rx_buf: buffer containing page to add
722  * @skb: sk_buff to place the data into
723  * @size: packet length from rx_desc
724  *
725  * This function will add the data contained in rx_buf->page to the skb.
726  * It will just attach the page as a frag to the skb.
727  * The function will then update the page offset.
728  */
729 static void
730 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
731 		struct sk_buff *skb, unsigned int size)
732 {
733 #if (PAGE_SIZE >= 8192)
734 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
735 #else
736 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
737 #endif
738 
739 	if (!size)
740 		return;
741 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
742 			rx_buf->page_offset, size, truesize);
743 
744 	/* page is being used so we must update the page offset */
745 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
746 }
747 
748 /**
749  * ice_reuse_rx_page - page flip buffer and store it back on the ring
750  * @rx_ring: Rx descriptor ring to store buffers on
751  * @old_buf: donor buffer to have page reused
752  *
753  * Synchronizes page for reuse by the adapter
754  */
755 static void
756 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
757 {
758 	u16 nta = rx_ring->next_to_alloc;
759 	struct ice_rx_buf *new_buf;
760 
761 	new_buf = &rx_ring->rx_buf[nta];
762 
763 	/* update, and store next to alloc */
764 	nta++;
765 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
766 
767 	/* Transfer page from old buffer to new buffer.
768 	 * Move each member individually to avoid possible store
769 	 * forwarding stalls and unnecessary copy of skb.
770 	 */
771 	new_buf->dma = old_buf->dma;
772 	new_buf->page = old_buf->page;
773 	new_buf->page_offset = old_buf->page_offset;
774 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
775 }
776 
777 /**
778  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
779  * @rx_ring: Rx descriptor ring to transact packets on
780  * @skb: skb to be used
781  * @size: size of buffer to add to skb
782  *
783  * This function will pull an Rx buffer from the ring and synchronize it
784  * for use by the CPU.
785  */
786 static struct ice_rx_buf *
787 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
788 	       const unsigned int size)
789 {
790 	struct ice_rx_buf *rx_buf;
791 
792 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
793 	prefetchw(rx_buf->page);
794 	*skb = rx_buf->skb;
795 
796 	if (!size)
797 		return rx_buf;
798 	/* we are reusing so sync this buffer for CPU use */
799 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
800 				      rx_buf->page_offset, size,
801 				      DMA_FROM_DEVICE);
802 
803 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
804 	rx_buf->pagecnt_bias--;
805 
806 	return rx_buf;
807 }
808 
809 /**
810  * ice_build_skb - Build skb around an existing buffer
811  * @rx_ring: Rx descriptor ring to transact packets on
812  * @rx_buf: Rx buffer to pull data from
813  * @xdp: xdp_buff pointing to the data
814  *
815  * This function builds an skb around an existing Rx buffer, taking care
816  * to set up the skb correctly and avoid any memcpy overhead.
817  */
818 static struct sk_buff *
819 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
820 	      struct xdp_buff *xdp)
821 {
822 	unsigned int metasize = xdp->data - xdp->data_meta;
823 #if (PAGE_SIZE < 8192)
824 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
825 #else
826 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
827 				SKB_DATA_ALIGN(xdp->data_end -
828 					       xdp->data_hard_start);
829 #endif
830 	struct sk_buff *skb;
831 
832 	/* Prefetch first cache line of first page. If xdp->data_meta
833 	 * is unused, this points exactly as xdp->data, otherwise we
834 	 * likely have a consumer accessing first few bytes of meta
835 	 * data, and then actual data.
836 	 */
837 	prefetch(xdp->data_meta);
838 #if L1_CACHE_BYTES < 128
839 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
840 #endif
841 	/* build an skb around the page buffer */
842 	skb = build_skb(xdp->data_hard_start, truesize);
843 	if (unlikely(!skb))
844 		return NULL;
845 
846 	/* must to record Rx queue, otherwise OS features such as
847 	 * symmetric queue won't work
848 	 */
849 	skb_record_rx_queue(skb, rx_ring->q_index);
850 
851 	/* update pointers within the skb to store the data */
852 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
853 	__skb_put(skb, xdp->data_end - xdp->data);
854 	if (metasize)
855 		skb_metadata_set(skb, metasize);
856 
857 	/* buffer is used by skb, update page_offset */
858 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
859 
860 	return skb;
861 }
862 
863 /**
864  * ice_construct_skb - Allocate skb and populate it
865  * @rx_ring: Rx descriptor ring to transact packets on
866  * @rx_buf: Rx buffer to pull data from
867  * @xdp: xdp_buff pointing to the data
868  *
869  * This function allocates an skb. It then populates it with the page
870  * data from the current receive descriptor, taking care to set up the
871  * skb correctly.
872  */
873 static struct sk_buff *
874 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
875 		  struct xdp_buff *xdp)
876 {
877 	unsigned int size = xdp->data_end - xdp->data;
878 	unsigned int headlen;
879 	struct sk_buff *skb;
880 
881 	/* prefetch first cache line of first page */
882 	prefetch(xdp->data);
883 #if L1_CACHE_BYTES < 128
884 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
885 #endif /* L1_CACHE_BYTES */
886 
887 	/* allocate a skb to store the frags */
888 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
889 			       GFP_ATOMIC | __GFP_NOWARN);
890 	if (unlikely(!skb))
891 		return NULL;
892 
893 	skb_record_rx_queue(skb, rx_ring->q_index);
894 	/* Determine available headroom for copy */
895 	headlen = size;
896 	if (headlen > ICE_RX_HDR_SIZE)
897 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
898 
899 	/* align pull length to size of long to optimize memcpy performance */
900 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
901 							 sizeof(long)));
902 
903 	/* if we exhaust the linear part then add what is left as a frag */
904 	size -= headlen;
905 	if (size) {
906 #if (PAGE_SIZE >= 8192)
907 		unsigned int truesize = SKB_DATA_ALIGN(size);
908 #else
909 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
910 #endif
911 		skb_add_rx_frag(skb, 0, rx_buf->page,
912 				rx_buf->page_offset + headlen, size, truesize);
913 		/* buffer is used by skb, update page_offset */
914 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
915 	} else {
916 		/* buffer is unused, reset bias back to rx_buf; data was copied
917 		 * onto skb's linear part so there's no need for adjusting
918 		 * page offset and we can reuse this buffer as-is
919 		 */
920 		rx_buf->pagecnt_bias++;
921 	}
922 
923 	return skb;
924 }
925 
926 /**
927  * ice_put_rx_buf - Clean up used buffer and either recycle or free
928  * @rx_ring: Rx descriptor ring to transact packets on
929  * @rx_buf: Rx buffer to pull data from
930  *
931  * This function will update next_to_clean and then clean up the contents
932  * of the rx_buf. It will either recycle the buffer or unmap it and free
933  * the associated resources.
934  */
935 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
936 {
937 	u32 ntc = rx_ring->next_to_clean + 1;
938 
939 	/* fetch, update, and store next to clean */
940 	ntc = (ntc < rx_ring->count) ? ntc : 0;
941 	rx_ring->next_to_clean = ntc;
942 
943 	if (!rx_buf)
944 		return;
945 
946 	if (ice_can_reuse_rx_page(rx_buf)) {
947 		/* hand second half of page back to the ring */
948 		ice_reuse_rx_page(rx_ring, rx_buf);
949 		rx_ring->rx_stats.page_reuse_count++;
950 	} else {
951 		/* we are not reusing the buffer so unmap it */
952 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
953 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
954 				     ICE_RX_DMA_ATTR);
955 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
956 	}
957 
958 	/* clear contents of buffer_info */
959 	rx_buf->page = NULL;
960 	rx_buf->skb = NULL;
961 }
962 
963 /**
964  * ice_is_non_eop - process handling of non-EOP buffers
965  * @rx_ring: Rx ring being processed
966  * @rx_desc: Rx descriptor for current buffer
967  * @skb: Current socket buffer containing buffer in progress
968  *
969  * If the buffer is an EOP buffer, this function exits returning false,
970  * otherwise return true indicating that this is in fact a non-EOP buffer.
971  */
972 static bool
973 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
974 	       struct sk_buff *skb)
975 {
976 	/* if we are the last buffer then there is nothing else to do */
977 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
978 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
979 		return false;
980 
981 	/* place skb in next buffer to be received */
982 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
983 	rx_ring->rx_stats.non_eop_descs++;
984 
985 	return true;
986 }
987 
988 /**
989  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
990  * @rx_ring: Rx descriptor ring to transact packets on
991  * @budget: Total limit on number of packets to process
992  *
993  * This function provides a "bounce buffer" approach to Rx interrupt
994  * processing. The advantage to this is that on systems that have
995  * expensive overhead for IOMMU access this provides a means of avoiding
996  * it by maintaining the mapping of the page to the system.
997  *
998  * Returns amount of work completed
999  */
1000 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1001 {
1002 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1003 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1004 	unsigned int xdp_res, xdp_xmit = 0;
1005 	struct bpf_prog *xdp_prog = NULL;
1006 	struct xdp_buff xdp;
1007 	bool failure;
1008 
1009 	xdp.rxq = &rx_ring->xdp_rxq;
1010 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1011 #if (PAGE_SIZE < 8192)
1012 	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1013 #endif
1014 
1015 	/* start the loop to process Rx packets bounded by 'budget' */
1016 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1017 		union ice_32b_rx_flex_desc *rx_desc;
1018 		struct ice_rx_buf *rx_buf;
1019 		struct sk_buff *skb;
1020 		unsigned int size;
1021 		u16 stat_err_bits;
1022 		u16 vlan_tag = 0;
1023 		u8 rx_ptype;
1024 
1025 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1026 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1027 
1028 		/* status_error_len will always be zero for unused descriptors
1029 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1030 		 * which is always zero because packet split isn't used, if the
1031 		 * hardware wrote DD then it will be non-zero
1032 		 */
1033 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1034 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1035 			break;
1036 
1037 		/* This memory barrier is needed to keep us from reading
1038 		 * any other fields out of the rx_desc until we know the
1039 		 * DD bit is set.
1040 		 */
1041 		dma_rmb();
1042 
1043 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1044 			ICE_RX_FLX_DESC_PKT_LEN_M;
1045 
1046 		/* retrieve a buffer from the ring */
1047 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1048 
1049 		if (!size) {
1050 			xdp.data = NULL;
1051 			xdp.data_end = NULL;
1052 			xdp.data_hard_start = NULL;
1053 			xdp.data_meta = NULL;
1054 			goto construct_skb;
1055 		}
1056 
1057 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1058 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1059 		xdp.data_meta = xdp.data;
1060 		xdp.data_end = xdp.data + size;
1061 #if (PAGE_SIZE > 4096)
1062 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1063 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1064 #endif
1065 
1066 		rcu_read_lock();
1067 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1068 		if (!xdp_prog) {
1069 			rcu_read_unlock();
1070 			goto construct_skb;
1071 		}
1072 
1073 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1074 		rcu_read_unlock();
1075 		if (!xdp_res)
1076 			goto construct_skb;
1077 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1078 			xdp_xmit |= xdp_res;
1079 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1080 		} else {
1081 			rx_buf->pagecnt_bias++;
1082 		}
1083 		total_rx_bytes += size;
1084 		total_rx_pkts++;
1085 
1086 		cleaned_count++;
1087 		ice_put_rx_buf(rx_ring, rx_buf);
1088 		continue;
1089 construct_skb:
1090 		if (skb) {
1091 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1092 		} else if (likely(xdp.data)) {
1093 			if (ice_ring_uses_build_skb(rx_ring))
1094 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1095 			else
1096 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1097 		}
1098 		/* exit if we failed to retrieve a buffer */
1099 		if (!skb) {
1100 			rx_ring->rx_stats.alloc_buf_failed++;
1101 			if (rx_buf)
1102 				rx_buf->pagecnt_bias++;
1103 			break;
1104 		}
1105 
1106 		ice_put_rx_buf(rx_ring, rx_buf);
1107 		cleaned_count++;
1108 
1109 		/* skip if it is NOP desc */
1110 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1111 			continue;
1112 
1113 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1114 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1115 			dev_kfree_skb_any(skb);
1116 			continue;
1117 		}
1118 
1119 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1120 		if (ice_test_staterr(rx_desc, stat_err_bits))
1121 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1122 
1123 		/* pad the skb if needed, to make a valid ethernet frame */
1124 		if (eth_skb_pad(skb)) {
1125 			skb = NULL;
1126 			continue;
1127 		}
1128 
1129 		/* probably a little skewed due to removing CRC */
1130 		total_rx_bytes += skb->len;
1131 
1132 		/* populate checksum, VLAN, and protocol */
1133 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1134 			ICE_RX_FLEX_DESC_PTYPE_M;
1135 
1136 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1137 
1138 		/* send completed skb up the stack */
1139 		ice_receive_skb(rx_ring, skb, vlan_tag);
1140 
1141 		/* update budget accounting */
1142 		total_rx_pkts++;
1143 	}
1144 
1145 	/* return up to cleaned_count buffers to hardware */
1146 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1147 
1148 	if (xdp_prog)
1149 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1150 
1151 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1152 
1153 	/* guarantee a trip back through this routine if there was a failure */
1154 	return failure ? budget : (int)total_rx_pkts;
1155 }
1156 
1157 /**
1158  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1159  * @port_info: port_info structure containing the current link speed
1160  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1161  * @itr: ITR value to update
1162  *
1163  * Calculate how big of an increment should be applied to the ITR value passed
1164  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1165  * link speed.
1166  *
1167  * The following is a calculation derived from:
1168  *  wmem_default / (size + overhead) = desired_pkts_per_int
1169  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1170  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1171  *
1172  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1173  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1174  * formula down to:
1175  *
1176  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1177  * ITR = -------------------------------------------- * --------------
1178  *			     rate			pkt_size + 640
1179  */
1180 static unsigned int
1181 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1182 				 unsigned int avg_pkt_size,
1183 				 unsigned int itr)
1184 {
1185 	switch (port_info->phy.link_info.link_speed) {
1186 	case ICE_AQ_LINK_SPEED_100GB:
1187 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1188 				    avg_pkt_size + 640);
1189 		break;
1190 	case ICE_AQ_LINK_SPEED_50GB:
1191 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1192 				    avg_pkt_size + 640);
1193 		break;
1194 	case ICE_AQ_LINK_SPEED_40GB:
1195 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1196 				    avg_pkt_size + 640);
1197 		break;
1198 	case ICE_AQ_LINK_SPEED_25GB:
1199 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1200 				    avg_pkt_size + 640);
1201 		break;
1202 	case ICE_AQ_LINK_SPEED_20GB:
1203 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1204 				    avg_pkt_size + 640);
1205 		break;
1206 	case ICE_AQ_LINK_SPEED_10GB:
1207 	default:
1208 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1209 				    avg_pkt_size + 640);
1210 		break;
1211 	}
1212 
1213 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1214 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1215 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1216 	}
1217 
1218 	return itr;
1219 }
1220 
1221 /**
1222  * ice_update_itr - update the adaptive ITR value based on statistics
1223  * @q_vector: structure containing interrupt and ring information
1224  * @rc: structure containing ring performance data
1225  *
1226  * Stores a new ITR value based on packets and byte
1227  * counts during the last interrupt.  The advantage of per interrupt
1228  * computation is faster updates and more accurate ITR for the current
1229  * traffic pattern.  Constants in this function were computed
1230  * based on theoretical maximum wire speed and thresholds were set based
1231  * on testing data as well as attempting to minimize response time
1232  * while increasing bulk throughput.
1233  */
1234 static void
1235 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1236 {
1237 	unsigned long next_update = jiffies;
1238 	unsigned int packets, bytes, itr;
1239 	bool container_is_rx;
1240 
1241 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1242 		return;
1243 
1244 	/* If itr_countdown is set it means we programmed an ITR within
1245 	 * the last 4 interrupt cycles. This has a side effect of us
1246 	 * potentially firing an early interrupt. In order to work around
1247 	 * this we need to throw out any data received for a few
1248 	 * interrupts following the update.
1249 	 */
1250 	if (q_vector->itr_countdown) {
1251 		itr = rc->target_itr;
1252 		goto clear_counts;
1253 	}
1254 
1255 	container_is_rx = (&q_vector->rx == rc);
1256 	/* For Rx we want to push the delay up and default to low latency.
1257 	 * for Tx we want to pull the delay down and default to high latency.
1258 	 */
1259 	itr = container_is_rx ?
1260 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1261 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1262 
1263 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1264 	 * that either packets are coming in so slow there hasn't been
1265 	 * any work, or that there is so much work that NAPI is dealing
1266 	 * with interrupt moderation and we don't need to do anything.
1267 	 */
1268 	if (time_after(next_update, rc->next_update))
1269 		goto clear_counts;
1270 
1271 	prefetch(q_vector->vsi->port_info);
1272 
1273 	packets = rc->total_pkts;
1274 	bytes = rc->total_bytes;
1275 
1276 	if (container_is_rx) {
1277 		/* If Rx there are 1 to 4 packets and bytes are less than
1278 		 * 9000 assume insufficient data to use bulk rate limiting
1279 		 * approach unless Tx is already in bulk rate limiting. We
1280 		 * are likely latency driven.
1281 		 */
1282 		if (packets && packets < 4 && bytes < 9000 &&
1283 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1284 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1285 			goto adjust_by_size_and_speed;
1286 		}
1287 	} else if (packets < 4) {
1288 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1289 		 * bulk mode and we are receiving 4 or fewer packets just
1290 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1291 		 * that the Rx can relax.
1292 		 */
1293 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1294 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1295 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1296 			goto clear_counts;
1297 	} else if (packets > 32) {
1298 		/* If we have processed over 32 packets in a single interrupt
1299 		 * for Tx assume we need to switch over to "bulk" mode.
1300 		 */
1301 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1302 	}
1303 
1304 	/* We have no packets to actually measure against. This means
1305 	 * either one of the other queues on this vector is active or
1306 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1307 	 *
1308 	 * Between 4 and 56 we can assume that our current interrupt delay
1309 	 * is only slightly too low. As such we should increase it by a small
1310 	 * fixed amount.
1311 	 */
1312 	if (packets < 56) {
1313 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1314 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1315 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1316 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1317 		}
1318 		goto clear_counts;
1319 	}
1320 
1321 	if (packets <= 256) {
1322 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1323 		itr &= ICE_ITR_MASK;
1324 
1325 		/* Between 56 and 112 is our "goldilocks" zone where we are
1326 		 * working out "just right". Just report that our current
1327 		 * ITR is good for us.
1328 		 */
1329 		if (packets <= 112)
1330 			goto clear_counts;
1331 
1332 		/* If packet count is 128 or greater we are likely looking
1333 		 * at a slight overrun of the delay we want. Try halving
1334 		 * our delay to see if that will cut the number of packets
1335 		 * in half per interrupt.
1336 		 */
1337 		itr >>= 1;
1338 		itr &= ICE_ITR_MASK;
1339 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1340 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1341 
1342 		goto clear_counts;
1343 	}
1344 
1345 	/* The paths below assume we are dealing with a bulk ITR since
1346 	 * number of packets is greater than 256. We are just going to have
1347 	 * to compute a value and try to bring the count under control,
1348 	 * though for smaller packet sizes there isn't much we can do as
1349 	 * NAPI polling will likely be kicking in sooner rather than later.
1350 	 */
1351 	itr = ICE_ITR_ADAPTIVE_BULK;
1352 
1353 adjust_by_size_and_speed:
1354 
1355 	/* based on checks above packets cannot be 0 so division is safe */
1356 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1357 					       bytes / packets, itr);
1358 
1359 clear_counts:
1360 	/* write back value */
1361 	rc->target_itr = itr;
1362 
1363 	/* next update should occur within next jiffy */
1364 	rc->next_update = next_update + 1;
1365 
1366 	rc->total_bytes = 0;
1367 	rc->total_pkts = 0;
1368 }
1369 
1370 /**
1371  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1372  * @itr_idx: interrupt throttling index
1373  * @itr: interrupt throttling value in usecs
1374  */
1375 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1376 {
1377 	/* The ITR value is reported in microseconds, and the register value is
1378 	 * recorded in 2 microsecond units. For this reason we only need to
1379 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1380 	 * granularity as a shift instead of division. The mask makes sure the
1381 	 * ITR value is never odd so we don't accidentally write into the field
1382 	 * prior to the ITR field.
1383 	 */
1384 	itr &= ICE_ITR_MASK;
1385 
1386 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1387 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1388 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1389 }
1390 
1391 /* The act of updating the ITR will cause it to immediately trigger. In order
1392  * to prevent this from throwing off adaptive update statistics we defer the
1393  * update so that it can only happen so often. So after either Tx or Rx are
1394  * updated we make the adaptive scheme wait until either the ITR completely
1395  * expires via the next_update expiration or we have been through at least
1396  * 3 interrupts.
1397  */
1398 #define ITR_COUNTDOWN_START 3
1399 
1400 /**
1401  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1402  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1403  */
1404 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1405 {
1406 	struct ice_ring_container *tx = &q_vector->tx;
1407 	struct ice_ring_container *rx = &q_vector->rx;
1408 	struct ice_vsi *vsi = q_vector->vsi;
1409 	u32 itr_val;
1410 
1411 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1412 	 * interrupts to expire right away in case we have more work ready to go
1413 	 * already
1414 	 */
1415 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1416 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1417 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1418 		/* set target back to last user set value */
1419 		rx->target_itr = rx->itr_setting;
1420 		/* set current to what we just wrote and dynamic if needed */
1421 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1422 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1423 		/* allow normal interrupt flow to start */
1424 		q_vector->itr_countdown = 0;
1425 		return;
1426 	}
1427 
1428 	/* This will do nothing if dynamic updates are not enabled */
1429 	ice_update_itr(q_vector, tx);
1430 	ice_update_itr(q_vector, rx);
1431 
1432 	/* This block of logic allows us to get away with only updating
1433 	 * one ITR value with each interrupt. The idea is to perform a
1434 	 * pseudo-lazy update with the following criteria.
1435 	 *
1436 	 * 1. Rx is given higher priority than Tx if both are in same state
1437 	 * 2. If we must reduce an ITR that is given highest priority.
1438 	 * 3. We then give priority to increasing ITR based on amount.
1439 	 */
1440 	if (rx->target_itr < rx->current_itr) {
1441 		/* Rx ITR needs to be reduced, this is highest priority */
1442 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1443 		rx->current_itr = rx->target_itr;
1444 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1445 	} else if ((tx->target_itr < tx->current_itr) ||
1446 		   ((rx->target_itr - rx->current_itr) <
1447 		    (tx->target_itr - tx->current_itr))) {
1448 		/* Tx ITR needs to be reduced, this is second priority
1449 		 * Tx ITR needs to be increased more than Rx, fourth priority
1450 		 */
1451 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1452 		tx->current_itr = tx->target_itr;
1453 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1454 	} else if (rx->current_itr != rx->target_itr) {
1455 		/* Rx ITR needs to be increased, third priority */
1456 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1457 		rx->current_itr = rx->target_itr;
1458 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1459 	} else {
1460 		/* Still have to re-enable the interrupts */
1461 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1462 		if (q_vector->itr_countdown)
1463 			q_vector->itr_countdown--;
1464 	}
1465 
1466 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1467 		wr32(&q_vector->vsi->back->hw,
1468 		     GLINT_DYN_CTL(q_vector->reg_idx),
1469 		     itr_val);
1470 }
1471 
1472 /**
1473  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1474  * @q_vector: q_vector to set WB_ON_ITR on
1475  *
1476  * We need to tell hardware to write-back completed descriptors even when
1477  * interrupts are disabled. Descriptors will be written back on cache line
1478  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1479  * descriptors may not be written back if they don't fill a cache line until the
1480  * next interrupt.
1481  *
1482  * This sets the write-back frequency to 2 microseconds as that is the minimum
1483  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1484  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1485  */
1486 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1487 {
1488 	struct ice_vsi *vsi = q_vector->vsi;
1489 
1490 	/* already in WB_ON_ITR mode no need to change it */
1491 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1492 		return;
1493 
1494 	if (q_vector->num_ring_rx)
1495 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1496 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1497 						 ICE_RX_ITR));
1498 
1499 	if (q_vector->num_ring_tx)
1500 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1501 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1502 						 ICE_TX_ITR));
1503 
1504 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1505 }
1506 
1507 /**
1508  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1509  * @napi: napi struct with our devices info in it
1510  * @budget: amount of work driver is allowed to do this pass, in packets
1511  *
1512  * This function will clean all queues associated with a q_vector.
1513  *
1514  * Returns the amount of work done
1515  */
1516 int ice_napi_poll(struct napi_struct *napi, int budget)
1517 {
1518 	struct ice_q_vector *q_vector =
1519 				container_of(napi, struct ice_q_vector, napi);
1520 	bool clean_complete = true;
1521 	struct ice_ring *ring;
1522 	int budget_per_ring;
1523 	int work_done = 0;
1524 
1525 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1526 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1527 	 */
1528 	ice_for_each_ring(ring, q_vector->tx) {
1529 		bool wd = ring->xsk_umem ?
1530 			  ice_clean_tx_irq_zc(ring, budget) :
1531 			  ice_clean_tx_irq(ring, budget);
1532 
1533 		if (!wd)
1534 			clean_complete = false;
1535 	}
1536 
1537 	/* Handle case where we are called by netpoll with a budget of 0 */
1538 	if (unlikely(budget <= 0))
1539 		return budget;
1540 
1541 	/* normally we have 1 Rx ring per q_vector */
1542 	if (unlikely(q_vector->num_ring_rx > 1))
1543 		/* We attempt to distribute budget to each Rx queue fairly, but
1544 		 * don't allow the budget to go below 1 because that would exit
1545 		 * polling early.
1546 		 */
1547 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1548 	else
1549 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1550 		budget_per_ring = budget;
1551 
1552 	ice_for_each_ring(ring, q_vector->rx) {
1553 		int cleaned;
1554 
1555 		/* A dedicated path for zero-copy allows making a single
1556 		 * comparison in the irq context instead of many inside the
1557 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1558 		 */
1559 		cleaned = ring->xsk_umem ?
1560 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1561 			  ice_clean_rx_irq(ring, budget_per_ring);
1562 		work_done += cleaned;
1563 		/* if we clean as many as budgeted, we must not be done */
1564 		if (cleaned >= budget_per_ring)
1565 			clean_complete = false;
1566 	}
1567 
1568 	/* If work not completed, return budget and polling will return */
1569 	if (!clean_complete)
1570 		return budget;
1571 
1572 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1573 	 * poll us due to busy-polling
1574 	 */
1575 	if (likely(napi_complete_done(napi, work_done)))
1576 		ice_update_ena_itr(q_vector);
1577 	else
1578 		ice_set_wb_on_itr(q_vector);
1579 
1580 	return min_t(int, work_done, budget - 1);
1581 }
1582 
1583 /**
1584  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1585  * @tx_ring: the ring to be checked
1586  * @size: the size buffer we want to assure is available
1587  *
1588  * Returns -EBUSY if a stop is needed, else 0
1589  */
1590 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1591 {
1592 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1593 	/* Memory barrier before checking head and tail */
1594 	smp_mb();
1595 
1596 	/* Check again in a case another CPU has just made room available. */
1597 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1598 		return -EBUSY;
1599 
1600 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1601 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1602 	++tx_ring->tx_stats.restart_q;
1603 	return 0;
1604 }
1605 
1606 /**
1607  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1608  * @tx_ring: the ring to be checked
1609  * @size:    the size buffer we want to assure is available
1610  *
1611  * Returns 0 if stop is not needed
1612  */
1613 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1614 {
1615 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1616 		return 0;
1617 
1618 	return __ice_maybe_stop_tx(tx_ring, size);
1619 }
1620 
1621 /**
1622  * ice_tx_map - Build the Tx descriptor
1623  * @tx_ring: ring to send buffer on
1624  * @first: first buffer info buffer to use
1625  * @off: pointer to struct that holds offload parameters
1626  *
1627  * This function loops over the skb data pointed to by *first
1628  * and gets a physical address for each memory location and programs
1629  * it and the length into the transmit descriptor.
1630  */
1631 static void
1632 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1633 	   struct ice_tx_offload_params *off)
1634 {
1635 	u64 td_offset, td_tag, td_cmd;
1636 	u16 i = tx_ring->next_to_use;
1637 	unsigned int data_len, size;
1638 	struct ice_tx_desc *tx_desc;
1639 	struct ice_tx_buf *tx_buf;
1640 	struct sk_buff *skb;
1641 	skb_frag_t *frag;
1642 	dma_addr_t dma;
1643 
1644 	td_tag = off->td_l2tag1;
1645 	td_cmd = off->td_cmd;
1646 	td_offset = off->td_offset;
1647 	skb = first->skb;
1648 
1649 	data_len = skb->data_len;
1650 	size = skb_headlen(skb);
1651 
1652 	tx_desc = ICE_TX_DESC(tx_ring, i);
1653 
1654 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1655 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1656 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1657 			  ICE_TX_FLAGS_VLAN_S;
1658 	}
1659 
1660 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1661 
1662 	tx_buf = first;
1663 
1664 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1665 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1666 
1667 		if (dma_mapping_error(tx_ring->dev, dma))
1668 			goto dma_error;
1669 
1670 		/* record length, and DMA address */
1671 		dma_unmap_len_set(tx_buf, len, size);
1672 		dma_unmap_addr_set(tx_buf, dma, dma);
1673 
1674 		/* align size to end of page */
1675 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1676 		tx_desc->buf_addr = cpu_to_le64(dma);
1677 
1678 		/* account for data chunks larger than the hardware
1679 		 * can handle
1680 		 */
1681 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1682 			tx_desc->cmd_type_offset_bsz =
1683 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1684 
1685 			tx_desc++;
1686 			i++;
1687 
1688 			if (i == tx_ring->count) {
1689 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1690 				i = 0;
1691 			}
1692 
1693 			dma += max_data;
1694 			size -= max_data;
1695 
1696 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1697 			tx_desc->buf_addr = cpu_to_le64(dma);
1698 		}
1699 
1700 		if (likely(!data_len))
1701 			break;
1702 
1703 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1704 							  size, td_tag);
1705 
1706 		tx_desc++;
1707 		i++;
1708 
1709 		if (i == tx_ring->count) {
1710 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1711 			i = 0;
1712 		}
1713 
1714 		size = skb_frag_size(frag);
1715 		data_len -= size;
1716 
1717 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1718 				       DMA_TO_DEVICE);
1719 
1720 		tx_buf = &tx_ring->tx_buf[i];
1721 	}
1722 
1723 	/* record bytecount for BQL */
1724 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1725 
1726 	/* record SW timestamp if HW timestamp is not available */
1727 	skb_tx_timestamp(first->skb);
1728 
1729 	i++;
1730 	if (i == tx_ring->count)
1731 		i = 0;
1732 
1733 	/* write last descriptor with RS and EOP bits */
1734 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1735 	tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
1736 						  td_tag);
1737 
1738 	/* Force memory writes to complete before letting h/w know there
1739 	 * are new descriptors to fetch.
1740 	 *
1741 	 * We also use this memory barrier to make certain all of the
1742 	 * status bits have been updated before next_to_watch is written.
1743 	 */
1744 	wmb();
1745 
1746 	/* set next_to_watch value indicating a packet is present */
1747 	first->next_to_watch = tx_desc;
1748 
1749 	tx_ring->next_to_use = i;
1750 
1751 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1752 
1753 	/* notify HW of packet */
1754 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1755 		writel(i, tx_ring->tail);
1756 
1757 	return;
1758 
1759 dma_error:
1760 	/* clear DMA mappings for failed tx_buf map */
1761 	for (;;) {
1762 		tx_buf = &tx_ring->tx_buf[i];
1763 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1764 		if (tx_buf == first)
1765 			break;
1766 		if (i == 0)
1767 			i = tx_ring->count;
1768 		i--;
1769 	}
1770 
1771 	tx_ring->next_to_use = i;
1772 }
1773 
1774 /**
1775  * ice_tx_csum - Enable Tx checksum offloads
1776  * @first: pointer to the first descriptor
1777  * @off: pointer to struct that holds offload parameters
1778  *
1779  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1780  */
1781 static
1782 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1783 {
1784 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1785 	struct sk_buff *skb = first->skb;
1786 	union {
1787 		struct iphdr *v4;
1788 		struct ipv6hdr *v6;
1789 		unsigned char *hdr;
1790 	} ip;
1791 	union {
1792 		struct tcphdr *tcp;
1793 		unsigned char *hdr;
1794 	} l4;
1795 	__be16 frag_off, protocol;
1796 	unsigned char *exthdr;
1797 	u32 offset, cmd = 0;
1798 	u8 l4_proto = 0;
1799 
1800 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1801 		return 0;
1802 
1803 	ip.hdr = skb_network_header(skb);
1804 	l4.hdr = skb_transport_header(skb);
1805 
1806 	/* compute outer L2 header size */
1807 	l2_len = ip.hdr - skb->data;
1808 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1809 
1810 	if (skb->encapsulation)
1811 		return -1;
1812 
1813 	/* Enable IP checksum offloads */
1814 	protocol = vlan_get_protocol(skb);
1815 	if (protocol == htons(ETH_P_IP)) {
1816 		l4_proto = ip.v4->protocol;
1817 		/* the stack computes the IP header already, the only time we
1818 		 * need the hardware to recompute it is in the case of TSO.
1819 		 */
1820 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1821 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1822 		else
1823 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1824 
1825 	} else if (protocol == htons(ETH_P_IPV6)) {
1826 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1827 		exthdr = ip.hdr + sizeof(*ip.v6);
1828 		l4_proto = ip.v6->nexthdr;
1829 		if (l4.hdr != exthdr)
1830 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1831 					 &frag_off);
1832 	} else {
1833 		return -1;
1834 	}
1835 
1836 	/* compute inner L3 header size */
1837 	l3_len = l4.hdr - ip.hdr;
1838 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1839 
1840 	/* Enable L4 checksum offloads */
1841 	switch (l4_proto) {
1842 	case IPPROTO_TCP:
1843 		/* enable checksum offloads */
1844 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1845 		l4_len = l4.tcp->doff;
1846 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1847 		break;
1848 	case IPPROTO_UDP:
1849 		/* enable UDP checksum offload */
1850 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1851 		l4_len = (sizeof(struct udphdr) >> 2);
1852 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1853 		break;
1854 	case IPPROTO_SCTP:
1855 		/* enable SCTP checksum offload */
1856 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1857 		l4_len = sizeof(struct sctphdr) >> 2;
1858 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1859 		break;
1860 
1861 	default:
1862 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1863 			return -1;
1864 		skb_checksum_help(skb);
1865 		return 0;
1866 	}
1867 
1868 	off->td_cmd |= cmd;
1869 	off->td_offset |= offset;
1870 	return 1;
1871 }
1872 
1873 /**
1874  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1875  * @tx_ring: ring to send buffer on
1876  * @first: pointer to struct ice_tx_buf
1877  *
1878  * Checks the skb and set up correspondingly several generic transmit flags
1879  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1880  *
1881  * Returns error code indicate the frame should be dropped upon error and the
1882  * otherwise returns 0 to indicate the flags has been set properly.
1883  */
1884 static int
1885 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1886 {
1887 	struct sk_buff *skb = first->skb;
1888 	__be16 protocol = skb->protocol;
1889 
1890 	if (protocol == htons(ETH_P_8021Q) &&
1891 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1892 		/* when HW VLAN acceleration is turned off by the user the
1893 		 * stack sets the protocol to 8021q so that the driver
1894 		 * can take any steps required to support the SW only
1895 		 * VLAN handling. In our case the driver doesn't need
1896 		 * to take any further steps so just set the protocol
1897 		 * to the encapsulated ethertype.
1898 		 */
1899 		skb->protocol = vlan_get_protocol(skb);
1900 		return 0;
1901 	}
1902 
1903 	/* if we have a HW VLAN tag being added, default to the HW one */
1904 	if (skb_vlan_tag_present(skb)) {
1905 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1906 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1907 	} else if (protocol == htons(ETH_P_8021Q)) {
1908 		struct vlan_hdr *vhdr, _vhdr;
1909 
1910 		/* for SW VLAN, check the next protocol and store the tag */
1911 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1912 							     sizeof(_vhdr),
1913 							     &_vhdr);
1914 		if (!vhdr)
1915 			return -EINVAL;
1916 
1917 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1918 				   ICE_TX_FLAGS_VLAN_S;
1919 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1920 	}
1921 
1922 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1923 }
1924 
1925 /**
1926  * ice_tso - computes mss and TSO length to prepare for TSO
1927  * @first: pointer to struct ice_tx_buf
1928  * @off: pointer to struct that holds offload parameters
1929  *
1930  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1931  */
1932 static
1933 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1934 {
1935 	struct sk_buff *skb = first->skb;
1936 	union {
1937 		struct iphdr *v4;
1938 		struct ipv6hdr *v6;
1939 		unsigned char *hdr;
1940 	} ip;
1941 	union {
1942 		struct tcphdr *tcp;
1943 		struct udphdr *udp;
1944 		unsigned char *hdr;
1945 	} l4;
1946 	u64 cd_mss, cd_tso_len;
1947 	u32 paylen, l4_start;
1948 	int err;
1949 
1950 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1951 		return 0;
1952 
1953 	if (!skb_is_gso(skb))
1954 		return 0;
1955 
1956 	err = skb_cow_head(skb, 0);
1957 	if (err < 0)
1958 		return err;
1959 
1960 	/* cppcheck-suppress unreadVariable */
1961 	ip.hdr = skb_network_header(skb);
1962 	l4.hdr = skb_transport_header(skb);
1963 
1964 	/* initialize outer IP header fields */
1965 	if (ip.v4->version == 4) {
1966 		ip.v4->tot_len = 0;
1967 		ip.v4->check = 0;
1968 	} else {
1969 		ip.v6->payload_len = 0;
1970 	}
1971 
1972 	/* determine offset of transport header */
1973 	l4_start = l4.hdr - skb->data;
1974 
1975 	/* remove payload length from checksum */
1976 	paylen = skb->len - l4_start;
1977 
1978 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1979 		csum_replace_by_diff(&l4.udp->check,
1980 				     (__force __wsum)htonl(paylen));
1981 		/* compute length of UDP segmentation header */
1982 		off->header_len = sizeof(l4.udp) + l4_start;
1983 	} else {
1984 		csum_replace_by_diff(&l4.tcp->check,
1985 				     (__force __wsum)htonl(paylen));
1986 		/* compute length of TCP segmentation header */
1987 		off->header_len = (l4.tcp->doff * 4) + l4_start;
1988 	}
1989 
1990 	/* update gso_segs and bytecount */
1991 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1992 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1993 
1994 	cd_tso_len = skb->len - off->header_len;
1995 	cd_mss = skb_shinfo(skb)->gso_size;
1996 
1997 	/* record cdesc_qw1 with TSO parameters */
1998 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1999 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2000 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2001 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2002 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2003 	return 1;
2004 }
2005 
2006 /**
2007  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2008  * @size: transmit request size in bytes
2009  *
2010  * Due to hardware alignment restrictions (4K alignment), we need to
2011  * assume that we can have no more than 12K of data per descriptor, even
2012  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2013  * Thus, we need to divide by 12K. But division is slow! Instead,
2014  * we decompose the operation into shifts and one relatively cheap
2015  * multiply operation.
2016  *
2017  * To divide by 12K, we first divide by 4K, then divide by 3:
2018  *     To divide by 4K, shift right by 12 bits
2019  *     To divide by 3, multiply by 85, then divide by 256
2020  *     (Divide by 256 is done by shifting right by 8 bits)
2021  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2022  * 3, we'll underestimate near each multiple of 12K. This is actually more
2023  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2024  * segment. For our purposes this is accurate out to 1M which is orders of
2025  * magnitude greater than our largest possible GSO size.
2026  *
2027  * This would then be implemented as:
2028  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2029  *
2030  * Since multiplication and division are commutative, we can reorder
2031  * operations into:
2032  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2033  */
2034 static unsigned int ice_txd_use_count(unsigned int size)
2035 {
2036 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2037 }
2038 
2039 /**
2040  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2041  * @skb: send buffer
2042  *
2043  * Returns number of data descriptors needed for this skb.
2044  */
2045 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2046 {
2047 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2048 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2049 	unsigned int count = 0, size = skb_headlen(skb);
2050 
2051 	for (;;) {
2052 		count += ice_txd_use_count(size);
2053 
2054 		if (!nr_frags--)
2055 			break;
2056 
2057 		size = skb_frag_size(frag++);
2058 	}
2059 
2060 	return count;
2061 }
2062 
2063 /**
2064  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2065  * @skb: send buffer
2066  *
2067  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2068  * and so we need to figure out the cases where we need to linearize the skb.
2069  *
2070  * For TSO we need to count the TSO header and segment payload separately.
2071  * As such we need to check cases where we have 7 fragments or more as we
2072  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2073  * the segment payload in the first descriptor, and another 7 for the
2074  * fragments.
2075  */
2076 static bool __ice_chk_linearize(struct sk_buff *skb)
2077 {
2078 	const skb_frag_t *frag, *stale;
2079 	int nr_frags, sum;
2080 
2081 	/* no need to check if number of frags is less than 7 */
2082 	nr_frags = skb_shinfo(skb)->nr_frags;
2083 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2084 		return false;
2085 
2086 	/* We need to walk through the list and validate that each group
2087 	 * of 6 fragments totals at least gso_size.
2088 	 */
2089 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2090 	frag = &skb_shinfo(skb)->frags[0];
2091 
2092 	/* Initialize size to the negative value of gso_size minus 1. We
2093 	 * use this as the worst case scenario in which the frag ahead
2094 	 * of us only provides one byte which is why we are limited to 6
2095 	 * descriptors for a single transmit as the header and previous
2096 	 * fragment are already consuming 2 descriptors.
2097 	 */
2098 	sum = 1 - skb_shinfo(skb)->gso_size;
2099 
2100 	/* Add size of frags 0 through 4 to create our initial sum */
2101 	sum += skb_frag_size(frag++);
2102 	sum += skb_frag_size(frag++);
2103 	sum += skb_frag_size(frag++);
2104 	sum += skb_frag_size(frag++);
2105 	sum += skb_frag_size(frag++);
2106 
2107 	/* Walk through fragments adding latest fragment, testing it, and
2108 	 * then removing stale fragments from the sum.
2109 	 */
2110 	stale = &skb_shinfo(skb)->frags[0];
2111 	for (;;) {
2112 		sum += skb_frag_size(frag++);
2113 
2114 		/* if sum is negative we failed to make sufficient progress */
2115 		if (sum < 0)
2116 			return true;
2117 
2118 		if (!nr_frags--)
2119 			break;
2120 
2121 		sum -= skb_frag_size(stale++);
2122 	}
2123 
2124 	return false;
2125 }
2126 
2127 /**
2128  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2129  * @skb:      send buffer
2130  * @count:    number of buffers used
2131  *
2132  * Note: Our HW can't scatter-gather more than 8 fragments to build
2133  * a packet on the wire and so we need to figure out the cases where we
2134  * need to linearize the skb.
2135  */
2136 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2137 {
2138 	/* Both TSO and single send will work if count is less than 8 */
2139 	if (likely(count < ICE_MAX_BUF_TXD))
2140 		return false;
2141 
2142 	if (skb_is_gso(skb))
2143 		return __ice_chk_linearize(skb);
2144 
2145 	/* we can support up to 8 data buffers for a single send */
2146 	return count != ICE_MAX_BUF_TXD;
2147 }
2148 
2149 /**
2150  * ice_xmit_frame_ring - Sends buffer on Tx ring
2151  * @skb: send buffer
2152  * @tx_ring: ring to send buffer on
2153  *
2154  * Returns NETDEV_TX_OK if sent, else an error code
2155  */
2156 static netdev_tx_t
2157 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2158 {
2159 	struct ice_tx_offload_params offload = { 0 };
2160 	struct ice_vsi *vsi = tx_ring->vsi;
2161 	struct ice_tx_buf *first;
2162 	unsigned int count;
2163 	int tso, csum;
2164 
2165 	count = ice_xmit_desc_count(skb);
2166 	if (ice_chk_linearize(skb, count)) {
2167 		if (__skb_linearize(skb))
2168 			goto out_drop;
2169 		count = ice_txd_use_count(skb->len);
2170 		tx_ring->tx_stats.tx_linearize++;
2171 	}
2172 
2173 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2174 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2175 	 *       + 4 desc gap to avoid the cache line where head is,
2176 	 *       + 1 desc for context descriptor,
2177 	 * otherwise try next time
2178 	 */
2179 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2180 			      ICE_DESCS_FOR_CTX_DESC)) {
2181 		tx_ring->tx_stats.tx_busy++;
2182 		return NETDEV_TX_BUSY;
2183 	}
2184 
2185 	offload.tx_ring = tx_ring;
2186 
2187 	/* record the location of the first descriptor for this packet */
2188 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2189 	first->skb = skb;
2190 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2191 	first->gso_segs = 1;
2192 	first->tx_flags = 0;
2193 
2194 	/* prepare the VLAN tagging flags for Tx */
2195 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2196 		goto out_drop;
2197 
2198 	/* set up TSO offload */
2199 	tso = ice_tso(first, &offload);
2200 	if (tso < 0)
2201 		goto out_drop;
2202 
2203 	/* always set up Tx checksum offload */
2204 	csum = ice_tx_csum(first, &offload);
2205 	if (csum < 0)
2206 		goto out_drop;
2207 
2208 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2209 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2210 		     vsi->type == ICE_VSI_PF &&
2211 		     vsi->port_info->is_sw_lldp))
2212 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2213 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2214 					ICE_TXD_CTX_QW1_CMD_S);
2215 
2216 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2217 		struct ice_tx_ctx_desc *cdesc;
2218 		int i = tx_ring->next_to_use;
2219 
2220 		/* grab the next descriptor */
2221 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2222 		i++;
2223 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2224 
2225 		/* setup context descriptor */
2226 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2227 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2228 		cdesc->rsvd = cpu_to_le16(0);
2229 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2230 	}
2231 
2232 	ice_tx_map(tx_ring, first, &offload);
2233 	return NETDEV_TX_OK;
2234 
2235 out_drop:
2236 	dev_kfree_skb_any(skb);
2237 	return NETDEV_TX_OK;
2238 }
2239 
2240 /**
2241  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2242  * @skb: send buffer
2243  * @netdev: network interface device structure
2244  *
2245  * Returns NETDEV_TX_OK if sent, else an error code
2246  */
2247 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2248 {
2249 	struct ice_netdev_priv *np = netdev_priv(netdev);
2250 	struct ice_vsi *vsi = np->vsi;
2251 	struct ice_ring *tx_ring;
2252 
2253 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2254 
2255 	/* hardware can't handle really short frames, hardware padding works
2256 	 * beyond this point
2257 	 */
2258 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2259 		return NETDEV_TX_OK;
2260 
2261 	return ice_xmit_frame_ring(skb, tx_ring);
2262 }
2263